OLD | NEW |
(Empty) | |
| 1 #!/usr/bin/python |
| 2 # |
| 3 # Copyright (C) 2009 Google Inc. |
| 4 # |
| 5 # Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 # you may not use this file except in compliance with the License. |
| 7 # You may obtain a copy of the License at |
| 8 # |
| 9 # http://www.apache.org/licenses/LICENSE-2.0 |
| 10 # |
| 11 # Unless required by applicable law or agreed to in writing, software |
| 12 # distributed under the License is distributed on an "AS IS" BASIS, |
| 13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 # See the License for the specific language governing permissions and |
| 15 # limitations under the License. |
| 16 |
| 17 """Converts Python data into data for Google Visualization API clients. |
| 18 |
| 19 This library can be used to create a google.visualization.DataTable usable by |
| 20 visualizations built on the Google Visualization API. Output formats are raw |
| 21 JSON, JSON response, and JavaScript. |
| 22 |
| 23 See http://code.google.com/apis/visualization/ for documentation on the |
| 24 Google Visualization API. |
| 25 """ |
| 26 |
| 27 __author__ = "Amit Weinstein, Misha Seltzer" |
| 28 |
| 29 import cgi |
| 30 import datetime |
| 31 import types |
| 32 |
| 33 |
| 34 class DataTableException(Exception): |
| 35 """The general exception object thrown by DataTable.""" |
| 36 pass |
| 37 |
| 38 |
| 39 class DataTable(object): |
| 40 """Wraps the data to convert to a Google Visualization API DataTable. |
| 41 |
| 42 Create this object, populate it with data, then call one of the ToJS... |
| 43 methods to return a string representation of the data in the format described. |
| 44 |
| 45 You can clear all data from the object to reuse it, but you cannot clear |
| 46 individual cells, rows, or columns. You also cannot modify the table schema |
| 47 specified in the class constructor. |
| 48 |
| 49 You can add new data one or more rows at a time. All data added to an |
| 50 instantiated DataTable must conform to the schema passed in to __init__(). |
| 51 |
| 52 You can reorder the columns in the output table, and also specify row sorting |
| 53 order by column. The default column order is according to the original |
| 54 table_description parameter. Default row sort order is ascending, by column |
| 55 1 values. For a dictionary, we sort the keys for order. |
| 56 |
| 57 The data and the table_description are closely tied, as described here: |
| 58 |
| 59 The table schema is defined in the class constructor's table_description |
| 60 parameter. The user defines each column using a tuple of |
| 61 (id[, type[, label[, custom_properties]]]). The default value for type is |
| 62 string, label is the same as ID if not specified, and custom properties is |
| 63 an empty dictionary if not specified. |
| 64 |
| 65 table_description is a dictionary or list, containing one or more column |
| 66 descriptor tuples, nested dictionaries, and lists. Each dictionary key, list |
| 67 element, or dictionary element must eventually be defined as |
| 68 a column description tuple. Here's an example of a dictionary where the key |
| 69 is a tuple, and the value is a list of two tuples: |
| 70 {('a', 'number'): [('b', 'number'), ('c', 'string')]} |
| 71 |
| 72 This flexibility in data entry enables you to build and manipulate your data |
| 73 in a Python structure that makes sense for your program. |
| 74 |
| 75 Add data to the table using the same nested design as the table's |
| 76 table_description, replacing column descriptor tuples with cell data, and |
| 77 each row is an element in the top level collection. This will be a bit |
| 78 clearer after you look at the following examples showing the |
| 79 table_description, matching data, and the resulting table: |
