Index: third_party/sqlite/src/ext/rtree/rtree.c |
diff --git a/third_party/sqlite/src/ext/rtree/rtree.c b/third_party/sqlite/src/ext/rtree/rtree.c |
index 5a4f570d6af3940dd618a1923fef638509166ec2..ebf430a98c6218d3970fa3dafd977c20c8aee46b 100644 |
--- a/third_party/sqlite/src/ext/rtree/rtree.c |
+++ b/third_party/sqlite/src/ext/rtree/rtree.c |
@@ -11,8 +11,45 @@ |
************************************************************************* |
** This file contains code for implementations of the r-tree and r*-tree |
** algorithms packaged as an SQLite virtual table module. |
+*/ |
+ |
+/* |
+** Database Format of R-Tree Tables |
+** -------------------------------- |
+** |
+** The data structure for a single virtual r-tree table is stored in three |
+** native SQLite tables declared as follows. In each case, the '%' character |
+** in the table name is replaced with the user-supplied name of the r-tree |
+** table. |
+** |
+** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB) |
+** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) |
+** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER) |
** |
-** $Id: rtree.c,v 1.14 2009/08/06 18:36:47 danielk1977 Exp $ |
+** The data for each node of the r-tree structure is stored in the %_node |
+** table. For each node that is not the root node of the r-tree, there is |
+** an entry in the %_parent table associating the node with its parent. |
+** And for each row of data in the table, there is an entry in the %_rowid |
+** table that maps from the entries rowid to the id of the node that it |
+** is stored on. |
+** |
+** The root node of an r-tree always exists, even if the r-tree table is |
+** empty. The nodeno of the root node is always 1. All other nodes in the |
+** table must be the same size as the root node. The content of each node |
+** is formatted as follows: |
+** |
+** 1. If the node is the root node (node 1), then the first 2 bytes |
+** of the node contain the tree depth as a big-endian integer. |
+** For non-root nodes, the first 2 bytes are left unused. |
+** |
+** 2. The next 2 bytes contain the number of entries currently |
+** stored in the node. |
+** |
+** 3. The remainder of the node contains the node entries. Each entry |
+** consists of a single 8-byte integer followed by an even number |
+** of 4-byte coordinates. For leaf nodes the integer is the rowid |
+** of a record. For internal nodes it is the node number of a |
+** child page. |
*/ |
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE) |
@@ -55,6 +92,9 @@ |
#define AssignCells splitNodeStartree |
#endif |
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) |
+# define NDEBUG 1 |
+#endif |
#ifndef SQLITE_CORE |
#include "sqlite3ext.h" |
@@ -67,16 +107,25 @@ |
#include <assert.h> |
#ifndef SQLITE_AMALGAMATION |
+#include "sqlite3rtree.h" |
typedef sqlite3_int64 i64; |
typedef unsigned char u8; |
typedef unsigned int u32; |
#endif |
+/* The following macro is used to suppress compiler warnings. |
+*/ |
+#ifndef UNUSED_PARAMETER |
+# define UNUSED_PARAMETER(x) (void)(x) |
+#endif |
+ |
typedef struct Rtree Rtree; |
typedef struct RtreeCursor RtreeCursor; |
typedef struct RtreeNode RtreeNode; |
typedef struct RtreeCell RtreeCell; |
typedef struct RtreeConstraint RtreeConstraint; |
+typedef struct RtreeMatchArg RtreeMatchArg; |
+typedef struct RtreeGeomCallback RtreeGeomCallback; |
typedef union RtreeCoord RtreeCoord; |
/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ |
@@ -146,6 +195,15 @@ struct Rtree { |
#define RTREE_REINSERT(p) RTREE_MINCELLS(p) |
#define RTREE_MAXCELLS 51 |
+/* |
+** The smallest possible node-size is (512-64)==448 bytes. And the largest |
+** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates). |
+** Therefore all non-root nodes must contain at least 3 entries. Since |
+** 2^40 is greater than 2^64, an r-tree structure always has a depth of |
+** 40 or less. |
+*/ |
+#define RTREE_MAX_DEPTH 40 |
+ |
/* |
** An rtree cursor object. |
*/ |
@@ -178,35 +236,23 @@ union RtreeCoord { |
** A search constraint. |
*/ |
struct RtreeConstraint { |
- int iCoord; /* Index of constrained coordinate */ |
- int op; /* Constraining operation */ |
- double rValue; /* Constraint value. */ |
+ int iCoord; /* Index of constrained coordinate */ |
+ int op; /* Constraining operation */ |
+ double rValue; /* Constraint value. */ |
+ int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *); |
+ sqlite3_rtree_geometry *pGeom; /* Constraint callback argument for a MATCH */ |
}; |
/* Possible values for RtreeConstraint.op */ |
-#define RTREE_EQ 0x41 |
-#define RTREE_LE 0x42 |
-#define RTREE_LT 0x43 |
-#define RTREE_GE 0x44 |
-#define RTREE_GT 0x45 |
+#define RTREE_EQ 0x41 |
+#define RTREE_LE 0x42 |
+#define RTREE_LT 0x43 |
+#define RTREE_GE 0x44 |
+#define RTREE_GT 0x45 |
+#define RTREE_MATCH 0x46 |
/* |
** An rtree structure node. |
-** |
-** Data format (RtreeNode.zData): |
-** |
-** 1. If the node is the root node (node 1), then the first 2 bytes |
-** of the node contain the tree depth as a big-endian integer. |
-** For non-root nodes, the first 2 bytes are left unused. |
-** |
-** 2. The next 2 bytes contain the number of entries currently |
-** stored in the node. |
-** |
-** 3. The remainder of the node contains the node entries. Each entry |
-** consists of a single 8-byte integer followed by an even number |
-** of 4-byte coordinates. For leaf nodes the integer is the rowid |
-** of a record. For internal nodes it is the node number of a |
-** child page. |
*/ |
struct RtreeNode { |
RtreeNode *pParent; /* Parent node */ |
@@ -226,6 +272,40 @@ struct RtreeCell { |
RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; |
}; |
+ |
+/* |
+** Value for the first field of every RtreeMatchArg object. The MATCH |
+** operator tests that the first field of a blob operand matches this |
+** value to avoid operating on invalid blobs (which could cause a segfault). |
+*/ |
+#define RTREE_GEOMETRY_MAGIC 0x891245AB |
+ |
+/* |
+** An instance of this structure must be supplied as a blob argument to |
+** the right-hand-side of an SQL MATCH operator used to constrain an |
+** r-tree query. |
+*/ |
