| Index: third_party/sqlite/src/src/expr.c
|
| diff --git a/third_party/sqlite/src/src/expr.c b/third_party/sqlite/src/src/expr.c
|
| index 31a62b652a495fdf41afb877199d4c5840e966c3..2699ae1cfd48ff483fcf317a82a982daa6a8bdfb 100644
|
| --- a/third_party/sqlite/src/src/expr.c
|
| +++ b/third_party/sqlite/src/src/expr.c
|
| @@ -56,24 +56,31 @@ char sqlite3ExprAffinity(Expr *pExpr){
|
| }
|
|
|
| /*
|
| +** Set the explicit collating sequence for an expression to the
|
| +** collating sequence supplied in the second argument.
|
| +*/
|
| +Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){
|
| + if( pExpr && pColl ){
|
| + pExpr->pColl = pColl;
|
| + pExpr->flags |= EP_ExpCollate;
|
| + }
|
| + return pExpr;
|
| +}
|
| +
|
| +/*
|
| ** Set the collating sequence for expression pExpr to be the collating
|
| ** sequence named by pToken. Return a pointer to the revised expression.
|
| ** The collating sequence is marked as "explicit" using the EP_ExpCollate
|
| ** flag. An explicit collating sequence will override implicit
|
| ** collating sequences.
|
| */
|
| -Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
|
| +Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){
|
| char *zColl = 0; /* Dequoted name of collation sequence */
|
| CollSeq *pColl;
|
| sqlite3 *db = pParse->db;
|
| zColl = sqlite3NameFromToken(db, pCollName);
|
| - if( pExpr && zColl ){
|
| - pColl = sqlite3LocateCollSeq(pParse, zColl);
|
| - if( pColl ){
|
| - pExpr->pColl = pColl;
|
| - pExpr->flags |= EP_ExpCollate;
|
| - }
|
| - }
|
| + pColl = sqlite3LocateCollSeq(pParse, zColl);
|
| + sqlite3ExprSetColl(pExpr, pColl);
|
| sqlite3DbFree(db, zColl);
|
| return pExpr;
|
| }
|
| @@ -85,7 +92,7 @@ Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
|
| CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
|
| CollSeq *pColl = 0;
|
| Expr *p = pExpr;
|
| - while( ALWAYS(p) ){
|
| + while( p ){
|
| int op;
|
| pColl = p->pColl;
|
| if( pColl ) break;
|
| @@ -152,7 +159,7 @@ static char comparisonAffinity(Expr *pExpr){
|
| char aff;
|
| assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
|
| pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
|
| - pExpr->op==TK_NE );
|
| + pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
|
| assert( pExpr->pLeft );
|
| aff = sqlite3ExprAffinity(pExpr->pLeft);
|
| if( pExpr->pRight ){
|
| @@ -228,30 +235,6 @@ CollSeq *sqlite3BinaryCompareCollSeq(
|
| }
|
|
|
| /*
|
| -** Generate the operands for a comparison operation. Before
|
| -** generating the code for each operand, set the EP_AnyAff
|
| -** flag on the expression so that it will be able to used a
|
| -** cached column value that has previously undergone an
|
| -** affinity change.
|
| -*/
|
| -static void codeCompareOperands(
|
| - Parse *pParse, /* Parsing and code generating context */
|
| - Expr *pLeft, /* The left operand */
|
| - int *pRegLeft, /* Register where left operand is stored */
|
| - int *pFreeLeft, /* Free this register when done */
|
| - Expr *pRight, /* The right operand */
|
| - int *pRegRight, /* Register where right operand is stored */
|
| - int *pFreeRight /* Write temp register for right operand there */
|
| -){
|
| - while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
|
| - pLeft->flags |= EP_AnyAff;
|
| - *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
|
| - while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
|
| - pRight->flags |= EP_AnyAff;
|
| - *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
|
| -}
|
| -
|
| -/*
|
| ** Generate code for a comparison operator.
|
| */
|
| static int codeCompare(
|
| @@ -272,10 +255,6 @@ static int codeCompare(
|
| addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
|
| (void*)p4, P4_COLLSEQ);
|
| sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
|
| - if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
|
| - sqlite3ExprCacheAffinityChange(pParse, in1, 1);
|
| - sqlite3ExprCacheAffinityChange(pParse, in2, 1);
|
| - }
|
| return addr;
|
| }
|
|
|
| @@ -410,6 +389,7 @@ Expr *sqlite3ExprAlloc(
|
| if( op!=TK_INTEGER || pToken->z==0
|
| || sqlite3GetInt32(pToken->z, &iValue)==0 ){
|
| nExtra = pToken->n+1;
|
| + assert( iValue>=0 );
|
| }
|
| }
|
| pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
|
| @@ -505,6 +485,9 @@ Expr *sqlite3PExpr(
|
| ){
|
| Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
|
| sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
|
| + if( p ) {
|
| + sqlite3ExprCheckHeight(pParse, p->nHeight);
|
| + }
|
| return p;
|
| }
|
|
|
| @@ -571,22 +554,23 @@ void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
|
| if( z[1]==0 ){
|
| /* Wildcard of the form "?". Assign the next variable number */
|
| assert( z[0]=='?' );
|
| - pExpr->iTable = ++pParse->nVar;
|
| + pExpr->iColumn = (ynVar)(++pParse->nVar);
|
| }else if( z[0]=='?' ){
|
| /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
|
| ** use it as the variable number */
|
| - int i;
|
| - pExpr->iTable = i = atoi((char*)&z[1]);
|
| + i64 i;
|
| + int bOk = 0==sqlite3Atoi64(&z[1], &i, sqlite3Strlen30(&z[1]), SQLITE_UTF8);
|
| + pExpr->iColumn = (ynVar)i;
|
| testcase( i==0 );
|
| testcase( i==1 );
|
| testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
|
| testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
|
| - if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
|
| + if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
|
| sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
|
| db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
|
| }
|
| if( i>pParse->nVar ){
|
| - pParse->nVar = i;
|
| + pParse->nVar = (int)i;
|
| }
|
| }else{
|
| /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
|
| @@ -600,12 +584,12 @@ void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
|
| Expr *pE = pParse->apVarExpr[i];
|
| assert( pE!=0 );
|
| if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){
|
| - pExpr->iTable = pE->iTable;
|
| + pExpr->iColumn = pE->iColumn;
|
| break;
|
| }
|
| }
|
| if( i>=pParse->nVarExpr ){
|
| - pExpr->iTable = ++pParse->nVar;
|
| + pExpr->iColumn = (ynVar)(++pParse->nVar);
|
| if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
|
| pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
|
| pParse->apVarExpr =
|
| @@ -627,11 +611,12 @@ void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
|
| }
|
|
|
| /*
|
| -** Clear an expression structure without deleting the structure itself.
|
| -** Substructure is deleted.
|
| +** Recursively delete an expression tree.
|
| */
|
| -void sqlite3ExprClear(sqlite3 *db, Expr *p){
|
| - assert( p!=0 );
|
| +void sqlite3ExprDelete(sqlite3 *db, Expr *p){
|
| + if( p==0 ) return;
|
| + /* Sanity check: Assert that the IntValue is non-negative if it exists */
|
| + assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
|
| if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
|
| sqlite3ExprDelete(db, p->pLeft);
|
| sqlite3ExprDelete(db, p->pRight);
|
| @@ -644,14 +629,6 @@ void sqlite3ExprClear(sqlite3 *db, Expr *p){
|
| sqlite3ExprListDelete(db, p->x.pList);
|
| }
|
| }
|
| -}
|
| -
|
| -/*
|
| -** Recursively delete an expression tree.