| 80 |
| 81 Columns as list of tuples [col1, col2, col3] |
| 82 table_description: [('a', 'number'), ('b', 'string')] |
| 83 AppendData( [[1, 'z'], [2, 'w'], [4, 'o'], [5, 'k']] ) |
| 84 Table: |
| 85 a b <--- these are column ids/labels |
| 86 1 z |
| 87 2 w |
| 88 4 o |
| 89 5 k |
| 90 |
| 91 Dictionary of columns, where key is a column, and value is a list of |
| 92 columns {col1: [col2, col3]} |
| 93 table_description: {('a', 'number'): [('b', 'number'), ('c', 'string')]} |
| 94 AppendData( data: {1: [2, 'z'], 3: [4, 'w']} |
| 95 Table: |
| 96 a b c |
| 97 1 2 z |
| 98 3 4 w |
| 99 |
| 100 Dictionary where key is a column, and the value is itself a dictionary of |
| 101 columns {col1: {col2, col3}} |
| 102 table_description: {('a', 'number'): {'b': 'number', 'c': 'string'}} |
| 103 AppendData( data: {1: {'b': 2, 'c': 'z'}, 3: {'b': 4, 'c': 'w'}} |
| 104 Table: |
| 105 a b c |
| 106 1 2 z |
| 107 3 4 w |
| 108 """ |
| 109 |
| 110 def __init__(self, table_description, data=None, custom_properties=None): |
| 111 """Initialize the data table from a table schema and (optionally) data. |
| 112 |
| 113 See the class documentation for more information on table schema and data |
| 114 values. |
| 115 |
| 116 Args: |
| 117 table_description: A table schema, following one of the formats described |
| 118 in TableDescriptionParser(). Schemas describe the |
| 119 column names, data types, and labels. See |
| 120 TableDescriptionParser() for acceptable formats. |
| 121 data: Optional. If given, fills the table with the given data. The data |
| 122 structure must be consistent with schema in table_description. See |
| 123 the class documentation for more information on acceptable data. You |
| 124 can add data later by calling AppendData(). |
| 125 custom_properties: Optional. A dictionary from string to string that |
| 126 goes into the table's custom properties. This can be |
| 127 later changed by changing self.custom_properties. |
| 128 |
| 129 Raises: |
| 130 DataTableException: Raised if the data and the description did not match, |
| 131 or did not use the supported formats. |
| 132 """ |
| 133 self.__columns = self.TableDescriptionParser(table_description) |
| 134 self.__data = [] |
| 135 self.custom_properties = {} |
| 136 if custom_properties is not None: |
| 137 self.custom_properties = custom_properties |
| 138 if data: |
| 139 self.LoadData(data) |
| 140 |
| 141 @staticmethod |
| 142 def _EscapeValueForCsv(v): |
| 143 """Escapes the value for use in a CSV file. |
| 144 |
| 145 Puts the string in double-quotes, and escapes any inner double-quotes by |
| 146 doubling them. |
| 147 |
| 148 Args: |
| 149 v: The value to escape. |
| 150 |
| 151 Returns: |
| 152 The escaped values. |
| 153 """ |
| 154 return '"%s"' % v.replace('"', '""') |
| 155 |
| 156 @staticmethod |
| 157 def _EscapeValue(v): |
| 158 """Puts the string in quotes, and escapes any inner quotes and slashes.""" |
| 159 if isinstance(v, unicode): |
| 160 # Here we use repr as in the usual case, but on unicode strings, it |
| 161 # also escapes the unicode characters (which we want to leave as is). |
| 162 # So, after repr() we decode using raw-unicode-escape, which decodes |
| 163 # only the unicode characters, and leaves all the rest (", ', \n and |
| 164 # more) escaped. |
| 165 # We don't take the first character, because repr adds a u in the |
| 166 # beginning of the string (usual repr output for unicode is u'...'). |
| 167 return repr(v).decode("raw-unicode-escape")[1:] |
| 168 # Here we use python built-in escaping mechanism for string using repr. |
| 169 return repr(str(v)) |
| 170 |
| 171 @staticmethod |
| 172 def _EscapeCustomProperties(custom_properties): |
| 173 """Escapes the custom properties dictionary.""" |