+struct RtreeMatchArg { |
+ u32 magic; /* Always RTREE_GEOMETRY_MAGIC */ |
+ int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *); |
+ void *pContext; |
+ int nParam; |
+ double aParam[1]; |
+}; |
+ |
+/* |
+** When a geometry callback is created (see sqlite3_rtree_geometry_callback), |
+** a single instance of the following structure is allocated. It is used |
+** as the context for the user-function created by by s_r_g_c(). The object |
+** is eventually deleted by the destructor mechanism provided by |
+** sqlite3_create_function_v2() (which is called by s_r_g_c() to create |
+** the geometry callback function). |
+*/ |
+struct RtreeGeomCallback { |
+ int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *); |
+ void *pContext; |
+}; |
+ |
#ifndef MAX |
# define MAX(x,y) ((x) < (y) ? (y) : (x)) |
#endif |
@@ -308,10 +388,8 @@ static void nodeReference(RtreeNode *p){ |
** Clear the content of node p (set all bytes to 0x00). |
*/ |
static void nodeZero(Rtree *pRtree, RtreeNode *p){ |
- if( p ){ |
- memset(&p->zData[2], 0, pRtree->iNodeSize-2); |
- p->isDirty = 1; |
- } |
+ memset(&p->zData[2], 0, pRtree->iNodeSize-2); |
+ p->isDirty = 1; |
} |
/* |
@@ -331,7 +409,6 @@ static int nodeHash(i64 iNode){ |
*/ |
static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ |
RtreeNode *p; |
- assert( iNode!=0 ); |
for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); |
return p; |
} |
@@ -340,13 +417,11 @@ static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ |
** Add node pNode to the node hash table. |
*/ |
static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ |
- if( pNode ){ |
- int iHash; |
- assert( pNode->pNext==0 ); |
- iHash = nodeHash(pNode->iNode); |
- pNode->pNext = pRtree->aHash[iHash]; |
- pRtree->aHash[iHash] = pNode; |
- } |
+ int iHash; |
+ assert( pNode->pNext==0 ); |
+ iHash = nodeHash(pNode->iNode); |
+ pNode->pNext = pRtree->aHash[iHash]; |
+ pRtree->aHash[iHash] = pNode; |
} |
/* |
@@ -368,11 +443,11 @@ static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ |
** assigned a node number when nodeWrite() is called to write the |
** node contents out to the database. |
*/ |
-static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent, int zero){ |
+static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){ |
RtreeNode *pNode; |
pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); |
if( pNode ){ |
- memset(pNode, 0, sizeof(RtreeNode) + (zero?pRtree->iNodeSize:0)); |
+ memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize); |
pNode->zData = (u8 *)&pNode[1]; |
pNode->nRef = 1; |
pNode->pParent = pParent; |
@@ -393,6 +468,7 @@ nodeAcquire( |
RtreeNode **ppNode /* OUT: Acquired node */ |
){ |
int rc; |
+ int rc2 = SQLITE_OK; |
RtreeNode *pNode; |
/* Check if the requested node is already in the hash table. If so, |
@@ -409,38 +485,63 @@ nodeAcquire( |
return SQLITE_OK; |
} |
- pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); |
- if( !pNode ){ |
- *ppNode = 0; |
- return SQLITE_NOMEM; |
- } |
- pNode->pParent = pParent; |
- pNode->zData = (u8 *)&pNode[1]; |
- pNode->nRef = 1; |
- pNode->iNode = iNode; |
- pNode->isDirty = 0; |
- pNode->pNext = 0; |
- |
sqlite3_bind_int64(pRtree->pReadNode, 1, iNode); |
rc = sqlite3_step(pRtree->pReadNode); |
if( rc==SQLITE_ROW ){ |
const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0); |
- memcpy(pNode->zData, zBlob, pRtree->iNodeSize); |
- nodeReference(pParent); |
- }else{ |
- sqlite3_free(pNode); |
- pNode = 0; |
+ if( pRtree->iNodeSize==sqlite3_column_bytes(pRtree->pReadNode, 0) ){ |
+ pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize); |
+ if( !pNode ){ |
+ rc2 = SQLITE_NOMEM; |
+ }else{ |
+ pNode->pParent = pParent; |
+ pNode->zData = (u8 *)&pNode[1]; |
+ pNode->nRef = 1; |
+ pNode->iNode = iNode; |
+ pNode->isDirty = 0; |
+ pNode->pNext = 0; |
+ memcpy(pNode->zData, zBlob, pRtree->iNodeSize); |
+ nodeReference(pParent); |
+ } |
+ } |
} |
- |
- *ppNode = pNode; |
rc = sqlite3_reset(pRtree->pReadNode); |
+ if( rc==SQLITE_OK ) rc = rc2; |
- if( rc==SQLITE_OK && iNode==1 ){ |
+ /* If the root node was just loaded, set pRtree->iDepth to the height |
+ ** of the r-tree structure. A height of zero means all data is stored on |
+ ** the root node. A height of one means the children of the root node |
+ ** are the leaves, and so on. If the depth as specified on the root node |
+ ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt. |
+ */ |
+ if( pNode && iNode==1 ){ |
pRtree->iDepth = readInt16(pNode->zData); |
+ if( pRtree->iDepth>RTREE_MAX_DEPTH ){ |
+ rc = SQLITE_CORRUPT; |
+ } |
} |
- assert( (rc==SQLITE_OK && pNode) || (pNode==0 && rc!=SQLITE_OK) ); |
- nodeHashInsert(pRtree, pNode); |
+ /* If no error has occurred so far, check if the "number of entries" |
+ ** field on the node is too large. If so, set the return code to |
+ ** SQLITE_CORRUPT. |
+ */ |
+ if( pNode && rc==SQLITE_OK ){ |
+ if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){ |
+ rc = SQLITE_CORRUPT; |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ if( pNode!=0 ){ |
+ nodeHashInsert(pRtree, pNode); |
+ }else{ |
+ rc = SQLITE_CORRUPT; |
+ } |
+ *ppNode = pNode; |
+ }else{ |
+ sqlite3_free(pNode); |
+ *ppNode = 0; |
+ } |
return rc; |
} |
@@ -493,8 +594,7 @@ nodeInsertCell( |
nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; |
nCell = NCELL(pNode); |
- assert(nCell<=nMaxCell); |
- |
+ assert( nCell<=nMaxCell ); |
if( nCell<nMaxCell ){ |
nodeOverwriteCell(pRtree, pNode, pCell, nCell); |
writeInt16(&pNode->zData[2], nCell+1); |
@@ -714,6 +814,25 @@ static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
return rc; |
} |
+ |
+/* |
+** Free the RtreeCursor.aConstraint[] array and its contents. |
+*/ |
+static void freeCursorConstraints(RtreeCursor *pCsr){ |
+ if( pCsr->aConstraint ){ |
+ int i; /* Used to iterate through constraint array */ |
+ for(i=0; i<pCsr->nConstraint; i++){ |
+ sqlite3_rtree_geometry *pGeom = pCsr->aConstraint[i].pGeom; |
+ if( pGeom ){ |
+ if( pGeom->xDelUser ) pGeom->xDelUser(pGeom->pUser); |
+ sqlite3_free(pGeom); |
+ } |
+ } |
+ sqlite3_free(pCsr->aConstraint); |
+ pCsr->aConstraint = 0; |
+ } |
+} |
+ |
/* |