|
| -*/
|
| -void sqlite3ExprDelete(sqlite3 *db, Expr *p){
|
| - if( p==0 ) return;
|
| - sqlite3ExprClear(db, p);
|
| if( !ExprHasProperty(p, EP_Static) ){
|
| sqlite3DbFree(db, p);
|
| }
|
| @@ -1226,16 +1203,17 @@ int sqlite3ExprIsConstantOrFunction(Expr *p){
|
| */
|
| int sqlite3ExprIsInteger(Expr *p, int *pValue){
|
| int rc = 0;
|
| +
|
| + /* If an expression is an integer literal that fits in a signed 32-bit
|
| + ** integer, then the EP_IntValue flag will have already been set */
|
| + assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
|
| + || sqlite3GetInt32(p->u.zToken, &rc)==0 );
|
| +
|
| if( p->flags & EP_IntValue ){
|
| *pValue = p->u.iValue;
|
| return 1;
|
| }
|
| switch( p->op ){
|
| - case TK_INTEGER: {
|
| - rc = sqlite3GetInt32(p->u.zToken, pValue);
|
| - assert( rc==0 );
|
| - break;
|
| - }
|
| case TK_UPLUS: {
|
| rc = sqlite3ExprIsInteger(p->pLeft, pValue);
|
| break;
|
| @@ -1250,17 +1228,98 @@ int sqlite3ExprIsInteger(Expr *p, int *pValue){
|
| }
|
| default: break;
|
| }
|
| - if( rc ){
|
| - assert( ExprHasAnyProperty(p, EP_Reduced|EP_TokenOnly)
|
| - || (p->flags2 & EP2_MallocedToken)==0 );
|
| - p->op = TK_INTEGER;
|
| - p->flags |= EP_IntValue;
|
| - p->u.iValue = *pValue;
|
| - }
|
| return rc;
|
| }
|
|
|
| /*
|
| +** Return FALSE if there is no chance that the expression can be NULL.
|
| +**
|
| +** If the expression might be NULL or if the expression is too complex
|
| +** to tell return TRUE.
|
| +**
|
| +** This routine is used as an optimization, to skip OP_IsNull opcodes
|
| +** when we know that a value cannot be NULL. Hence, a false positive
|
| +** (returning TRUE when in fact the expression can never be NULL) might
|
| +** be a small performance hit but is otherwise harmless. On the other
|
| +** hand, a false negative (returning FALSE when the result could be NULL)
|
| +** will likely result in an incorrect answer. So when in doubt, return
|
| +** TRUE.
|
| +*/
|
| +int sqlite3ExprCanBeNull(const Expr *p){
|
| + u8 op;
|
| + while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
|
| + op = p->op;
|
| + if( op==TK_REGISTER ) op = p->op2;
|
| + switch( op ){
|
| + case TK_INTEGER:
|
| + case TK_STRING:
|
| + case TK_FLOAT:
|
| + case TK_BLOB:
|
| + return 0;
|
| + default:
|
| + return 1;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Generate an OP_IsNull instruction that tests register iReg and jumps
|
| +** to location iDest if the value in iReg is NULL. The value in iReg
|
| +** was computed by pExpr. If we can look at pExpr at compile-time and
|
| +** determine that it can never generate a NULL, then the OP_IsNull operation
|
| +** can be omitted.
|
| +*/
|
| +void sqlite3ExprCodeIsNullJump(
|
| + Vdbe *v, /* The VDBE under construction */
|
| + const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */
|
| + int iReg, /* Test the value in this register for NULL */
|
| + int iDest /* Jump here if the value is null */
|
| +){
|
| + if( sqlite3ExprCanBeNull(pExpr) ){
|
| + sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Return TRUE if the given expression is a constant which would be
|
| +** unchanged by OP_Affinity with the affinity given in the second
|
| +** argument.
|
| +**
|
| +** This routine is used to determine if the OP_Affinity operation
|
| +** can be omitted. When in doubt return FALSE. A false negative
|
| +** is harmless. A false positive, however, can result in the wrong
|
| +** answer.
|
| +*/
|
| +int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
|
| + u8 op;
|
| + if( aff==SQLITE_AFF_NONE ) return 1;
|
| + while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
|
| + op = p->op;
|
| + if( op==TK_REGISTER ) op = p->op2;
|
| + switch( op ){
|
| + case TK_INTEGER: {
|
| + return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
|
| + }
|
| + case TK_FLOAT: {
|
| + return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
|
| + }
|
| + case TK_STRING: {
|
| + return aff==SQLITE_AFF_TEXT;
|
| + }
|
| + case TK_BLOB: {
|
| + return 1;
|
| + }
|
| + case TK_COLUMN: {
|
| + assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
|
| + return p->iColumn<0
|
| + && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
|
| + }
|
| + default: {
|
| + return 0;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| ** Return TRUE if the given string is a row-id column name.
|
| */
|
| int sqlite3IsRowid(const char *z){
|
| @@ -1347,16 +1406,16 @@ static int isCandidateForInOpt(Select *p){
|
| ** When the b-tree is being used for membership tests, the calling function
|
| ** needs to know whether or not the structure contains an SQL NULL
|
| ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
|
| -** If there is a chance that the b-tree might contain a NULL value at
|
| +** If there is any chance that the (...) might contain a NULL value at
|
| ** runtime, then a register is allocated and the register number written
|
| -** to *prNotFound. If there is no chance that the b-tree contains a
|
| +** to *prNotFound. If there is no chance that the (...) contains a
|
| ** NULL value, then *prNotFound is left unchanged.
|
| **
|
| ** If a register is allocated and its location stored in *prNotFound, then
|
| -** its initial value is NULL. If the b-tree does not remain constant
|
| -** for the duration of the query (i.e. the SELECT that generates the b-tree
|
| +** its initial value is NULL. If the (...) does not remain constant
|
| +** for the duration of the query (i.e. the SELECT within the (...)
|
| ** is a correlated subquery) then the value of the allocated register is
|
| -** reset to NULL each time the b-tree is repopulated. This allows the
|
| +** reset to NULL each time the subquery is rerun. This allows the
|
| ** caller to use vdbe code equivalent to the following:
|
| **
|
| ** if( register==NULL ){
|
| @@ -1374,6 +1433,8 @@ int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
|
| int iTab = pParse->nTab++; /* Cursor of the RHS table */
|
| int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */
|
|
|
| + assert( pX->op==TK_IN );
|
| +
|
| /* Check to see if an existing table or index can be used to
|
| ** satisfy the query. This is preferable to generating a new
|
| ** ephemeral table.
|
| @@ -1451,17 +1512,23 @@ int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
|
| }
|
|
|
| if( eType==0 ){
|
| - /* Could not found an existing able or index to use as the RHS b-tree.
|
| + /* Could not found an existing table or index to use as the RHS b-tree.
|
| ** We will have to generate an ephemeral table to do the job.
|
| */
|
| + double savedNQueryLoop = pParse->nQueryLoop;
|
| int rMayHaveNull = 0;
|
| eType = IN_INDEX_EPH;
|
| if( prNotFound ){
|
| *prNotFound = rMayHaveNull = ++pParse->nMem;
|
| - }else if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
|
| - eType = IN_INDEX_ROWID;
|
| + }else{
|
| + testcase( pParse->nQueryLoop>(double)1 );
|
| + pParse->nQueryLoop = (double)1;
|
| + if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
|
| + eType = IN_INDEX_ROWID;
|
| + }
|
| }
|
| sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
|
| + pParse->nQueryLoop = savedNQueryLoop;
|
| }else{
|
| pX->iTable = iTab;
|
| }
|
| @@ -1470,8 +1537,8 @@ int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
|
| #endif
|
|
|
| /*
|
| -** Generate code for scalar subqueries used as an expression
|
| -** and IN operators. Examples:
|
| +** Generate code for scalar subqueries used as a subquery expression, EXISTS,
|
| +** or IN operators. Examples:
|
| **
|
| ** (SELECT a FROM b) -- subquery
|
| ** EXISTS (SELECT a FROM b) -- EXISTS subquery
|
| @@ -1498,17 +1565,21 @@ int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
|
| ** If rMayHaveNull is zero, that means that the subquery is being used
|
| ** for membership testing only. There is no need to initialize any
|
| ** registers to indicate the presense or absence of NULLs on the RHS.
|
| +**
|
| +** For a SELECT or EXISTS operator, return the register that holds the
|
| +** result. For IN operators or if an error occurs, the return value is 0.