| 174 l = [] |
| 175 for key, value in custom_properties.iteritems(): |
| 176 l.append("%s:%s" % (DataTable._EscapeValue(key), |
| 177 DataTable._EscapeValue(value))) |
| 178 return "{%s}" % ",".join(l) |
| 179 |
| 180 @staticmethod |
| 181 def SingleValueToJS(value, value_type, escape_func=None): |
| 182 """Translates a single value and type into a JS value. |
| 183 |
| 184 Internal helper method. |
| 185 |
| 186 Args: |
| 187 value: The value which should be converted |
| 188 value_type: One of "string", "number", "boolean", "date", "datetime" or |
| 189 "timeofday". |
| 190 escape_func: The function to use for escaping strings. |
| 191 |
| 192 Returns: |
| 193 The proper JS format (as string) of the given value according to the |
| 194 given value_type. For None, we simply return "null". |
| 195 If a tuple is given, it should be in one of the following forms: |
| 196 - (value, formatted value) |
| 197 - (value, formatted value, custom properties) |
| 198 where the formatted value is a string, and custom properties is a |
| 199 dictionary of the custom properties for this cell. |
| 200 To specify custom properties without specifying formatted value, one can |
| 201 pass None as the formatted value. |
| 202 One can also have a null-valued cell with formatted value and/or custom |
| 203 properties by specifying None for the value. |
| 204 This method ignores the custom properties except for checking that it is a |
| 205 dictionary. The custom properties are handled in the ToJSon and ToJSCode |
| 206 methods. |
| 207 The real type of the given value is not strictly checked. For example, |
| 208 any type can be used for string - as we simply take its str( ) and for |
| 209 boolean value we just check "if value". |
| 210 Examples: |
| 211 SingleValueToJS(None, "boolean") returns "null" |
| 212 SingleValueToJS(False, "boolean") returns "false" |
| 213 SingleValueToJS((5, "5$"), "number") returns ("5", "'5$'") |
| 214 SingleValueToJS((None, "5$"), "number") returns ("null", "'5$'") |
| 215 |
| 216 Raises: |
| 217 DataTableException: The value and type did not match in a not-recoverable |
| 218 way, for example given value 'abc' for type 'number'. |
| 219 """ |
| 220 if escape_func is None: |
| 221 escape_func = DataTable._EscapeValue |
| 222 if isinstance(value, tuple): |
| 223 # In case of a tuple, we run the same function on the value itself and |
| 224 # add the formatted value. |
| 225 if (len(value) not in [2, 3] or |
| 226 (len(value) == 3 and not isinstance(value[2], dict))): |
| 227 raise DataTableException("Wrong format for value and formatting - %s." % |
| 228 str(value)) |
| 229 if not isinstance(value[1], types.StringTypes + (types.NoneType,)): |
| 230 raise DataTableException("Formatted value is not string, given %s." % |
| 231 type(value[1])) |
| 232 js_value = DataTable.SingleValueToJS(value[0], value_type) |
| 233 if value[1] is None: |
| 234 return (js_value, None) |
| 235 return (js_value, escape_func(value[1])) |
| 236 |
| 237 # The standard case - no formatting. |
| 238 t_value = type(value) |
| 239 if value is None: |
| 240 return "null" |
| 241 if value_type == "boolean": |
| 242 if value: |
| 243 return "true" |
| 244 return "false" |
| 245 |
| 246 elif value_type == "number": |
| 247 if isinstance(value, (int, long, float)): |
| 248 return str(value) |
| 249 raise DataTableException("Wrong type %s when expected number" % t_value) |
| 250 |
| 251 elif value_type == "string": |
| 252 if isinstance(value, tuple): |
| 253 raise DataTableException("Tuple is not allowed as string value.") |
| 254 return escape_func(value) |
| 255 |
| 256 elif value_type == "date": |
| 257 if not isinstance(value, (datetime.date, datetime.datetime)): |