** Rtree virtual table module xClose method. |
*/ |
@@ -721,7 +840,7 @@ static int rtreeClose(sqlite3_vtab_cursor *cur){ |
Rtree *pRtree = (Rtree *)(cur->pVtab); |
int rc; |
RtreeCursor *pCsr = (RtreeCursor *)cur; |
- sqlite3_free(pCsr->aConstraint); |
+ freeCursorConstraints(pCsr); |
rc = nodeRelease(pRtree, pCsr->pNode); |
sqlite3_free(pCsr); |
return rc; |
@@ -738,16 +857,43 @@ static int rtreeEof(sqlite3_vtab_cursor *cur){ |
return (pCsr->pNode==0); |
} |
+/* |
+** The r-tree constraint passed as the second argument to this function is |
+** guaranteed to be a MATCH constraint. |
+*/ |
+static int testRtreeGeom( |
+ Rtree *pRtree, /* R-Tree object */ |
+ RtreeConstraint *pConstraint, /* MATCH constraint to test */ |
+ RtreeCell *pCell, /* Cell to test */ |
+ int *pbRes /* OUT: Test result */ |
+){ |
+ int i; |
+ double aCoord[RTREE_MAX_DIMENSIONS*2]; |
+ int nCoord = pRtree->nDim*2; |
+ |
+ assert( pConstraint->op==RTREE_MATCH ); |
+ assert( pConstraint->pGeom ); |
+ |
+ for(i=0; i<nCoord; i++){ |
+ aCoord[i] = DCOORD(pCell->aCoord[i]); |
+ } |
+ return pConstraint->xGeom(pConstraint->pGeom, nCoord, aCoord, pbRes); |
+} |
+ |
/* |
** Cursor pCursor currently points to a cell in a non-leaf page. |
-** Return true if the sub-tree headed by the cell is filtered |
+** Set *pbEof to true if the sub-tree headed by the cell is filtered |
** (excluded) by the constraints in the pCursor->aConstraint[] |
** array, or false otherwise. |
+** |
+** Return SQLITE_OK if successful or an SQLite error code if an error |
+** occurs within a geometry callback. |
*/ |
-static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor){ |
+static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){ |
RtreeCell cell; |
int ii; |
int bRes = 0; |
+ int rc = SQLITE_OK; |
nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); |
for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){ |
@@ -756,31 +902,51 @@ static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor){ |
double cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]); |
assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE |
- || p->op==RTREE_GT || p->op==RTREE_EQ |
+ || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH |
); |
switch( p->op ){ |
- case RTREE_LE: case RTREE_LT: bRes = p->rValue<cell_min; break; |
- case RTREE_GE: case RTREE_GT: bRes = p->rValue>cell_max; break; |
- case RTREE_EQ: |
+ case RTREE_LE: case RTREE_LT: |
+ bRes = p->rValue<cell_min; |
+ break; |
+ |
+ case RTREE_GE: case RTREE_GT: |
+ bRes = p->rValue>cell_max; |
+ break; |
+ |
+ case RTREE_EQ: |
bRes = (p->rValue>cell_max || p->rValue<cell_min); |
break; |
+ |
+ default: { |
+ assert( p->op==RTREE_MATCH ); |
+ rc = testRtreeGeom(pRtree, p, &cell, &bRes); |
+ bRes = !bRes; |
+ break; |
+ } |
} |
} |
- return bRes; |
+ *pbEof = bRes; |
+ return rc; |
} |
/* |
-** Return true if the cell that cursor pCursor currently points to |
+** Test if the cell that cursor pCursor currently points to |
** would be filtered (excluded) by the constraints in the |
-** pCursor->aConstraint[] array, or false otherwise. |
+** pCursor->aConstraint[] array. If so, set *pbEof to true before |
+** returning. If the cell is not filtered (excluded) by the constraints, |
+** set pbEof to zero. |
+** |
+** Return SQLITE_OK if successful or an SQLite error code if an error |
+** occurs within a geometry callback. |
** |
** This function assumes that the cell is part of a leaf node. |
*/ |
-static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor){ |
+static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){ |
RtreeCell cell; |
int ii; |
+ *pbEof = 0; |
nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); |
for(ii=0; ii<pCursor->nConstraint; ii++){ |
@@ -788,7 +954,7 @@ static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor){ |
double coord = DCOORD(cell.aCoord[p->iCoord]); |
int res; |
assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE |
- || p->op==RTREE_GT || p->op==RTREE_EQ |
+ || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH |
); |
switch( p->op ){ |
case RTREE_LE: res = (coord<=p->rValue); break; |
@@ -796,12 +962,24 @@ static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor){ |
case RTREE_GE: res = (coord>=p->rValue); break; |
case RTREE_GT: res = (coord>p->rValue); break; |
case RTREE_EQ: res = (coord==p->rValue); break; |
+ default: { |
+ int rc; |
+ assert( p->op==RTREE_MATCH ); |
+ rc = testRtreeGeom(pRtree, p, &cell, &res); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ break; |
+ } |
} |
- if( !res ) return 1; |
+ if( !res ){ |
+ *pbEof = 1; |
+ return SQLITE_OK; |
+ } |
} |
- return 0; |
+ return SQLITE_OK; |
} |
/* |
@@ -828,19 +1006,18 @@ static int descendToCell( |
assert( iHeight>=0 ); |
if( iHeight==0 ){ |
- isEof = testRtreeEntry(pRtree, pCursor); |
+ rc = testRtreeEntry(pRtree, pCursor, &isEof); |
}else{ |
- isEof = testRtreeCell(pRtree, pCursor); |
+ rc = testRtreeCell(pRtree, pCursor, &isEof); |
} |
- if( isEof || iHeight==0 ){ |
- *pEof = isEof; |
- return SQLITE_OK; |
+ if( rc!=SQLITE_OK || isEof || iHeight==0 ){ |
+ goto descend_to_cell_out; |
} |
iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell); |
rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild); |
if( rc!=SQLITE_OK ){ |
- return rc; |
+ goto descend_to_cell_out; |
} |
nodeRelease(pRtree, pCursor->pNode); |
@@ -850,7 +1027,7 @@ static int descendToCell( |
pCursor->iCell = ii; |
rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof); |
if( rc!=SQLITE_OK ){ |
- return rc; |
+ goto descend_to_cell_out; |
} |
} |
@@ -862,32 +1039,43 @@ static int descendToCell( |
pCursor->iCell = iSavedCell; |
} |
+descend_to_cell_out: |
*pEof = isEof; |
- return SQLITE_OK; |
+ return rc; |
} |
/* |
** One of the cells in node pNode is guaranteed to have a 64-bit |
** integer value equal to iRowid. Return the index of this cell. |
*/ |
-static int nodeRowidIndex(Rtree *pRtree, RtreeNode *pNode, i64 iRowid){ |
+static int nodeRowidIndex( |
+ Rtree *pRtree, |
+ RtreeNode *pNode, |
+ i64 iRowid, |
+ int *piIndex |
+){ |
int ii; |
- for(ii=0; nodeGetRowid(pRtree, pNode, ii)!=iRowid; ii++){ |
- assert( ii<(NCELL(pNode)-1) ); |
+ int nCell = NCELL(pNode); |