|
| */
|
| #ifndef SQLITE_OMIT_SUBQUERY
|
| -void sqlite3CodeSubselect(
|
| +int sqlite3CodeSubselect(
|
| Parse *pParse, /* Parsing context */
|
| Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
|
| int rMayHaveNull, /* Register that records whether NULLs exist in RHS */
|
| int isRowid /* If true, LHS of IN operator is a rowid */
|
| ){
|
| int testAddr = 0; /* One-time test address */
|
| + int rReg = 0; /* Register storing resulting */
|
| Vdbe *v = sqlite3GetVdbe(pParse);
|
| - if( NEVER(v==0) ) return;
|
| + if( NEVER(v==0) ) return 0;
|
| sqlite3ExprCachePush(pParse);
|
|
|
| /* This code must be run in its entirety every time it is encountered
|
| @@ -1528,12 +1599,22 @@ void sqlite3CodeSubselect(
|
| assert( testAddr>0 || pParse->db->mallocFailed );
|
| }
|
|
|
| +#ifndef SQLITE_OMIT_EXPLAIN
|
| + if( pParse->explain==2 ){
|
| + char *zMsg = sqlite3MPrintf(
|
| + pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr?"":"CORRELATED ",
|
| + pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
|
| + );
|
| + sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
|
| + }
|
| +#endif
|
| +
|
| switch( pExpr->op ){
|
| case TK_IN: {
|
| - char affinity;
|
| - KeyInfo keyInfo;
|
| - int addr; /* Address of OP_OpenEphemeral instruction */
|
| - Expr *pLeft = pExpr->pLeft;
|
| + char affinity; /* Affinity of the LHS of the IN */
|
| + KeyInfo keyInfo; /* Keyinfo for the generated table */
|
| + int addr; /* Address of OP_OpenEphemeral instruction */
|
| + Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
|
|
|
| if( rMayHaveNull ){
|
| sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
|
| @@ -1542,7 +1623,7 @@ void sqlite3CodeSubselect(
|
| affinity = sqlite3ExprAffinity(pLeft);
|
|
|
| /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
|
| - ** expression it is handled the same way. A virtual table is
|
| + ** expression it is handled the same way. An ephemeral table is
|
| ** filled with single-field index keys representing the results
|
| ** from the SELECT or the <exprlist>.
|
| **
|
| @@ -1556,6 +1637,7 @@ void sqlite3CodeSubselect(
|
| */
|
| pExpr->iTable = pParse->nTab++;
|
| addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
|
| + if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
|
| memset(&keyInfo, 0, sizeof(keyInfo));
|
| keyInfo.nField = 1;
|
|
|
| @@ -1572,15 +1654,16 @@ void sqlite3CodeSubselect(
|
| sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
|
| dest.affinity = (u8)affinity;
|
| assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
|
| + pExpr->x.pSelect->iLimit = 0;
|
| if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
|
| - return;
|
| + return 0;
|
| }
|
| pEList = pExpr->x.pSelect->pEList;
|
| if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
|
| keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
|
| pEList->a[0].pExpr);
|
| }
|
| - }else if( pExpr->x.pList!=0 ){
|
| + }else if( ALWAYS(pExpr->x.pList!=0) ){
|
| /* Case 2: expr IN (exprlist)
|
| **
|
| ** For each expression, build an index key from the evaluation and
|
| @@ -1604,6 +1687,7 @@ void sqlite3CodeSubselect(
|
| sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
|
| for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
|
| Expr *pE2 = pItem->pExpr;
|
| + int iValToIns;
|
|
|
| /* If the expression is not constant then we will need to
|
| ** disable the test that was generated above that makes sure
|
| @@ -1616,14 +1700,19 @@ void sqlite3CodeSubselect(
|
| }
|
|
|
| /* Evaluate the expression and insert it into the temp table */
|
| - r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
|
| - if( isRowid ){
|
| - sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2);
|
| - sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
|
| + if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
|
| + sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
|
| }else{
|
| - sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
|
| - sqlite3ExprCacheAffinityChange(pParse, r3, 1);
|
| - sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
|
| + r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
|
| + if( isRowid ){
|
| + sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
|
| + sqlite3VdbeCurrentAddr(v)+2);
|
| + sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
|
| + }else{
|
| + sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
|
| + sqlite3ExprCacheAffinityChange(pParse, r3, 1);
|
| + sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
|
| + }
|
| }
|
| }
|
| sqlite3ReleaseTempReg(pParse, r1);
|
| @@ -1644,7 +1733,6 @@ void sqlite3CodeSubselect(
|
| ** an integer 0 (not exists) or 1 (exists) into a memory cell
|
| ** and record that memory cell in iColumn.
|
| */
|
| - static const Token one = { "1", 1 }; /* Token for literal value 1 */
|
| Select *pSel; /* SELECT statement to encode */
|
| SelectDest dest; /* How to deal with SELECt result */
|
|
|
| @@ -1665,11 +1753,13 @@ void sqlite3CodeSubselect(
|
| VdbeComment((v, "Init EXISTS result"));
|
| }
|
| sqlite3ExprDelete(pParse->db, pSel->pLimit);
|
| - pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
|
| + pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
|
| + &sqlite3IntTokens[1]);
|
| + pSel->iLimit = 0;
|
| if( sqlite3Select(pParse, pSel, &dest) ){
|
| - return;
|
| + return 0;
|
| }
|
| - pExpr->iColumn = (i16)dest.iParm;
|
| + rReg = dest.iParm;
|
| ExprSetIrreducible(pExpr);
|
| break;
|
| }
|
| @@ -1680,7 +1770,141 @@ void sqlite3CodeSubselect(
|
| }
|
| sqlite3ExprCachePop(pParse, 1);
|
|
|
| - return;
|
| + return rReg;
|
| +}
|
| +#endif /* SQLITE_OMIT_SUBQUERY */
|
| +
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| +/*
|
| +** Generate code for an IN expression.
|
| +**
|
| +** x IN (SELECT ...)
|
| +** x IN (value, value, ...)
|
| +**
|
| +** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS)
|
| +** is an array of zero or more values. The expression is true if the LHS is
|
| +** contained within the RHS. The value of the expression is unknown (NULL)
|
| +** if the LHS is NULL or if the LHS is not contained within the RHS and the
|
| +** RHS contains one or more NULL values.
|
| +**
|
| +** This routine generates code will jump to destIfFalse if the LHS is not
|
| +** contained within the RHS. If due to NULLs we cannot determine if the LHS
|
| +** is contained in the RHS then jump to destIfNull. If the LHS is contained
|
| +** within the RHS then fall through.
|
| +*/
|
| +static void sqlite3ExprCodeIN(
|
| + Parse *pParse, /* Parsing and code generating context */
|
| + Expr *pExpr, /* The IN expression */
|
| + int destIfFalse, /* Jump here if LHS is not contained in the RHS */
|
| + int destIfNull /* Jump here if the results are unknown due to NULLs */
|
| +){
|
| + int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
|
| + char affinity; /* Comparison affinity to use */
|
| + int eType; /* Type of the RHS */
|
| + int r1; /* Temporary use register */
|
| + Vdbe *v; /* Statement under construction */
|
| +
|
| + /* Compute the RHS. After this step, the table with cursor
|
| + ** pExpr->iTable will contains the values that make up the RHS.
|
| + */
|
| + v = pParse->pVdbe;
|
| + assert( v!=0 ); /* OOM detected prior to this routine */
|
| + VdbeNoopComment((v, "begin IN expr"));
|
| + eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
|
| +
|
| + /* Figure out the affinity to use to create a key from the results
|
| + ** of the expression. affinityStr stores a static string suitable for
|
| + ** P4 of OP_MakeRecord.
|
| + */
|
| + affinity = comparisonAffinity(pExpr);
|
| +
|
| + /* Code the LHS, the <expr> from "<expr> IN (...)".
|
| + */
|
| + sqlite3ExprCachePush(pParse);
|
| + r1 = sqlite3GetTempReg(pParse);
|
| + sqlite3ExprCode(pParse, pExpr->pLeft, r1);
|
| +
|
| + /* If the LHS is NULL, then the result is either false or NULL depending
|
| + ** on whether the RHS is empty or not, respectively.
|
| + */
|
| + if( destIfNull==destIfFalse ){
|
| + /* Shortcut for the common case where the false and NULL outcomes are
|
| + ** the same. */
|
| + sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
|
| + }else{
|
| + int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
|
| + sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
|
| + sqlite3VdbeJumpHere(v, addr1);
|
| + }
|
| +
|
| + if( eType==IN_INDEX_ROWID ){
|
| + /* In this case, the RHS is the ROWID of table b-tree
|
| + */
|
| + sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
|
| + sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
|
| + }else{
|
| + /* In this case, the RHS is an index b-tree.
