OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2009 Oct 23 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ****************************************************************************** |
| 12 ** |
| 13 ** This file is part of the SQLite FTS3 extension module. Specifically, |
| 14 ** this file contains code to insert, update and delete rows from FTS3 |
| 15 ** tables. It also contains code to merge FTS3 b-tree segments. Some |
| 16 ** of the sub-routines used to merge segments are also used by the query |
| 17 ** code in fts3.c. |
| 18 */ |
| 19 |
| 20 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) |
| 21 |
| 22 #include "fts3Int.h" |
| 23 #include <string.h> |
| 24 #include <assert.h> |
| 25 #include <stdlib.h> |
| 26 |
| 27 /* |
| 28 ** When full-text index nodes are loaded from disk, the buffer that they |
| 29 ** are loaded into has the following number of bytes of padding at the end |
| 30 ** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer |
| 31 ** of 920 bytes is allocated for it. |
| 32 ** |
| 33 ** This means that if we have a pointer into a buffer containing node data, |
| 34 ** it is always safe to read up to two varints from it without risking an |
| 35 ** overread, even if the node data is corrupted. |
| 36 */ |
| 37 #define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2) |
| 38 |
| 39 typedef struct PendingList PendingList; |
| 40 typedef struct SegmentNode SegmentNode; |
| 41 typedef struct SegmentWriter SegmentWriter; |
| 42 |
| 43 /* |
| 44 ** Data structure used while accumulating terms in the pending-terms hash |
| 45 ** table. The hash table entry maps from term (a string) to a malloc'd |
| 46 ** instance of this structure. |
| 47 */ |
| 48 struct PendingList { |
| 49 int nData; |
| 50 char *aData; |
| 51 int nSpace; |
| 52 sqlite3_int64 iLastDocid; |
| 53 sqlite3_int64 iLastCol; |
| 54 sqlite3_int64 iLastPos; |
| 55 }; |
| 56 |
| 57 |
| 58 /* |
| 59 ** Each cursor has a (possibly empty) linked list of the following objects. |
| 60 */ |
| 61 struct Fts3DeferredToken { |
| 62 Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */ |
| 63 int iCol; /* Column token must occur in */ |
| 64 Fts3DeferredToken *pNext; /* Next in list of deferred tokens */ |
| 65 PendingList *pList; /* Doclist is assembled here */ |
| 66 }; |
| 67 |
| 68 /* |
| 69 ** An instance of this structure is used to iterate through the terms on |
| 70 ** a contiguous set of segment b-tree leaf nodes. Although the details of |
| 71 ** this structure are only manipulated by code in this file, opaque handles |
| 72 ** of type Fts3SegReader* are also used by code in fts3.c to iterate through |
| 73 ** terms when querying the full-text index. See functions: |
| 74 ** |
| 75 ** sqlite3Fts3SegReaderNew() |
| 76 ** sqlite3Fts3SegReaderFree() |
| 77 ** sqlite3Fts3SegReaderCost() |
| 78 ** sqlite3Fts3SegReaderIterate() |
| 79 ** |
| 80 ** Methods used to manipulate Fts3SegReader structures: |
| 81 ** |
| 82 ** fts3SegReaderNext() |
| 83 ** fts3SegReaderFirstDocid() |
| 84 ** fts3SegReaderNextDocid() |
| 85 */ |
| 86 struct Fts3SegReader { |
| 87 int iIdx; /* Index within level, or 0x7FFFFFFF for PT */ |
| 88 |
| 89 sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */ |
| 90 sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */ |
| 91 sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */ |
| 92 sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */ |
| 93 |
| 94 char *aNode; /* Pointer to node data (or NULL) */ |
| 95 int nNode; /* Size of buffer at aNode (or 0) */ |
| 96 Fts3HashElem **ppNextElem; |
| 97 |
| 98 /* Variables set by fts3SegReaderNext(). These may be read directly |
| 99 ** by the caller. They are valid from the time SegmentReaderNew() returns |
| 100 ** until SegmentReaderNext() returns something other than SQLITE_OK |
| 101 ** (i.e. SQLITE_DONE). |
| 102 */ |
| 103 int nTerm; /* Number of bytes in current term */ |
| 104 char *zTerm; /* Pointer to current term */ |
| 105 int nTermAlloc; /* Allocated size of zTerm buffer */ |
| 106 char *aDoclist; /* Pointer to doclist of current entry */ |
| 107 int nDoclist; /* Size of doclist in current entry */ |
| 108 |
| 109 /* The following variables are used to iterate through the current doclist */ |
| 110 char *pOffsetList; |
| 111 sqlite3_int64 iDocid; |
| 112 }; |
| 113 |
| 114 #define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0) |
| 115 #define fts3SegReaderIsRootOnly(p) ((p)->aNode==(char *)&(p)[1]) |
| 116 |
| 117 /* |
| 118 ** An instance of this structure is used to create a segment b-tree in the |
| 119 ** database. The internal details of this type are only accessed by the |
| 120 ** following functions: |
| 121 ** |
| 122 ** fts3SegWriterAdd() |
| 123 ** fts3SegWriterFlush() |
| 124 ** fts3SegWriterFree() |
| 125 */ |
| 126 struct SegmentWriter { |
| 127 SegmentNode *pTree; /* Pointer to interior tree structure */ |
| 128 sqlite3_int64 iFirst; /* First slot in %_segments written */ |
| 129 sqlite3_int64 iFree; /* Next free slot in %_segments */ |
| 130 char *zTerm; /* Pointer to previous term buffer */ |
| 131 int nTerm; /* Number of bytes in zTerm */ |
| 132 int nMalloc; /* Size of malloc'd buffer at zMalloc */ |
| 133 char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ |
| 134 int nSize; /* Size of allocation at aData */ |
| 135 int nData; /* Bytes of data in aData */ |
| 136 char *aData; /* Pointer to block from malloc() */ |
| 137 }; |
| 138 |
| 139 /* |
| 140 ** Type SegmentNode is used by the following three functions to create |
| 141 ** the interior part of the segment b+-tree structures (everything except |
| 142 ** the leaf nodes). These functions and type are only ever used by code |
| 143 ** within the fts3SegWriterXXX() family of functions described above. |
| 144 ** |
| 145 ** fts3NodeAddTerm() |
| 146 ** fts3NodeWrite() |
| 147 ** fts3NodeFree() |
| 148 */ |
| 149 struct SegmentNode { |
| 150 SegmentNode *pParent; /* Parent node (or NULL for root node) */ |
| 151 SegmentNode *pRight; /* Pointer to right-sibling */ |
| 152 SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */ |
| 153 int nEntry; /* Number of terms written to node so far */ |
| 154 char *zTerm; /* Pointer to previous term buffer */ |
| 155 int nTerm; /* Number of bytes in zTerm */ |
| 156 int nMalloc; /* Size of malloc'd buffer at zMalloc */ |
| 157 char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ |
| 158 int nData; /* Bytes of valid data so far */ |
| 159 char *aData; /* Node data */ |
| 160 }; |
| 161 |
| 162 /* |
| 163 ** Valid values for the second argument to fts3SqlStmt(). |
| 164 */ |
| 165 #define SQL_DELETE_CONTENT 0 |
| 166 #define SQL_IS_EMPTY 1 |
| 167 #define SQL_DELETE_ALL_CONTENT 2 |
| 168 #define SQL_DELETE_ALL_SEGMENTS 3 |
| 169 #define SQL_DELETE_ALL_SEGDIR 4 |
| 170 #define SQL_DELETE_ALL_DOCSIZE 5 |
| 171 #define SQL_DELETE_ALL_STAT 6 |
| 172 #define SQL_SELECT_CONTENT_BY_ROWID 7 |
| 173 #define SQL_NEXT_SEGMENT_INDEX 8 |
| 174 #define SQL_INSERT_SEGMENTS 9 |
| 175 #define SQL_NEXT_SEGMENTS_ID 10 |
| 176 #define SQL_INSERT_SEGDIR 11 |
| 177 #define SQL_SELECT_LEVEL 12 |
| 178 #define SQL_SELECT_ALL_LEVEL 13 |
| 179 #define SQL_SELECT_LEVEL_COUNT 14 |
| 180 #define SQL_SELECT_SEGDIR_COUNT_MAX 15 |
| 181 #define SQL_DELETE_SEGDIR_BY_LEVEL 16 |
| 182 #define SQL_DELETE_SEGMENTS_RANGE 17 |
| 183 #define SQL_CONTENT_INSERT 18 |
| 184 #define SQL_DELETE_DOCSIZE 19 |
| 185 #define SQL_REPLACE_DOCSIZE 20 |
| 186 #define SQL_SELECT_DOCSIZE 21 |
| 187 #define SQL_SELECT_DOCTOTAL 22 |
| 188 #define SQL_REPLACE_DOCTOTAL 23 |
| 189 |
| 190 /* |
| 191 ** This function is used to obtain an SQLite prepared statement handle |
| 192 ** for the statement identified by the second argument. If successful, |
| 193 ** *pp is set to the requested statement handle and SQLITE_OK returned. |
| 194 ** Otherwise, an SQLite error code is returned and *pp is set to 0. |
| 195 ** |
| 196 ** If argument apVal is not NULL, then it must point to an array with |
| 197 ** at least as many entries as the requested statement has bound |
| 198 ** parameters. The values are bound to the statements parameters before |
| 199 ** returning. |
| 200 */ |
| 201 static int fts3SqlStmt( |
| 202 Fts3Table *p, /* Virtual table handle */ |
| 203 int eStmt, /* One of the SQL_XXX constants above */ |
| 204 sqlite3_stmt **pp, /* OUT: Statement handle */ |
| 205 sqlite3_value **apVal /* Values to bind to statement */ |
| 206 ){ |
| 207 const char *azSql[] = { |
| 208 /* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?", |
| 209 /* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)", |
| 210 /* 2 */ "DELETE FROM %Q.'%q_content'", |
| 211 /* 3 */ "DELETE FROM %Q.'%q_segments'", |
| 212 /* 4 */ "DELETE FROM %Q.'%q_segdir'", |
| 213 /* 5 */ "DELETE FROM %Q.'%q_docsize'", |
| 214 /* 6 */ "DELETE FROM %Q.'%q_stat'", |
| 215 /* 7 */ "SELECT %s FROM %Q.'%q_content' AS x WHERE rowid=?", |
| 216 /* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1", |
| 217 /* 9 */ "INSERT INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)", |
| 218 /* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)", |
| 219 /* 11 */ "INSERT INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)", |
| 220 |
| 221 /* Return segments in order from oldest to newest.*/ |
| 222 /* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root " |
| 223 "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC", |
| 224 /* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root " |
| 225 "FROM %Q.'%q_segdir' ORDER BY level DESC, idx ASC", |
| 226 |
| 227 /* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?", |
| 228 /* 15 */ "SELECT count(*), max(level) FROM %Q.'%q_segdir'", |
| 229 |
| 230 /* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?", |
| 231 /* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?", |
| 232 /* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)", |
| 233 /* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?", |
| 234 /* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)", |
| 235 /* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?", |
| 236 /* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=0", |
| 237 /* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(0,?)", |
| 238 }; |
| 239 int rc = SQLITE_OK; |
| 240 sqlite3_stmt *pStmt; |
| 241 |
| 242 assert( SizeofArray(azSql)==SizeofArray(p->aStmt) ); |
| 243 assert( eStmt<SizeofArray(azSql) && eStmt>=0 ); |
| 244 |
| 245 pStmt = p->aStmt[eStmt]; |
| 246 if( !pStmt ){ |
| 247 char *zSql; |
| 248 if( eStmt==SQL_CONTENT_INSERT ){ |
| 249 zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist); |
| 250 }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){ |
| 251 zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist, p->zDb, p->zName); |
| 252 }else{ |
| 253 zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName); |
| 254 } |
| 255 if( !zSql ){ |
| 256 rc = SQLITE_NOMEM; |
| 257 }else{ |
| 258 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, NULL); |
| 259 sqlite3_free(zSql); |
| 260 assert( rc==SQLITE_OK || pStmt==0 ); |
| 261 p->aStmt[eStmt] = pStmt; |
| 262 } |
| 263 } |
| 264 if( apVal ){ |
| 265 int i; |
| 266 int nParam = sqlite3_bind_parameter_count(pStmt); |
| 267 for(i=0; rc==SQLITE_OK && i<nParam; i++){ |
| 268 rc = sqlite3_bind_value(pStmt, i+1, apVal[i]); |
| 269 } |
| 270 } |
| 271 *pp = pStmt; |
| 272 return rc; |
| 273 } |
| 274 |
| 275 static int fts3SelectDocsize( |
| 276 Fts3Table *pTab, /* FTS3 table handle */ |
| 277 int eStmt, /* Either SQL_SELECT_DOCSIZE or DOCTOTAL */ |
| 278 sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */ |
| 279 sqlite3_stmt **ppStmt /* OUT: Statement handle */ |
| 280 ){ |
| 281 sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */ |
| 282 int rc; /* Return code */ |
| 283 |
| 284 assert( eStmt==SQL_SELECT_DOCSIZE || eStmt==SQL_SELECT_DOCTOTAL ); |
| 285 |
| 286 rc = fts3SqlStmt(pTab, eStmt, &pStmt, 0); |
| 287 if( rc==SQLITE_OK ){ |
| 288 if( eStmt==SQL_SELECT_DOCSIZE ){ |
| 289 sqlite3_bind_int64(pStmt, 1, iDocid); |
| 290 } |
| 291 rc = sqlite3_step(pStmt); |
| 292 if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){ |
| 293 rc = sqlite3_reset(pStmt); |
| 294 if( rc==SQLITE_OK ) rc = SQLITE_CORRUPT; |
| 295 pStmt = 0; |
| 296 }else{ |
| 297 rc = SQLITE_OK; |
| 298 } |
| 299 } |
| 300 |
| 301 *ppStmt = pStmt; |
| 302 return rc; |
| 303 } |
| 304 |
| 305 int sqlite3Fts3SelectDoctotal( |
| 306 Fts3Table *pTab, /* Fts3 table handle */ |
| 307 sqlite3_stmt **ppStmt /* OUT: Statement handle */ |
| 308 ){ |
| 309 return fts3SelectDocsize(pTab, SQL_SELECT_DOCTOTAL, 0, ppStmt); |
| 310 } |
| 311 |
| 312 int sqlite3Fts3SelectDocsize( |
| 313 Fts3Table *pTab, /* Fts3 table handle */ |
| 314 sqlite3_int64 iDocid, /* Docid to read size data for */ |
| 315 sqlite3_stmt **ppStmt /* OUT: Statement handle */ |
| 316 ){ |