+ for(ii=0; ii<nCell; ii++){ |
+ if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){ |
+ *piIndex = ii; |
+ return SQLITE_OK; |
+ } |
} |
- return ii; |
+ return SQLITE_CORRUPT; |
} |
/* |
** Return the index of the cell containing a pointer to node pNode |
** in its parent. If pNode is the root node, return -1. |
*/ |
-static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode){ |
+static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){ |
RtreeNode *pParent = pNode->pParent; |
if( pParent ){ |
- return nodeRowidIndex(pRtree, pParent, pNode->iNode); |
+ return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex); |
} |
- return -1; |
+ *piIndex = -1; |
+ return SQLITE_OK; |
} |
/* |
@@ -898,13 +1086,17 @@ static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ |
RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
int rc = SQLITE_OK; |
+ /* RtreeCursor.pNode must not be NULL. If is is NULL, then this cursor is |
+ ** already at EOF. It is against the rules to call the xNext() method of |
+ ** a cursor that has already reached EOF. |
+ */ |
+ assert( pCsr->pNode ); |
+ |
if( pCsr->iStrategy==1 ){ |
/* This "scan" is a direct lookup by rowid. There is no next entry. */ |
nodeRelease(pRtree, pCsr->pNode); |
pCsr->pNode = 0; |
- } |
- |
- else if( pCsr->pNode ){ |
+ }else{ |
/* Move to the next entry that matches the configured constraints. */ |
int iHeight = 0; |
while( pCsr->pNode ){ |
@@ -918,7 +1110,10 @@ static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ |
} |
} |
pCsr->pNode = pNode->pParent; |
- pCsr->iCell = nodeParentIndex(pRtree, pNode); |
+ rc = nodeParentIndex(pRtree, pNode, &pCsr->iCell); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
nodeReference(pCsr->pNode); |
nodeRelease(pRtree, pNode); |
iHeight++; |
@@ -986,6 +1181,51 @@ static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){ |
return rc; |
} |
+/* |
+** This function is called to configure the RtreeConstraint object passed |
+** as the second argument for a MATCH constraint. The value passed as the |
+** first argument to this function is the right-hand operand to the MATCH |
+** operator. |
+*/ |
+static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ |
+ RtreeMatchArg *p; |
+ sqlite3_rtree_geometry *pGeom; |
+ int nBlob; |
+ |
+ /* Check that value is actually a blob. */ |
+ if( !sqlite3_value_type(pValue)==SQLITE_BLOB ) return SQLITE_ERROR; |
+ |
+ /* Check that the blob is roughly the right size. */ |
+ nBlob = sqlite3_value_bytes(pValue); |
+ if( nBlob<(int)sizeof(RtreeMatchArg) |
+ || ((nBlob-sizeof(RtreeMatchArg))%sizeof(double))!=0 |
+ ){ |
+ return SQLITE_ERROR; |
+ } |
+ |
+ pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc( |
+ sizeof(sqlite3_rtree_geometry) + nBlob |
+ ); |
+ if( !pGeom ) return SQLITE_NOMEM; |
+ memset(pGeom, 0, sizeof(sqlite3_rtree_geometry)); |
+ p = (RtreeMatchArg *)&pGeom[1]; |
+ |
+ memcpy(p, sqlite3_value_blob(pValue), nBlob); |
+ if( p->magic!=RTREE_GEOMETRY_MAGIC |
+ || nBlob!=(int)(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(double)) |
+ ){ |
+ sqlite3_free(pGeom); |
+ return SQLITE_ERROR; |
+ } |
+ |
+ pGeom->pContext = p->pContext; |
+ pGeom->nParam = p->nParam; |
+ pGeom->aParam = p->aParam; |
+ |
+ pCons->xGeom = p->xGeom; |
+ pCons->pGeom = pGeom; |
+ return SQLITE_OK; |
+} |
/* |
** Rtree virtual table module xFilter method. |
@@ -1004,8 +1244,7 @@ static int rtreeFilter( |
rtreeReference(pRtree); |
- sqlite3_free(pCsr->aConstraint); |
- pCsr->aConstraint = 0; |
+ freeCursorConstraints(pCsr); |
pCsr->iStrategy = idxNum; |
if( idxNum==1 ){ |
@@ -1014,8 +1253,9 @@ static int rtreeFilter( |
i64 iRowid = sqlite3_value_int64(argv[0]); |
rc = findLeafNode(pRtree, iRowid, &pLeaf); |
pCsr->pNode = pLeaf; |
- if( pLeaf && rc==SQLITE_OK ){ |
- pCsr->iCell = nodeRowidIndex(pRtree, pLeaf, iRowid); |
+ if( pLeaf ){ |
+ assert( rc==SQLITE_OK ); |
+ rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &pCsr->iCell); |
} |
}else{ |
/* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array |
@@ -1027,12 +1267,24 @@ static int rtreeFilter( |
if( !pCsr->aConstraint ){ |
rc = SQLITE_NOMEM; |
}else{ |
- assert( (idxStr==0 && argc==0) || strlen(idxStr)==argc*2 ); |
+ memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); |
+ assert( (idxStr==0 && argc==0) || (int)strlen(idxStr)==argc*2 ); |
for(ii=0; ii<argc; ii++){ |
RtreeConstraint *p = &pCsr->aConstraint[ii]; |
p->op = idxStr[ii*2]; |
p->iCoord = idxStr[ii*2+1]-'a'; |
- p->rValue = sqlite3_value_double(argv[ii]); |
+ if( p->op==RTREE_MATCH ){ |
+ /* A MATCH operator. The right-hand-side must be a blob that |
+ ** can be cast into an RtreeMatchArg object. One created using |
+ ** an sqlite3_rtree_geometry_callback() SQL user function. |
+ */ |
+ rc = deserializeGeometry(argv[ii], p); |
+ if( rc!=SQLITE_OK ){ |
+ break; |
+ } |
+ }else{ |
+ p->rValue = sqlite3_value_double(argv[ii]); |
+ } |
} |
} |
} |
@@ -1073,11 +1325,10 @@ static int rtreeFilter( |
** idxNum idxStr Strategy |
** ------------------------------------------------ |
** 1 Unused Direct lookup by rowid. |
-** 2 See below R-tree query. |
-** 3 Unused Full table scan. |
+** 2 See below R-tree query or full-table scan. |
** ------------------------------------------------ |
** |
-** If strategy 1 or 3 is used, then idxStr is not meaningful. If strategy |
+** If strategy 1 is used, then idxStr is not meaningful. If strategy |
** 2 is used, idxStr is formatted to contain 2 bytes for each |
** constraint used. The first two bytes of idxStr correspond to |
** the constraint in sqlite3_index_info.aConstraintUsage[] with |
@@ -1093,6 +1344,7 @@ static int rtreeFilter( |
** < 0x43 ('C') |
** >= 0x44 ('D') |
** > 0x45 ('E') |
+** MATCH 0x46 ('F') |
** ---------------------- |
** |
** The second of each pair of bytes identifies the coordinate column |
@@ -1101,14 +1353,15 @@ static int rtreeFilter( |
*/ |
static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
int rc = SQLITE_OK; |
- int ii, cCol; |
+ int ii; |
int iIdx = 0; |
char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; |
memset(zIdxStr, 0, sizeof(zIdxStr)); |
+ UNUSED_PARAMETER(tab); |