|
| + */
|
| + sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
|
| +
|
| + /* If the set membership test fails, then the result of the
|
| + ** "x IN (...)" expression must be either 0 or NULL. If the set
|
| + ** contains no NULL values, then the result is 0. If the set
|
| + ** contains one or more NULL values, then the result of the
|
| + ** expression is also NULL.
|
| + */
|
| + if( rRhsHasNull==0 || destIfFalse==destIfNull ){
|
| + /* This branch runs if it is known at compile time that the RHS
|
| + ** cannot contain NULL values. This happens as the result
|
| + ** of a "NOT NULL" constraint in the database schema.
|
| + **
|
| + ** Also run this branch if NULL is equivalent to FALSE
|
| + ** for this particular IN operator.
|
| + */
|
| + sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
|
| +
|
| + }else{
|
| + /* In this branch, the RHS of the IN might contain a NULL and
|
| + ** the presence of a NULL on the RHS makes a difference in the
|
| + ** outcome.
|
| + */
|
| + int j1, j2, j3;
|
| +
|
| + /* First check to see if the LHS is contained in the RHS. If so,
|
| + ** then the presence of NULLs in the RHS does not matter, so jump
|
| + ** over all of the code that follows.
|
| + */
|
| + j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
|
| +
|
| + /* Here we begin generating code that runs if the LHS is not
|
| + ** contained within the RHS. Generate additional code that
|
| + ** tests the RHS for NULLs. If the RHS contains a NULL then
|
| + ** jump to destIfNull. If there are no NULLs in the RHS then
|
| + ** jump to destIfFalse.
|
| + */
|
| + j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
|
| + j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
|
| + sqlite3VdbeJumpHere(v, j3);
|
| + sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
|
| + sqlite3VdbeJumpHere(v, j2);
|
| +
|
| + /* Jump to the appropriate target depending on whether or not
|
| + ** the RHS contains a NULL
|
| + */
|
| + sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
|
| +
|
| + /* The OP_Found at the top of this branch jumps here when true,
|
| + ** causing the overall IN expression evaluation to fall through.
|
| + */
|
| + sqlite3VdbeJumpHere(v, j1);
|
| + }
|
| + }
|
| + sqlite3ReleaseTempReg(pParse, r1);
|
| + sqlite3ExprCachePop(pParse, 1);
|
| + VdbeComment((v, "end IN expr"));
|
| }
|
| #endif /* SQLITE_OMIT_SUBQUERY */
|
|
|
| @@ -1695,6 +1919,7 @@ static char *dup8bytes(Vdbe *v, const char *in){
|
| return out;
|
| }
|
|
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| /*
|
| ** Generate an instruction that will put the floating point
|
| ** value described by z[0..n-1] into register iMem.
|
| @@ -1707,40 +1932,46 @@ static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
|
| if( ALWAYS(z!=0) ){
|
| double value;
|
| char *zV;
|
| - sqlite3AtoF(z, &value);
|
| + sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
|
| assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
|
| if( negateFlag ) value = -value;
|
| zV = dup8bytes(v, (char*)&value);
|
| sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
|
| }
|
| }
|
| +#endif
|
|
|
|
|
| /*
|
| ** Generate an instruction that will put the integer describe by
|
| ** text z[0..n-1] into register iMem.
|
| **
|
| -** The z[] string will probably not be zero-terminated. But the
|
| -** z[n] character is guaranteed to be something that does not look
|
| -** like the continuation of the number.
|
| +** Expr.u.zToken is always UTF8 and zero-terminated.
|
| */
|
| -static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
|
| +static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
|
| + Vdbe *v = pParse->pVdbe;
|
| if( pExpr->flags & EP_IntValue ){
|
| int i = pExpr->u.iValue;
|
| + assert( i>=0 );
|
| if( negFlag ) i = -i;
|
| sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
|
| }else{
|
| + int c;
|
| + i64 value;
|
| const char *z = pExpr->u.zToken;
|
| assert( z!=0 );
|
| - if( sqlite3FitsIn64Bits(z, negFlag) ){
|
| - i64 value;
|
| + c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
|
| + if( c==0 || (c==2 && negFlag) ){
|
| char *zV;
|
| - sqlite3Atoi64(z, &value);
|
| - if( negFlag ) value = -value;
|
| + if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
|
| zV = dup8bytes(v, (char*)&value);
|
| sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
|
| }else{
|
| +#ifdef SQLITE_OMIT_FLOATING_POINT
|
| + sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
|
| +#else
|
| codeReal(v, z, negFlag, iMem);
|
| +#endif
|
| }
|
| }
|
| }
|
| @@ -1771,17 +2002,31 @@ void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
|
| assert( iReg>0 ); /* Register numbers are always positive */
|
| assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
|
|
|
| - /* First replace any existing entry */
|
| + /* The SQLITE_ColumnCache flag disables the column cache. This is used
|
| + ** for testing only - to verify that SQLite always gets the same answer
|
| + ** with and without the column cache.
|
| + */
|
| + if( pParse->db->flags & SQLITE_ColumnCache ) return;
|
| +
|
| + /* First replace any existing entry.
|
| + **
|
| + ** Actually, the way the column cache is currently used, we are guaranteed
|
| + ** that the object will never already be in cache. Verify this guarantee.
|
| + */
|
| +#ifndef NDEBUG
|
| for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| +#if 0 /* This code wold remove the entry from the cache if it existed */
|
| if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
|
| cacheEntryClear(pParse, p);
|
| p->iLevel = pParse->iCacheLevel;
|
| p->iReg = iReg;
|
| - p->affChange = 0;
|
| p->lru = pParse->iCacheCnt++;
|
| return;
|
| }
|
| +#endif
|
| + assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
|
| }
|
| +#endif
|
|
|
| /* Find an empty slot and replace it */
|
| for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| @@ -1790,7 +2035,6 @@ void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
|
| p->iTable = iTab;
|
| p->iColumn = iCol;
|
| p->iReg = iReg;
|
| - p->affChange = 0;
|
| p->tempReg = 0;
|
| p->lru = pParse->iCacheCnt++;
|
| return;
|
| @@ -1812,7 +2056,6 @@ void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
|
| p->iTable = iTab;
|
| p->iColumn = iCol;
|
| p->iReg = iReg;
|
| - p->affChange = 0;
|
| p->tempReg = 0;
|
| p->lru = pParse->iCacheCnt++;
|
| return;
|
| @@ -1820,14 +2063,16 @@ void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
|
| }
|
|
|
| /*
|
| -** Indicate that a register is being overwritten. Purge the register
|
| -** from the column cache.
|
| +** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
|
| +** Purge the range of registers from the column cache.
|
| */
|
| -void sqlite3ExprCacheRemove(Parse *pParse, int iReg){
|
| +void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
|
| int i;
|
| + int iLast = iReg + nReg - 1;
|
| struct yColCache *p;
|
| for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| - if( p->iReg==iReg ){
|
| + int r = p->iReg;
|
| + if( r>=iReg && r<=iLast ){
|
| cacheEntryClear(pParse, p);
|
| p->iReg = 0;
|
| }
|
| @@ -1879,6 +2124,27 @@ static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
|
| }
|
|
|
| /*
|
| +** Generate code to extract the value of the iCol-th column of a table.
|
| +*/
|
| +void sqlite3ExprCodeGetColumnOfTable(
|
| + Vdbe *v, /* The VDBE under construction */
|
| + Table *pTab, /* The table containing the value */
|
| + int iTabCur, /* The cursor for this table */
|
| + int iCol, /* Index of the column to extract */
|
| + int regOut /* Extract the valud into this register */
|
| +){
|
| + if( iCol<0 || iCol==pTab->iPKey ){
|
| + sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
|
| + }else{
|
| + int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
|
| + sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
|
| + }
|
| + if( iCol>=0 ){
|
| + sqlite3ColumnDefault(v, pTab, iCol, regOut);
|
| + }
|
| +}
|
| +
|
| +/*
|
| ** Generate code that will extract the iColumn-th column from
|
| ** table pTab and store the column value in a register. An effort
|
| ** is made to store the column value in register iReg, but this is
|
| @@ -1886,41 +2152,27 @@ static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
|
| **
|
| ** There must be an open cursor to pTab in iTable when this routine
|
| ** is called. If iColumn<0 then code is generated that extracts the rowid.