| 317 return fts3SelectDocsize(pTab, SQL_SELECT_DOCSIZE, iDocid, ppStmt); |
| 318 } |
| 319 |
| 320 /* |
| 321 ** Similar to fts3SqlStmt(). Except, after binding the parameters in |
| 322 ** array apVal[] to the SQL statement identified by eStmt, the statement |
| 323 ** is executed. |
| 324 ** |
| 325 ** Returns SQLITE_OK if the statement is successfully executed, or an |
| 326 ** SQLite error code otherwise. |
| 327 */ |
| 328 static void fts3SqlExec( |
| 329 int *pRC, /* Result code */ |
| 330 Fts3Table *p, /* The FTS3 table */ |
| 331 int eStmt, /* Index of statement to evaluate */ |
| 332 sqlite3_value **apVal /* Parameters to bind */ |
| 333 ){ |
| 334 sqlite3_stmt *pStmt; |
| 335 int rc; |
| 336 if( *pRC ) return; |
| 337 rc = fts3SqlStmt(p, eStmt, &pStmt, apVal); |
| 338 if( rc==SQLITE_OK ){ |
| 339 sqlite3_step(pStmt); |
| 340 rc = sqlite3_reset(pStmt); |
| 341 } |
| 342 *pRC = rc; |
| 343 } |
| 344 |
| 345 |
| 346 /* |
| 347 ** This function ensures that the caller has obtained a shared-cache |
| 348 ** table-lock on the %_content table. This is required before reading |
| 349 ** data from the fts3 table. If this lock is not acquired first, then |
| 350 ** the caller may end up holding read-locks on the %_segments and %_segdir |
| 351 ** tables, but no read-lock on the %_content table. If this happens |
| 352 ** a second connection will be able to write to the fts3 table, but |
| 353 ** attempting to commit those writes might return SQLITE_LOCKED or |
| 354 ** SQLITE_LOCKED_SHAREDCACHE (because the commit attempts to obtain |
| 355 ** write-locks on the %_segments and %_segdir ** tables). |
| 356 ** |
| 357 ** We try to avoid this because if FTS3 returns any error when committing |
| 358 ** a transaction, the whole transaction will be rolled back. And this is |
| 359 ** not what users expect when they get SQLITE_LOCKED_SHAREDCACHE. It can |
| 360 ** still happen if the user reads data directly from the %_segments or |
| 361 ** %_segdir tables instead of going through FTS3 though. |
| 362 */ |
| 363 int sqlite3Fts3ReadLock(Fts3Table *p){ |
| 364 int rc; /* Return code */ |
| 365 sqlite3_stmt *pStmt; /* Statement used to obtain lock */ |
| 366 |
| 367 rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pStmt, 0); |
| 368 if( rc==SQLITE_OK ){ |
| 369 sqlite3_bind_null(pStmt, 1); |
| 370 sqlite3_step(pStmt); |
| 371 rc = sqlite3_reset(pStmt); |
| 372 } |
| 373 return rc; |
| 374 } |
| 375 |
| 376 /* |
| 377 ** Set *ppStmt to a statement handle that may be used to iterate through |
| 378 ** all rows in the %_segdir table, from oldest to newest. If successful, |
| 379 ** return SQLITE_OK. If an error occurs while preparing the statement, |
| 380 ** return an SQLite error code. |
| 381 ** |
| 382 ** There is only ever one instance of this SQL statement compiled for |
| 383 ** each FTS3 table. |
| 384 ** |
| 385 ** The statement returns the following columns from the %_segdir table: |
| 386 ** |
| 387 ** 0: idx |
| 388 ** 1: start_block |
| 389 ** 2: leaves_end_block |
| 390 ** 3: end_block |
| 391 ** 4: root |
| 392 */ |
| 393 int sqlite3Fts3AllSegdirs(Fts3Table *p, int iLevel, sqlite3_stmt **ppStmt){ |
| 394 int rc; |
| 395 sqlite3_stmt *pStmt = 0; |
| 396 if( iLevel<0 ){ |
| 397 rc = fts3SqlStmt(p, SQL_SELECT_ALL_LEVEL, &pStmt, 0); |
| 398 }else{ |
| 399 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); |
| 400 if( rc==SQLITE_OK ) sqlite3_bind_int(pStmt, 1, iLevel); |
| 401 } |
| 402 *ppStmt = pStmt; |
| 403 return rc; |
| 404 } |
| 405 |
| 406 |
| 407 /* |
| 408 ** Append a single varint to a PendingList buffer. SQLITE_OK is returned |
| 409 ** if successful, or an SQLite error code otherwise. |
| 410 ** |
| 411 ** This function also serves to allocate the PendingList structure itself. |
| 412 ** For example, to create a new PendingList structure containing two |
| 413 ** varints: |
| 414 ** |
| 415 ** PendingList *p = 0; |
| 416 ** fts3PendingListAppendVarint(&p, 1); |
| 417 ** fts3PendingListAppendVarint(&p, 2); |
| 418 */ |
| 419 static int fts3PendingListAppendVarint( |
| 420 PendingList **pp, /* IN/OUT: Pointer to PendingList struct */ |
| 421 sqlite3_int64 i /* Value to append to data */ |
| 422 ){ |
| 423 PendingList *p = *pp; |
| 424 |
| 425 /* Allocate or grow the PendingList as required. */ |
| 426 if( !p ){ |
| 427 p = sqlite3_malloc(sizeof(*p) + 100); |
| 428 if( !p ){ |
| 429 return SQLITE_NOMEM; |
| 430 } |
| 431 p->nSpace = 100; |
| 432 p->aData = (char *)&p[1]; |
| 433 p->nData = 0; |
| 434 } |
| 435 else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){ |
| 436 int nNew = p->nSpace * 2; |
| 437 p = sqlite3_realloc(p, sizeof(*p) + nNew); |
| 438 if( !p ){ |
| 439 sqlite3_free(*pp); |
| 440 *pp = 0; |
| 441 return SQLITE_NOMEM; |
| 442 } |
| 443 p->nSpace = nNew; |
| 444 p->aData = (char *)&p[1]; |
| 445 } |
| 446 |
| 447 /* Append the new serialized varint to the end of the list. */ |
| 448 p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i); |
| 449 p->aData[p->nData] = '\0'; |
| 450 *pp = p; |
| 451 return SQLITE_OK; |
| 452 } |
| 453 |
| 454 /* |
| 455 ** Add a docid/column/position entry to a PendingList structure. Non-zero |
| 456 ** is returned if the structure is sqlite3_realloced as part of adding |
| 457 ** the entry. Otherwise, zero. |
| 458 ** |
| 459 ** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning. |
| 460 ** Zero is always returned in this case. Otherwise, if no OOM error occurs, |
| 461 ** it is set to SQLITE_OK. |
| 462 */ |
| 463 static int fts3PendingListAppend( |
| 464 PendingList **pp, /* IN/OUT: PendingList structure */ |
| 465 sqlite3_int64 iDocid, /* Docid for entry to add */ |
| 466 sqlite3_int64 iCol, /* Column for entry to add */ |
| 467 sqlite3_int64 iPos, /* Position of term for entry to add */ |
| 468 int *pRc /* OUT: Return code */ |
| 469 ){ |
| 470 PendingList *p = *pp; |
| 471 int rc = SQLITE_OK; |
| 472 |
| 473 assert( !p || p->iLastDocid<=iDocid ); |
| 474 |
| 475 if( !p || p->iLastDocid!=iDocid ){ |
| 476 sqlite3_int64 iDelta = iDocid - (p ? p->iLastDocid : 0); |
| 477 if( p ){ |
| 478 assert( p->nData<p->nSpace ); |
| 479 assert( p->aData[p->nData]==0 ); |
| 480 p->nData++; |
| 481 } |
| 482 if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){ |
| 483 goto pendinglistappend_out; |
| 484 } |
| 485 p->iLastCol = -1; |
| 486 p->iLastPos = 0; |
| 487 p->iLastDocid = iDocid; |
| 488 } |
| 489 if( iCol>0 && p->iLastCol!=iCol ){ |
| 490 if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1)) |
| 491 || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol)) |
| 492 ){ |
| 493 goto pendinglistappend_out; |
| 494 } |
| 495 p->iLastCol = iCol; |
| 496 p->iLastPos = 0; |
| 497 } |
| 498 if( iCol>=0 ){ |
| 499 assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) ); |
| 500 rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos); |
| 501 if( rc==SQLITE_OK ){ |
| 502 p->iLastPos = iPos; |
| 503 } |
| 504 } |
| 505 |
| 506 pendinglistappend_out: |
| 507 *pRc = rc; |
| 508 if( p!=*pp ){ |
| 509 *pp = p; |
| 510 return 1; |
| 511 } |
| 512 return 0; |
| 513 } |
| 514 |
| 515 /* |
| 516 ** Tokenize the nul-terminated string zText and add all tokens to the |
| 517 ** pending-terms hash-table. The docid used is that currently stored in |
| 518 ** p->iPrevDocid, and the column is specified by argument iCol. |
| 519 ** |
| 520 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. |
| 521 */ |
| 522 static int fts3PendingTermsAdd( |
| 523 Fts3Table *p, /* Table into which text will be inserted */ |
| 524 const char *zText, /* Text of document to be inserted */ |
| 525 int iCol, /* Column into which text is being inserted */ |
| 526 u32 *pnWord /* OUT: Number of tokens inserted */ |
| 527 ){ |
| 528 int rc; |
| 529 int iStart; |
| 530 int iEnd; |
| 531 int iPos; |
| 532 int nWord = 0; |
| 533 |
| 534 char const *zToken; |
| 535 int nToken; |
| 536 |
| 537 sqlite3_tokenizer *pTokenizer = p->pTokenizer; |
| 538 sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; |
| 539 sqlite3_tokenizer_cursor *pCsr; |
| 540 int (*xNext)(sqlite3_tokenizer_cursor *pCursor, |
| 541 const char**,int*,int*,int*,int*); |
| 542 |
| 543 assert( pTokenizer && pModule ); |
| 544 |
| 545 rc = pModule->xOpen(pTokenizer, zText, -1, &pCsr); |
| 546 if( rc!=SQLITE_OK ){ |
| 547 return rc; |
| 548 } |
| 549 pCsr->pTokenizer = pTokenizer; |
| 550 |
| 551 xNext = pModule->xNext; |
| 552 while( SQLITE_OK==rc |
| 553 && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos)) |
| 554 ){ |
| 555 PendingList *pList; |
| 556 |
| 557 if( iPos>=nWord ) nWord = iPos+1; |
| 558 |
| 559 /* Positions cannot be negative; we use -1 as a terminator internally. |
| 560 ** Tokens must have a non-zero length. |
| 561 */ |
| 562 if( iPos<0 || !zToken || nToken<=0 ){ |
| 563 rc = SQLITE_ERROR; |
| 564 break; |
| 565 } |
| 566 |
| 567 pList = (PendingList *)fts3HashFind(&p->pendingTerms, zToken, nToken); |
| 568 if( pList ){ |
| 569 p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem)); |
| 570 } |
| 571 if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){ |
| 572 if( pList==fts3HashInsert(&p->pendingTerms, zToken, nToken, pList) ){ |
| 573 /* Malloc failed while inserting the new entry. This can only |
| 574 ** happen if there was no previous entry for this token. |
| 575 */ |
| 576 assert( 0==fts3HashFind(&p->pendingTerms, zToken, nToken) ); |
| 577 sqlite3_free(pList); |
| 578 rc = SQLITE_NOMEM; |
| 579 } |
| 580 } |
| 581 if( rc==SQLITE_OK ){ |
| 582 p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem)); |
| 583 } |
| 584 } |
| 585 |
| 586 pModule->xClose(pCsr); |
| 587 *pnWord = nWord; |
| 588 return (rc==SQLITE_DONE ? SQLITE_OK : rc); |
| 589 } |
| 590 |
| 591 /* |
| 592 ** Calling this function indicates that subsequent calls to |
| 593 ** fts3PendingTermsAdd() are to add term/position-list pairs for the |
| 594 ** contents of the document with docid iDocid. |
| 595 */ |
| 596 static int fts3PendingTermsDocid(Fts3Table *p, sqlite_int64 iDocid){ |
| 597 /* TODO(shess) Explore whether partially flushing the buffer on |
| 598 ** forced-flush would provide better performance. I suspect that if |
| 599 ** we ordered the doclists by size and flushed the largest until the |
| 600 ** buffer was half empty, that would let the less frequent terms |
| 601 ** generate longer doclists. |
| 602 */ |
| 603 if( iDocid<=p->iPrevDocid || p->nPendingData>p->nMaxPendingData ){ |
| 604 int rc = sqlite3Fts3PendingTermsFlush(p); |
| 605 if( rc!=SQLITE_OK ) return rc; |
| 606 } |
| 607 p->iPrevDocid = iDocid; |
| 608 return SQLITE_OK; |
| 609 } |
| 610 |
| 611 /* |
| 612 ** Discard the contents of the pending-terms hash table. |
| 613 */ |
| 614 void sqlite3Fts3PendingTermsClear(Fts3Table *p){ |
| 615 Fts3HashElem *pElem; |
| 616 for(pElem=fts3HashFirst(&p->pendingTerms); pElem; pElem=fts3HashNext(pElem)){ |
| 617 sqlite3_free(fts3HashData(pElem)); |
| 618 } |
| 619 fts3HashClear(&p->pendingTerms); |
| 620 p->nPendingData = 0; |
| 621 } |
| 622 |
| 623 /* |
| 624 ** This function is called by the xUpdate() method as part of an INSERT |
| 625 ** operation. It adds entries for each term in the new record to the |
| 626 ** pendingTerms hash table. |
| 627 ** |
| 628 ** Argument apVal is the same as the similarly named argument passed to |
| 629 ** fts3InsertData(). Parameter iDocid is the docid of the new row. |
| 630 */ |
| 631 static int fts3InsertTerms(Fts3Table *p, sqlite3_value **apVal, u32 *aSz){ |
| 632 int i; /* Iterator variable */ |
| 633 for(i=2; i<p->nColumn+2; i++){ |
| 634 const char *zText = (const char *)sqlite3_value_text(apVal[i]); |
| 635 if( zText ){ |
| 636 int rc = fts3PendingTermsAdd(p, zText, i-2, &aSz[i-2]); |
| 637 if( rc!=SQLITE_OK ){ |
| 638 return rc; |
| 639 } |
| 640 } |
| 641 aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]); |
| 642 } |
| 643 return SQLITE_OK; |
| 644 } |
| 645 |
| 646 /* |
| 647 ** This function is called by the xUpdate() method for an INSERT operation. |
| 648 ** The apVal parameter is passed a copy of the apVal argument passed by |
| 649 ** SQLite to the xUpdate() method. i.e: |
| 650 ** |
| 651 ** apVal[0] Not used for INSERT. |
| 652 ** apVal[1] rowid |
| 653 ** apVal[2] Left-most user-defined column |
| 654 ** ... |
| 655 ** apVal[p->nColumn+1] Right-most user-defined column |
| 656 ** apVal[p->nColumn+2] Hidden column with same name as table |
| 657 ** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid) |
| 658 */ |
| 659 static int fts3InsertData( |
| 660 Fts3Table *p, /* Full-text table */ |
| 661 sqlite3_value **apVal, /* Array of values to insert */ |
| 662 sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */ |
| 663 ){ |
| 664 int rc; /* Return code */ |
| 665 sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */ |
| 666 |
| 667 /* Locate the statement handle used to insert data into the %_content |
| 668 ** table. The SQL for this statement is: |
| 669 ** |