assert( pIdxInfo->idxStr==0 ); |
- for(ii=0; ii<pIdxInfo->nConstraint; ii++){ |
+ for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){ |
struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; |
if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ |
@@ -1131,48 +1384,23 @@ static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
return SQLITE_OK; |
} |
- if( p->usable && p->iColumn>0 ){ |
- u8 op = 0; |
+ if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){ |
+ u8 op; |
switch( p->op ){ |
case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; |
case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; |
case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; |
case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; |
case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; |
+ default: |
+ assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH ); |
+ op = RTREE_MATCH; |
+ break; |
} |
- if( op ){ |
- /* Make sure this particular constraint has not been used before. |
- ** If it has been used before, ignore it. |
- ** |
- ** A <= or < can be used if there is a prior >= or >. |
- ** A >= or > can be used if there is a prior < or <=. |
- ** A <= or < is disqualified if there is a prior <=, <, or ==. |
- ** A >= or > is disqualified if there is a prior >=, >, or ==. |
- ** A == is disqualifed if there is any prior constraint. |
- */ |
- int j, opmsk; |
- static const unsigned char compatible[] = { 0, 0, 1, 1, 2, 2 }; |
- assert( compatible[RTREE_EQ & 7]==0 ); |
- assert( compatible[RTREE_LT & 7]==1 ); |
- assert( compatible[RTREE_LE & 7]==1 ); |
- assert( compatible[RTREE_GT & 7]==2 ); |
- assert( compatible[RTREE_GE & 7]==2 ); |
- cCol = p->iColumn - 1 + 'a'; |
- opmsk = compatible[op & 7]; |
- for(j=0; j<iIdx; j+=2){ |
- if( zIdxStr[j+1]==cCol && (compatible[zIdxStr[j] & 7] & opmsk)!=0 ){ |
- op = 0; |
- break; |
- } |
- } |
- } |
- if( op ){ |
- assert( iIdx<sizeof(zIdxStr)-1 ); |
- zIdxStr[iIdx++] = op; |
- zIdxStr[iIdx++] = cCol; |
- pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); |
- pIdxInfo->aConstraintUsage[ii].omit = 1; |
- } |
+ zIdxStr[iIdx++] = op; |
+ zIdxStr[iIdx++] = p->iColumn - 1 + 'a'; |
+ pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); |
+ pIdxInfo->aConstraintUsage[ii].omit = 1; |
} |
} |
@@ -1271,7 +1499,13 @@ static float cellOverlap( |
int ii; |
float overlap = 0.0; |
for(ii=0; ii<nCell; ii++){ |
- if( ii!=iExclude ){ |
+#if VARIANT_RSTARTREE_CHOOSESUBTREE |
+ if( ii!=iExclude ) |
+#else |
+ assert( iExclude==-1 ); |
+ UNUSED_PARAMETER(iExclude); |
+#endif |
+ { |
int jj; |
float o = 1.0; |
for(jj=0; jj<(pRtree->nDim*2); jj+=2){ |
@@ -1364,22 +1598,31 @@ static int ChooseLeaf( |
** the smallest area. |
*/ |
for(iCell=0; iCell<nCell; iCell++){ |
+ int bBest = 0; |
float growth; |
float area; |
float overlap = 0.0; |
nodeGetCell(pRtree, pNode, iCell, &cell); |
growth = cellGrowth(pRtree, &cell, pCell); |
area = cellArea(pRtree, &cell); |
+ |
#if VARIANT_RSTARTREE_CHOOSESUBTREE |
if( ii==(pRtree->iDepth-1) ){ |
overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell); |
} |
-#endif |
if( (iCell==0) |
|| (overlap<fMinOverlap) |
|| (overlap==fMinOverlap && growth<fMinGrowth) |
|| (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea) |
){ |
+ bBest = 1; |
+ } |
+#else |
+ if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){ |
+ bBest = 1; |
+ } |
+#endif |
+ if( bBest ){ |
fMinOverlap = overlap; |
fMinGrowth = growth; |
fMinArea = area; |
@@ -1402,16 +1645,20 @@ static int ChooseLeaf( |
** the node pNode. This function updates the bounding box cells in |
** all ancestor elements. |
*/ |
-static void AdjustTree( |
+static int AdjustTree( |
Rtree *pRtree, /* Rtree table */ |
RtreeNode *pNode, /* Adjust ancestry of this node. */ |
RtreeCell *pCell /* This cell was just inserted */ |
){ |
RtreeNode *p = pNode; |
while( p->pParent ){ |
- RtreeCell cell; |
RtreeNode *pParent = p->pParent; |
- int iCell = nodeParentIndex(pRtree, p); |
+ RtreeCell cell; |
+ int iCell; |
+ |
+ if( nodeParentIndex(pRtree, p, &iCell) ){ |
+ return SQLITE_CORRUPT; |
+ } |
nodeGetCell(pRtree, pParent, iCell, &cell); |
if( !cellContains(pRtree, &cell, pCell) ){ |
@@ -1421,6 +1668,7 @@ static void AdjustTree( |
p = pParent; |
} |
+ return SQLITE_OK; |
} |
/* |
@@ -1486,8 +1734,8 @@ static void LinearPickSeeds( |
** variables iLeftSeek and iRightSeed. |
*/ |
for(i=0; i<pRtree->nDim; i++){ |
- float x1 = aCell[0].aCoord[i*2]; |
- float x2 = aCell[0].aCoord[i*2+1]; |
+ float x1 = DCOORD(aCell[0].aCoord[i*2]); |
+ float x2 = DCOORD(aCell[0].aCoord[i*2+1]); |
float x3 = x1; |
float x4 = x2; |
int jj; |
@@ -1496,8 +1744,8 @@ static void LinearPickSeeds( |
int iCellRight = 0; |
for(jj=1; jj<nCell; jj++){ |
- float left = aCell[jj].aCoord[i*2]; |
- float right = aCell[jj].aCoord[i*2+1]; |
+ float left = DCOORD(aCell[jj].aCoord[i*2]); |
+ float right = DCOORD(aCell[jj].aCoord[i*2+1]); |
if( left<x1 ) x1 = left; |
if( right>x4 ) x4 = right; |
@@ -1855,6 +2103,9 @@ static int splitNodeGuttman( |
int i; |
aiUsed = sqlite3_malloc(sizeof(int)*nCell); |
+ if( !aiUsed ){ |
+ return SQLITE_NOMEM; |
+ } |
memset(aiUsed, 0, sizeof(int)*nCell); |
PickSeeds(pRtree, aCell, nCell, &iLeftSeed, &iRightSeed); |
@@ -1946,14 +2197,14 @@ static int SplitNode( |
nCell++; |
if( pNode->iNode==1 ){ |
- pRight = nodeNew(pRtree, pNode, 1); |
- pLeft = nodeNew(pRtree, pNode, 1); |
+ pRight = nodeNew(pRtree, pNode); |
+ pLeft = nodeNew(pRtree, pNode); |
pRtree->iDepth++; |
pNode->isDirty = 1; |
writeInt16(pNode->zData, pRtree->iDepth); |
}else{ |
pLeft = pNode; |
- pRight = nodeNew(pRtree, pLeft->pParent, 1); |
+ pRight = nodeNew(pRtree, pLeft->pParent); |
nodeReference(pLeft); |
} |
@@ -1970,8 +2221,12 @@ static int SplitNode( |
goto splitnode_out; |
} |
- /* Ensure both child nodes have node numbers assigned to them. */ |
- if( (0==pRight->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))) |
+ /* Ensure both child nodes have node numbers assigned to them by calling |
+ ** nodeWrite(). Node pRight always needs a node number, as it was created |
+ ** by nodeNew() above. But node pLeft sometimes already has a node number. |