|
| -**
|
| -** This routine might attempt to reuse the value of the column that
|
| -** has already been loaded into a register. The value will always
|
| -** be used if it has not undergone any affinity changes. But if
|
| -** an affinity change has occurred, then the cached value will only be
|
| -** used if allowAffChng is true.
|
| */
|
| int sqlite3ExprCodeGetColumn(
|
| Parse *pParse, /* Parsing and code generating context */
|
| Table *pTab, /* Description of the table we are reading from */
|
| int iColumn, /* Index of the table column */
|
| int iTable, /* The cursor pointing to the table */
|
| - int iReg, /* Store results here */
|
| - int allowAffChng /* True if prior affinity changes are OK */
|
| + int iReg /* Store results here */
|
| ){
|
| Vdbe *v = pParse->pVdbe;
|
| int i;
|
| struct yColCache *p;
|
|
|
| for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| - if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn
|
| - && (!p->affChange || allowAffChng) ){
|
| + if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
|
| p->lru = pParse->iCacheCnt++;
|
| sqlite3ExprCachePinRegister(pParse, p->iReg);
|
| return p->iReg;
|
| }
|
| }
|
| assert( v!=0 );
|
| - if( iColumn<0 ){
|
| - sqlite3VdbeAddOp2(v, OP_Rowid, iTable, iReg);
|
| - }else if( ALWAYS(pTab!=0) ){
|
| - int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
|
| - sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
|
| - sqlite3ColumnDefault(v, pTab, iColumn, iReg);
|
| - }
|
| + sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
|
| sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
|
| return iReg;
|
| }
|
| @@ -1945,15 +2197,7 @@ void sqlite3ExprCacheClear(Parse *pParse){
|
| ** registers starting with iStart.
|
| */
|
| void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
|
| - int iEnd = iStart + iCount - 1;
|
| - int i;
|
| - struct yColCache *p;
|
| - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| - int r = p->iReg;
|
| - if( r>=iStart && r<=iEnd ){
|
| - p->affChange = 1;
|
| - }
|
| - }
|
| + sqlite3ExprCacheRemove(pParse, iStart, iCount);
|
| }
|
|
|
| /*
|
| @@ -1985,86 +2229,24 @@ void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
|
| }
|
| }
|
|
|
| +#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
|
| /*
|
| ** Return true if any register in the range iFrom..iTo (inclusive)
|
| ** is used as part of the column cache.
|
| +**
|
| +** This routine is used within assert() and testcase() macros only
|
| +** and does not appear in a normal build.
|
| */
|
| static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
|
| int i;
|
| struct yColCache *p;
|
| for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| int r = p->iReg;
|
| - if( r>=iFrom && r<=iTo ) return 1;
|
| + if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/
|
| }
|
| return 0;
|
| }
|
| -
|
| -/*
|
| -** If the last instruction coded is an ephemeral copy of any of
|
| -** the registers in the nReg registers beginning with iReg, then
|
| -** convert the last instruction from OP_SCopy to OP_Copy.
|
| -*/
|
| -void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
|
| - VdbeOp *pOp;
|
| - Vdbe *v;
|
| -
|
| - assert( pParse->db->mallocFailed==0 );
|
| - v = pParse->pVdbe;
|
| - assert( v!=0 );
|
| - pOp = sqlite3VdbeGetOp(v, -1);
|
| - assert( pOp!=0 );
|
| - if( pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
|
| - pOp->opcode = OP_Copy;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Generate code to store the value of the iAlias-th alias in register
|
| -** target. The first time this is called, pExpr is evaluated to compute
|
| -** the value of the alias. The value is stored in an auxiliary register
|
| -** and the number of that register is returned. On subsequent calls,
|
| -** the register number is returned without generating any code.
|
| -**
|
| -** Note that in order for this to work, code must be generated in the
|
| -** same order that it is executed.
|
| -**
|
| -** Aliases are numbered starting with 1. So iAlias is in the range
|
| -** of 1 to pParse->nAlias inclusive.
|
| -**
|
| -** pParse->aAlias[iAlias-1] records the register number where the value
|
| -** of the iAlias-th alias is stored. If zero, that means that the
|
| -** alias has not yet been computed.
|
| -*/
|
| -static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){
|
| -#if 0
|
| - sqlite3 *db = pParse->db;
|
| - int iReg;
|
| - if( pParse->nAliasAlloc<pParse->nAlias ){
|
| - pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias,
|
| - sizeof(pParse->aAlias[0])*pParse->nAlias );
|
| - testcase( db->mallocFailed && pParse->nAliasAlloc>0 );
|
| - if( db->mallocFailed ) return 0;
|
| - memset(&pParse->aAlias[pParse->nAliasAlloc], 0,
|
| - (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0]));
|
| - pParse->nAliasAlloc = pParse->nAlias;
|
| - }
|
| - assert( iAlias>0 && iAlias<=pParse->nAlias );
|
| - iReg = pParse->aAlias[iAlias-1];
|
| - if( iReg==0 ){
|
| - if( pParse->iCacheLevel>0 ){
|
| - iReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
|
| - }else{
|
| - iReg = ++pParse->nMem;
|
| - sqlite3ExprCode(pParse, pExpr, iReg);
|
| - pParse->aAlias[iAlias-1] = iReg;
|
| - }
|
| - }
|
| - return iReg;
|
| -#else
|
| - UNUSED_PARAMETER(iAlias);
|
| - return sqlite3ExprCodeTarget(pParse, pExpr, target);
|
| -#endif
|
| -}
|
| +#endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
|
|
|
| /*
|
| ** Generate code into the current Vdbe to evaluate the given
|
| @@ -2118,22 +2300,22 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| assert( pParse->ckBase>0 );
|
| inReg = pExpr->iColumn + pParse->ckBase;
|
| }else{
|
| - testcase( (pExpr->flags & EP_AnyAff)!=0 );
|
| inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
|
| - pExpr->iColumn, pExpr->iTable, target,
|
| - pExpr->flags & EP_AnyAff);
|
| + pExpr->iColumn, pExpr->iTable, target);
|
| }
|
| break;
|
| }
|
| case TK_INTEGER: {
|
| - codeInteger(v, pExpr, 0, target);
|
| + codeInteger(pParse, pExpr, 0, target);
|
| break;
|
| }
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| case TK_FLOAT: {
|
| assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| codeReal(v, pExpr->u.zToken, 0, target);
|
| break;
|
| }
|
| +#endif
|
| case TK_STRING: {
|
| assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
|
| @@ -2160,27 +2342,12 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| }
|
| #endif
|
| case TK_VARIABLE: {
|
| - VdbeOp *pOp;
|
| assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| assert( pExpr->u.zToken!=0 );
|
| assert( pExpr->u.zToken[0]!=0 );
|
| - if( pExpr->u.zToken[1]==0
|
| - && (pOp = sqlite3VdbeGetOp(v, -1))->opcode==OP_Variable
|
| - && pOp->p1+pOp->p3==pExpr->iTable
|
| - && pOp->p2+pOp->p3==target
|
| - && pOp->p4.z==0
|
| - ){
|
| - /* If the previous instruction was a copy of the previous unnamed
|
| - ** parameter into the previous register, then simply increment the
|
| - ** repeat count on the prior instruction rather than making a new
|
| - ** instruction.