| 670 ** INSERT INTO %_content VALUES(?, ?, ?, ...) |
| 671 ** |
| 672 ** The statement features N '?' variables, where N is the number of user |
| 673 ** defined columns in the FTS3 table, plus one for the docid field. |
| 674 */ |
| 675 rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]); |
| 676 if( rc!=SQLITE_OK ){ |
| 677 return rc; |
| 678 } |
| 679 |
| 680 /* There is a quirk here. The users INSERT statement may have specified |
| 681 ** a value for the "rowid" field, for the "docid" field, or for both. |
| 682 ** Which is a problem, since "rowid" and "docid" are aliases for the |
| 683 ** same value. For example: |
| 684 ** |
| 685 ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2); |
| 686 ** |
| 687 ** In FTS3, this is an error. It is an error to specify non-NULL values |
| 688 ** for both docid and some other rowid alias. |
| 689 */ |
| 690 if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){ |
| 691 if( SQLITE_NULL==sqlite3_value_type(apVal[0]) |
| 692 && SQLITE_NULL!=sqlite3_value_type(apVal[1]) |
| 693 ){ |
| 694 /* A rowid/docid conflict. */ |
| 695 return SQLITE_ERROR; |
| 696 } |
| 697 rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]); |
| 698 if( rc!=SQLITE_OK ) return rc; |
| 699 } |
| 700 |
| 701 /* Execute the statement to insert the record. Set *piDocid to the |
| 702 ** new docid value. |
| 703 */ |
| 704 sqlite3_step(pContentInsert); |
| 705 rc = sqlite3_reset(pContentInsert); |
| 706 |
| 707 *piDocid = sqlite3_last_insert_rowid(p->db); |
| 708 return rc; |
| 709 } |
| 710 |
| 711 |
| 712 |
| 713 /* |
| 714 ** Remove all data from the FTS3 table. Clear the hash table containing |
| 715 ** pending terms. |
| 716 */ |
| 717 static int fts3DeleteAll(Fts3Table *p){ |
| 718 int rc = SQLITE_OK; /* Return code */ |
| 719 |
| 720 /* Discard the contents of the pending-terms hash table. */ |
| 721 sqlite3Fts3PendingTermsClear(p); |
| 722 |
| 723 /* Delete everything from the %_content, %_segments and %_segdir tables. */ |
| 724 fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0); |
| 725 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0); |
| 726 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0); |
| 727 if( p->bHasDocsize ){ |
| 728 fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0); |
| 729 } |
| 730 if( p->bHasStat ){ |
| 731 fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0); |
| 732 } |
| 733 return rc; |
| 734 } |
| 735 |
| 736 /* |
| 737 ** The first element in the apVal[] array is assumed to contain the docid |
| 738 ** (an integer) of a row about to be deleted. Remove all terms from the |
| 739 ** full-text index. |
| 740 */ |
| 741 static void fts3DeleteTerms( |
| 742 int *pRC, /* Result code */ |
| 743 Fts3Table *p, /* The FTS table to delete from */ |
| 744 sqlite3_value **apVal, /* apVal[] contains the docid to be deleted */ |
| 745 u32 *aSz /* Sizes of deleted document written here */ |
| 746 ){ |
| 747 int rc; |
| 748 sqlite3_stmt *pSelect; |
| 749 |
| 750 if( *pRC ) return; |
| 751 rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, apVal); |
| 752 if( rc==SQLITE_OK ){ |
| 753 if( SQLITE_ROW==sqlite3_step(pSelect) ){ |
| 754 int i; |
| 755 for(i=1; i<=p->nColumn; i++){ |
| 756 const char *zText = (const char *)sqlite3_column_text(pSelect, i); |
| 757 rc = fts3PendingTermsAdd(p, zText, -1, &aSz[i-1]); |
| 758 if( rc!=SQLITE_OK ){ |
| 759 sqlite3_reset(pSelect); |
| 760 *pRC = rc; |
| 761 return; |
| 762 } |
| 763 aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i); |
| 764 } |
| 765 } |
| 766 rc = sqlite3_reset(pSelect); |
| 767 }else{ |
| 768 sqlite3_reset(pSelect); |
| 769 } |
| 770 *pRC = rc; |
| 771 } |
| 772 |
| 773 /* |
| 774 ** Forward declaration to account for the circular dependency between |
| 775 ** functions fts3SegmentMerge() and fts3AllocateSegdirIdx(). |
| 776 */ |
| 777 static int fts3SegmentMerge(Fts3Table *, int); |
| 778 |
| 779 /* |
| 780 ** This function allocates a new level iLevel index in the segdir table. |
| 781 ** Usually, indexes are allocated within a level sequentially starting |
| 782 ** with 0, so the allocated index is one greater than the value returned |
| 783 ** by: |
| 784 ** |
| 785 ** SELECT max(idx) FROM %_segdir WHERE level = :iLevel |
| 786 ** |
| 787 ** However, if there are already FTS3_MERGE_COUNT indexes at the requested |
| 788 ** level, they are merged into a single level (iLevel+1) segment and the |
| 789 ** allocated index is 0. |
| 790 ** |
| 791 ** If successful, *piIdx is set to the allocated index slot and SQLITE_OK |
| 792 ** returned. Otherwise, an SQLite error code is returned. |
| 793 */ |
| 794 static int fts3AllocateSegdirIdx(Fts3Table *p, int iLevel, int *piIdx){ |
| 795 int rc; /* Return Code */ |
| 796 sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */ |
| 797 int iNext = 0; /* Result of query pNextIdx */ |
| 798 |
| 799 /* Set variable iNext to the next available segdir index at level iLevel. */ |
| 800 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0); |
| 801 if( rc==SQLITE_OK ){ |
| 802 sqlite3_bind_int(pNextIdx, 1, iLevel); |
| 803 if( SQLITE_ROW==sqlite3_step(pNextIdx) ){ |
| 804 iNext = sqlite3_column_int(pNextIdx, 0); |
| 805 } |
| 806 rc = sqlite3_reset(pNextIdx); |
| 807 } |
| 808 |
| 809 if( rc==SQLITE_OK ){ |
| 810 /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already |
| 811 ** full, merge all segments in level iLevel into a single iLevel+1 |
| 812 ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise, |
| 813 ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext. |
| 814 */ |
| 815 if( iNext>=FTS3_MERGE_COUNT ){ |
| 816 rc = fts3SegmentMerge(p, iLevel); |
| 817 *piIdx = 0; |
| 818 }else{ |
| 819 *piIdx = iNext; |
| 820 } |
| 821 } |
| 822 |
| 823 return rc; |
| 824 } |
| 825 |
| 826 /* |
| 827 ** The %_segments table is declared as follows: |
| 828 ** |
| 829 ** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB) |
| 830 ** |
| 831 ** This function reads data from a single row of the %_segments table. The |
| 832 ** specific row is identified by the iBlockid parameter. If paBlob is not |
| 833 ** NULL, then a buffer is allocated using sqlite3_malloc() and populated |
| 834 ** with the contents of the blob stored in the "block" column of the |
| 835 ** identified table row is. Whether or not paBlob is NULL, *pnBlob is set |
| 836 ** to the size of the blob in bytes before returning. |
| 837 ** |
| 838 ** If an error occurs, or the table does not contain the specified row, |
| 839 ** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If |
| 840 ** paBlob is non-NULL, then it is the responsibility of the caller to |
| 841 ** eventually free the returned buffer. |
| 842 ** |
| 843 ** This function may leave an open sqlite3_blob* handle in the |
| 844 ** Fts3Table.pSegments variable. This handle is reused by subsequent calls |
| 845 ** to this function. The handle may be closed by calling the |
| 846 ** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy |
| 847 ** performance improvement, but the blob handle should always be closed |
| 848 ** before control is returned to the user (to prevent a lock being held |
| 849 ** on the database file for longer than necessary). Thus, any virtual table |
| 850 ** method (xFilter etc.) that may directly or indirectly call this function |
| 851 ** must call sqlite3Fts3SegmentsClose() before returning. |
| 852 */ |
| 853 int sqlite3Fts3ReadBlock( |
| 854 Fts3Table *p, /* FTS3 table handle */ |
| 855 sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */ |
| 856 char **paBlob, /* OUT: Blob data in malloc'd buffer */ |
| 857 int *pnBlob /* OUT: Size of blob data */ |
| 858 ){ |
| 859 int rc; /* Return code */ |
| 860 |
| 861 /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */ |
| 862 assert( pnBlob); |
| 863 |
| 864 if( p->pSegments ){ |
| 865 rc = sqlite3_blob_reopen(p->pSegments, iBlockid); |
| 866 }else{ |
| 867 if( 0==p->zSegmentsTbl ){ |
| 868 p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName); |
| 869 if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM; |
| 870 } |
| 871 rc = sqlite3_blob_open( |
| 872 p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments |
| 873 ); |
| 874 } |
| 875 |
| 876 if( rc==SQLITE_OK ){ |
| 877 int nByte = sqlite3_blob_bytes(p->pSegments); |
| 878 if( paBlob ){ |
| 879 char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING); |
| 880 if( !aByte ){ |
| 881 rc = SQLITE_NOMEM; |
| 882 }else{ |
| 883 rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0); |
| 884 memset(&aByte[nByte], 0, FTS3_NODE_PADDING); |
| 885 if( rc!=SQLITE_OK ){ |
| 886 sqlite3_free(aByte); |
| 887 aByte = 0; |
| 888 } |
| 889 } |
| 890 *paBlob = aByte; |
| 891 } |
| 892 *pnBlob = nByte; |
| 893 } |
| 894 |
| 895 return rc; |
| 896 } |
| 897 |
| 898 /* |
| 899 ** Close the blob handle at p->pSegments, if it is open. See comments above |
| 900 ** the sqlite3Fts3ReadBlock() function for details. |
| 901 */ |
| 902 void sqlite3Fts3SegmentsClose(Fts3Table *p){ |
| 903 sqlite3_blob_close(p->pSegments); |
| 904 p->pSegments = 0; |
| 905 } |
| 906 |
| 907 /* |
| 908 ** Move the iterator passed as the first argument to the next term in the |
| 909 ** segment. If successful, SQLITE_OK is returned. If there is no next term, |
| 910 ** SQLITE_DONE. Otherwise, an SQLite error code. |
| 911 */ |
| 912 static int fts3SegReaderNext(Fts3Table *p, Fts3SegReader *pReader){ |
| 913 char *pNext; /* Cursor variable */ |
| 914 int nPrefix; /* Number of bytes in term prefix */ |
| 915 int nSuffix; /* Number of bytes in term suffix */ |
| 916 |
| 917 if( !pReader->aDoclist ){ |
| 918 pNext = pReader->aNode; |
| 919 }else{ |
| 920 pNext = &pReader->aDoclist[pReader->nDoclist]; |
| 921 } |
| 922 |
| 923 if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){ |
| 924 int rc; /* Return code from Fts3ReadBlock() */ |
| 925 |
| 926 if( fts3SegReaderIsPending(pReader) ){ |
| 927 Fts3HashElem *pElem = *(pReader->ppNextElem); |
| 928 if( pElem==0 ){ |
| 929 pReader->aNode = 0; |
| 930 }else{ |
| 931 PendingList *pList = (PendingList *)fts3HashData(pElem); |
| 932 pReader->zTerm = (char *)fts3HashKey(pElem); |
| 933 pReader->nTerm = fts3HashKeysize(pElem); |
| 934 pReader->nNode = pReader->nDoclist = pList->nData + 1; |
| 935 pReader->aNode = pReader->aDoclist = pList->aData; |
| 936 pReader->ppNextElem++; |
| 937 assert( pReader->aNode ); |
| 938 } |
| 939 return SQLITE_OK; |
| 940 } |
| 941 |
| 942 if( !fts3SegReaderIsRootOnly(pReader) ){ |
| 943 sqlite3_free(pReader->aNode); |
| 944 } |
| 945 pReader->aNode = 0; |
| 946 |
| 947 /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf |
| 948 ** blocks have already been traversed. */ |
| 949 assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock ); |
| 950 if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){ |
| 951 return SQLITE_OK; |
| 952 } |
| 953 |
| 954 rc = sqlite3Fts3ReadBlock( |
| 955 p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode |
| 956 ); |
| 957 if( rc!=SQLITE_OK ) return rc; |
| 958 pNext = pReader->aNode; |
| 959 } |
| 960 |
| 961 /* Because of the FTS3_NODE_PADDING bytes of padding, the following is |
| 962 ** safe (no risk of overread) even if the node data is corrupted. |
| 963 */ |
| 964 pNext += sqlite3Fts3GetVarint32(pNext, &nPrefix); |
| 965 pNext += sqlite3Fts3GetVarint32(pNext, &nSuffix); |
| 966 if( nPrefix<0 || nSuffix<=0 |
| 967 || &pNext[nSuffix]>&pReader->aNode[pReader->nNode] |
| 968 ){ |
| 969 return SQLITE_CORRUPT; |
| 970 } |
| 971 |
| 972 if( nPrefix+nSuffix>pReader->nTermAlloc ){ |
| 973 int nNew = (nPrefix+nSuffix)*2; |
| 974 char *zNew = sqlite3_realloc(pReader->zTerm, nNew); |
| 975 if( !zNew ){ |
| 976 return SQLITE_NOMEM; |
| 977 } |
| 978 pReader->zTerm = zNew; |
| 979 pReader->nTermAlloc = nNew; |
| 980 } |
| 981 memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix); |
| 982 pReader->nTerm = nPrefix+nSuffix; |
| 983 pNext += nSuffix; |
| 984 pNext += sqlite3Fts3GetVarint32(pNext, &pReader->nDoclist); |
| 985 pReader->aDoclist = pNext; |
| 986 pReader->pOffsetList = 0; |
| 987 |
| 988 /* Check that the doclist does not appear to extend past the end of the |
| 989 ** b-tree node. And that the final byte of the doclist is 0x00. If either |
| 990 ** of these statements is untrue, then the data structure is corrupt. |
| 991 */ |
| 992 if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode] |
| 993 || pReader->aDoclist[pReader->nDoclist-1] |
| 994 ){ |
| 995 return SQLITE_CORRUPT; |
| 996 } |
| 997 return SQLITE_OK; |
| 998 } |
| 999 |
| 1000 /* |
| 1001 ** Set the SegReader to point to the first docid in the doclist associated |
| 1002 ** with the current term. |
| 1003 */ |
| 1004 static void fts3SegReaderFirstDocid(Fts3SegReader *pReader){ |
| 1005 int n; |
| 1006 assert( pReader->aDoclist ); |
| 1007 assert( !pReader->pOffsetList ); |
| 1008 n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid); |
