| Index: src/x64/macro-assembler-x64.cc
|
| diff --git a/src/x64/macro-assembler-x64.cc b/src/x64/macro-assembler-x64.cc
|
| index aa090560e5a8f7eeb45b45424aedf715a7516f7b..eb3f7c19e3d00ae16c41a6a3576f1886cbf86480 100644
|
| --- a/src/x64/macro-assembler-x64.cc
|
| +++ b/src/x64/macro-assembler-x64.cc
|
| @@ -201,8 +201,8 @@ void MacroAssembler::RecordWriteHelper(Register object,
|
| Register scratch) {
|
| if (emit_debug_code()) {
|
| // Check that the object is not in new space.
|
| - NearLabel not_in_new_space;
|
| - InNewSpace(object, scratch, not_equal, ¬_in_new_space);
|
| + Label not_in_new_space;
|
| + InNewSpace(object, scratch, not_equal, ¬_in_new_space, Label::kNear);
|
| Abort("new-space object passed to RecordWriteHelper");
|
| bind(¬_in_new_space);
|
| }
|
| @@ -221,6 +221,42 @@ void MacroAssembler::RecordWriteHelper(Register object,
|
| }
|
|
|
|
|
| +void MacroAssembler::InNewSpace(Register object,
|
| + Register scratch,
|
| + Condition cc,
|
| + Label* branch,
|
| + Label::Distance near_jump) {
|
| + if (Serializer::enabled()) {
|
| + // Can't do arithmetic on external references if it might get serialized.
|
| + // The mask isn't really an address. We load it as an external reference in
|
| + // case the size of the new space is different between the snapshot maker
|
| + // and the running system.
|
| + if (scratch.is(object)) {
|
| + movq(kScratchRegister, ExternalReference::new_space_mask(isolate()));
|
| + and_(scratch, kScratchRegister);
|
| + } else {
|
| + movq(scratch, ExternalReference::new_space_mask(isolate()));
|
| + and_(scratch, object);
|
| + }
|
| + movq(kScratchRegister, ExternalReference::new_space_start(isolate()));
|
| + cmpq(scratch, kScratchRegister);
|
| + j(cc, branch, near_jump);
|
| + } else {
|
| + ASSERT(is_int32(static_cast<int64_t>(HEAP->NewSpaceMask())));
|
| + intptr_t new_space_start =
|
| + reinterpret_cast<intptr_t>(HEAP->NewSpaceStart());
|
| + movq(kScratchRegister, -new_space_start, RelocInfo::NONE);
|
| + if (scratch.is(object)) {
|
| + addq(scratch, kScratchRegister);
|
| + } else {
|
| + lea(scratch, Operand(object, kScratchRegister, times_1, 0));
|
| + }
|
| + and_(scratch, Immediate(static_cast<int32_t>(HEAP->NewSpaceMask())));
|
| + j(cc, branch, near_jump);
|
| + }
|
| +}
|
| +
|
| +
|
| void MacroAssembler::RecordWrite(Register object,
|
| int offset,
|
| Register value,
|
| @@ -287,8 +323,8 @@ void MacroAssembler::RecordWriteNonSmi(Register object,
|
| Label done;
|
|
|
| if (emit_debug_code()) {
|
| - NearLabel okay;
|
| - JumpIfNotSmi(object, &okay);
|
| + Label okay;
|
| + JumpIfNotSmi(object, &okay, Label::kNear);
|
| Abort("MacroAssembler::RecordWriteNonSmi cannot deal with smis");
|
| bind(&okay);
|
|
|
| @@ -1053,6 +1089,24 @@ void MacroAssembler::PositiveSmiDivPowerOfTwoToInteger32(Register dst,
|
| }
|
|
|
|
|
| +void MacroAssembler::SmiOrIfSmis(Register dst, Register src1, Register src2,
|
| + Label* on_not_smis,
|
| + Label::Distance near_jump) {
|
| + if (dst.is(src1) || dst.is(src2)) {
|
| + ASSERT(!src1.is(kScratchRegister));
|
| + ASSERT(!src2.is(kScratchRegister));
|
| + movq(kScratchRegister, src1);
|
| + or_(kScratchRegister, src2);
|
| + JumpIfNotSmi(kScratchRegister, on_not_smis, near_jump);
|
| + movq(dst, kScratchRegister);
|
| + } else {
|
| + movq(dst, src1);
|
| + or_(dst, src2);
|
| + JumpIfNotSmi(dst, on_not_smis, near_jump);
|
| + }
|
| +}
|
| +
|
| +
|
| Condition MacroAssembler::CheckSmi(Register src) {
|
| ASSERT_EQ(0, kSmiTag);
|
| testb(src, Immediate(kSmiTagMask));
|
| @@ -1163,6 +1217,95 @@ void MacroAssembler::CheckSmiToIndicator(Register dst, const Operand& src) {
|
| }
|
|
|
|
|
| +void MacroAssembler::JumpIfNotValidSmiValue(Register src,
|
| + Label* on_invalid,
|
| + Label::Distance near_jump) {
|
| + Condition is_valid = CheckInteger32ValidSmiValue(src);
|
| + j(NegateCondition(is_valid), on_invalid, near_jump);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src,
|
| + Label* on_invalid,
|