|
| - */
|
| - pOp->p3++;
|
| - }else{
|
| - sqlite3VdbeAddOp3(v, OP_Variable, pExpr->iTable, target, 1);
|
| - if( pExpr->u.zToken[1]!=0 ){
|
| - sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, 0);
|
| - }
|
| + sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
|
| + if( pExpr->u.zToken[1]!=0 ){
|
| + sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, P4_TRANSIENT);
|
| }
|
| break;
|
| }
|
| @@ -2189,7 +2356,7 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| break;
|
| }
|
| case TK_AS: {
|
| - inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target);
|
| + inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
| break;
|
| }
|
| #ifndef SQLITE_OMIT_CAST
|
| @@ -2238,14 +2405,27 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| testcase( op==TK_GE );
|
| testcase( op==TK_EQ );
|
| testcase( op==TK_NE );
|
| - codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1,
|
| - pExpr->pRight, &r2, ®Free2);
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| r1, r2, inReg, SQLITE_STOREP2);
|
| testcase( regFree1==0 );
|
| testcase( regFree2==0 );
|
| break;
|
| }
|
| + case TK_IS:
|
| + case TK_ISNOT: {
|
| + testcase( op==TK_IS );
|
| + testcase( op==TK_ISNOT );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + op = (op==TK_IS) ? TK_EQ : TK_NE;
|
| + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| + r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| case TK_AND:
|
| case TK_OR:
|
| case TK_PLUS:
|
| @@ -2290,11 +2470,13 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| case TK_UMINUS: {
|
| Expr *pLeft = pExpr->pLeft;
|
| assert( pLeft );
|
| - if( pLeft->op==TK_FLOAT ){
|
| + if( pLeft->op==TK_INTEGER ){
|
| + codeInteger(pParse, pLeft, 1, target);
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| + }else if( pLeft->op==TK_FLOAT ){
|
| assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| codeReal(v, pLeft->u.zToken, 1, target);
|
| - }else if( pLeft->op==TK_INTEGER ){
|
| - codeInteger(v, pLeft, 1, target);
|
| +#endif
|
| }else{
|
| regFree1 = r1 = sqlite3GetTempReg(pParse);
|
| sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
|
| @@ -2371,6 +2553,27 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
|
| break;
|
| }
|
| +
|
| + /* Attempt a direct implementation of the built-in COALESCE() and
|
| + ** IFNULL() functions. This avoids unnecessary evalation of
|
| + ** arguments past the first non-NULL argument.
|
| + */
|
| + if( pDef->flags & SQLITE_FUNC_COALESCE ){
|
| + int endCoalesce = sqlite3VdbeMakeLabel(v);
|
| + assert( nFarg>=2 );
|
| + sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
|
| + for(i=1; i<nFarg; i++){
|
| + sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
|
| + sqlite3ExprCacheRemove(pParse, target, 1);
|
| + sqlite3ExprCachePush(pParse);
|
| + sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
|
| + sqlite3ExprCachePop(pParse, 1);
|
| + }
|
| + sqlite3VdbeResolveLabel(v, endCoalesce);
|
| + break;
|
| + }
|
| +
|
| +
|
| if( pFarg ){
|
| r1 = sqlite3GetTempRange(pParse, nFarg);
|
| sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
|
| @@ -2416,7 +2619,6 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| if( nFarg ){
|
| sqlite3ReleaseTempRange(pParse, r1, nFarg);
|
| }
|
| - sqlite3ExprCacheAffinityChange(pParse, r1, nFarg);
|
| break;
|
| }
|
| #ifndef SQLITE_OMIT_SUBQUERY
|
| @@ -2424,100 +2626,23 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| case TK_SELECT: {
|
| testcase( op==TK_EXISTS );
|
| testcase( op==TK_SELECT );
|
| - sqlite3CodeSubselect(pParse, pExpr, 0, 0);
|
| - inReg = pExpr->iColumn;
|
| + inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
|
| break;
|
| }
|
| case TK_IN: {
|
| - int rNotFound = 0;
|
| - int rMayHaveNull = 0;
|
| - int j2, j3, j4, j5;
|
| - char affinity;
|
| - int eType;
|
| -
|
| - VdbeNoopComment((v, "begin IN expr r%d", target));
|
| - eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
|
| - if( rMayHaveNull ){
|
| - rNotFound = ++pParse->nMem;
|
| - }
|
| -
|
| - /* Figure out the affinity to use to create a key from the results
|
| - ** of the expression. affinityStr stores a static string suitable for
|
| - ** P4 of OP_MakeRecord.
|
| - */
|
| - affinity = comparisonAffinity(pExpr);
|
| -
|
| -
|
| - /* Code the <expr> from "<expr> IN (...)". The temporary table
|
| - ** pExpr->iTable contains the values that make up the (...) set.
|
| - */
|
| - sqlite3ExprCachePush(pParse);
|
| - sqlite3ExprCode(pParse, pExpr->pLeft, target);
|
| - j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
|
| - if( eType==IN_INDEX_ROWID ){
|
| - j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
|
| - j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
|
| - j5 = sqlite3VdbeAddOp0(v, OP_Goto);
|
| - sqlite3VdbeJumpHere(v, j3);
|
| - sqlite3VdbeJumpHere(v, j4);
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
|
| - }else{
|
| - r2 = regFree2 = sqlite3GetTempReg(pParse);
|
| -
|
| - /* Create a record and test for set membership. If the set contains
|
| - ** the value, then jump to the end of the test code. The target
|
| - ** register still contains the true (1) value written to it earlier.
|
| - */
|
| - sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
|
| - j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
|
| -
|
| - /* If the set membership test fails, then the result of the
|
| - ** "x IN (...)" expression must be either 0 or NULL. If the set
|
| - ** contains no NULL values, then the result is 0. If the set
|
| - ** contains one or more NULL values, then the result of the
|
| - ** expression is also NULL.
|
| - */
|
| - if( rNotFound==0 ){
|
| - /* This branch runs if it is known at compile time (now) that
|
| - ** the set contains no NULL values. This happens as the result
|
| - ** of a "NOT NULL" constraint in the database schema. No need
|
| - ** to test the data structure at runtime in this case.
|
| - */
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
|
| - }else{
|
| - /* This block populates the rNotFound register with either NULL
|
| - ** or 0 (an integer value). If the data structure contains one
|
| - ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
|
| - ** to 0. If register rMayHaveNull is already set to some value
|
| - ** other than NULL, then the test has already been run and
|
| - ** rNotFound is already populated.
|
| - */
|
| - static const char nullRecord[] = { 0x02, 0x00 };
|
| - j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
|
| - sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
|
| - sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0,
|
| - nullRecord, P4_STATIC);
|
| - j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
|
| - sqlite3VdbeJumpHere(v, j4);
|
| - sqlite3VdbeJumpHere(v, j3);
|
| -
|
| - /* Copy the value of register rNotFound (which is either NULL or 0)
|
| - ** into the target register. This will be the result of the
|
| - ** expression.
|
| - */
|
| - sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
|
| - }
|
| - }
|
| - sqlite3VdbeJumpHere(v, j2);
|
| - sqlite3VdbeJumpHere(v, j5);
|
| - sqlite3ExprCachePop(pParse, 1);
|
| - VdbeComment((v, "end IN expr r%d", target));
|
| + int destIfFalse = sqlite3VdbeMakeLabel(v);
|
| + int destIfNull = sqlite3VdbeMakeLabel(v);
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, target);
|
| + sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
|
| + sqlite3VdbeResolveLabel(v, destIfFalse);
|
| + sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
|
| + sqlite3VdbeResolveLabel(v, destIfNull);
|
| break;
|
| }
|
| -#endif
|
| +#endif /* SQLITE_OMIT_SUBQUERY */
|
| +
|
| +
|
| /*
|
| ** x BETWEEN y AND z
|
| **
|
| @@ -2534,8 +2659,8 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| struct ExprList_item *pLItem = pExpr->x.pList->a;
|
| Expr *pRight = pLItem->pExpr;
|
|
|
| - codeCompareOperands(pParse, pLeft, &r1, ®Free1,
|
| - pRight, &r2, ®Free2);
|
| + r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
|
| testcase( regFree1==0 );
|
| testcase( regFree2==0 );
|
| r3 = sqlite3GetTempReg(pParse);
|
| @@ -2599,6 +2724,7 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| target
|
| ));
|
|
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| /* If the column has REAL affinity, it may currently be stored as an
|
| ** integer. Use OP_RealAffinity to make sure it is really real. */
|
| if( pExpr->iColumn>=0
|
| @@ -2606,6 +2732,7 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| ){
|
| sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
|
| }
|
| +#endif
|
| break;
|
| }
|
|
|
| @@ -2661,6 +2788,11 @@ int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| opCompare.op = TK_EQ;
|
| opCompare.pLeft = &cacheX;
|
| pTest = &opCompare;
|
| + /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
|
| + ** The value in regFree1 might get SCopy-ed into the file result.