| 1009 pReader->pOffsetList = &pReader->aDoclist[n]; |
| 1010 } |
| 1011 |
| 1012 /* |
| 1013 ** Advance the SegReader to point to the next docid in the doclist |
| 1014 ** associated with the current term. |
| 1015 ** |
| 1016 ** If arguments ppOffsetList and pnOffsetList are not NULL, then |
| 1017 ** *ppOffsetList is set to point to the first column-offset list |
| 1018 ** in the doclist entry (i.e. immediately past the docid varint). |
| 1019 ** *pnOffsetList is set to the length of the set of column-offset |
| 1020 ** lists, not including the nul-terminator byte. For example: |
| 1021 */ |
| 1022 static void fts3SegReaderNextDocid( |
| 1023 Fts3SegReader *pReader, |
| 1024 char **ppOffsetList, |
| 1025 int *pnOffsetList |
| 1026 ){ |
| 1027 char *p = pReader->pOffsetList; |
| 1028 char c = 0; |
| 1029 |
| 1030 /* Pointer p currently points at the first byte of an offset list. The |
| 1031 ** following two lines advance it to point one byte past the end of |
| 1032 ** the same offset list. |
| 1033 */ |
| 1034 while( *p | c ) c = *p++ & 0x80; |
| 1035 p++; |
| 1036 |
| 1037 /* If required, populate the output variables with a pointer to and the |
| 1038 ** size of the previous offset-list. |
| 1039 */ |
| 1040 if( ppOffsetList ){ |
| 1041 *ppOffsetList = pReader->pOffsetList; |
| 1042 *pnOffsetList = (int)(p - pReader->pOffsetList - 1); |
| 1043 } |
| 1044 |
| 1045 /* If there are no more entries in the doclist, set pOffsetList to |
| 1046 ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and |
| 1047 ** Fts3SegReader.pOffsetList to point to the next offset list before |
| 1048 ** returning. |
| 1049 */ |
| 1050 if( p>=&pReader->aDoclist[pReader->nDoclist] ){ |
| 1051 pReader->pOffsetList = 0; |
| 1052 }else{ |
| 1053 sqlite3_int64 iDelta; |
| 1054 pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta); |
| 1055 pReader->iDocid += iDelta; |
| 1056 } |
| 1057 } |
| 1058 |
| 1059 /* |
| 1060 ** This function is called to estimate the amount of data that will be |
| 1061 ** loaded from the disk If SegReaderIterate() is called on this seg-reader, |
| 1062 ** in units of average document size. |
| 1063 ** |
| 1064 ** This can be used as follows: If the caller has a small doclist that |
| 1065 ** contains references to N documents, and is considering merging it with |
| 1066 ** a large doclist (size X "average documents"), it may opt not to load |
| 1067 ** the large doclist if X>N. |
| 1068 */ |
| 1069 int sqlite3Fts3SegReaderCost( |
| 1070 Fts3Cursor *pCsr, /* FTS3 cursor handle */ |
| 1071 Fts3SegReader *pReader, /* Segment-reader handle */ |
| 1072 int *pnCost /* IN/OUT: Number of bytes read */ |
| 1073 ){ |
| 1074 Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; |
| 1075 int rc = SQLITE_OK; /* Return code */ |
| 1076 int nCost = 0; /* Cost in bytes to return */ |
| 1077 int pgsz = p->nPgsz; /* Database page size */ |
| 1078 |
| 1079 /* If this seg-reader is reading the pending-terms table, or if all data |
| 1080 ** for the segment is stored on the root page of the b-tree, then the cost |
| 1081 ** is zero. In this case all required data is already in main memory. |
| 1082 */ |
| 1083 if( p->bHasStat |
| 1084 && !fts3SegReaderIsPending(pReader) |
| 1085 && !fts3SegReaderIsRootOnly(pReader) |
| 1086 ){ |
| 1087 int nBlob = 0; |
| 1088 sqlite3_int64 iBlock; |
| 1089 |
| 1090 if( pCsr->nRowAvg==0 ){ |
| 1091 /* The average document size, which is required to calculate the cost |
| 1092 ** of each doclist, has not yet been determined. Read the required |
| 1093 ** data from the %_stat table to calculate it. |
| 1094 ** |
| 1095 ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 |
| 1096 ** varints, where nCol is the number of columns in the FTS3 table. |
| 1097 ** The first varint is the number of documents currently stored in |
| 1098 ** the table. The following nCol varints contain the total amount of |
| 1099 ** data stored in all rows of each column of the table, from left |
| 1100 ** to right. |
| 1101 */ |
| 1102 sqlite3_stmt *pStmt; |
| 1103 sqlite3_int64 nDoc = 0; |
| 1104 sqlite3_int64 nByte = 0; |
| 1105 const char *pEnd; |
| 1106 const char *a; |
| 1107 |
| 1108 rc = sqlite3Fts3SelectDoctotal(p, &pStmt); |
| 1109 if( rc!=SQLITE_OK ) return rc; |
| 1110 a = sqlite3_column_blob(pStmt, 0); |
| 1111 assert( a ); |
| 1112 |
| 1113 pEnd = &a[sqlite3_column_bytes(pStmt, 0)]; |
| 1114 a += sqlite3Fts3GetVarint(a, &nDoc); |
| 1115 while( a<pEnd ){ |
| 1116 a += sqlite3Fts3GetVarint(a, &nByte); |
| 1117 } |
| 1118 if( nDoc==0 || nByte==0 ){ |
| 1119 sqlite3_reset(pStmt); |
| 1120 return SQLITE_CORRUPT; |
| 1121 } |
| 1122 |
| 1123 pCsr->nRowAvg = (int)(((nByte / nDoc) + pgsz) / pgsz); |
| 1124 assert( pCsr->nRowAvg>0 ); |
| 1125 rc = sqlite3_reset(pStmt); |
| 1126 if( rc!=SQLITE_OK ) return rc; |
| 1127 } |
| 1128 |
| 1129 /* Assume that a blob flows over onto overflow pages if it is larger |
| 1130 ** than (pgsz-35) bytes in size (the file-format documentation |
| 1131 ** confirms this). |
| 1132 */ |
| 1133 for(iBlock=pReader->iStartBlock; iBlock<=pReader->iLeafEndBlock; iBlock++){ |
| 1134 rc = sqlite3Fts3ReadBlock(p, iBlock, 0, &nBlob); |
| 1135 if( rc!=SQLITE_OK ) break; |
| 1136 if( (nBlob+35)>pgsz ){ |
| 1137 int nOvfl = (nBlob + 34)/pgsz; |
| 1138 nCost += ((nOvfl + pCsr->nRowAvg - 1)/pCsr->nRowAvg); |
| 1139 } |
| 1140 } |
| 1141 } |
| 1142 |
| 1143 *pnCost += nCost; |
| 1144 return rc; |
| 1145 } |
| 1146 |
| 1147 /* |
| 1148 ** Free all allocations associated with the iterator passed as the |
| 1149 ** second argument. |
| 1150 */ |
| 1151 void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){ |
| 1152 if( pReader && !fts3SegReaderIsPending(pReader) ){ |
| 1153 sqlite3_free(pReader->zTerm); |
| 1154 if( !fts3SegReaderIsRootOnly(pReader) ){ |
| 1155 sqlite3_free(pReader->aNode); |
| 1156 } |
| 1157 } |
| 1158 sqlite3_free(pReader); |
| 1159 } |
| 1160 |
| 1161 /* |
| 1162 ** Allocate a new SegReader object. |
| 1163 */ |
| 1164 int sqlite3Fts3SegReaderNew( |
| 1165 int iAge, /* Segment "age". */ |
| 1166 sqlite3_int64 iStartLeaf, /* First leaf to traverse */ |
| 1167 sqlite3_int64 iEndLeaf, /* Final leaf to traverse */ |
| 1168 sqlite3_int64 iEndBlock, /* Final block of segment */ |
| 1169 const char *zRoot, /* Buffer containing root node */ |
| 1170 int nRoot, /* Size of buffer containing root node */ |
| 1171 Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */ |
| 1172 ){ |
| 1173 int rc = SQLITE_OK; /* Return code */ |
| 1174 Fts3SegReader *pReader; /* Newly allocated SegReader object */ |
| 1175 int nExtra = 0; /* Bytes to allocate segment root node */ |
| 1176 |
| 1177 assert( iStartLeaf<=iEndLeaf ); |
| 1178 if( iStartLeaf==0 ){ |
| 1179 nExtra = nRoot + FTS3_NODE_PADDING; |
| 1180 } |
| 1181 |
| 1182 pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra); |
| 1183 if( !pReader ){ |
| 1184 return SQLITE_NOMEM; |
| 1185 } |
| 1186 memset(pReader, 0, sizeof(Fts3SegReader)); |
| 1187 pReader->iIdx = iAge; |
| 1188 pReader->iStartBlock = iStartLeaf; |
| 1189 pReader->iLeafEndBlock = iEndLeaf; |
| 1190 pReader->iEndBlock = iEndBlock; |
| 1191 |
| 1192 if( nExtra ){ |
| 1193 /* The entire segment is stored in the root node. */ |
| 1194 pReader->aNode = (char *)&pReader[1]; |
| 1195 pReader->nNode = nRoot; |
| 1196 memcpy(pReader->aNode, zRoot, nRoot); |
| 1197 memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING); |
| 1198 }else{ |
| 1199 pReader->iCurrentBlock = iStartLeaf-1; |
| 1200 } |
| 1201 |
| 1202 if( rc==SQLITE_OK ){ |
| 1203 *ppReader = pReader; |
| 1204 }else{ |
| 1205 sqlite3Fts3SegReaderFree(pReader); |
| 1206 } |
| 1207 return rc; |
| 1208 } |
| 1209 |
| 1210 /* |
| 1211 ** This is a comparison function used as a qsort() callback when sorting |
| 1212 ** an array of pending terms by term. This occurs as part of flushing |
| 1213 ** the contents of the pending-terms hash table to the database. |
| 1214 */ |
| 1215 static int fts3CompareElemByTerm(const void *lhs, const void *rhs){ |
| 1216 char *z1 = fts3HashKey(*(Fts3HashElem **)lhs); |
| 1217 char *z2 = fts3HashKey(*(Fts3HashElem **)rhs); |
| 1218 int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs); |
| 1219 int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs); |
| 1220 |
| 1221 int n = (n1<n2 ? n1 : n2); |
| 1222 int c = memcmp(z1, z2, n); |
| 1223 if( c==0 ){ |
| 1224 c = n1 - n2; |
| 1225 } |
| 1226 return c; |
| 1227 } |
| 1228 |
| 1229 /* |
| 1230 ** This function is used to allocate an Fts3SegReader that iterates through |
| 1231 ** a subset of the terms stored in the Fts3Table.pendingTerms array. |
| 1232 */ |
| 1233 int sqlite3Fts3SegReaderPending( |
| 1234 Fts3Table *p, /* Virtual table handle */ |
| 1235 const char *zTerm, /* Term to search for */ |
| 1236 int nTerm, /* Size of buffer zTerm */ |
| 1237 int isPrefix, /* True for a term-prefix query */ |
| 1238 Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */ |
| 1239 ){ |
| 1240 Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */ |
| 1241 Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */ |
| 1242 int nElem = 0; /* Size of array at aElem */ |
| 1243 int rc = SQLITE_OK; /* Return Code */ |
| 1244 |
| 1245 if( isPrefix ){ |
| 1246 int nAlloc = 0; /* Size of allocated array at aElem */ |
| 1247 Fts3HashElem *pE = 0; /* Iterator variable */ |
| 1248 |
| 1249 for(pE=fts3HashFirst(&p->pendingTerms); pE; pE=fts3HashNext(pE)){ |
| 1250 char *zKey = (char *)fts3HashKey(pE); |
| 1251 int nKey = fts3HashKeysize(pE); |
| 1252 if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){ |
| 1253 if( nElem==nAlloc ){ |
| 1254 Fts3HashElem **aElem2; |
| 1255 nAlloc += 16; |
| 1256 aElem2 = (Fts3HashElem **)sqlite3_realloc( |
| 1257 aElem, nAlloc*sizeof(Fts3HashElem *) |
| 1258 ); |
| 1259 if( !aElem2 ){ |
| 1260 rc = SQLITE_NOMEM; |
| 1261 nElem = 0; |
| 1262 break; |
| 1263 } |
| 1264 aElem = aElem2; |
| 1265 } |
| 1266 aElem[nElem++] = pE; |
| 1267 } |
| 1268 } |
| 1269 |
| 1270 /* If more than one term matches the prefix, sort the Fts3HashElem |
| 1271 ** objects in term order using qsort(). This uses the same comparison |
| 1272 ** callback as is used when flushing terms to disk. |
| 1273 */ |
| 1274 if( nElem>1 ){ |
| 1275 qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm); |
| 1276 } |
| 1277 |
| 1278 }else{ |
| 1279 Fts3HashElem *pE = fts3HashFindElem(&p->pendingTerms, zTerm, nTerm); |
| 1280 if( pE ){ |
| 1281 aElem = &pE; |
| 1282 nElem = 1; |
| 1283 } |
| 1284 } |
| 1285 |
| 1286 if( nElem>0 ){ |
| 1287 int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *); |
| 1288 pReader = (Fts3SegReader *)sqlite3_malloc(nByte); |
| 1289 if( !pReader ){ |
| 1290 rc = SQLITE_NOMEM; |
| 1291 }else{ |
| 1292 memset(pReader, 0, nByte); |
| 1293 pReader->iIdx = 0x7FFFFFFF; |
| 1294 pReader->ppNextElem = (Fts3HashElem **)&pReader[1]; |
| 1295 memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *)); |
| 1296 } |
| 1297 } |
| 1298 |
| 1299 if( isPrefix ){ |
| 1300 sqlite3_free(aElem); |
| 1301 } |
| 1302 *ppReader = pReader; |
| 1303 return rc; |
| 1304 } |
| 1305 |
| 1306 /* |
| 1307 ** Compare the entries pointed to by two Fts3SegReader structures. |
| 1308 ** Comparison is as follows: |
| 1309 ** |
| 1310 ** 1) EOF is greater than not EOF. |
| 1311 ** |
| 1312 ** 2) The current terms (if any) are compared using memcmp(). If one |
| 1313 ** term is a prefix of another, the longer term is considered the |
| 1314 ** larger. |
| 1315 ** |
| 1316 ** 3) By segment age. An older segment is considered larger. |
| 1317 */ |
| 1318 static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ |
| 1319 int rc; |
| 1320 if( pLhs->aNode && pRhs->aNode ){ |
| 1321 int rc2 = pLhs->nTerm - pRhs->nTerm; |
| 1322 if( rc2<0 ){ |
| 1323 rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm); |
| 1324 }else{ |
| 1325 rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm); |
| 1326 } |
| 1327 if( rc==0 ){ |
| 1328 rc = rc2; |
| 1329 } |
| 1330 }else{ |
| 1331 rc = (pLhs->aNode==0) - (pRhs->aNode==0); |
| 1332 } |
| 1333 if( rc==0 ){ |
| 1334 rc = pRhs->iIdx - pLhs->iIdx; |
| 1335 } |
| 1336 assert( rc!=0 ); |
| 1337 return rc; |
| 1338 } |
| 1339 |
| 1340 /* |
| 1341 ** A different comparison function for SegReader structures. In this |
| 1342 ** version, it is assumed that each SegReader points to an entry in |
| 1343 ** a doclist for identical terms. Comparison is made as follows: |
| 1344 ** |
| 1345 ** 1) EOF (end of doclist in this case) is greater than not EOF. |
| 1346 ** |
| 1347 ** 2) By current docid. |
| 1348 ** |
| 1349 ** 3) By segment age. An older segment is considered larger. |
| 1350 */ |
| 1351 static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ |
| 1352 int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); |
| 1353 if( rc==0 ){ |
| 1354 if( pLhs->iDocid==pRhs->iDocid ){ |
| 1355 rc = pRhs->iIdx - pLhs->iIdx; |
| 1356 }else{ |