+ ** In this case avoid the all to nodeWrite(). |
+ */ |
+ if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)) |
|| (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) |
){ |
goto splitnode_out; |
@@ -1987,9 +2242,15 @@ static int SplitNode( |
} |
}else{ |
RtreeNode *pParent = pLeft->pParent; |
- int iCell = nodeParentIndex(pRtree, pLeft); |
- nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); |
- AdjustTree(pRtree, pParent, &leftbbox); |
+ int iCell; |
+ rc = nodeParentIndex(pRtree, pLeft, &iCell); |
+ if( rc==SQLITE_OK ){ |
+ nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); |
+ rc = AdjustTree(pRtree, pParent, &leftbbox); |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ goto splitnode_out; |
+ } |
} |
if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ |
goto splitnode_out; |
@@ -2033,20 +2294,43 @@ splitnode_out: |
return rc; |
} |
+/* |
+** If node pLeaf is not the root of the r-tree and its pParent pointer is |
+** still NULL, load all ancestor nodes of pLeaf into memory and populate |
+** the pLeaf->pParent chain all the way up to the root node. |
+** |
+** This operation is required when a row is deleted (or updated - an update |
+** is implemented as a delete followed by an insert). SQLite provides the |
+** rowid of the row to delete, which can be used to find the leaf on which |
+** the entry resides (argument pLeaf). Once the leaf is located, this |
+** function is called to determine its ancestry. |
+*/ |
static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ |
int rc = SQLITE_OK; |
- if( pLeaf->iNode!=1 && pLeaf->pParent==0 ){ |
- sqlite3_bind_int64(pRtree->pReadParent, 1, pLeaf->iNode); |
- if( sqlite3_step(pRtree->pReadParent)==SQLITE_ROW ){ |
- i64 iNode = sqlite3_column_int64(pRtree->pReadParent, 0); |
- rc = nodeAcquire(pRtree, iNode, 0, &pLeaf->pParent); |
- }else{ |
- rc = SQLITE_ERROR; |
- } |
- sqlite3_reset(pRtree->pReadParent); |
- if( rc==SQLITE_OK ){ |
- rc = fixLeafParent(pRtree, pLeaf->pParent); |
+ RtreeNode *pChild = pLeaf; |
+ while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){ |
+ int rc2 = SQLITE_OK; /* sqlite3_reset() return code */ |
+ sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode); |
+ rc = sqlite3_step(pRtree->pReadParent); |
+ if( rc==SQLITE_ROW ){ |
+ RtreeNode *pTest; /* Used to test for reference loops */ |
+ i64 iNode; /* Node number of parent node */ |
+ |
+ /* Before setting pChild->pParent, test that we are not creating a |
+ ** loop of references (as we would if, say, pChild==pParent). We don't |
+ ** want to do this as it leads to a memory leak when trying to delete |
+ ** the referenced counted node structures. |
+ */ |
+ iNode = sqlite3_column_int64(pRtree->pReadParent, 0); |
+ for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent); |
+ if( !pTest ){ |
+ rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent); |
+ } |
} |
+ rc = sqlite3_reset(pRtree->pReadParent); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT; |
+ pChild = pChild->pParent; |
} |
return rc; |
} |
@@ -2055,18 +2339,24 @@ static int deleteCell(Rtree *, RtreeNode *, int, int); |
static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ |
int rc; |
+ int rc2; |
RtreeNode *pParent; |
int iCell; |
assert( pNode->nRef==1 ); |
/* Remove the entry in the parent cell. */ |
- iCell = nodeParentIndex(pRtree, pNode); |
- pParent = pNode->pParent; |
- pNode->pParent = 0; |
- if( SQLITE_OK!=(rc = deleteCell(pRtree, pParent, iCell, iHeight+1)) |
- || SQLITE_OK!=(rc = nodeRelease(pRtree, pParent)) |
- ){ |
+ rc = nodeParentIndex(pRtree, pNode, &iCell); |
+ if( rc==SQLITE_OK ){ |
+ pParent = pNode->pParent; |
+ pNode->pParent = 0; |
+ rc = deleteCell(pRtree, pParent, iCell, iHeight+1); |
+ } |
+ rc2 = nodeRelease(pRtree, pParent); |
+ if( rc==SQLITE_OK ){ |
+ rc = rc2; |
+ } |
+ if( rc!=SQLITE_OK ){ |
return rc; |
} |
@@ -2096,8 +2386,9 @@ static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ |
return SQLITE_OK; |
} |
-static void fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ |
+static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ |
RtreeNode *pParent = pNode->pParent; |
+ int rc = SQLITE_OK; |
if( pParent ){ |
int ii; |
int nCell = NCELL(pNode); |
@@ -2109,10 +2400,13 @@ static void fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ |
cellUnion(pRtree, &box, &cell); |
} |
box.iRowid = pNode->iNode; |
- ii = nodeParentIndex(pRtree, pNode); |
- nodeOverwriteCell(pRtree, pParent, &box, ii); |
- fixBoundingBox(pRtree, pParent); |
+ rc = nodeParentIndex(pRtree, pNode, &ii); |
+ if( rc==SQLITE_OK ){ |
+ nodeOverwriteCell(pRtree, pParent, &box, ii); |
+ rc = fixBoundingBox(pRtree, pParent); |
+ } |
} |
+ return rc; |
} |
/* |
@@ -2120,6 +2414,7 @@ static void fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ |
** cell, adjust the r-tree data structure if required. |
*/ |
static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ |
+ RtreeNode *pParent; |
int rc; |
if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ |
@@ -2136,14 +2431,13 @@ static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ |
** cell in the parent node so that it tightly contains the updated |
** node. |
*/ |
- if( pNode->iNode!=1 ){ |
- RtreeNode *pParent = pNode->pParent; |
- if( (pParent->iNode!=1 || NCELL(pParent)!=1) |
- && (NCELL(pNode)<RTREE_MINCELLS(pRtree)) |
- ){ |
+ pParent = pNode->pParent; |
+ assert( pParent || pNode->iNode==1 ); |
+ if( pParent ){ |
+ if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){ |
rc = removeNode(pRtree, pNode, iHeight); |
}else{ |
- fixBoundingBox(pRtree, pNode); |
+ rc = fixBoundingBox(pRtree, pNode); |
} |
} |
@@ -2226,7 +2520,7 @@ static int Reinsert( |
} |
} |
if( rc==SQLITE_OK ){ |
- fixBoundingBox(pRtree, pNode); |
+ rc = fixBoundingBox(pRtree, pNode); |
} |
for(; rc==SQLITE_OK && ii<nCell; ii++){ |
/* Find a node to store this cell in. pNode->iNode currently contains |
@@ -2280,11 +2574,13 @@ static int rtreeInsertCell( |
rc = SplitNode(pRtree, pNode, pCell, iHeight); |
#endif |
}else{ |
- AdjustTree(pRtree, pNode, pCell); |
- if( iHeight==0 ){ |
- rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); |
- }else{ |
- rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); |
+ rc = AdjustTree(pRtree, pNode, pCell); |
+ if( rc==SQLITE_OK ){ |
+ if( iHeight==0 ){ |
+ rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); |
+ }else{ |
+ rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); |
+ } |
} |
} |
return rc; |
@@ -2329,16 +2625,6 @@ static int newRowid(Rtree *pRtree, i64 *piRowid){ |
return rc; |
} |
-#ifndef NDEBUG |
-static int hashIsEmpty(Rtree *pRtree){ |
- int ii; |
- for(ii=0; ii<HASHSIZE; ii++){ |
- assert( !pRtree->aHash[ii] ); |
- } |
- return 1; |
-} |
-#endif |
- |
/* |
** The xUpdate method for rtree module virtual tables. |
*/ |
@@ -2354,7 +2640,6 @@ static int rtreeUpdate( |
rtreeReference(pRtree); |
assert(nData>=1); |
- assert(hashIsEmpty(pRtree)); |
/* If azData[0] is not an SQL NULL value, it is the rowid of a |
** record to delete from the r-tree table. The following block does |
@@ -2380,8 +2665,10 @@ static int rtreeUpdate( |
/* Delete the cell in question from the leaf node. */ |
if( rc==SQLITE_OK ){ |
int rc2; |
- iCell = nodeRowidIndex(pRtree, pLeaf, iDelete); |
- rc = deleteCell(pRtree, pLeaf, iCell, 0); |
+ rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell); |
+ if( rc==SQLITE_OK ){ |
+ rc = deleteCell(pRtree, pLeaf, iCell, 0); |
+ } |
rc2 = nodeRelease(pRtree, pLeaf); |
if( rc==SQLITE_OK ){ |
rc = rc2; |
@@ -2403,19 +2690,20 @@ static int rtreeUpdate( |
** the root node (the operation that Gutman's paper says to perform |
** in this scenario). |
*/ |
- if( rc==SQLITE_OK && pRtree->iDepth>0 ){ |
- if( rc==SQLITE_OK && NCELL(pRoot)==1 ){ |
- RtreeNode *pChild; |
- i64 iChild = nodeGetRowid(pRtree, pRoot, 0); |
- rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); |
- if( rc==SQLITE_OK ){ |
- rc = removeNode(pRtree, pChild, pRtree->iDepth-1); |
- } |
- if( rc==SQLITE_OK ){ |
- pRtree->iDepth--; |
- writeInt16(pRoot->zData, pRtree->iDepth); |
- pRoot->isDirty = 1; |
- } |
+ if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){ |
+ int rc2; |
+ RtreeNode *pChild; |
+ i64 iChild = nodeGetRowid(pRtree, pRoot, 0); |
+ rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); |
+ if( rc==SQLITE_OK ){ |
+ rc = removeNode(pRtree, pChild, pRtree->iDepth-1); |
+ } |
+ rc2 = nodeRelease(pRtree, pChild); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ if( rc==SQLITE_OK ){ |
+ pRtree->iDepth--; |
+ writeInt16(pRoot->zData, pRtree->iDepth); |
+ pRoot->isDirty = 1; |
} |
} |
@@ -2481,6 +2769,7 @@ static int rtreeUpdate( |
} |
rc = sqlite3_reset(pRtree->pReadRowid); |
} |
+ *pRowid = cell.iRowid; |
if( rc==SQLITE_OK ){ |
rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); |
@@ -2618,31 +2907,69 @@ static int rtreeSqlInit( |
} |
/* |
-** This routine queries database handle db for the page-size used by |
-** database zDb. If successful, the page-size in bytes is written to |
-** *piPageSize and SQLITE_OK returned. Otherwise, and an SQLite error |
-** code is returned. |
+** The second argument to this function contains the text of an SQL statement |
+** that returns a single integer value. The statement is compiled and executed |
+** using database connection db. If successful, the integer value returned |
+** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error |
+** code is returned and the value of *piVal after returning is not defined. |
*/ |
-static int getPageSize(sqlite3 *db, const char *zDb, int *piPageSize){ |
+static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){ |
int rc = SQLITE_NOMEM; |
- char *zSql; |
- sqlite3_stmt *pStmt = 0; |
- |
- zSql = sqlite3_mprintf("PRAGMA %Q.page_size", zDb); |
- if( !zSql ){ |
- return SQLITE_NOMEM; |
+ if( zSql ){ |
+ sqlite3_stmt *pStmt = 0; |
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ *piVal = sqlite3_column_int(pStmt, 0); |
+ } |
+ rc = sqlite3_finalize(pStmt); |
+ } |
} |
+ return rc; |
+} |
- rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); |
- sqlite3_free(zSql); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
+/* |
+** This function is called from within the xConnect() or xCreate() method to |
+** determine the node-size used by the rtree table being created or connected |
+** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned. |
+** Otherwise, an SQLite error code is returned. |
+** |
+** If this function is being called as part of an xConnect(), then the rtree |
+** table already exists. In this case the node-size is determined by inspecting |
+** the root node of the tree. |
+** |
+** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. |
+** This ensures that each node is stored on a single database page. If the |
+** database page-size is so large that more than RTREE_MAXCELLS entries |
+** would fit in a single node, use a smaller node-size. |
+*/ |
+static int getNodeSize( |
+ sqlite3 *db, /* Database handle */ |
+ Rtree *pRtree, /* Rtree handle */ |
+ int isCreate /* True for xCreate, false for xConnect */ |
+){ |
+ int rc; |
+ char *zSql; |
+ if( isCreate ){ |
+ int iPageSize; |
+ zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb); |
+ rc = getIntFromStmt(db, zSql, &iPageSize); |
+ if( rc==SQLITE_OK ){ |
+ pRtree->iNodeSize = iPageSize-64; |
+ if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){ |
+ pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; |
+ } |
+ } |
+ }else{ |
+ zSql = sqlite3_mprintf( |
+ "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1", |
+ pRtree->zDb, pRtree->zName |
+ ); |
+ rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize); |
} |
- if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
- *piPageSize = sqlite3_column_int(pStmt, 0); |
- } |
- return sqlite3_finalize(pStmt); |
+ sqlite3_free(zSql); |
+ return rc; |
} |
/* |
@@ -2663,11 +2990,10 @@ static int rtreeInit( |
int isCreate /* True for xCreate, false for xConnect */ |
){ |
int rc = SQLITE_OK; |
- int iPageSize = 0; |
Rtree *pRtree; |
int nDb; /* Length of string argv[1] */ |
int nName; /* Length of string argv[2] */ |
- int eCoordType = (int)pAux; |
+ int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32); |
const char *aErrMsg[] = { |
0, /* 0 */ |
@@ -2682,11 +3008,6 @@ static int rtreeInit( |
return SQLITE_ERROR; |