| 258 raise DataTableException("Wrong type %s when expected date" % t_value) |
| 259 # We need to shift the month by 1 to match JS Date format |
| 260 return "new Date(%d,%d,%d)" % (value.year, value.month - 1, value.day) |
| 261 |
| 262 elif value_type == "timeofday": |
| 263 if not isinstance(value, (datetime.time, datetime.datetime)): |
| 264 raise DataTableException("Wrong type %s when expected time" % t_value) |
| 265 return "[%d,%d,%d]" % (value.hour, value.minute, value.second) |
| 266 |
| 267 elif value_type == "datetime": |
| 268 if not isinstance(value, datetime.datetime): |
| 269 raise DataTableException("Wrong type %s when expected datetime" % |
| 270 t_value) |
| 271 return "new Date(%d,%d,%d,%d,%d,%d)" % (value.year, |
| 272 value.month - 1, # To match JS |
| 273 value.day, |
| 274 value.hour, |
| 275 value.minute, |
| 276 value.second) |
| 277 # If we got here, it means the given value_type was not one of the |
| 278 # supported types. |
| 279 raise DataTableException("Unsupported type %s" % value_type) |
| 280 |
| 281 @staticmethod |
| 282 def ColumnTypeParser(description): |
| 283 """Parses a single column description. Internal helper method. |
| 284 |
| 285 Args: |
| 286 description: a column description in the possible formats: |
| 287 'id' |
| 288 ('id',) |
| 289 ('id', 'type') |
| 290 ('id', 'type', 'label') |
| 291 ('id', 'type', 'label', {'custom_prop1': 'custom_val1'}) |
| 292 Returns: |
| 293 Dictionary with the following keys: id, label, type, and |
| 294 custom_properties where: |
| 295 - If label not given, it equals the id. |
| 296 - If type not given, string is used by default. |
| 297 - If custom properties are not given, an empty dictionary is used by |
| 298 default. |
| 299 |
| 300 Raises: |
| 301 DataTableException: The column description did not match the RE, or |
| 302 unsupported type was passed. |
| 303 """ |
| 304 if not description: |
| 305 raise DataTableException("Description error: empty description given") |
| 306 |
| 307 if not isinstance(description, (types.StringTypes, tuple)): |
| 308 raise DataTableException("Description error: expected either string or " |
| 309 "tuple, got %s." % type(description)) |
| 310 |
| 311 if isinstance(description, types.StringTypes): |
| 312 description = (description,) |
| 313 |
| 314 # According to the tuple's length, we fill the keys |
| 315 # We verify everything is of type string |
| 316 for elem in description[:3]: |
| 317 if not isinstance(elem, types.StringTypes): |
| 318 raise DataTableException("Description error: expected tuple of " |
| 319 "strings, current element of type %s." % |
| 320 type(elem)) |
| 321 desc_dict = {"id": description[0], |
| 322 "label": description[0], |
| 323 "type": "string", |
| 324 "custom_properties": {}} |
| 325 if len(description) > 1: |
| 326 desc_dict["type"] = description[1].lower() |
| 327 if len(description) > 2: |
| 328 desc_dict["label"] = description[2] |
| 329 if len(description) > 3: |
| 330 if not isinstance(description[3], dict): |
| 331 raise DataTableException("Description error: expected custom " |
| 332 "properties of type dict, current element " |
| 333 "of type %s." % type(description[3])) |
| 334 desc_dict["custom_properties"] = description[3] |
| 335 if len(description) > 4: |
| 336 raise DataTableException("Description error: tuple of length > 4") |
| 337 if desc_dict["type"] not in ["string", "number", "boolean", |
| 338 "date", "datetime", "timeofday"]: |
| 339 raise DataTableException( |
| 340 "Description error: unsupported type '%s'" % desc_dict["type"]) |
| 341 return desc_dict |
| 342 |
| 343 @staticmethod |
| 344 def TableDescriptionParser(table_description, depth=0): |
| 345 """Parses the table_description object for internal use. |
| 346 |