| 1357 rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1; |
| 1358 } |
| 1359 } |
| 1360 assert( pLhs->aNode && pRhs->aNode ); |
| 1361 return rc; |
| 1362 } |
| 1363 |
| 1364 /* |
| 1365 ** Compare the term that the Fts3SegReader object passed as the first argument |
| 1366 ** points to with the term specified by arguments zTerm and nTerm. |
| 1367 ** |
| 1368 ** If the pSeg iterator is already at EOF, return 0. Otherwise, return |
| 1369 ** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are |
| 1370 ** equal, or +ve if the pSeg term is greater than zTerm/nTerm. |
| 1371 */ |
| 1372 static int fts3SegReaderTermCmp( |
| 1373 Fts3SegReader *pSeg, /* Segment reader object */ |
| 1374 const char *zTerm, /* Term to compare to */ |
| 1375 int nTerm /* Size of term zTerm in bytes */ |
| 1376 ){ |
| 1377 int res = 0; |
| 1378 if( pSeg->aNode ){ |
| 1379 if( pSeg->nTerm>nTerm ){ |
| 1380 res = memcmp(pSeg->zTerm, zTerm, nTerm); |
| 1381 }else{ |
| 1382 res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm); |
| 1383 } |
| 1384 if( res==0 ){ |
| 1385 res = pSeg->nTerm-nTerm; |
| 1386 } |
| 1387 } |
| 1388 return res; |
| 1389 } |
| 1390 |
| 1391 /* |
| 1392 ** Argument apSegment is an array of nSegment elements. It is known that |
| 1393 ** the final (nSegment-nSuspect) members are already in sorted order |
| 1394 ** (according to the comparison function provided). This function shuffles |
| 1395 ** the array around until all entries are in sorted order. |
| 1396 */ |
| 1397 static void fts3SegReaderSort( |
| 1398 Fts3SegReader **apSegment, /* Array to sort entries of */ |
| 1399 int nSegment, /* Size of apSegment array */ |
| 1400 int nSuspect, /* Unsorted entry count */ |
| 1401 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */ |
| 1402 ){ |
| 1403 int i; /* Iterator variable */ |
| 1404 |
| 1405 assert( nSuspect<=nSegment ); |
| 1406 |
| 1407 if( nSuspect==nSegment ) nSuspect--; |
| 1408 for(i=nSuspect-1; i>=0; i--){ |
| 1409 int j; |
| 1410 for(j=i; j<(nSegment-1); j++){ |
| 1411 Fts3SegReader *pTmp; |
| 1412 if( xCmp(apSegment[j], apSegment[j+1])<0 ) break; |
| 1413 pTmp = apSegment[j+1]; |
| 1414 apSegment[j+1] = apSegment[j]; |
| 1415 apSegment[j] = pTmp; |
| 1416 } |
| 1417 } |
| 1418 |
| 1419 #ifndef NDEBUG |
| 1420 /* Check that the list really is sorted now. */ |
| 1421 for(i=0; i<(nSuspect-1); i++){ |
| 1422 assert( xCmp(apSegment[i], apSegment[i+1])<0 ); |
| 1423 } |
| 1424 #endif |
| 1425 } |
| 1426 |
| 1427 /* |
| 1428 ** Insert a record into the %_segments table. |
| 1429 */ |
| 1430 static int fts3WriteSegment( |
| 1431 Fts3Table *p, /* Virtual table handle */ |
| 1432 sqlite3_int64 iBlock, /* Block id for new block */ |
| 1433 char *z, /* Pointer to buffer containing block data */ |
| 1434 int n /* Size of buffer z in bytes */ |
| 1435 ){ |
| 1436 sqlite3_stmt *pStmt; |
| 1437 int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0); |
| 1438 if( rc==SQLITE_OK ){ |
| 1439 sqlite3_bind_int64(pStmt, 1, iBlock); |
| 1440 sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC); |
| 1441 sqlite3_step(pStmt); |
| 1442 rc = sqlite3_reset(pStmt); |
| 1443 } |
| 1444 return rc; |
| 1445 } |
| 1446 |
| 1447 /* |
| 1448 ** Insert a record into the %_segdir table. |
| 1449 */ |
| 1450 static int fts3WriteSegdir( |
| 1451 Fts3Table *p, /* Virtual table handle */ |
| 1452 int iLevel, /* Value for "level" field */ |
| 1453 int iIdx, /* Value for "idx" field */ |
| 1454 sqlite3_int64 iStartBlock, /* Value for "start_block" field */ |
| 1455 sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */ |
| 1456 sqlite3_int64 iEndBlock, /* Value for "end_block" field */ |
| 1457 char *zRoot, /* Blob value for "root" field */ |
| 1458 int nRoot /* Number of bytes in buffer zRoot */ |
| 1459 ){ |
| 1460 sqlite3_stmt *pStmt; |
| 1461 int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0); |
| 1462 if( rc==SQLITE_OK ){ |
| 1463 sqlite3_bind_int(pStmt, 1, iLevel); |
| 1464 sqlite3_bind_int(pStmt, 2, iIdx); |
| 1465 sqlite3_bind_int64(pStmt, 3, iStartBlock); |
| 1466 sqlite3_bind_int64(pStmt, 4, iLeafEndBlock); |
| 1467 sqlite3_bind_int64(pStmt, 5, iEndBlock); |
| 1468 sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC); |
| 1469 sqlite3_step(pStmt); |
| 1470 rc = sqlite3_reset(pStmt); |
| 1471 } |
| 1472 return rc; |
| 1473 } |
| 1474 |
| 1475 /* |
| 1476 ** Return the size of the common prefix (if any) shared by zPrev and |
| 1477 ** zNext, in bytes. For example, |
| 1478 ** |
| 1479 ** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3 |
| 1480 ** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2 |
| 1481 ** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0 |
| 1482 */ |
| 1483 static int fts3PrefixCompress( |
| 1484 const char *zPrev, /* Buffer containing previous term */ |
| 1485 int nPrev, /* Size of buffer zPrev in bytes */ |
| 1486 const char *zNext, /* Buffer containing next term */ |
| 1487 int nNext /* Size of buffer zNext in bytes */ |
| 1488 ){ |
| 1489 int n; |
| 1490 UNUSED_PARAMETER(nNext); |
| 1491 for(n=0; n<nPrev && zPrev[n]==zNext[n]; n++); |
| 1492 return n; |
| 1493 } |
| 1494 |
| 1495 /* |
| 1496 ** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger |
| 1497 ** (according to memcmp) than the previous term. |
| 1498 */ |
| 1499 static int fts3NodeAddTerm( |
| 1500 Fts3Table *p, /* Virtual table handle */ |
| 1501 SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */ |
| 1502 int isCopyTerm, /* True if zTerm/nTerm is transient */ |
| 1503 const char *zTerm, /* Pointer to buffer containing term */ |
| 1504 int nTerm /* Size of term in bytes */ |
| 1505 ){ |
| 1506 SegmentNode *pTree = *ppTree; |
| 1507 int rc; |
| 1508 SegmentNode *pNew; |
| 1509 |
| 1510 /* First try to append the term to the current node. Return early if |
| 1511 ** this is possible. |
| 1512 */ |
| 1513 if( pTree ){ |
| 1514 int nData = pTree->nData; /* Current size of node in bytes */ |
| 1515 int nReq = nData; /* Required space after adding zTerm */ |
| 1516 int nPrefix; /* Number of bytes of prefix compression */ |
| 1517 int nSuffix; /* Suffix length */ |
| 1518 |
| 1519 nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm); |
| 1520 nSuffix = nTerm-nPrefix; |
| 1521 |
| 1522 nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix; |
| 1523 if( nReq<=p->nNodeSize || !pTree->zTerm ){ |
| 1524 |
| 1525 if( nReq>p->nNodeSize ){ |
| 1526 /* An unusual case: this is the first term to be added to the node |
| 1527 ** and the static node buffer (p->nNodeSize bytes) is not large |
| 1528 ** enough. Use a separately malloced buffer instead This wastes |
| 1529 ** p->nNodeSize bytes, but since this scenario only comes about when |
| 1530 ** the database contain two terms that share a prefix of almost 2KB, |
| 1531 ** this is not expected to be a serious problem. |
| 1532 */ |
| 1533 assert( pTree->aData==(char *)&pTree[1] ); |
| 1534 pTree->aData = (char *)sqlite3_malloc(nReq); |
| 1535 if( !pTree->aData ){ |
| 1536 return SQLITE_NOMEM; |
| 1537 } |
| 1538 } |
| 1539 |
| 1540 if( pTree->zTerm ){ |
| 1541 /* There is no prefix-length field for first term in a node */ |
| 1542 nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix); |
| 1543 } |
| 1544 |
| 1545 nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix); |
| 1546 memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix); |
| 1547 pTree->nData = nData + nSuffix; |
| 1548 pTree->nEntry++; |
| 1549 |
| 1550 if( isCopyTerm ){ |
| 1551 if( pTree->nMalloc<nTerm ){ |
| 1552 char *zNew = sqlite3_realloc(pTree->zMalloc, nTerm*2); |
| 1553 if( !zNew ){ |
| 1554 return SQLITE_NOMEM; |
| 1555 } |
| 1556 pTree->nMalloc = nTerm*2; |
| 1557 pTree->zMalloc = zNew; |
| 1558 } |
| 1559 pTree->zTerm = pTree->zMalloc; |
| 1560 memcpy(pTree->zTerm, zTerm, nTerm); |
| 1561 pTree->nTerm = nTerm; |
| 1562 }else{ |
| 1563 pTree->zTerm = (char *)zTerm; |
| 1564 pTree->nTerm = nTerm; |
| 1565 } |
| 1566 return SQLITE_OK; |
| 1567 } |
| 1568 } |
| 1569 |
| 1570 /* If control flows to here, it was not possible to append zTerm to the |
| 1571 ** current node. Create a new node (a right-sibling of the current node). |
| 1572 ** If this is the first node in the tree, the term is added to it. |
| 1573 ** |
| 1574 ** Otherwise, the term is not added to the new node, it is left empty for |
| 1575 ** now. Instead, the term is inserted into the parent of pTree. If pTree |
| 1576 ** has no parent, one is created here. |
| 1577 */ |
| 1578 pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize); |
| 1579 if( !pNew ){ |
| 1580 return SQLITE_NOMEM; |
| 1581 } |
| 1582 memset(pNew, 0, sizeof(SegmentNode)); |
| 1583 pNew->nData = 1 + FTS3_VARINT_MAX; |
| 1584 pNew->aData = (char *)&pNew[1]; |
| 1585 |
| 1586 if( pTree ){ |
| 1587 SegmentNode *pParent = pTree->pParent; |
| 1588 rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm); |
| 1589 if( pTree->pParent==0 ){ |
| 1590 pTree->pParent = pParent; |
| 1591 } |
| 1592 pTree->pRight = pNew; |
| 1593 pNew->pLeftmost = pTree->pLeftmost; |
| 1594 pNew->pParent = pParent; |
| 1595 pNew->zMalloc = pTree->zMalloc; |
| 1596 pNew->nMalloc = pTree->nMalloc; |
| 1597 pTree->zMalloc = 0; |
| 1598 }else{ |
| 1599 pNew->pLeftmost = pNew; |
| 1600 rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm); |
| 1601 } |
| 1602 |
| 1603 *ppTree = pNew; |
| 1604 return rc; |
| 1605 } |
| 1606 |
| 1607 /* |
| 1608 ** Helper function for fts3NodeWrite(). |
| 1609 */ |
| 1610 static int fts3TreeFinishNode( |
| 1611 SegmentNode *pTree, |
| 1612 int iHeight, |
| 1613 sqlite3_int64 iLeftChild |
| 1614 ){ |
| 1615 int nStart; |
| 1616 assert( iHeight>=1 && iHeight<128 ); |
| 1617 nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild); |
| 1618 pTree->aData[nStart] = (char)iHeight; |
| 1619 sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild); |
| 1620 return nStart; |
| 1621 } |
| 1622 |
| 1623 /* |
| 1624 ** Write the buffer for the segment node pTree and all of its peers to the |
| 1625 ** database. Then call this function recursively to write the parent of |
| 1626 ** pTree and its peers to the database. |
| 1627 ** |
| 1628 ** Except, if pTree is a root node, do not write it to the database. Instead, |
| 1629 ** set output variables *paRoot and *pnRoot to contain the root node. |
| 1630 ** |
| 1631 ** If successful, SQLITE_OK is returned and output variable *piLast is |
| 1632 ** set to the largest blockid written to the database (or zero if no |
| 1633 ** blocks were written to the db). Otherwise, an SQLite error code is |
| 1634 ** returned. |
| 1635 */ |
| 1636 static int fts3NodeWrite( |
| 1637 Fts3Table *p, /* Virtual table handle */ |
| 1638 SegmentNode *pTree, /* SegmentNode handle */ |
| 1639 int iHeight, /* Height of this node in tree */ |
| 1640 sqlite3_int64 iLeaf, /* Block id of first leaf node */ |
| 1641 sqlite3_int64 iFree, /* Block id of next free slot in %_segments */ |
| 1642 sqlite3_int64 *piLast, /* OUT: Block id of last entry written */ |
| 1643 char **paRoot, /* OUT: Data for root node */ |
| 1644 int *pnRoot /* OUT: Size of root node in bytes */ |
| 1645 ){ |
| 1646 int rc = SQLITE_OK; |
| 1647 |
| 1648 if( !pTree->pParent ){ |
| 1649 /* Root node of the tree. */ |
| 1650 int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf); |
| 1651 *piLast = iFree-1; |
| 1652 *pnRoot = pTree->nData - nStart; |
| 1653 *paRoot = &pTree->aData[nStart]; |
| 1654 }else{ |
| 1655 SegmentNode *pIter; |
| 1656 sqlite3_int64 iNextFree = iFree; |
| 1657 sqlite3_int64 iNextLeaf = iLeaf; |
| 1658 for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){ |
| 1659 int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf); |
| 1660 int nWrite = pIter->nData - nStart; |
| 1661 |
| 1662 rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite); |
| 1663 iNextFree++; |
| 1664 iNextLeaf += (pIter->nEntry+1); |
| 1665 } |
| 1666 if( rc==SQLITE_OK ){ |
| 1667 assert( iNextLeaf==iFree ); |
| 1668 rc = fts3NodeWrite( |
| 1669 p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot |
| 1670 ); |
| 1671 } |
| 1672 } |
| 1673 |
| 1674 return rc; |
| 1675 } |
| 1676 |
| 1677 /* |
| 1678 ** Free all memory allocations associated with the tree pTree. |
| 1679 */ |
| 1680 static void fts3NodeFree(SegmentNode *pTree){ |
| 1681 if( pTree ){ |
| 1682 SegmentNode *p = pTree->pLeftmost; |
| 1683 fts3NodeFree(p->pParent); |
| 1684 while( p ){ |
| 1685 SegmentNode *pRight = p->pRight; |
| 1686 if( p->aData!=(char *)&p[1] ){ |
| 1687 sqlite3_free(p->aData); |
| 1688 } |
| 1689 assert( pRight==0 || p->zMalloc==0 ); |
| 1690 sqlite3_free(p->zMalloc); |
| 1691 sqlite3_free(p); |
| 1692 p = pRight; |
| 1693 } |
| 1694 } |
| 1695 } |
| 1696 |
| 1697 /* |
| 1698 ** Add a term to the segment being constructed by the SegmentWriter object |
| 1699 ** *ppWriter. When adding the first term to a segment, *ppWriter should |
| 1700 ** be passed NULL. This function will allocate a new SegmentWriter object |