|
| + ** So make sure that the regFree1 register is not reused for other
|
| + ** purposes and possibly overwritten. */
|
| + regFree1 = 0;
|
| }
|
| for(i=0; i<nExpr; i=i+2){
|
| sqlite3ExprCachePush(pParse);
|
| @@ -2754,10 +2886,14 @@ int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
|
| int inReg;
|
|
|
| assert( target>0 && target<=pParse->nMem );
|
| - inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
|
| - assert( pParse->pVdbe || pParse->db->mallocFailed );
|
| - if( inReg!=target && pParse->pVdbe ){
|
| - sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
|
| + if( pExpr && pExpr->op==TK_REGISTER ){
|
| + sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
|
| + }else{
|
| + inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
|
| + assert( pParse->pVdbe || pParse->db->mallocFailed );
|
| + if( inReg!=target && pParse->pVdbe ){
|
| + sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
|
| + }
|
| }
|
| return target;
|
| }
|
| @@ -2790,6 +2926,7 @@ int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
|
| iMem = ++pParse->nMem;
|
| sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
|
| pExpr->iTable = iMem;
|
| + pExpr->op2 = pExpr->op;
|
| pExpr->op = TK_REGISTER;
|
| }
|
| return inReg;
|
| @@ -2863,6 +3000,7 @@ static int isAppropriateForFactoring(Expr *p){
|
| static int evalConstExpr(Walker *pWalker, Expr *pExpr){
|
| Parse *pParse = pWalker->pParse;
|
| switch( pExpr->op ){
|
| + case TK_IN:
|
| case TK_REGISTER: {
|
| return WRC_Prune;
|
| }
|
| @@ -2902,9 +3040,22 @@ static int evalConstExpr(Walker *pWalker, Expr *pExpr){
|
| ** Preevaluate constant subexpressions within pExpr and store the
|
| ** results in registers. Modify pExpr so that the constant subexpresions
|
| ** are TK_REGISTER opcodes that refer to the precomputed values.
|
| +**
|
| +** This routine is a no-op if the jump to the cookie-check code has
|
| +** already occur. Since the cookie-check jump is generated prior to
|
| +** any other serious processing, this check ensures that there is no
|
| +** way to accidently bypass the constant initializations.
|
| +**
|
| +** This routine is also a no-op if the SQLITE_FactorOutConst optimization
|
| +** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
|
| +** interface. This allows test logic to verify that the same answer is
|
| +** obtained for queries regardless of whether or not constants are
|
| +** precomputed into registers or if they are inserted in-line.
|
| */
|
| void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
|
| Walker w;
|
| + if( pParse->cookieGoto ) return;
|
| + if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return;
|
| w.xExprCallback = evalConstExpr;
|
| w.xSelectCallback = 0;
|
| w.pParse = pParse;
|
| @@ -2928,25 +3079,76 @@ int sqlite3ExprCodeExprList(
|
| int i, n;
|
| assert( pList!=0 );
|
| assert( target>0 );
|
| + assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
|
| n = pList->nExpr;
|
| for(pItem=pList->a, i=0; i<n; i++, pItem++){
|
| - if( pItem->iAlias ){
|
| - int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i);
|
| - Vdbe *v = sqlite3GetVdbe(pParse);
|
| - if( iReg!=target+i ){
|
| - sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i);
|
| - }
|
| - }else{
|
| - sqlite3ExprCode(pParse, pItem->pExpr, target+i);
|
| - }
|
| - if( doHardCopy && !pParse->db->mallocFailed ){
|
| - sqlite3ExprHardCopy(pParse, target, n);
|
| + Expr *pExpr = pItem->pExpr;
|
| + int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
|
| + if( inReg!=target+i ){
|
| + sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
|
| + inReg, target+i);
|
| }
|
| }
|
| return n;
|
| }
|
|
|
| /*
|
| +** Generate code for a BETWEEN operator.
|
| +**
|
| +** x BETWEEN y AND z
|
| +**
|
| +** The above is equivalent to
|
| +**
|
| +** x>=y AND x<=z
|
| +**
|
| +** Code it as such, taking care to do the common subexpression
|
| +** elementation of x.
|
| +*/
|
| +static void exprCodeBetween(
|
| + Parse *pParse, /* Parsing and code generating context */
|
| + Expr *pExpr, /* The BETWEEN expression */
|
| + int dest, /* Jump here if the jump is taken */
|
| + int jumpIfTrue, /* Take the jump if the BETWEEN is true */
|
| + int jumpIfNull /* Take the jump if the BETWEEN is NULL */
|
| +){
|
| + Expr exprAnd; /* The AND operator in x>=y AND x<=z */
|
| + Expr compLeft; /* The x>=y term */
|
| + Expr compRight; /* The x<=z term */
|
| + Expr exprX; /* The x subexpression */
|
| + int regFree1 = 0; /* Temporary use register */
|
| +
|
| + assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| + exprX = *pExpr->pLeft;
|
| + exprAnd.op = TK_AND;
|
| + exprAnd.pLeft = &compLeft;
|
| + exprAnd.pRight = &compRight;
|
| + compLeft.op = TK_GE;
|
| + compLeft.pLeft = &exprX;
|
| + compLeft.pRight = pExpr->x.pList->a[0].pExpr;
|
| + compRight.op = TK_LE;
|
| + compRight.pLeft = &exprX;
|
| + compRight.pRight = pExpr->x.pList->a[1].pExpr;
|
| + exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
|
| + exprX.op = TK_REGISTER;
|
| + if( jumpIfTrue ){
|
| + sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
|
| + }else{
|
| + sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
|
| + }
|
| + sqlite3ReleaseTempReg(pParse, regFree1);
|
| +
|
| + /* Ensure adequate test coverage */
|
| + testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
|
| + testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
|
| + testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
|
| + testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
|
| + testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
|
| + testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
|
| + testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
|
| + testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
|
| +}
|
| +
|
| +/*
|
| ** Generate code for a boolean expression such that a jump is made
|
| ** to the label "dest" if the expression is true but execution
|
| ** continues straight thru if the expression is false.
|
| @@ -3012,14 +3214,27 @@ void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| testcase( op==TK_EQ );
|
| testcase( op==TK_NE );
|
| testcase( jumpIfNull==0 );
|
| - codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1,
|
| - pExpr->pRight, &r2, ®Free2);
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| r1, r2, dest, jumpIfNull);
|
| testcase( regFree1==0 );
|
| testcase( regFree2==0 );
|
| break;
|
| }
|
| + case TK_IS:
|
| + case TK_ISNOT: {
|
| + testcase( op==TK_IS );
|
| + testcase( op==TK_ISNOT );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + op = (op==TK_IS) ? TK_EQ : TK_NE;
|
| + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| + r1, r2, dest, SQLITE_NULLEQ);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| case TK_ISNULL:
|
| case TK_NOTNULL: {
|
| assert( TK_ISNULL==OP_IsNull );
|
| @@ -3032,38 +3247,20 @@ void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| break;
|
| }
|
| case TK_BETWEEN: {
|
| - /* x BETWEEN y AND z
|
| - **
|
| - ** Is equivalent to
|
| - **
|
| - ** x>=y AND x<=z
|
| - **
|
| - ** Code it as such, taking care to do the common subexpression
|
| - ** elementation of x.