| + Label::Distance near_jump) {
|
| + Condition is_valid = CheckUInteger32ValidSmiValue(src);
|
| + j(NegateCondition(is_valid), on_invalid, near_jump);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfSmi(Register src,
|
| + Label* on_smi,
|
| + Label::Distance near_jump) {
|
| + Condition smi = CheckSmi(src);
|
| + j(smi, on_smi, near_jump);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfNotSmi(Register src,
|
| + Label* on_not_smi,
|
| + Label::Distance near_jump) {
|
| + Condition smi = CheckSmi(src);
|
| + j(NegateCondition(smi), on_not_smi, near_jump);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpUnlessNonNegativeSmi(
|
| + Register src, Label* on_not_smi_or_negative,
|
| + Label::Distance near_jump) {
|
| + Condition non_negative_smi = CheckNonNegativeSmi(src);
|
| + j(NegateCondition(non_negative_smi), on_not_smi_or_negative, near_jump);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfSmiEqualsConstant(Register src,
|
| + Smi* constant,
|
| + Label* on_equals,
|
| + Label::Distance near_jump) {
|
| + SmiCompare(src, constant);
|
| + j(equal, on_equals, near_jump);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfNotBothSmi(Register src1,
|
| + Register src2,
|
| + Label* on_not_both_smi,
|
| + Label::Distance near_jump) {
|
| + Condition both_smi = CheckBothSmi(src1, src2);
|
| + j(NegateCondition(both_smi), on_not_both_smi, near_jump);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpUnlessBothNonNegativeSmi(Register src1,
|
| + Register src2,
|
| + Label* on_not_both_smi,
|
| + Label::Distance near_jump) {
|
| + Condition both_smi = CheckBothNonNegativeSmi(src1, src2);
|
| + j(NegateCondition(both_smi), on_not_both_smi, near_jump);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::SmiTryAddConstant(Register dst,
|
| + Register src,
|
| + Smi* constant,
|
| + Label* on_not_smi_result,
|
| + Label::Distance near_jump) {
|
| + // Does not assume that src is a smi.
|
| + ASSERT_EQ(static_cast<int>(1), static_cast<int>(kSmiTagMask));
|
| + ASSERT_EQ(0, kSmiTag);
|
| + ASSERT(!dst.is(kScratchRegister));
|
| + ASSERT(!src.is(kScratchRegister));
|
| +
|
| + JumpIfNotSmi(src, on_not_smi_result, near_jump);
|
| + Register tmp = (dst.is(src) ? kScratchRegister : dst);
|
| + LoadSmiConstant(tmp, constant);
|
| + addq(tmp, src);
|
| + j(overflow, on_not_smi_result, near_jump);
|
| + if (dst.is(src)) {
|
| + movq(dst, tmp);
|
| + }
|
| +}
|
| +
|
| +
|
| void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant) {
|
| if (constant->value() == 0) {
|
| if (!dst.is(src)) {
|
| @@ -1219,6 +1362,30 @@ void MacroAssembler::SmiAddConstant(const Operand& dst, Smi* constant) {
|
| }
|
|
|
|
|
| +void MacroAssembler::SmiAddConstant(Register dst,
|
| + Register src,
|
| + Smi* constant,
|
| + Label* on_not_smi_result,
|
| + Label::Distance near_jump) {
|
| + if (constant->value() == 0) {
|
| + if (!dst.is(src)) {
|
| + movq(dst, src);
|
| + }
|
| + } else if (dst.is(src)) {
|
| + ASSERT(!dst.is(kScratchRegister));
|
| +
|
| + LoadSmiConstant(kScratchRegister, constant);
|
| + addq(kScratchRegister, src);
|
| + j(overflow, on_not_smi_result, near_jump);
|
| + movq(dst, kScratchRegister);
|
| + } else {
|
| + LoadSmiConstant(dst, constant);
|
| + addq(dst, src);
|
| + j(overflow, on_not_smi_result, near_jump);
|
| + }
|
| +}
|
| +
|
| +
|
| void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant) {
|
| if (constant->value() == 0) {
|
| if (!dst.is(src)) {
|
| @@ -1243,6 +1410,113 @@ void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant) {
|
| }
|
|
|
|
|
| +void MacroAssembler::SmiSubConstant(Register dst,
|
| + Register src,
|
| + Smi* constant,
|
| + Label* on_not_smi_result,
|
| + Label::Distance near_jump) {
|
| + if (constant->value() == 0) {
|
| + if (!dst.is(src)) {
|
| + movq(dst, src);
|
| + }
|
| + } else if (dst.is(src)) {
|
| + ASSERT(!dst.is(kScratchRegister));
|
| + if (constant->value() == Smi::kMinValue) {
|
| + // Subtracting min-value from any non-negative value will overflow.
