OLD | NEW |
| (Empty) |
1 // Copyright (c) 2010 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #ifndef BASE_SINGLETON_H_ | |
6 #define BASE_SINGLETON_H_ | |
7 #pragma once | |
8 | |
9 #include "base/at_exit.h" | |
10 #include "base/atomicops.h" | |
11 #include "base/third_party/dynamic_annotations/dynamic_annotations.h" | |
12 #include "base/threading/platform_thread.h" | |
13 #include "base/threading/thread_restrictions.h" | |
14 | |
15 // Default traits for Singleton<Type>. Calls operator new and operator delete on | |
16 // the object. Registers automatic deletion at process exit. | |
17 // Overload if you need arguments or another memory allocation function. | |
18 template<typename Type> | |
19 struct DefaultSingletonTraits { | |
20 // Allocates the object. | |
21 static Type* New() { | |
22 // The parenthesis is very important here; it forces POD type | |
23 // initialization. | |
24 return new Type(); | |
25 } | |
26 | |
27 // Destroys the object. | |
28 static void Delete(Type* x) { | |
29 delete x; | |
30 } | |
31 | |
32 // Set to true to automatically register deletion of the object on process | |
33 // exit. See below for the required call that makes this happen. | |
34 static const bool kRegisterAtExit = true; | |
35 | |
36 // Set to false to disallow access on a non-joinable thread. This is | |
37 // different from kRegisterAtExit because StaticMemorySingletonTraits allows | |
38 // access on non-joinable threads, and gracefully handles this. | |
39 static const bool kAllowedToAccessOnNonjoinableThread = false; | |
40 }; | |
41 | |
42 | |
43 // Alternate traits for use with the Singleton<Type>. Identical to | |
44 // DefaultSingletonTraits except that the Singleton will not be cleaned up | |
45 // at exit. | |
46 template<typename Type> | |
47 struct LeakySingletonTraits : public DefaultSingletonTraits<Type> { | |
48 static const bool kRegisterAtExit = false; | |
49 static const bool kAllowedToAccessOnNonjoinableThread = true; | |
50 }; | |
51 | |
52 | |
53 // Alternate traits for use with the Singleton<Type>. Allocates memory | |
54 // for the singleton instance from a static buffer. The singleton will | |
55 // be cleaned up at exit, but can't be revived after destruction unless | |
56 // the Resurrect() method is called. | |
57 // | |
58 // This is useful for a certain category of things, notably logging and | |
59 // tracing, where the singleton instance is of a type carefully constructed to | |
60 // be safe to access post-destruction. | |
61 // In logging and tracing you'll typically get stray calls at odd times, like | |
62 // during static destruction, thread teardown and the like, and there's a | |
63 // termination race on the heap-based singleton - e.g. if one thread calls | |
64 // get(), but then another thread initiates AtExit processing, the first thread | |
65 // may call into an object residing in unallocated memory. If the instance is | |
66 // allocated from the data segment, then this is survivable. | |
67 // | |
68 // The destructor is to deallocate system resources, in this case to unregister | |
69 // a callback the system will invoke when logging levels change. Note that | |
70 // this is also used in e.g. Chrome Frame, where you have to allow for the | |
71 // possibility of loading briefly into someone else's process space, and | |
72 // so leaking is not an option, as that would sabotage the state of your host | |
73 // process once you've unloaded. | |
74 template <typename Type> | |
75 struct StaticMemorySingletonTraits { | |
76 // WARNING: User has to deal with get() in the singleton class | |
77 // this is traits for returning NULL. | |
78 static Type* New() { | |
79 if (base::subtle::NoBarrier_AtomicExchange(&dead_, 1)) | |
80 return NULL; | |
81 Type* ptr = reinterpret_cast<Type*>(buffer_); | |
82 | |
83 // We are protected by a memory barrier. | |
84 new(ptr) Type(); | |
85 return ptr; | |
86 } | |
87 | |
88 static void Delete(Type* p) { | |
89 base::subtle::NoBarrier_Store(&dead_, 1); | |