| 1701 ** and return it via the input/output variable *ppWriter in this case. |
| 1702 ** |
| 1703 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. |
| 1704 */ |
| 1705 static int fts3SegWriterAdd( |
| 1706 Fts3Table *p, /* Virtual table handle */ |
| 1707 SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */ |
| 1708 int isCopyTerm, /* True if buffer zTerm must be copied */ |
| 1709 const char *zTerm, /* Pointer to buffer containing term */ |
| 1710 int nTerm, /* Size of term in bytes */ |
| 1711 const char *aDoclist, /* Pointer to buffer containing doclist */ |
| 1712 int nDoclist /* Size of doclist in bytes */ |
| 1713 ){ |
| 1714 int nPrefix; /* Size of term prefix in bytes */ |
| 1715 int nSuffix; /* Size of term suffix in bytes */ |
| 1716 int nReq; /* Number of bytes required on leaf page */ |
| 1717 int nData; |
| 1718 SegmentWriter *pWriter = *ppWriter; |
| 1719 |
| 1720 if( !pWriter ){ |
| 1721 int rc; |
| 1722 sqlite3_stmt *pStmt; |
| 1723 |
| 1724 /* Allocate the SegmentWriter structure */ |
| 1725 pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter)); |
| 1726 if( !pWriter ) return SQLITE_NOMEM; |
| 1727 memset(pWriter, 0, sizeof(SegmentWriter)); |
| 1728 *ppWriter = pWriter; |
| 1729 |
| 1730 /* Allocate a buffer in which to accumulate data */ |
| 1731 pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize); |
| 1732 if( !pWriter->aData ) return SQLITE_NOMEM; |
| 1733 pWriter->nSize = p->nNodeSize; |
| 1734 |
| 1735 /* Find the next free blockid in the %_segments table */ |
| 1736 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0); |
| 1737 if( rc!=SQLITE_OK ) return rc; |
| 1738 if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 1739 pWriter->iFree = sqlite3_column_int64(pStmt, 0); |
| 1740 pWriter->iFirst = pWriter->iFree; |
| 1741 } |
| 1742 rc = sqlite3_reset(pStmt); |
| 1743 if( rc!=SQLITE_OK ) return rc; |
| 1744 } |
| 1745 nData = pWriter->nData; |
| 1746 |
| 1747 nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm); |
| 1748 nSuffix = nTerm-nPrefix; |
| 1749 |
| 1750 /* Figure out how many bytes are required by this new entry */ |
| 1751 nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */ |
| 1752 sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */ |
| 1753 nSuffix + /* Term suffix */ |
| 1754 sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ |
| 1755 nDoclist; /* Doclist data */ |
| 1756 |
| 1757 if( nData>0 && nData+nReq>p->nNodeSize ){ |
| 1758 int rc; |
| 1759 |
| 1760 /* The current leaf node is full. Write it out to the database. */ |
| 1761 rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData); |
| 1762 if( rc!=SQLITE_OK ) return rc; |
| 1763 |
| 1764 /* Add the current term to the interior node tree. The term added to |
| 1765 ** the interior tree must: |
| 1766 ** |
| 1767 ** a) be greater than the largest term on the leaf node just written |
| 1768 ** to the database (still available in pWriter->zTerm), and |
| 1769 ** |
| 1770 ** b) be less than or equal to the term about to be added to the new |
| 1771 ** leaf node (zTerm/nTerm). |
| 1772 ** |
| 1773 ** In other words, it must be the prefix of zTerm 1 byte longer than |
| 1774 ** the common prefix (if any) of zTerm and pWriter->zTerm. |
| 1775 */ |
| 1776 assert( nPrefix<nTerm ); |
| 1777 rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1); |
| 1778 if( rc!=SQLITE_OK ) return rc; |
| 1779 |
| 1780 nData = 0; |
| 1781 pWriter->nTerm = 0; |
| 1782 |
| 1783 nPrefix = 0; |
| 1784 nSuffix = nTerm; |
| 1785 nReq = 1 + /* varint containing prefix size */ |
| 1786 sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */ |
| 1787 nTerm + /* Term suffix */ |
| 1788 sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ |
| 1789 nDoclist; /* Doclist data */ |
| 1790 } |
| 1791 |
| 1792 /* If the buffer currently allocated is too small for this entry, realloc |
| 1793 ** the buffer to make it large enough. |
| 1794 */ |
| 1795 if( nReq>pWriter->nSize ){ |
| 1796 char *aNew = sqlite3_realloc(pWriter->aData, nReq); |
| 1797 if( !aNew ) return SQLITE_NOMEM; |
| 1798 pWriter->aData = aNew; |
| 1799 pWriter->nSize = nReq; |
| 1800 } |
| 1801 assert( nData+nReq<=pWriter->nSize ); |
| 1802 |
| 1803 /* Append the prefix-compressed term and doclist to the buffer. */ |
| 1804 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix); |
| 1805 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix); |
| 1806 memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix); |
| 1807 nData += nSuffix; |
| 1808 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist); |
| 1809 memcpy(&pWriter->aData[nData], aDoclist, nDoclist); |
| 1810 pWriter->nData = nData + nDoclist; |
| 1811 |
| 1812 /* Save the current term so that it can be used to prefix-compress the next. |
| 1813 ** If the isCopyTerm parameter is true, then the buffer pointed to by |
| 1814 ** zTerm is transient, so take a copy of the term data. Otherwise, just |
| 1815 ** store a copy of the pointer. |
| 1816 */ |
| 1817 if( isCopyTerm ){ |
| 1818 if( nTerm>pWriter->nMalloc ){ |
| 1819 char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2); |
| 1820 if( !zNew ){ |
| 1821 return SQLITE_NOMEM; |
| 1822 } |
| 1823 pWriter->nMalloc = nTerm*2; |
| 1824 pWriter->zMalloc = zNew; |
| 1825 pWriter->zTerm = zNew; |
| 1826 } |
| 1827 assert( pWriter->zTerm==pWriter->zMalloc ); |
| 1828 memcpy(pWriter->zTerm, zTerm, nTerm); |
| 1829 }else{ |
| 1830 pWriter->zTerm = (char *)zTerm; |
| 1831 } |
| 1832 pWriter->nTerm = nTerm; |
| 1833 |
| 1834 return SQLITE_OK; |
| 1835 } |
| 1836 |
| 1837 /* |
| 1838 ** Flush all data associated with the SegmentWriter object pWriter to the |
| 1839 ** database. This function must be called after all terms have been added |
| 1840 ** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is |
| 1841 ** returned. Otherwise, an SQLite error code. |
| 1842 */ |
| 1843 static int fts3SegWriterFlush( |
| 1844 Fts3Table *p, /* Virtual table handle */ |
| 1845 SegmentWriter *pWriter, /* SegmentWriter to flush to the db */ |
| 1846 int iLevel, /* Value for 'level' column of %_segdir */ |
| 1847 int iIdx /* Value for 'idx' column of %_segdir */ |
| 1848 ){ |
| 1849 int rc; /* Return code */ |
| 1850 if( pWriter->pTree ){ |
| 1851 sqlite3_int64 iLast = 0; /* Largest block id written to database */ |
| 1852 sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */ |
| 1853 char *zRoot = NULL; /* Pointer to buffer containing root node */ |
| 1854 int nRoot = 0; /* Size of buffer zRoot */ |
| 1855 |
| 1856 iLastLeaf = pWriter->iFree; |
| 1857 rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData); |
| 1858 if( rc==SQLITE_OK ){ |
| 1859 rc = fts3NodeWrite(p, pWriter->pTree, 1, |
| 1860 pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot); |
| 1861 } |
| 1862 if( rc==SQLITE_OK ){ |
| 1863 rc = fts3WriteSegdir( |
| 1864 p, iLevel, iIdx, pWriter->iFirst, iLastLeaf, iLast, zRoot, nRoot); |
| 1865 } |
| 1866 }else{ |
| 1867 /* The entire tree fits on the root node. Write it to the segdir table. */ |
| 1868 rc = fts3WriteSegdir( |
| 1869 p, iLevel, iIdx, 0, 0, 0, pWriter->aData, pWriter->nData); |
| 1870 } |
| 1871 return rc; |
| 1872 } |
| 1873 |
| 1874 /* |
| 1875 ** Release all memory held by the SegmentWriter object passed as the |
| 1876 ** first argument. |
| 1877 */ |
| 1878 static void fts3SegWriterFree(SegmentWriter *pWriter){ |
| 1879 if( pWriter ){ |
| 1880 sqlite3_free(pWriter->aData); |
| 1881 sqlite3_free(pWriter->zMalloc); |
| 1882 fts3NodeFree(pWriter->pTree); |
| 1883 sqlite3_free(pWriter); |
| 1884 } |
| 1885 } |
| 1886 |
| 1887 /* |
| 1888 ** The first value in the apVal[] array is assumed to contain an integer. |
| 1889 ** This function tests if there exist any documents with docid values that |
| 1890 ** are different from that integer. i.e. if deleting the document with docid |
| 1891 ** apVal[0] would mean the FTS3 table were empty. |
| 1892 ** |
| 1893 ** If successful, *pisEmpty is set to true if the table is empty except for |
| 1894 ** document apVal[0], or false otherwise, and SQLITE_OK is returned. If an |
| 1895 ** error occurs, an SQLite error code is returned. |
| 1896 */ |
| 1897 static int fts3IsEmpty(Fts3Table *p, sqlite3_value **apVal, int *pisEmpty){ |
| 1898 sqlite3_stmt *pStmt; |
| 1899 int rc; |
| 1900 rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, apVal); |
| 1901 if( rc==SQLITE_OK ){ |
| 1902 if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 1903 *pisEmpty = sqlite3_column_int(pStmt, 0); |
| 1904 } |
| 1905 rc = sqlite3_reset(pStmt); |
| 1906 } |
| 1907 return rc; |
| 1908 } |
| 1909 |
| 1910 /* |
| 1911 ** Set *pnSegment to the total number of segments in the database. Set |
| 1912 ** *pnMax to the largest segment level in the database (segment levels |
| 1913 ** are stored in the 'level' column of the %_segdir table). |
| 1914 ** |
| 1915 ** Return SQLITE_OK if successful, or an SQLite error code if not. |
| 1916 */ |
| 1917 static int fts3SegmentCountMax(Fts3Table *p, int *pnSegment, int *pnMax){ |
| 1918 sqlite3_stmt *pStmt; |
| 1919 int rc; |
| 1920 |
| 1921 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_COUNT_MAX, &pStmt, 0); |
| 1922 if( rc!=SQLITE_OK ) return rc; |
| 1923 if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 1924 *pnSegment = sqlite3_column_int(pStmt, 0); |
| 1925 *pnMax = sqlite3_column_int(pStmt, 1); |
| 1926 } |
| 1927 return sqlite3_reset(pStmt); |
| 1928 } |
| 1929 |
| 1930 /* |
| 1931 ** This function is used after merging multiple segments into a single large |
| 1932 ** segment to delete the old, now redundant, segment b-trees. Specifically, |
| 1933 ** it: |
| 1934 ** |
| 1935 ** 1) Deletes all %_segments entries for the segments associated with |
| 1936 ** each of the SegReader objects in the array passed as the third |
| 1937 ** argument, and |
| 1938 ** |
| 1939 ** 2) deletes all %_segdir entries with level iLevel, or all %_segdir |
| 1940 ** entries regardless of level if (iLevel<0). |
| 1941 ** |
| 1942 ** SQLITE_OK is returned if successful, otherwise an SQLite error code. |
| 1943 */ |
| 1944 static int fts3DeleteSegdir( |
| 1945 Fts3Table *p, /* Virtual table handle */ |
| 1946 int iLevel, /* Level of %_segdir entries to delete */ |
| 1947 Fts3SegReader **apSegment, /* Array of SegReader objects */ |
| 1948 int nReader /* Size of array apSegment */ |
| 1949 ){ |
| 1950 int rc; /* Return Code */ |
| 1951 int i; /* Iterator variable */ |
| 1952 sqlite3_stmt *pDelete; /* SQL statement to delete rows */ |
| 1953 |
| 1954 rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0); |
| 1955 for(i=0; rc==SQLITE_OK && i<nReader; i++){ |
| 1956 Fts3SegReader *pSegment = apSegment[i]; |
| 1957 if( pSegment->iStartBlock ){ |
| 1958 sqlite3_bind_int64(pDelete, 1, pSegment->iStartBlock); |
| 1959 sqlite3_bind_int64(pDelete, 2, pSegment->iEndBlock); |
| 1960 sqlite3_step(pDelete); |
| 1961 rc = sqlite3_reset(pDelete); |
| 1962 } |
| 1963 } |
| 1964 if( rc!=SQLITE_OK ){ |
| 1965 return rc; |
| 1966 } |
| 1967 |
| 1968 if( iLevel==FTS3_SEGCURSOR_ALL ){ |
| 1969 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0); |
| 1970 }else if( iLevel==FTS3_SEGCURSOR_PENDING ){ |
| 1971 sqlite3Fts3PendingTermsClear(p); |
| 1972 }else{ |
| 1973 assert( iLevel>=0 ); |
| 1974 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_BY_LEVEL, &pDelete, 0); |
| 1975 if( rc==SQLITE_OK ){ |
| 1976 sqlite3_bind_int(pDelete, 1, iLevel); |
| 1977 sqlite3_step(pDelete); |
| 1978 rc = sqlite3_reset(pDelete); |
| 1979 } |
| 1980 } |
| 1981 |
| 1982 return rc; |
| 1983 } |
| 1984 |
| 1985 /* |
| 1986 ** When this function is called, buffer *ppList (size *pnList bytes) contains |
| 1987 ** a position list that may (or may not) feature multiple columns. This |
| 1988 ** function adjusts the pointer *ppList and the length *pnList so that they |
| 1989 ** identify the subset of the position list that corresponds to column iCol. |
| 1990 ** |
| 1991 ** If there are no entries in the input position list for column iCol, then |
| 1992 ** *pnList is set to zero before returning. |
| 1993 */ |
| 1994 static void fts3ColumnFilter( |
| 1995 int iCol, /* Column to filter on */ |
| 1996 char **ppList, /* IN/OUT: Pointer to position list */ |
| 1997 int *pnList /* IN/OUT: Size of buffer *ppList in bytes */ |
| 1998 ){ |
| 1999 char *pList = *ppList; |
| 2000 int nList = *pnList; |
| 2001 char *pEnd = &pList[nList]; |
| 2002 int iCurrent = 0; |
| 2003 char *p = pList; |
| 2004 |
| 2005 assert( iCol>=0 ); |
| 2006 while( 1 ){ |
| 2007 char c = 0; |
| 2008 while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80; |
| 2009 |
| 2010 if( iCol==iCurrent ){ |
| 2011 nList = (int)(p - pList); |
| 2012 break; |
| 2013 } |
| 2014 |
| 2015 nList -= (int)(p - pList); |
| 2016 pList = p; |
| 2017 if( nList==0 ){ |
| 2018 break; |
| 2019 } |
| 2020 p = &pList[1]; |