|
| - */
|
| - Expr exprAnd;
|
| - Expr compLeft;
|
| - Expr compRight;
|
| - Expr exprX;
|
| -
|
| - assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| - exprX = *pExpr->pLeft;
|
| - exprAnd.op = TK_AND;
|
| - exprAnd.pLeft = &compLeft;
|
| - exprAnd.pRight = &compRight;
|
| - compLeft.op = TK_GE;
|
| - compLeft.pLeft = &exprX;
|
| - compLeft.pRight = pExpr->x.pList->a[0].pExpr;
|
| - compRight.op = TK_LE;
|
| - compRight.pLeft = &exprX;
|
| - compRight.pRight = pExpr->x.pList->a[1].pExpr;
|
| - exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
|
| - testcase( regFree1==0 );
|
| - exprX.op = TK_REGISTER;
|
| testcase( jumpIfNull==0 );
|
| - sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
|
| + exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + case TK_IN: {
|
| + int destIfFalse = sqlite3VdbeMakeLabel(v);
|
| + int destIfNull = jumpIfNull ? dest : destIfFalse;
|
| + sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
|
| + sqlite3VdbeResolveLabel(v, destIfFalse);
|
| break;
|
| }
|
| +#endif
|
| default: {
|
| r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
|
| sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
|
| @@ -3145,6 +3342,7 @@ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| break;
|
| }
|
| case TK_NOT: {
|
| + testcase( jumpIfNull==0 );
|
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
| break;
|
| }
|
| @@ -3161,14 +3359,27 @@ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| testcase( op==TK_EQ );
|
| testcase( op==TK_NE );
|
| testcase( jumpIfNull==0 );
|
| - codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1,
|
| - pExpr->pRight, &r2, ®Free2);
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| r1, r2, dest, jumpIfNull);
|
| testcase( regFree1==0 );
|
| testcase( regFree2==0 );
|
| break;
|
| }
|
| + case TK_IS:
|
| + case TK_ISNOT: {
|
| + testcase( pExpr->op==TK_IS );
|
| + testcase( pExpr->op==TK_ISNOT );
|
| + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| + op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
|
| + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| + r1, r2, dest, SQLITE_NULLEQ);
|
| + testcase( regFree1==0 );
|
| + testcase( regFree2==0 );
|
| + break;
|
| + }
|
| case TK_ISNULL:
|
| case TK_NOTNULL: {
|
| testcase( op==TK_ISNULL );
|
| @@ -3179,38 +3390,22 @@ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| break;
|
| }
|
| case TK_BETWEEN: {
|
| - /* x BETWEEN y AND z
|
| - **
|
| - ** Is equivalent to
|
| - **
|
| - ** x>=y AND x<=z
|
| - **
|
| - ** Code it as such, taking care to do the common subexpression
|
| - ** elementation of x.
|
| - */
|
| - Expr exprAnd;
|
| - Expr compLeft;
|
| - Expr compRight;
|
| - Expr exprX;
|
| -
|
| - assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| - exprX = *pExpr->pLeft;
|
| - exprAnd.op = TK_AND;
|
| - exprAnd.pLeft = &compLeft;
|
| - exprAnd.pRight = &compRight;
|
| - compLeft.op = TK_GE;
|
| - compLeft.pLeft = &exprX;
|
| - compLeft.pRight = pExpr->x.pList->a[0].pExpr;
|
| - compRight.op = TK_LE;
|
| - compRight.pLeft = &exprX;
|
| - compRight.pRight = pExpr->x.pList->a[1].pExpr;
|
| - exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
|
| - testcase( regFree1==0 );
|
| - exprX.op = TK_REGISTER;
|
| testcase( jumpIfNull==0 );
|
| - sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
|
| + exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_SUBQUERY
|
| + case TK_IN: {
|
| + if( jumpIfNull ){
|
| + sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
|
| + }else{
|
| + int destIfNull = sqlite3VdbeMakeLabel(v);
|
| + sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
|
| + sqlite3VdbeResolveLabel(v, destIfNull);
|
| + }
|
| break;
|
| }
|
| +#endif
|
| default: {
|
| r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
|
| sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
|
| @@ -3224,59 +3419,76 @@ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| }
|
|
|
| /*
|
| -** Do a deep comparison of two expression trees. Return TRUE (non-zero)
|
| -** if they are identical and return FALSE if they differ in any way.
|
| +** Do a deep comparison of two expression trees. Return 0 if the two
|
| +** expressions are completely identical. Return 1 if they differ only
|
| +** by a COLLATE operator at the top level. Return 2 if there are differences
|
| +** other than the top-level COLLATE operator.
|
| **
|
| -** Sometimes this routine will return FALSE even if the two expressions
|
| +** Sometimes this routine will return 2 even if the two expressions
|
| ** really are equivalent. If we cannot prove that the expressions are
|
| -** identical, we return FALSE just to be safe. So if this routine
|
| -** returns false, then you do not really know for certain if the two
|
| -** expressions are the same. But if you get a TRUE return, then you
|
| +** identical, we return 2 just to be safe. So if this routine
|
| +** returns 2, then you do not really know for certain if the two
|
| +** expressions are the same. But if you get a 0 or 1 return, then you
|
| ** can be sure the expressions are the same. In the places where
|
| -** this routine is used, it does not hurt to get an extra FALSE - that
|
| +** this routine is used, it does not hurt to get an extra 2 - that
|
| ** just might result in some slightly slower code. But returning
|
| -** an incorrect TRUE could lead to a malfunction.
|
| +** an incorrect 0 or 1 could lead to a malfunction.
|
| */
|
| int sqlite3ExprCompare(Expr *pA, Expr *pB){
|
| - int i;
|
| if( pA==0||pB==0 ){
|
| - return pB==pA;
|
| + return pB==pA ? 0 : 2;
|
| }
|
| assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
|
| assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
|
| if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
|
| - return 0;
|
| - }
|
| - if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
|
| - if( pA->op!=pB->op ) return 0;
|
| - if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
|
| - if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
|
| -
|
| - if( pA->x.pList && pB->x.pList ){
|
| - if( pA->x.pList->nExpr!=pB->x.pList->nExpr ) return 0;
|
| - for(i=0; i<pA->x.pList->nExpr; i++){
|
| - Expr *pExprA = pA->x.pList->a[i].pExpr;
|
| - Expr *pExprB = pB->x.pList->a[i].pExpr;
|
| - if( !sqlite3ExprCompare(pExprA, pExprB) ) return 0;
|
| - }
|
| - }else if( pA->x.pList || pB->x.pList ){
|
| - return 0;
|
| - }
|
| -
|
| - if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
|
| + return 2;
|
| + }
|
| + if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
|
| + if( pA->op!=pB->op ) return 2;
|
| + if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
|
| + if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
|
| + if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
|
| + if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
|
| if( ExprHasProperty(pA, EP_IntValue) ){
|
| if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
|
| - return 0;
|
| + return 2;
|
| }
|
| }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
|
| - if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 0;
|
| + if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
|
| if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){
|
| - return 0;
|
| + return 2;
|
| }
|
| }
|
| - return 1;
|
| + if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
|
| + if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
|
| + return 0;
|
| }
|
|
|
| +/*
|
| +** Compare two ExprList objects. Return 0 if they are identical and
|
| +** non-zero if they differ in any way.
|
| +**
|
| +** This routine might return non-zero for equivalent ExprLists. The
|
| +** only consequence will be disabled optimizations. But this routine
|
| +** must never return 0 if the two ExprList objects are different, or
|
| +** a malfunction will result.
|
| +**
|
| +** Two NULL pointers are considered to be the same. But a NULL pointer
|
| +** always differs from a non-NULL pointer.
|
| +*/
|
| +int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
|
| + int i;
|
| + if( pA==0 && pB==0 ) return 0;
|
| + if( pA==0 || pB==0 ) return 1;
|
| + if( pA->nExpr!=pB->nExpr ) return 1;
|
| + for(i=0; i<pA->nExpr; i++){
|
| + Expr *pExprA = pA->a[i].pExpr;
|
| + Expr *pExprB = pB->a[i].pExpr;
|
| + if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
|
| + if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
|
| + }
|
| + return 0;
|
| +}
|
|
|
| /*
|
| ** Add a new element to the pAggInfo->aCol[] array. Return the index of
|
| @@ -3405,7 +3617,7 @@ static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
|
| */
|
| struct AggInfo_func *pItem = pAggInfo->aFunc;
|
| for(i=0; i<pAggInfo->nFunc; i++, pItem++){
|
| - if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
|
| + if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
|
| break;
|
| }
|
| }
|
| @@ -3526,7 +3738,8 @@ int sqlite3GetTempRange(Parse *pParse, int nReg){
|
| int i, n;
|
| i = pParse->iRangeReg;
|
| n = pParse->nRangeReg;
|
| - if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
|
| + if( nReg<=n ){
|
| + assert( !usedAsColumnCache(pParse, i, i+n-1) );
|
| pParse->iRangeReg += nReg;
|
| pParse->nRangeReg -= nReg;
|
| }else{
|
| @@ -3536,6 +3749,7 @@ int sqlite3GetTempRange(Parse *pParse, int nReg){
|
| return i;
|
| }
|
| void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
|
| + sqlite3ExprCacheRemove(pParse, iReg, nReg);
|
| if( nReg>pParse->nRangeReg ){
|
| pParse->nRangeReg = nReg;
|
| pParse->iRangeReg = iReg;
|
|
|