|
| + // We test the non-negativeness before doing the subtraction.
|
| + testq(src, src);
|
| + j(not_sign, on_not_smi_result, near_jump);
|
| + LoadSmiConstant(kScratchRegister, constant);
|
| + subq(dst, kScratchRegister);
|
| + } else {
|
| + // Subtract by adding the negation.
|
| + LoadSmiConstant(kScratchRegister, Smi::FromInt(-constant->value()));
|
| + addq(kScratchRegister, dst);
|
| + j(overflow, on_not_smi_result, near_jump);
|
| + movq(dst, kScratchRegister);
|
| + }
|
| + } else {
|
| + if (constant->value() == Smi::kMinValue) {
|
| + // Subtracting min-value from any non-negative value will overflow.
|
| + // We test the non-negativeness before doing the subtraction.
|
| + testq(src, src);
|
| + j(not_sign, on_not_smi_result, near_jump);
|
| + LoadSmiConstant(dst, constant);
|
| + // Adding and subtracting the min-value gives the same result, it only
|
| + // differs on the overflow bit, which we don't check here.
|
| + addq(dst, src);
|
| + } else {
|
| + // Subtract by adding the negation.
|
| + LoadSmiConstant(dst, Smi::FromInt(-(constant->value())));
|
| + addq(dst, src);
|
| + j(overflow, on_not_smi_result, near_jump);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::SmiNeg(Register dst,
|
| + Register src,
|
| + Label* on_smi_result,
|
| + Label::Distance near_jump) {
|
| + if (dst.is(src)) {
|
| + ASSERT(!dst.is(kScratchRegister));
|
| + movq(kScratchRegister, src);
|
| + neg(dst); // Low 32 bits are retained as zero by negation.
|
| + // Test if result is zero or Smi::kMinValue.
|
| + cmpq(dst, kScratchRegister);
|
| + j(not_equal, on_smi_result, near_jump);
|
| + movq(src, kScratchRegister);
|
| + } else {
|
| + movq(dst, src);
|
| + neg(dst);
|
| + cmpq(dst, src);
|
| + // If the result is zero or Smi::kMinValue, negation failed to create a smi.
|
| + j(not_equal, on_smi_result, near_jump);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::SmiAdd(Register dst,
|
| + Register src1,
|
| + Register src2,
|
| + Label* on_not_smi_result,
|
| + Label::Distance near_jump) {
|
| + ASSERT_NOT_NULL(on_not_smi_result);
|
| + ASSERT(!dst.is(src2));
|
| + if (dst.is(src1)) {
|
| + movq(kScratchRegister, src1);
|
| + addq(kScratchRegister, src2);
|
| + j(overflow, on_not_smi_result, near_jump);
|
| + movq(dst, kScratchRegister);
|
| + } else {
|
| + movq(dst, src1);
|
| + addq(dst, src2);
|
| + j(overflow, on_not_smi_result, near_jump);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::SmiAdd(Register dst,
|
| + Register src1,
|
| + const Operand& src2,
|
| + Label* on_not_smi_result,
|
| + Label::Distance near_jump) {
|
| + ASSERT_NOT_NULL(on_not_smi_result);
|
| + if (dst.is(src1)) {
|
| + movq(kScratchRegister, src1);
|
| + addq(kScratchRegister, src2);
|
| + j(overflow, on_not_smi_result, near_jump);
|
| + movq(dst, kScratchRegister);
|
| + } else {
|
| + ASSERT(!src2.AddressUsesRegister(dst));
|
| + movq(dst, src1);
|
| + addq(dst, src2);
|
| + j(overflow, on_not_smi_result, near_jump);
|
| + }
|
| +}
|
| +
|
| +
|
| void MacroAssembler::SmiAdd(Register dst,
|
| Register src1,
|
| Register src2) {
|
| @@ -1262,6 +1536,25 @@ void MacroAssembler::SmiAdd(Register dst,
|
| }
|
|
|
|
|
| +void MacroAssembler::SmiSub(Register dst,
|
| + Register src1,
|
| + Register src2,
|
| + Label* on_not_smi_result,
|
| + Label::Distance near_jump) {
|
| + ASSERT_NOT_NULL(on_not_smi_result);
|
| + ASSERT(!dst.is(src2));
|
| + if (dst.is(src1)) {
|
| + cmpq(dst, src2);
|
| + j(overflow, on_not_smi_result, near_jump);
|
| + subq(dst, src2);
|
| + } else {
|
| + movq(dst, src1);
|
| + subq(dst, src2);
|
| + j(overflow, on_not_smi_result, near_jump);
|
| + }
|
| +}
|
| +
|
| +
|
| void MacroAssembler::SmiSub(Register dst, Register src1, Register src2) {
|
| // No overflow checking. Use only when it's known that
|
| // overflowing is impossible (e.g., subtracting two positive smis).