90 base::subtle::MemoryBarrier(); | |
91 if (p != NULL) | |
92 p->Type::~Type(); | |
93 } | |
94 | |
95 static const bool kRegisterAtExit = true; | |
96 static const bool kAllowedToAccessOnNonjoinableThread = true; | |
97 | |
98 // Exposed for unittesting. | |
99 static void Resurrect() { | |
100 base::subtle::NoBarrier_Store(&dead_, 0); | |
101 } | |
102 | |
103 private: | |
104 static const size_t kBufferSize = (sizeof(Type) + | |
105 sizeof(intptr_t) - 1) / sizeof(intptr_t); | |
106 static intptr_t buffer_[kBufferSize]; | |
107 | |
108 // Signal the object was already deleted, so it is not revived. | |
109 static base::subtle::Atomic32 dead_; | |
110 }; | |
111 | |
112 template <typename Type> intptr_t | |
113 StaticMemorySingletonTraits<Type>::buffer_[kBufferSize]; | |
114 template <typename Type> base::subtle::Atomic32 | |
115 StaticMemorySingletonTraits<Type>::dead_ = 0; | |
116 | |
117 // The Singleton<Type, Traits, DifferentiatingType> class manages a single | |
118 // instance of Type which will be created on first use and will be destroyed at | |
119 // normal process exit). The Trait::Delete function will not be called on | |
120 // abnormal process exit. | |
121 // | |
122 // DifferentiatingType is used as a key to differentiate two different | |
123 // singletons having the same memory allocation functions but serving a | |
124 // different purpose. This is mainly used for Locks serving different purposes. | |
125 // | |
126 // Example usage: | |
127 // | |
128 // In your header: | |
129 // #include "base/singleton.h" | |
130 // class FooClass { | |
131 // public: | |
132 // static FooClass* GetInstance(); <-- See comment below on this. | |
133 // void Bar() { ... } | |
134 // private: | |
135 // FooClass() { ... } | |
136 // friend struct DefaultSingletonTraits<FooClass>; | |
137 // | |
138 // DISALLOW_COPY_AND_ASSIGN(FooClass); | |
139 // }; | |
140 // | |
141 // In your source file: | |
142 // FooClass* FooClass::GetInstance() { | |
143 // return Singleton<FooClass>::get(); | |
144 // } | |
145 // | |
146 // And to call methods on FooClass: | |
147 // FooClass::GetInstance()->Bar(); | |
148 // | |
149 // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance | |
150 // and it is important that FooClass::GetInstance() is not inlined in the | |
151 // header. This makes sure that when source files from multiple targets include | |
152 // this header they don't end up with different copies of the inlined code | |
153 // creating multiple copies of the singleton. | |
154 // | |
155 // Singleton<> has no non-static members and doesn't need to actually be | |
156 // instantiated. | |
157 // | |
158 // This class is itself thread-safe. The underlying Type must of course be | |
159 // thread-safe if you want to use it concurrently. Two parameters may be tuned | |
160 // depending on the user's requirements. | |
161 // | |
162 // Glossary: | |
163 // RAE = kRegisterAtExit | |
164 // | |
165 // On every platform, if Traits::RAE is true, the singleton will be destroyed at | |
166 // process exit. More precisely it uses base::AtExitManager which requires an | |
167 // object of this type to be instantiated. AtExitManager mimics the semantics | |
168 // of atexit() such as LIFO order but under Windows is safer to call. For more | |
169 // information see at_exit.h. | |
170 // | |
171 // If Traits::RAE is false, the singleton will not be freed at process exit, | |
172 // thus the singleton will be leaked if it is ever accessed. Traits::RAE | |
173 // shouldn't be false unless absolutely necessary. Remember that the heap where | |
174 // the object is allocated may be destroyed by the CRT anyway. | |
175 // | |
176 // Caveats: | |
177 // (a) Every call to get(), operator->() and operator*() incurs some overhead | |
178 // (16ns on my P4/2.8GHz) to check whether the object has already been | |
179 // initialized. You may wish to cache the result of get(); it will not | |
180 // change. | |
181 // | |