| 2021 p += sqlite3Fts3GetVarint32(p, &iCurrent); |
| 2022 } |
| 2023 |
| 2024 *ppList = pList; |
| 2025 *pnList = nList; |
| 2026 } |
| 2027 |
| 2028 int sqlite3Fts3SegReaderStart( |
| 2029 Fts3Table *p, /* Virtual table handle */ |
| 2030 Fts3SegReaderCursor *pCsr, /* Cursor object */ |
| 2031 Fts3SegFilter *pFilter /* Restrictions on range of iteration */ |
| 2032 ){ |
| 2033 int i; |
| 2034 |
| 2035 /* Initialize the cursor object */ |
| 2036 pCsr->pFilter = pFilter; |
| 2037 |
| 2038 /* If the Fts3SegFilter defines a specific term (or term prefix) to search |
| 2039 ** for, then advance each segment iterator until it points to a term of |
| 2040 ** equal or greater value than the specified term. This prevents many |
| 2041 ** unnecessary merge/sort operations for the case where single segment |
| 2042 ** b-tree leaf nodes contain more than one term. |
| 2043 */ |
| 2044 for(i=0; i<pCsr->nSegment; i++){ |
| 2045 int nTerm = pFilter->nTerm; |
| 2046 const char *zTerm = pFilter->zTerm; |
| 2047 Fts3SegReader *pSeg = pCsr->apSegment[i]; |
| 2048 do { |
| 2049 int rc = fts3SegReaderNext(p, pSeg); |
| 2050 if( rc!=SQLITE_OK ) return rc; |
| 2051 }while( zTerm && fts3SegReaderTermCmp(pSeg, zTerm, nTerm)<0 ); |
| 2052 } |
| 2053 fts3SegReaderSort( |
| 2054 pCsr->apSegment, pCsr->nSegment, pCsr->nSegment, fts3SegReaderCmp); |
| 2055 |
| 2056 return SQLITE_OK; |
| 2057 } |
| 2058 |
| 2059 int sqlite3Fts3SegReaderStep( |
| 2060 Fts3Table *p, /* Virtual table handle */ |
| 2061 Fts3SegReaderCursor *pCsr /* Cursor object */ |
| 2062 ){ |
| 2063 int rc = SQLITE_OK; |
| 2064 |
| 2065 int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY); |
| 2066 int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS); |
| 2067 int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER); |
| 2068 int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX); |
| 2069 int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN); |
| 2070 |
| 2071 Fts3SegReader **apSegment = pCsr->apSegment; |
| 2072 int nSegment = pCsr->nSegment; |
| 2073 Fts3SegFilter *pFilter = pCsr->pFilter; |
| 2074 |
| 2075 if( pCsr->nSegment==0 ) return SQLITE_OK; |
| 2076 |
| 2077 do { |
| 2078 int nMerge; |
| 2079 int i; |
| 2080 |
| 2081 /* Advance the first pCsr->nAdvance entries in the apSegment[] array |
| 2082 ** forward. Then sort the list in order of current term again. |
| 2083 */ |
| 2084 for(i=0; i<pCsr->nAdvance; i++){ |
| 2085 rc = fts3SegReaderNext(p, apSegment[i]); |
| 2086 if( rc!=SQLITE_OK ) return rc; |
| 2087 } |
| 2088 fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp); |
| 2089 pCsr->nAdvance = 0; |
| 2090 |
| 2091 /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */ |
| 2092 assert( rc==SQLITE_OK ); |
| 2093 if( apSegment[0]->aNode==0 ) break; |
| 2094 |
| 2095 pCsr->nTerm = apSegment[0]->nTerm; |
| 2096 pCsr->zTerm = apSegment[0]->zTerm; |
| 2097 |
| 2098 /* If this is a prefix-search, and if the term that apSegment[0] points |
| 2099 ** to does not share a suffix with pFilter->zTerm/nTerm, then all |
| 2100 ** required callbacks have been made. In this case exit early. |
| 2101 ** |
| 2102 ** Similarly, if this is a search for an exact match, and the first term |
| 2103 ** of segment apSegment[0] is not a match, exit early. |
| 2104 */ |
| 2105 if( pFilter->zTerm && !isScan ){ |
| 2106 if( pCsr->nTerm<pFilter->nTerm |
| 2107 || (!isPrefix && pCsr->nTerm>pFilter->nTerm) |
| 2108 || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm) |
| 2109 ){ |
| 2110 break; |
| 2111 } |
| 2112 } |
| 2113 |
| 2114 nMerge = 1; |
| 2115 while( nMerge<nSegment |
| 2116 && apSegment[nMerge]->aNode |
| 2117 && apSegment[nMerge]->nTerm==pCsr->nTerm |
| 2118 && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm) |
| 2119 ){ |
| 2120 nMerge++; |
| 2121 } |
| 2122 |
| 2123 assert( isIgnoreEmpty || (isRequirePos && !isColFilter) ); |
| 2124 if( nMerge==1 && !isIgnoreEmpty ){ |
| 2125 pCsr->aDoclist = apSegment[0]->aDoclist; |
| 2126 pCsr->nDoclist = apSegment[0]->nDoclist; |
| 2127 rc = SQLITE_ROW; |
| 2128 }else{ |
| 2129 int nDoclist = 0; /* Size of doclist */ |
| 2130 sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */ |
| 2131 |
| 2132 /* The current term of the first nMerge entries in the array |
| 2133 ** of Fts3SegReader objects is the same. The doclists must be merged |
| 2134 ** and a single term returned with the merged doclist. |
| 2135 */ |
| 2136 for(i=0; i<nMerge; i++){ |
| 2137 fts3SegReaderFirstDocid(apSegment[i]); |
| 2138 } |
| 2139 fts3SegReaderSort(apSegment, nMerge, nMerge, fts3SegReaderDoclistCmp); |
| 2140 while( apSegment[0]->pOffsetList ){ |
| 2141 int j; /* Number of segments that share a docid */ |
| 2142 char *pList; |
| 2143 int nList; |
| 2144 int nByte; |
| 2145 sqlite3_int64 iDocid = apSegment[0]->iDocid; |
| 2146 fts3SegReaderNextDocid(apSegment[0], &pList, &nList); |
| 2147 j = 1; |
| 2148 while( j<nMerge |
| 2149 && apSegment[j]->pOffsetList |
| 2150 && apSegment[j]->iDocid==iDocid |
| 2151 ){ |
| 2152 fts3SegReaderNextDocid(apSegment[j], 0, 0); |
| 2153 j++; |
| 2154 } |
| 2155 |
| 2156 if( isColFilter ){ |
| 2157 fts3ColumnFilter(pFilter->iCol, &pList, &nList); |
| 2158 } |
| 2159 |
| 2160 if( !isIgnoreEmpty || nList>0 ){ |
| 2161 nByte = sqlite3Fts3VarintLen(iDocid-iPrev) + (isRequirePos?nList+1:0); |
| 2162 if( nDoclist+nByte>pCsr->nBuffer ){ |
| 2163 char *aNew; |
| 2164 pCsr->nBuffer = (nDoclist+nByte)*2; |
| 2165 aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer); |
| 2166 if( !aNew ){ |
| 2167 return SQLITE_NOMEM; |
| 2168 } |
| 2169 pCsr->aBuffer = aNew; |
| 2170 } |
| 2171 nDoclist += sqlite3Fts3PutVarint( |
| 2172 &pCsr->aBuffer[nDoclist], iDocid-iPrev |
| 2173 ); |
| 2174 iPrev = iDocid; |
| 2175 if( isRequirePos ){ |
| 2176 memcpy(&pCsr->aBuffer[nDoclist], pList, nList); |
| 2177 nDoclist += nList; |
| 2178 pCsr->aBuffer[nDoclist++] = '\0'; |
| 2179 } |
| 2180 } |
| 2181 |
| 2182 fts3SegReaderSort(apSegment, nMerge, j, fts3SegReaderDoclistCmp); |
| 2183 } |
| 2184 if( nDoclist>0 ){ |
| 2185 pCsr->aDoclist = pCsr->aBuffer; |
| 2186 pCsr->nDoclist = nDoclist; |
| 2187 rc = SQLITE_ROW; |
| 2188 } |
| 2189 } |
| 2190 pCsr->nAdvance = nMerge; |
| 2191 }while( rc==SQLITE_OK ); |
| 2192 |
| 2193 return rc; |
| 2194 } |
| 2195 |
| 2196 void sqlite3Fts3SegReaderFinish( |
| 2197 Fts3SegReaderCursor *pCsr /* Cursor object */ |
| 2198 ){ |
| 2199 if( pCsr ){ |
| 2200 int i; |
| 2201 for(i=0; i<pCsr->nSegment; i++){ |
| 2202 sqlite3Fts3SegReaderFree(pCsr->apSegment[i]); |
| 2203 } |
| 2204 sqlite3_free(pCsr->apSegment); |
| 2205 sqlite3_free(pCsr->aBuffer); |
| 2206 |
| 2207 pCsr->nSegment = 0; |
| 2208 pCsr->apSegment = 0; |
| 2209 pCsr->aBuffer = 0; |
| 2210 } |
| 2211 } |
| 2212 |
| 2213 /* |
| 2214 ** Merge all level iLevel segments in the database into a single |
| 2215 ** iLevel+1 segment. Or, if iLevel<0, merge all segments into a |
| 2216 ** single segment with a level equal to the numerically largest level |
| 2217 ** currently present in the database. |
| 2218 ** |
| 2219 ** If this function is called with iLevel<0, but there is only one |
| 2220 ** segment in the database, SQLITE_DONE is returned immediately. |
| 2221 ** Otherwise, if successful, SQLITE_OK is returned. If an error occurs, |
| 2222 ** an SQLite error code is returned. |
| 2223 */ |
| 2224 static int fts3SegmentMerge(Fts3Table *p, int iLevel){ |
| 2225 int rc; /* Return code */ |
| 2226 int iIdx = 0; /* Index of new segment */ |
| 2227 int iNewLevel = 0; /* Level to create new segment at */ |
| 2228 SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */ |
| 2229 Fts3SegFilter filter; /* Segment term filter condition */ |
| 2230 Fts3SegReaderCursor csr; /* Cursor to iterate through level(s) */ |
| 2231 |
| 2232 rc = sqlite3Fts3SegReaderCursor(p, iLevel, 0, 0, 1, 0, &csr); |
| 2233 if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished; |
| 2234 |
| 2235 if( iLevel==FTS3_SEGCURSOR_ALL ){ |
| 2236 /* This call is to merge all segments in the database to a single |
| 2237 ** segment. The level of the new segment is equal to the the numerically |
| 2238 ** greatest segment level currently present in the database. The index |
| 2239 ** of the new segment is always 0. */ |
| 2240 int nDummy; /* TODO: Remove this */ |
| 2241 if( csr.nSegment==1 ){ |
| 2242 rc = SQLITE_DONE; |
| 2243 goto finished; |
| 2244 } |
| 2245 rc = fts3SegmentCountMax(p, &nDummy, &iNewLevel); |
| 2246 }else{ |
| 2247 /* This call is to merge all segments at level iLevel. Find the next |
| 2248 ** available segment index at level iLevel+1. The call to |
| 2249 ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to |
| 2250 ** a single iLevel+2 segment if necessary. */ |
| 2251 iNewLevel = iLevel+1; |
| 2252 rc = fts3AllocateSegdirIdx(p, iNewLevel, &iIdx); |
| 2253 } |
| 2254 if( rc!=SQLITE_OK ) goto finished; |
| 2255 assert( csr.nSegment>0 ); |
| 2256 assert( iNewLevel>=0 ); |
| 2257 |
| 2258 memset(&filter, 0, sizeof(Fts3SegFilter)); |
| 2259 filter.flags = FTS3_SEGMENT_REQUIRE_POS; |
| 2260 filter.flags |= (iLevel==FTS3_SEGCURSOR_ALL ? FTS3_SEGMENT_IGNORE_EMPTY : 0); |
| 2261 |
| 2262 rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); |
| 2263 while( SQLITE_OK==rc ){ |
| 2264 rc = sqlite3Fts3SegReaderStep(p, &csr); |
| 2265 if( rc!=SQLITE_ROW ) break; |
| 2266 rc = fts3SegWriterAdd(p, &pWriter, 1, |
| 2267 csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist); |
| 2268 } |
| 2269 if( rc!=SQLITE_OK ) goto finished; |
| 2270 assert( pWriter ); |
| 2271 |
| 2272 rc = fts3DeleteSegdir(p, iLevel, csr.apSegment, csr.nSegment); |
| 2273 if( rc!=SQLITE_OK ) goto finished; |
| 2274 rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx); |
| 2275 |
| 2276 finished: |
| 2277 fts3SegWriterFree(pWriter); |
| 2278 sqlite3Fts3SegReaderFinish(&csr); |
| 2279 return rc; |
| 2280 } |
| 2281 |
| 2282 |
| 2283 /* |
| 2284 ** Flush the contents of pendingTerms to a level 0 segment. |
| 2285 */ |
| 2286 int sqlite3Fts3PendingTermsFlush(Fts3Table *p){ |
| 2287 return fts3SegmentMerge(p, FTS3_SEGCURSOR_PENDING); |
| 2288 } |
| 2289 |
| 2290 /* |
| 2291 ** Encode N integers as varints into a blob. |
| 2292 */ |
| 2293 static void fts3EncodeIntArray( |
| 2294 int N, /* The number of integers to encode */ |
| 2295 u32 *a, /* The integer values */ |
| 2296 char *zBuf, /* Write the BLOB here */ |
| 2297 int *pNBuf /* Write number of bytes if zBuf[] used here */ |
| 2298 ){ |
| 2299 int i, j; |
| 2300 for(i=j=0; i<N; i++){ |
| 2301 j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]); |
| 2302 } |
| 2303 *pNBuf = j; |
| 2304 } |
| 2305 |
| 2306 /* |
| 2307 ** Decode a blob of varints into N integers |
| 2308 */ |
| 2309 static void fts3DecodeIntArray( |
| 2310 int N, /* The number of integers to decode */ |
| 2311 u32 *a, /* Write the integer values */ |
| 2312 const char *zBuf, /* The BLOB containing the varints */ |
| 2313 int nBuf /* size of the BLOB */ |
| 2314 ){ |
| 2315 int i, j; |
| 2316 UNUSED_PARAMETER(nBuf); |
| 2317 for(i=j=0; i<N; i++){ |
| 2318 sqlite3_int64 x; |
| 2319 j += sqlite3Fts3GetVarint(&zBuf[j], &x); |
| 2320 assert(j<=nBuf); |
| 2321 a[i] = (u32)(x & 0xffffffff); |
| 2322 } |
| 2323 } |
| 2324 |
| 2325 /* |
| 2326 ** Insert the sizes (in tokens) for each column of the document |
| 2327 ** with docid equal to p->iPrevDocid. The sizes are encoded as |
| 2328 ** a blob of varints. |
| 2329 */ |
| 2330 static void fts3InsertDocsize( |
| 2331 int *pRC, /* Result code */ |
| 2332 Fts3Table *p, /* Table into which to insert */ |
| 2333 u32 *aSz /* Sizes of each column */ |
| 2334 ){ |
| 2335 char *pBlob; /* The BLOB encoding of the document size */ |
| 2336 int nBlob; /* Number of bytes in the BLOB */ |
| 2337 sqlite3_stmt *pStmt; /* Statement used to insert the encoding */ |
| 2338 int rc; /* Result code from subfunctions */ |
| 2339 |
| 2340 if( *pRC ) return; |
| 2341 pBlob = sqlite3_malloc( 10*p->nColumn ); |
| 2342 if( pBlob==0 ){ |
| 2343 *pRC = SQLITE_NOMEM; |
| 2344 return; |
| 2345 } |
| 2346 fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob); |
| 2347 rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0); |
| 2348 if( rc ){ |
| 2349 sqlite3_free(pBlob); |
| 2350 *pRC = rc; |
| 2351 return; |
| 2352 } |
| 2353 sqlite3_bind_int64(pStmt, 1, p->iPrevDocid); |
| 2354 sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free); |
| 2355 sqlite3_step(pStmt); |
| 2356 *pRC = sqlite3_reset(pStmt); |
| 2357 } |
| 2358 |
| 2359 /* |
| 2360 ** Record 0 of the %_stat table contains a blob consisting of N varints, |
| 2361 ** where N is the number of user defined columns in the fts3 table plus |
| 2362 ** two. If nCol is the number of user defined columns, then values of the |
| 2363 ** varints are set as follows: |
| 2364 ** |
| 2365 ** Varint 0: Total number of rows in the table. |
| 2366 ** |
| 2367 ** Varint 1..nCol: For each column, the total number of tokens stored in |