|
| @@ -1276,6 +1569,25 @@ void MacroAssembler::SmiSub(Register dst, Register src1, Register src2) {
|
|
|
| void MacroAssembler::SmiSub(Register dst,
|
| Register src1,
|
| + const Operand& src2,
|
| + Label* on_not_smi_result,
|
| + Label::Distance near_jump) {
|
| + ASSERT_NOT_NULL(on_not_smi_result);
|
| + if (dst.is(src1)) {
|
| + movq(kScratchRegister, src2);
|
| + cmpq(src1, kScratchRegister);
|
| + j(overflow, on_not_smi_result, near_jump);
|
| + subq(src1, kScratchRegister);
|
| + } else {
|
| + movq(dst, src1);
|
| + subq(dst, src2);
|
| + j(overflow, on_not_smi_result, near_jump);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::SmiSub(Register dst,
|
| + Register src1,
|
| const Operand& src2) {
|
| // No overflow checking. Use only when it's known that
|
| // overflowing is impossible (e.g., subtracting two positive smis).
|
| @@ -1287,6 +1599,180 @@ void MacroAssembler::SmiSub(Register dst,
|
| }
|
|
|
|
|
| +void MacroAssembler::SmiMul(Register dst,
|
| + Register src1,
|
| + Register src2,
|
| + Label* on_not_smi_result,
|
| + Label::Distance near_jump) {
|
| + ASSERT(!dst.is(src2));
|
| + ASSERT(!dst.is(kScratchRegister));
|
| + ASSERT(!src1.is(kScratchRegister));
|
| + ASSERT(!src2.is(kScratchRegister));
|
| +
|
| + if (dst.is(src1)) {
|
| + Label failure, zero_correct_result;
|
| + movq(kScratchRegister, src1); // Create backup for later testing.
|
| + SmiToInteger64(dst, src1);
|
| + imul(dst, src2);
|
| + j(overflow, &failure, Label::kNear);
|
| +
|
| + // Check for negative zero result. If product is zero, and one
|
| + // argument is negative, go to slow case.
|
| + Label correct_result;
|
| + testq(dst, dst);
|
| + j(not_zero, &correct_result, Label::kNear);
|
| +
|
| + movq(dst, kScratchRegister);
|
| + xor_(dst, src2);
|
| + // Result was positive zero.
|
| + j(positive, &zero_correct_result, Label::kNear);
|
| +
|
| + bind(&failure); // Reused failure exit, restores src1.
|
| + movq(src1, kScratchRegister);
|
| + jmp(on_not_smi_result, near_jump);
|
| +
|
| + bind(&zero_correct_result);
|
| + Set(dst, 0);
|
| +
|
| + bind(&correct_result);
|
| + } else {
|
| + SmiToInteger64(dst, src1);
|
| + imul(dst, src2);
|
| + j(overflow, on_not_smi_result, near_jump);
|
| + // Check for negative zero result. If product is zero, and one
|
| + // argument is negative, go to slow case.
|
| + Label correct_result;
|
| + testq(dst, dst);
|
| + j(not_zero, &correct_result, Label::kNear);
|
| + // One of src1 and src2 is zero, the check whether the other is
|
| + // negative.