182 // (b) Your factory function must never throw an exception. This class is not | |
183 // exception-safe. | |
184 // | |
185 template <typename Type, | |
186 typename Traits = DefaultSingletonTraits<Type>, | |
187 typename DifferentiatingType = Type> | |
188 class Singleton { | |
189 private: | |
190 // Classes using the Singleton<T> pattern should declare a GetInstance() | |
191 // method and call Singleton::get() from within that. | |
192 friend Type* Type::GetInstance(); | |
193 | |
194 // This class is safe to be constructed and copy-constructed since it has no | |
195 // member. | |
196 | |
197 // Return a pointer to the one true instance of the class. | |
198 static Type* get() { | |
199 if (!Traits::kAllowedToAccessOnNonjoinableThread) | |
200 base::ThreadRestrictions::AssertSingletonAllowed(); | |
201 | |
202 // Our AtomicWord doubles as a spinlock, where a value of | |
203 // kBeingCreatedMarker means the spinlock is being held for creation. | |
204 static const base::subtle::AtomicWord kBeingCreatedMarker = 1; | |
205 | |
206 base::subtle::AtomicWord value = base::subtle::NoBarrier_Load(&instance_); | |
207 if (value != 0 && value != kBeingCreatedMarker) { | |
208 // See the corresponding HAPPENS_BEFORE below. | |
209 ANNOTATE_HAPPENS_AFTER(&instance_); | |
210 return reinterpret_cast<Type*>(value); | |
211 } | |
212 | |
213 // Object isn't created yet, maybe we will get to create it, let's try... | |
214 if (base::subtle::Acquire_CompareAndSwap(&instance_, | |
215 0, | |
216 kBeingCreatedMarker) == 0) { | |
217 // instance_ was NULL and is now kBeingCreatedMarker. Only one thread | |
218 // will ever get here. Threads might be spinning on us, and they will | |
219 // stop right after we do this store. | |
220 Type* newval = Traits::New(); | |
221 | |
222 // This annotation helps race detectors recognize correct lock-less | |
223 // synchronization between different threads calling get(). | |
224 // See the corresponding HAPPENS_AFTER below and above. | |
225 ANNOTATE_HAPPENS_BEFORE(&instance_); | |
226 base::subtle::Release_Store( | |
227 &instance_, reinterpret_cast<base::subtle::AtomicWord>(newval)); | |
228 | |
229 if (newval != NULL && Traits::kRegisterAtExit) | |
230 base::AtExitManager::RegisterCallback(OnExit, NULL); | |
231 | |
232 return newval; | |
233 } | |
234 | |
235 // We hit a race. Another thread beat us and either: | |
236 // - Has the object in BeingCreated state | |
237 // - Already has the object created... | |
238 // We know value != NULL. It could be kBeingCreatedMarker, or a valid ptr. | |
239 // Unless your constructor can be very time consuming, it is very unlikely | |
240 // to hit this race. When it does, we just spin and yield the thread until | |
241 // the object has been created. | |
242 while (true) { | |
243 value = base::subtle::NoBarrier_Load(&instance_); | |
244 if (value != kBeingCreatedMarker) | |
245 break; | |
246 base::PlatformThread::YieldCurrentThread(); | |
247 } | |
248 | |
249 // See the corresponding HAPPENS_BEFORE above. | |
250 ANNOTATE_HAPPENS_AFTER(&instance_); | |
251 return reinterpret_cast<Type*>(value); | |
252 } | |
253 | |
254 // Adapter function for use with AtExit(). This should be called single | |
255 // threaded, so don't use atomic operations. | |
256 // Calling OnExit while singleton is in use by other threads is a mistake. | |
257 static void OnExit(void* /*unused*/) { | |
258 // AtExit should only ever be register after the singleton instance was | |
259 // created. We should only ever get here with a valid instance_ pointer. | |
260 Traits::Delete( | |
261 reinterpret_cast<Type*>(base::subtle::NoBarrier_Load(&instance_))); | |
262 instance_ = 0; | |
263 } | |
264 static base::subtle::AtomicWord instance_; | |
265 }; | |
266 | |
267 template <typename Type, typename Traits, typename DifferentiatingType> | |
268 base::subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>:: | |
269 instance_ = 0; | |
270 | |
271 #endif // BASE_SINGLETON_H_ | |
OLD | NEW |