} |
- rc = getPageSize(db, argv[1], &iPageSize); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- |
/* Allocate the sqlite3_vtab structure */ |
nDb = strlen(argv[1]); |
nName = strlen(argv[2]); |
@@ -2705,44 +3026,37 @@ static int rtreeInit( |
memcpy(pRtree->zDb, argv[1], nDb); |
memcpy(pRtree->zName, argv[2], nName); |
- /* Figure out the node size to use. By default, use 64 bytes less than |
- ** the database page-size. This ensures that each node is stored on |
- ** a single database page. |
- ** |
- ** If the databasd page-size is so large that more than RTREE_MAXCELLS |
- ** entries would fit in a single node, use a smaller node-size. |
- */ |
- pRtree->iNodeSize = iPageSize-64; |
- if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){ |
- pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; |
- } |
+ /* Figure out the node size to use. */ |
+ rc = getNodeSize(db, pRtree, isCreate); |
/* Create/Connect to the underlying relational database schema. If |
** that is successful, call sqlite3_declare_vtab() to configure |
** the r-tree table schema. |
*/ |
- if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){ |
- *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
- }else{ |
- char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]); |
- char *zTmp; |
- int ii; |
- for(ii=4; zSql && ii<argc; ii++){ |
- zTmp = zSql; |
- zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]); |
- sqlite3_free(zTmp); |
- } |
- if( zSql ){ |
- zTmp = zSql; |
- zSql = sqlite3_mprintf("%s);", zTmp); |
- sqlite3_free(zTmp); |
- } |
- if( !zSql ){ |
- rc = SQLITE_NOMEM; |
- }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){ |
+ if( rc==SQLITE_OK ){ |
+ if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){ |
*pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
+ }else{ |
+ char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]); |
+ char *zTmp; |
+ int ii; |
+ for(ii=4; zSql && ii<argc; ii++){ |
+ zTmp = zSql; |
+ zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]); |
+ sqlite3_free(zTmp); |
+ } |
+ if( zSql ){ |
+ zTmp = zSql; |
+ zSql = sqlite3_mprintf("%s);", zTmp); |
+ sqlite3_free(zTmp); |
+ } |
+ if( !zSql ){ |
+ rc = SQLITE_NOMEM; |
+ }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){ |
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
+ } |
+ sqlite3_free(zSql); |
} |
- sqlite3_free(zSql); |
} |
if( rc==SQLITE_OK ){ |
@@ -2776,6 +3090,7 @@ static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
Rtree tree; |
int ii; |
+ UNUSED_PARAMETER(nArg); |
memset(&node, 0, sizeof(RtreeNode)); |
memset(&tree, 0, sizeof(Rtree)); |
tree.nDim = sqlite3_value_int(apArg[0]); |
@@ -2789,7 +3104,7 @@ static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
int jj; |
nodeGetCell(&tree, &node, ii, &cell); |
- sqlite3_snprintf(512-nCell,&zCell[nCell],"%d", cell.iRowid); |
+ sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid); |
nCell = strlen(zCell); |
for(jj=0; jj<tree.nDim*2; jj++){ |
sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj].f); |
@@ -2809,6 +3124,7 @@ static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
} |
static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
+ UNUSED_PARAMETER(nArg); |
if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB |
|| sqlite3_value_bytes(apArg[0])<2 |
){ |
@@ -2825,14 +3141,11 @@ static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
** function "rtreenode". |
*/ |
int sqlite3RtreeInit(sqlite3 *db){ |
- int rc = SQLITE_OK; |
+ const int utf8 = SQLITE_UTF8; |
+ int rc; |
+ rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); |
if( rc==SQLITE_OK ){ |
- int utf8 = SQLITE_UTF8; |
- rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); |
- } |
- if( rc==SQLITE_OK ){ |
- int utf8 = SQLITE_UTF8; |
rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); |
} |
if( rc==SQLITE_OK ){ |
@@ -2847,6 +3160,70 @@ int sqlite3RtreeInit(sqlite3 *db){ |
return rc; |
} |
+/* |
+** A version of sqlite3_free() that can be used as a callback. This is used |
+** in two places - as the destructor for the blob value returned by the |
+** invocation of a geometry function, and as the destructor for the geometry |
+** functions themselves. |
+*/ |
+static void doSqlite3Free(void *p){ |
+ sqlite3_free(p); |
+} |
+ |
+/* |
+** Each call to sqlite3_rtree_geometry_callback() creates an ordinary SQLite |
+** scalar user function. This C function is the callback used for all such |
+** registered SQL functions. |
+** |
+** The scalar user functions return a blob that is interpreted by r-tree |
+** table MATCH operators. |
+*/ |
+static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ |
+ RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); |
+ RtreeMatchArg *pBlob; |
+ int nBlob; |
+ |
+ nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(double); |
+ pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob); |
+ if( !pBlob ){ |
+ sqlite3_result_error_nomem(ctx); |
+ }else{ |
+ int i; |
+ pBlob->magic = RTREE_GEOMETRY_MAGIC; |
+ pBlob->xGeom = pGeomCtx->xGeom; |
+ pBlob->pContext = pGeomCtx->pContext; |
+ pBlob->nParam = nArg; |
+ for(i=0; i<nArg; i++){ |
+ pBlob->aParam[i] = sqlite3_value_double(aArg[i]); |
+ } |
+ sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free); |
+ } |
+} |
+ |
+/* |
+** Register a new geometry function for use with the r-tree MATCH operator. |
+*/ |
+int sqlite3_rtree_geometry_callback( |
+ sqlite3 *db, |
+ const char *zGeom, |
+ int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *), |
+ void *pContext |
+){ |
+ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ |
+ |
+ /* Allocate and populate the context object. */ |
+ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); |
+ if( !pGeomCtx ) return SQLITE_NOMEM; |
+ pGeomCtx->xGeom = xGeom; |
+ pGeomCtx->pContext = pContext; |
+ |
+ /* Create the new user-function. Register a destructor function to delete |
+ ** the context object when it is no longer required. */ |
+ return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, |
+ (void *)pGeomCtx, geomCallback, 0, 0, doSqlite3Free |
+ ); |
+} |
+ |
#if !SQLITE_CORE |
int sqlite3_extension_init( |
sqlite3 *db, |