|
| + movq(kScratchRegister, src1);
|
| + xor_(kScratchRegister, src2);
|
| + j(negative, on_not_smi_result, near_jump);
|
| + bind(&correct_result);
|
| + }
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::SmiDiv(Register dst,
|
| + Register src1,
|
| + Register src2,
|
| + Label* on_not_smi_result,
|
| + Label::Distance near_jump) {
|
| + ASSERT(!src1.is(kScratchRegister));
|
| + ASSERT(!src2.is(kScratchRegister));
|
| + ASSERT(!dst.is(kScratchRegister));
|
| + ASSERT(!src2.is(rax));
|
| + ASSERT(!src2.is(rdx));
|
| + ASSERT(!src1.is(rdx));
|
| +
|
| + // Check for 0 divisor (result is +/-Infinity).
|
| + testq(src2, src2);
|
| + j(zero, on_not_smi_result, near_jump);
|
| +
|
| + if (src1.is(rax)) {
|
| + movq(kScratchRegister, src1);
|
| + }
|
| + SmiToInteger32(rax, src1);
|
| + // We need to rule out dividing Smi::kMinValue by -1, since that would
|
| + // overflow in idiv and raise an exception.
|
| + // We combine this with negative zero test (negative zero only happens
|
| + // when dividing zero by a negative number).
|
| +
|
| + // We overshoot a little and go to slow case if we divide min-value
|
| + // by any negative value, not just -1.
|
| + Label safe_div;
|
| + testl(rax, Immediate(0x7fffffff));
|
| + j(not_zero, &safe_div, Label::kNear);
|
| + testq(src2, src2);
|
| + if (src1.is(rax)) {
|
| + j(positive, &safe_div, Label::kNear);
|
| + movq(src1, kScratchRegister);
|
| + jmp(on_not_smi_result, near_jump);
|
| + } else {
|
| + j(negative, on_not_smi_result, near_jump);
|
| + }
|
| + bind(&safe_div);
|
| +
|
| + SmiToInteger32(src2, src2);
|
| + // Sign extend src1 into edx:eax.
|
| + cdq();
|
| + idivl(src2);
|
| + Integer32ToSmi(src2, src2);
|
| + // Check that the remainder is zero.
|
| + testl(rdx, rdx);
|
| + if (src1.is(rax)) {
|
| + Label smi_result;
|
| + j(zero, &smi_result, Label::kNear);
|
| + movq(src1, kScratchRegister);
|
| + jmp(on_not_smi_result, near_jump);
|
| + bind(&smi_result);
|
| + } else {
|
| + j(not_zero, on_not_smi_result, near_jump);
|
| + }
|
| + if (!dst.is(src1) && src1.is(rax)) {
|
| + movq(src1, kScratchRegister);
|
| + }
|
| + Integer32ToSmi(dst, rax);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::SmiMod(Register dst,
|
| + Register src1,
|
| + Register src2,
|
| + Label* on_not_smi_result,
|
| + Label::Distance near_jump) {
|
| + ASSERT(!dst.is(kScratchRegister));
|
| + ASSERT(!src1.is(kScratchRegister));
|
| + ASSERT(!src2.is(kScratchRegister));
|
| + ASSERT(!src2.is(rax));
|
| + ASSERT(!src2.is(rdx));
|
| + ASSERT(!src1.is(rdx));
|
| + ASSERT(!src1.is(src2));
|
| +
|
| + testq(src2, src2);
|
| + j(zero, on_not_smi_result, near_jump);
|
| +
|
| + if (src1.is(rax)) {
|
| + movq(kScratchRegister, src1);
|
| + }
|
| + SmiToInteger32(rax, src1);
|
| + SmiToInteger32(src2, src2);
|
| +
|
| + // Test for the edge case of dividing Smi::kMinValue by -1 (will overflow).
|
| + Label safe_div;
|
| + cmpl(rax, Immediate(Smi::kMinValue));
|
| + j(not_equal, &safe_div, Label::kNear);
|
| + cmpl(src2, Immediate(-1));
|
| + j(not_equal, &safe_div, Label::kNear);
|
| + // Retag inputs and go slow case.
|
| + Integer32ToSmi(src2, src2);
|
| + if (src1.is(rax)) {
|
| + movq(src1, kScratchRegister);
|
| + }
|
| + jmp(on_not_smi_result, near_jump);
|
| + bind(&safe_div);
|
| +
|
| + // Sign extend eax into edx:eax.
|
| + cdq();
|
| + idivl(src2);
|
| + // Restore smi tags on inputs.
|
| + Integer32ToSmi(src2, src2);
|
| + if (src1.is(rax)) {
|
| + movq(src1, kScratchRegister);
|
| + }
|
| + // Check for a negative zero result. If the result is zero, and the
|
| + // dividend is negative, go slow to return a floating point negative zero.