| 2368 ** the column for all rows of the table. |
| 2369 ** |
| 2370 ** Varint 1+nCol: The total size, in bytes, of all text values in all |
| 2371 ** columns of all rows of the table. |
| 2372 ** |
| 2373 */ |
| 2374 static void fts3UpdateDocTotals( |
| 2375 int *pRC, /* The result code */ |
| 2376 Fts3Table *p, /* Table being updated */ |
| 2377 u32 *aSzIns, /* Size increases */ |
| 2378 u32 *aSzDel, /* Size decreases */ |
| 2379 int nChng /* Change in the number of documents */ |
| 2380 ){ |
| 2381 char *pBlob; /* Storage for BLOB written into %_stat */ |
| 2382 int nBlob; /* Size of BLOB written into %_stat */ |
| 2383 u32 *a; /* Array of integers that becomes the BLOB */ |
| 2384 sqlite3_stmt *pStmt; /* Statement for reading and writing */ |
| 2385 int i; /* Loop counter */ |
| 2386 int rc; /* Result code from subfunctions */ |
| 2387 |
| 2388 const int nStat = p->nColumn+2; |
| 2389 |
| 2390 if( *pRC ) return; |
| 2391 a = sqlite3_malloc( (sizeof(u32)+10)*nStat ); |
| 2392 if( a==0 ){ |
| 2393 *pRC = SQLITE_NOMEM; |
| 2394 return; |
| 2395 } |
| 2396 pBlob = (char*)&a[nStat]; |
| 2397 rc = fts3SqlStmt(p, SQL_SELECT_DOCTOTAL, &pStmt, 0); |
| 2398 if( rc ){ |
| 2399 sqlite3_free(a); |
| 2400 *pRC = rc; |
| 2401 return; |
| 2402 } |
| 2403 if( sqlite3_step(pStmt)==SQLITE_ROW ){ |
| 2404 fts3DecodeIntArray(nStat, a, |
| 2405 sqlite3_column_blob(pStmt, 0), |
| 2406 sqlite3_column_bytes(pStmt, 0)); |
| 2407 }else{ |
| 2408 memset(a, 0, sizeof(u32)*(nStat) ); |
| 2409 } |
| 2410 sqlite3_reset(pStmt); |
| 2411 if( nChng<0 && a[0]<(u32)(-nChng) ){ |
| 2412 a[0] = 0; |
| 2413 }else{ |
| 2414 a[0] += nChng; |
| 2415 } |
| 2416 for(i=0; i<p->nColumn+1; i++){ |
| 2417 u32 x = a[i+1]; |
| 2418 if( x+aSzIns[i] < aSzDel[i] ){ |
| 2419 x = 0; |
| 2420 }else{ |
| 2421 x = x + aSzIns[i] - aSzDel[i]; |
| 2422 } |
| 2423 a[i+1] = x; |
| 2424 } |
| 2425 fts3EncodeIntArray(nStat, a, pBlob, &nBlob); |
| 2426 rc = fts3SqlStmt(p, SQL_REPLACE_DOCTOTAL, &pStmt, 0); |
| 2427 if( rc ){ |
| 2428 sqlite3_free(a); |
| 2429 *pRC = rc; |
| 2430 return; |
| 2431 } |
| 2432 sqlite3_bind_blob(pStmt, 1, pBlob, nBlob, SQLITE_STATIC); |
| 2433 sqlite3_step(pStmt); |
| 2434 *pRC = sqlite3_reset(pStmt); |
| 2435 sqlite3_free(a); |
| 2436 } |
| 2437 |
| 2438 /* |
| 2439 ** Handle a 'special' INSERT of the form: |
| 2440 ** |
| 2441 ** "INSERT INTO tbl(tbl) VALUES(<expr>)" |
| 2442 ** |
| 2443 ** Argument pVal contains the result of <expr>. Currently the only |
| 2444 ** meaningful value to insert is the text 'optimize'. |
| 2445 */ |
| 2446 static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){ |
| 2447 int rc; /* Return Code */ |
| 2448 const char *zVal = (const char *)sqlite3_value_text(pVal); |
| 2449 int nVal = sqlite3_value_bytes(pVal); |
| 2450 |
| 2451 if( !zVal ){ |
| 2452 return SQLITE_NOMEM; |
| 2453 }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){ |
| 2454 rc = fts3SegmentMerge(p, FTS3_SEGCURSOR_ALL); |
| 2455 if( rc==SQLITE_DONE ){ |
| 2456 rc = SQLITE_OK; |
| 2457 }else{ |
| 2458 sqlite3Fts3PendingTermsClear(p); |
| 2459 } |
| 2460 #ifdef SQLITE_TEST |
| 2461 }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){ |
| 2462 p->nNodeSize = atoi(&zVal[9]); |
| 2463 rc = SQLITE_OK; |
| 2464 }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){ |
| 2465 p->nMaxPendingData = atoi(&zVal[11]); |
| 2466 rc = SQLITE_OK; |
| 2467 #endif |
| 2468 }else{ |
| 2469 rc = SQLITE_ERROR; |
| 2470 } |
| 2471 |
| 2472 sqlite3Fts3SegmentsClose(p); |
| 2473 return rc; |
| 2474 } |
| 2475 |
| 2476 /* |
| 2477 ** Return the deferred doclist associated with deferred token pDeferred. |
| 2478 ** This function assumes that sqlite3Fts3CacheDeferredDoclists() has already |
| 2479 ** been called to allocate and populate the doclist. |
| 2480 */ |
| 2481 char *sqlite3Fts3DeferredDoclist(Fts3DeferredToken *pDeferred, int *pnByte){ |
| 2482 if( pDeferred->pList ){ |
| 2483 *pnByte = pDeferred->pList->nData; |
| 2484 return pDeferred->pList->aData; |
| 2485 } |
| 2486 *pnByte = 0; |
| 2487 return 0; |
| 2488 } |
| 2489 |
| 2490 /* |
| 2491 ** Helper fucntion for FreeDeferredDoclists(). This function removes all |
| 2492 ** references to deferred doclists from within the tree of Fts3Expr |
| 2493 ** structures headed by |
| 2494 */ |
| 2495 static void fts3DeferredDoclistClear(Fts3Expr *pExpr){ |
| 2496 if( pExpr ){ |
| 2497 fts3DeferredDoclistClear(pExpr->pLeft); |
| 2498 fts3DeferredDoclistClear(pExpr->pRight); |
| 2499 if( pExpr->isLoaded ){ |
| 2500 sqlite3_free(pExpr->aDoclist); |
| 2501 pExpr->isLoaded = 0; |
| 2502 pExpr->aDoclist = 0; |
| 2503 pExpr->nDoclist = 0; |
| 2504 pExpr->pCurrent = 0; |
| 2505 pExpr->iCurrent = 0; |
| 2506 } |
| 2507 } |
| 2508 } |
| 2509 |
| 2510 /* |
| 2511 ** Delete all cached deferred doclists. Deferred doclists are cached |
| 2512 ** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function. |
| 2513 */ |
| 2514 void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){ |
| 2515 Fts3DeferredToken *pDef; |
| 2516 for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){ |
| 2517 sqlite3_free(pDef->pList); |
| 2518 pDef->pList = 0; |
| 2519 } |
| 2520 if( pCsr->pDeferred ){ |
| 2521 fts3DeferredDoclistClear(pCsr->pExpr); |
| 2522 } |
| 2523 } |
| 2524 |
| 2525 /* |
| 2526 ** Free all entries in the pCsr->pDeffered list. Entries are added to |
| 2527 ** this list using sqlite3Fts3DeferToken(). |
| 2528 */ |
| 2529 void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){ |
| 2530 Fts3DeferredToken *pDef; |
| 2531 Fts3DeferredToken *pNext; |
| 2532 for(pDef=pCsr->pDeferred; pDef; pDef=pNext){ |
| 2533 pNext = pDef->pNext; |
| 2534 sqlite3_free(pDef->pList); |
| 2535 sqlite3_free(pDef); |
| 2536 } |
| 2537 pCsr->pDeferred = 0; |
| 2538 } |
| 2539 |
| 2540 /* |
| 2541 ** Generate deferred-doclists for all tokens in the pCsr->pDeferred list |
| 2542 ** based on the row that pCsr currently points to. |
| 2543 ** |
| 2544 ** A deferred-doclist is like any other doclist with position information |
| 2545 ** included, except that it only contains entries for a single row of the |
| 2546 ** table, not for all rows. |
| 2547 */ |
| 2548 int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){ |
| 2549 int rc = SQLITE_OK; /* Return code */ |
| 2550 if( pCsr->pDeferred ){ |
| 2551 int i; /* Used to iterate through table columns */ |
| 2552 sqlite3_int64 iDocid; /* Docid of the row pCsr points to */ |
| 2553 Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */ |
| 2554 |
| 2555 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; |
| 2556 sqlite3_tokenizer *pT = p->pTokenizer; |
| 2557 sqlite3_tokenizer_module const *pModule = pT->pModule; |
| 2558 |
| 2559 assert( pCsr->isRequireSeek==0 ); |
| 2560 iDocid = sqlite3_column_int64(pCsr->pStmt, 0); |
| 2561 |
| 2562 for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){ |
| 2563 const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1); |
| 2564 sqlite3_tokenizer_cursor *pTC = 0; |
| 2565 |
| 2566 rc = pModule->xOpen(pT, zText, -1, &pTC); |
| 2567 while( rc==SQLITE_OK ){ |
| 2568 char const *zToken; /* Buffer containing token */ |
| 2569 int nToken; /* Number of bytes in token */ |
| 2570 int iDum1, iDum2; /* Dummy variables */ |
| 2571 int iPos; /* Position of token in zText */ |
| 2572 |
| 2573 pTC->pTokenizer = pT; |
| 2574 rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos); |
| 2575 for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ |
| 2576 Fts3PhraseToken *pPT = pDef->pToken; |
| 2577 if( (pDef->iCol>=p->nColumn || pDef->iCol==i) |
| 2578 && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken)) |
| 2579 && (0==memcmp(zToken, pPT->z, pPT->n)) |
| 2580 ){ |
| 2581 fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc); |
| 2582 } |
| 2583 } |
| 2584 } |
| 2585 if( pTC ) pModule->xClose(pTC); |
| 2586 if( rc==SQLITE_DONE ) rc = SQLITE_OK; |
| 2587 } |
| 2588 |
| 2589 for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ |
| 2590 if( pDef->pList ){ |
| 2591 rc = fts3PendingListAppendVarint(&pDef->pList, 0); |
| 2592 } |
| 2593 } |
| 2594 } |
| 2595 |
| 2596 return rc; |
| 2597 } |
| 2598 |
| 2599 /* |
| 2600 ** Add an entry for token pToken to the pCsr->pDeferred list. |
| 2601 */ |
| 2602 int sqlite3Fts3DeferToken( |
| 2603 Fts3Cursor *pCsr, /* Fts3 table cursor */ |
| 2604 Fts3PhraseToken *pToken, /* Token to defer */ |
| 2605 int iCol /* Column that token must appear in (or -1) */ |
| 2606 ){ |
| 2607 Fts3DeferredToken *pDeferred; |
| 2608 pDeferred = sqlite3_malloc(sizeof(*pDeferred)); |
| 2609 if( !pDeferred ){ |
| 2610 return SQLITE_NOMEM; |
| 2611 } |
| 2612 memset(pDeferred, 0, sizeof(*pDeferred)); |
| 2613 pDeferred->pToken = pToken; |
| 2614 pDeferred->pNext = pCsr->pDeferred; |
| 2615 pDeferred->iCol = iCol; |
| 2616 pCsr->pDeferred = pDeferred; |
| 2617 |
| 2618 assert( pToken->pDeferred==0 ); |
| 2619 pToken->pDeferred = pDeferred; |
| 2620 |
| 2621 return SQLITE_OK; |
| 2622 } |
| 2623 |
| 2624 |
| 2625 /* |
| 2626 ** This function does the work for the xUpdate method of FTS3 virtual |
| 2627 ** tables. |
| 2628 */ |
| 2629 int sqlite3Fts3UpdateMethod( |
| 2630 sqlite3_vtab *pVtab, /* FTS3 vtab object */ |
| 2631 int nArg, /* Size of argument array */ |
| 2632 sqlite3_value **apVal, /* Array of arguments */ |
| 2633 sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ |
| 2634 ){ |
| 2635 Fts3Table *p = (Fts3Table *)pVtab; |
| 2636 int rc = SQLITE_OK; /* Return Code */ |
| 2637 int isRemove = 0; /* True for an UPDATE or DELETE */ |
| 2638 sqlite3_int64 iRemove = 0; /* Rowid removed by UPDATE or DELETE */ |
| 2639 u32 *aSzIns; /* Sizes of inserted documents */ |
| 2640 u32 *aSzDel; /* Sizes of deleted documents */ |
| 2641 int nChng = 0; /* Net change in number of documents */ |
| 2642 |
| 2643 assert( p->pSegments==0 ); |
| 2644 |
| 2645 /* Allocate space to hold the change in document sizes */ |
| 2646 aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*(p->nColumn+1)*2 ); |
| 2647 if( aSzIns==0 ) return SQLITE_NOMEM; |
| 2648 aSzDel = &aSzIns[p->nColumn+1]; |
| 2649 memset(aSzIns, 0, sizeof(aSzIns[0])*(p->nColumn+1)*2); |
| 2650 |
| 2651 /* If this is a DELETE or UPDATE operation, remove the old record. */ |
| 2652 if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){ |
| 2653 int isEmpty = 0; |
| 2654 rc = fts3IsEmpty(p, apVal, &isEmpty); |
| 2655 if( rc==SQLITE_OK ){ |
| 2656 if( isEmpty ){ |
| 2657 /* Deleting this row means the whole table is empty. In this case |
| 2658 ** delete the contents of all three tables and throw away any |
| 2659 ** data in the pendingTerms hash table. |
| 2660 */ |
| 2661 rc = fts3DeleteAll(p); |
| 2662 }else{ |
| 2663 isRemove = 1; |
| 2664 iRemove = sqlite3_value_int64(apVal[0]); |
| 2665 rc = fts3PendingTermsDocid(p, iRemove); |
| 2666 fts3DeleteTerms(&rc, p, apVal, aSzDel); |
| 2667 fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, apVal); |
| 2668 if( p->bHasDocsize ){ |
| 2669 fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, apVal); |
| 2670 } |
| 2671 nChng--; |
| 2672 } |
| 2673 } |
| 2674 }else if( sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL ){ |
| 2675 sqlite3_free(aSzIns); |
| 2676 return fts3SpecialInsert(p, apVal[p->nColumn+2]); |
| 2677 } |
| 2678 |
| 2679 /* If this is an INSERT or UPDATE operation, insert the new record. */ |
| 2680 if( nArg>1 && rc==SQLITE_OK ){ |
| 2681 rc = fts3InsertData(p, apVal, pRowid); |
| 2682 if( rc==SQLITE_OK && (!isRemove || *pRowid!=iRemove) ){ |
| 2683 rc = fts3PendingTermsDocid(p, *pRowid); |
| 2684 } |
| 2685 if( rc==SQLITE_OK ){ |
| 2686 rc = fts3InsertTerms(p, apVal, aSzIns); |
| 2687 } |
| 2688 if( p->bHasDocsize ){ |
| 2689 fts3InsertDocsize(&rc, p, aSzIns); |
| 2690 } |
| 2691 nChng++; |
| 2692 } |
| 2693 |
| 2694 if( p->bHasStat ){ |
| 2695 fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng); |
| 2696 } |
| 2697 |
| 2698 sqlite3_free(aSzIns); |
| 2699 sqlite3Fts3SegmentsClose(p); |
| 2700 return rc; |
| 2701 } |
| 2702 |
| 2703 /* |
| 2704 ** Flush any data in the pending-terms hash table to disk. If successful, |
| 2705 ** merge all segments in the database (including the new segment, if |
| 2706 ** there was any data to flush) into a single segment. |
| 2707 */ |
| 2708 int sqlite3Fts3Optimize(Fts3Table *p){ |
| 2709 int rc; |
| 2710 rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0); |
| 2711 if( rc==SQLITE_OK ){ |
| 2712 rc = fts3SegmentMerge(p, FTS3_SEGCURSOR_ALL); |
| 2713 if( rc==SQLITE_OK ){ |
| 2714 rc = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); |
| 2715 if( rc==SQLITE_OK ){ |
| 2716 sqlite3Fts3PendingTermsClear(p); |
| 2717 } |
| 2718 }else{ |
| 2719 sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0); |
| 2720 sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); |
| 2721 } |
| 2722 } |
| 2723 sqlite3Fts3SegmentsClose(p); |
| 2724 return rc; |
| 2725 } |
| 2726 |
| 2727 #endif |
OLD | NEW |