|
| + Label smi_result;
|
| + testl(rdx, rdx);
|
| + j(not_zero, &smi_result, Label::kNear);
|
| + testq(src1, src1);
|
| + j(negative, on_not_smi_result, near_jump);
|
| + bind(&smi_result);
|
| + Integer32ToSmi(dst, rdx);
|
| +}
|
| +
|
| +
|
| void MacroAssembler::SmiNot(Register dst, Register src) {
|
| ASSERT(!dst.is(kScratchRegister));
|
| ASSERT(!src.is(kScratchRegister));
|
| @@ -1393,6 +1879,24 @@ void MacroAssembler::SmiShiftLeftConstant(Register dst,
|
| }
|
|
|
|
|
| +void MacroAssembler::SmiShiftLogicalRightConstant(
|
| + Register dst, Register src, int shift_value,
|
| + Label* on_not_smi_result, Label::Distance near_jump) {
|
| + // Logic right shift interprets its result as an *unsigned* number.
|
| + if (dst.is(src)) {
|
| + UNIMPLEMENTED(); // Not used.
|
| + } else {
|
| + movq(dst, src);
|
| + if (shift_value == 0) {
|
| + testq(dst, dst);
|
| + j(negative, on_not_smi_result, near_jump);
|
| + }
|
| + shr(dst, Immediate(shift_value + kSmiShift));
|
| + shl(dst, Immediate(kSmiShift));
|
| + }
|
| +}
|
| +
|
| +
|
| void MacroAssembler::SmiShiftLeft(Register dst,
|
| Register src1,
|
| Register src2) {
|
| @@ -1408,6 +1912,45 @@ void MacroAssembler::SmiShiftLeft(Register dst,
|
| }
|
|
|
|
|
| +void MacroAssembler::SmiShiftLogicalRight(Register dst,
|
| + Register src1,
|
| + Register src2,
|
| + Label* on_not_smi_result,
|
| + Label::Distance near_jump) {
|
| + ASSERT(!dst.is(kScratchRegister));
|
| + ASSERT(!src1.is(kScratchRegister));
|
| + ASSERT(!src2.is(kScratchRegister));
|
| + ASSERT(!dst.is(rcx));
|
| + // dst and src1 can be the same, because the one case that bails out
|
| + // is a shift by 0, which leaves dst, and therefore src1, unchanged.
|
| + if (src1.is(rcx) || src2.is(rcx)) {
|
| + movq(kScratchRegister, rcx);
|
| + }
|
| + if (!dst.is(src1)) {
|
| + movq(dst, src1);
|
| + }
|
| + SmiToInteger32(rcx, src2);
|
| + orl(rcx, Immediate(kSmiShift));
|
| + shr_cl(dst); // Shift is rcx modulo 0x1f + 32.
|
| + shl(dst, Immediate(kSmiShift));
|
| + testq(dst, dst);
|
| + if (src1.is(rcx) || src2.is(rcx)) {
|
| + Label positive_result;
|
| + j(positive, &positive_result, Label::kNear);
|
| + if (src1.is(rcx)) {
|
| + movq(src1, kScratchRegister);
|
| + } else {
|
| + movq(src2, kScratchRegister);
|
| + }
|
| + jmp(on_not_smi_result, near_jump);
|
| + bind(&positive_result);
|
| + } else {
|
| + // src2 was zero and src1 negative.
|
| + j(negative, on_not_smi_result, near_jump);
|
| + }
|
| +}
|
| +
|
| +
|
| void MacroAssembler::SmiShiftArithmeticRight(Register dst,
|
| Register src1,
|
| Register src2) {
|
| @@ -1435,6 +1978,45 @@ void MacroAssembler::SmiShiftArithmeticRight(Register dst,
|
| }
|
|
|
|
|
| +void MacroAssembler::SelectNonSmi(Register dst,
|
| + Register src1,
|
| + Register src2,
|
| + Label* on_not_smis,
|
| + Label::Distance near_jump) {
|
| + ASSERT(!dst.is(kScratchRegister));
|
| + ASSERT(!src1.is(kScratchRegister));
|
| + ASSERT(!src2.is(kScratchRegister));
|
| + ASSERT(!dst.is(src1));
|
| + ASSERT(!dst.is(src2));
|
| + // Both operands must not be smis.
|
| +#ifdef DEBUG
|
| + if (allow_stub_calls()) { // Check contains a stub call.
|
| + Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2));
|
| + Check(not_both_smis, "Both registers were smis in SelectNonSmi.");
|
| + }
|
| +#endif
|
| + ASSERT_EQ(0, kSmiTag);
|
| + ASSERT_EQ(0, Smi::FromInt(0));
|
| + movl(kScratchRegister, Immediate(kSmiTagMask));
|
| + and_(kScratchRegister, src1);
|
| + testl(kScratchRegister, src2);
|
| + // If non-zero then both are smis.
|
| + j(not_zero, on_not_smis, near_jump);
|
| +
|
| + // Exactly one operand is a smi.
|
| + ASSERT_EQ(1, static_cast<int>(kSmiTagMask));
|
| + // kScratchRegister still holds src1 & kSmiTag, which is either zero or one.
|
| + subq(kScratchRegister, Immediate(1));
|
| + // If src1 is a smi, then scratch register all 1s, else it is all 0s.
|
| + movq(dst, src1);
|
| + xor_(dst, src2);
|
| + and_(dst, kScratchRegister);
|
| + // If src1 is a smi, dst holds src1 ^ src2, else it is zero.
|
| + xor_(dst, src1);
|
| + // If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi.
|
| +}
|
| +
|
| +
|
| SmiIndex MacroAssembler::SmiToIndex(Register dst,
|
| Register src,
|
| int shift) {
|
| @@ -1476,6 +2058,97 @@ void MacroAssembler::AddSmiField(Register dst, const Operand& src) {
|
| }
|
|
|
|
|
| +void MacroAssembler::JumpIfNotString(Register object,
|
| + Register object_map,
|
| + Label* not_string,
|
| + Label::Distance near_jump) {
|
| + Condition is_smi = CheckSmi(object);
|
| + j(is_smi, not_string, near_jump);
|
| + CmpObjectType(object, FIRST_NONSTRING_TYPE, object_map);
|
| + j(above_equal, not_string, near_jump);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(
|
| + Register first_object,
|
| + Register second_object,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* on_fail,
|
| + Label::Distance near_jump) {
|
| + // Check that both objects are not smis.
|
| + Condition either_smi = CheckEitherSmi(first_object, second_object);
|
| + j(either_smi, on_fail, near_jump);
|
| +
|
| + // Load instance type for both strings.
|
| + movq(scratch1, FieldOperand(first_object, HeapObject::kMapOffset));
|
| + movq(scratch2, FieldOperand(second_object, HeapObject::kMapOffset));
|
| + movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
|
| + movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
|
| +
|
| + // Check that both are flat ascii strings.
|
| + ASSERT(kNotStringTag != 0);
|
| + const int kFlatAsciiStringMask =
|
| + kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
|
| + const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
|
| +
|
| + andl(scratch1, Immediate(kFlatAsciiStringMask));
|
| + andl(scratch2, Immediate(kFlatAsciiStringMask));
|
| + // Interleave the bits to check both scratch1 and scratch2 in one test.
|
| + ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
|
| + lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
|
| + cmpl(scratch1,
|
| + Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3)));
|
| + j(not_equal, on_fail, near_jump);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(
|
| + Register instance_type,
|
| + Register scratch,
|
| + Label* failure,
|
| + Label::Distance near_jump) {
|
| + if (!scratch.is(instance_type)) {
|
| + movl(scratch, instance_type);
|
| + }
|
| +
|
| + const int kFlatAsciiStringMask =
|
| + kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
|
| +
|
| + andl(scratch, Immediate(kFlatAsciiStringMask));
|
| + cmpl(scratch, Immediate(kStringTag | kSeqStringTag | kAsciiStringTag));
|
| + j(not_equal, failure, near_jump);
|
| +}
|
| +
|
| +
|
| +void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
|
| + Register first_object_instance_type,
|
| + Register second_object_instance_type,
|
| + Register scratch1,
|
| + Register scratch2,
|
| + Label* on_fail,
|
| + Label::Distance near_jump) {
|
| + // Load instance type for both strings.
|
| + movq(scratch1, first_object_instance_type);
|
| + movq(scratch2, second_object_instance_type);
|
| +
|
| + // Check that both are flat ascii strings.
|
| + ASSERT(kNotStringTag != 0);
|
| + const int kFlatAsciiStringMask =
|
| + kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
|
| + const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
|
| +
|
| + andl(scratch1, Immediate(kFlatAsciiStringMask));
|
| + andl(scratch2, Immediate(kFlatAsciiStringMask));
|
| + // Interleave the bits to check both scratch1 and scratch2 in one test.
|
| + ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
|
| + lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
|
| + cmpl(scratch1,
|
| + Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3)));
|
| + j(not_equal, on_fail, near_jump);
|
| +}
|
| +
|
| +
|
|
|
| void MacroAssembler::Move(Register dst, Register src) {
|
| if (!dst.is(src)) {
|
| @@ -2055,14 +2728,15 @@ void MacroAssembler::InvokeCode(Register code,
|
| const ParameterCount& actual,
|
| InvokeFlag flag,
|
| const CallWrapper& call_wrapper) {
|
| - NearLabel done;
|
| + Label done;
|
| InvokePrologue(expected,
|
| actual,
|
| Handle<Code>::null(),
|
| code,
|
| &done,
|
| flag,
|
| - call_wrapper);
|
| + call_wrapper,
|
| + Label::kNear);
|
| if (flag == CALL_FUNCTION) {
|
| call_wrapper.BeforeCall(CallSize(code));
|
| call(code);
|
| @@ -2081,7 +2755,7 @@ void MacroAssembler::InvokeCode(Handle<Code> code,
|
| RelocInfo::Mode rmode,
|
| InvokeFlag flag,
|
| const CallWrapper& call_wrapper) {
|
| - NearLabel done;
|
| + Label done;
|
| Register dummy = rax;
|
| InvokePrologue(expected,
|
| actual,
|
| @@ -2089,7 +2763,8 @@ void MacroAssembler::InvokeCode(Handle<Code> code,
|
| dummy,
|
| &done,
|
| flag,
|
| - call_wrapper);
|
| + call_wrapper,
|
| + Label::kNear);
|
| if (flag == CALL_FUNCTION) {
|
| call_wrapper.BeforeCall(CallSize(code));
|
| Call(code, rmode);
|
| @@ -2149,6 +2824,74 @@ void MacroAssembler::InvokeFunction(JSFunction* function,
|
| }
|
|
|
|
|
| +void MacroAssembler::InvokePrologue(const ParameterCount& expected,
|
| + const ParameterCount& actual,
|
| + Handle<Code> code_constant,
|
| + Register code_register,
|
| + Label* done,
|
| + InvokeFlag flag,
|
| + const CallWrapper& call_wrapper,
|
| + Label::Distance near_jump) {
|
| + bool definitely_matches = false;
|
| + Label invoke;
|
| + if (expected.is_immediate()) {
|
| + ASSERT(actual.is_immediate());
|
| + if (expected.immediate() == actual.immediate()) {
|
| + definitely_matches = true;
|
| + } else {
|
| + Set(rax, actual.immediate());
|
| + if (expected.immediate() ==
|
| + SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
|
| + // Don't worry about adapting arguments for built-ins that
|
| + // don't want that done. Skip adaption code by making it look
|
| + // like we have a match between expected and actual number of
|
| + // arguments.
|
| + definitely_matches = true;
|
| + } else {
|
| + Set(rbx, expected.immediate());
|
| + }
|
| + }
|
| + } else {
|
| + if (actual.is_immediate()) {
|
| + // Expected is in register, actual is immediate. This is the
|
| + // case when we invoke function values without going through the
|
| + // IC mechanism.
|
| + cmpq(expected.reg(), Immediate(actual.immediate()));
|
| + j(equal, &invoke, Label::kNear);
|
| + ASSERT(expected.reg().is(rbx));
|
| + Set(rax, actual.immediate());
|
| + } else if (!expected.reg().is(actual.reg())) {
|
| + // Both expected and actual are in (different) registers. This
|
| + // is the case when we invoke functions using call and apply.
|
| + cmpq(expected.reg(), actual.reg());
|
| + j(equal, &invoke, Label::kNear);
|
| + ASSERT(actual.reg().is(rax));
|
| + ASSERT(expected.reg().is(rbx));
|
| + }
|
| + }
|
| +
|
| + if (!definitely_matches) {
|
| + Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline();
|
| + if (!code_constant.is_null()) {
|
| + movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT);
|
| + addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag));
|
| + } else if (!code_register.is(rdx)) {
|
| + movq(rdx, code_register);
|
| + }
|
| +
|
| + if (flag == CALL_FUNCTION) {
|
| + call_wrapper.BeforeCall(CallSize(adaptor));
|
| + Call(adaptor, RelocInfo::CODE_TARGET);
|
| + call_wrapper.AfterCall();
|
| + jmp(done, near_jump);
|
| + } else {
|
| + Jump(adaptor, RelocInfo::CODE_TARGET);
|
| + }
|
| + bind(&invoke);
|
| + }
|
| +}
|
| +
|
| +
|
| void MacroAssembler::EnterFrame(StackFrame::Type type) {
|
| push(rbp);
|
| movq(rbp, rsp);
|
|
|