| 347 Parses the user-submitted table description into an internal format used |
| 348 by the Python DataTable class. Returns the flat list of parsed columns. |
| 349 |
| 350 Args: |
| 351 table_description: A description of the table which should comply |
| 352 with one of the formats described below. |
| 353 depth: Optional. The depth of the first level in the current description. |
| 354 Used by recursive calls to this function. |
| 355 |
| 356 Returns: |
| 357 List of columns, where each column represented by a dictionary with the |
| 358 keys: id, label, type, depth, container which means the following: |
| 359 - id: the id of the column |
| 360 - name: The name of the column |
| 361 - type: The datatype of the elements in this column. Allowed types are |
| 362 described in ColumnTypeParser(). |
| 363 - depth: The depth of this column in the table description |
| 364 - container: 'dict', 'iter' or 'scalar' for parsing the format easily. |
| 365 - custom_properties: The custom properties for this column. |
| 366 The returned description is flattened regardless of how it was given. |
| 367 |
| 368 Raises: |
| 369 DataTableException: Error in a column description or in the description |
| 370 structure. |
| 371 |
| 372 Examples: |
| 373 A column description can be of the following forms: |
| 374 'id' |
| 375 ('id',) |
| 376 ('id', 'type') |
| 377 ('id', 'type', 'label') |
| 378 ('id', 'type', 'label', {'custom_prop1': 'custom_val1'}) |
| 379 or as a dictionary: |
| 380 'id': 'type' |
| 381 'id': ('type',) |
| 382 'id': ('type', 'label') |
| 383 'id': ('type', 'label', {'custom_prop1': 'custom_val1'}) |
| 384 If the type is not specified, we treat it as string. |
| 385 If no specific label is given, the label is simply the id. |
| 386 If no custom properties are given, we use an empty dictionary. |
| 387 |
| 388 input: [('a', 'date'), ('b', 'timeofday', 'b', {'foo': 'bar'})] |
| 389 output: [{'id': 'a', 'label': 'a', 'type': 'date', |
| 390 'depth': 0, 'container': 'iter', 'custom_properties': {}}, |
| 391 {'id': 'b', 'label': 'b', 'type': 'timeofday', |
| 392 'depth': 0, 'container': 'iter', |
| 393 'custom_properties': {'foo': 'bar'}}] |
| 394 |
| 395 input: {'a': [('b', 'number'), ('c', 'string', 'column c')]} |
| 396 output: [{'id': 'a', 'label': 'a', 'type': 'string', |
| 397 'depth': 0, 'container': 'dict', 'custom_properties': {}}, |
| 398 {'id': 'b', 'label': 'b', 'type': 'number', |
| 399 'depth': 1, 'container': 'iter', 'custom_properties': {}}, |
| 400 {'id': 'c', 'label': 'column c', 'type': 'string', |
| 401 'depth': 1, 'container': 'iter', 'custom_properties': {}}] |
| 402 |
| 403 input: {('a', 'number', 'column a'): { 'b': 'number', 'c': 'string'}} |
| 404 output: [{'id': 'a', 'label': 'column a', 'type': 'number', |
| 405 'depth': 0, 'container': 'dict', 'custom_properties': {}}, |
| 406 {'id': 'b', 'label': 'b', 'type': 'number', |
| 407 'depth': 1, 'container': 'dict', 'custom_properties': {}}, |
| 408 {'id': 'c', 'label': 'c', 'type': 'string', |
| 409 'depth': 1, 'container': 'dict', 'custom_properties': {}}] |
| 410 |
| 411 input: { ('w', 'string', 'word'): ('c', 'number', 'count') } |
| 412 output: [{'id': 'w', 'label': 'word', 'type': 'string', |
| 413 'depth': 0, 'container': 'dict', 'custom_properties': {}}, |
| 414 {'id': 'c', 'label': 'count', 'type': 'number', |
| 415 'depth': 1, 'container': 'scalar', 'custom_properties': {}}] |
| 416 |
| 417 input: {'a': ('number', 'column a'), 'b': ('string', 'column b')} |
| 418 output: [{'id': 'a', 'label': 'column a', 'type': 'number', 'depth': 0, |
| 419 'container': 'dict', 'custom_properties': {}}, |
| 420 {'id': 'b', 'label': 'column b', 'type': 'string', 'depth': 0, |
| 421 'container': 'dict', 'custom_properties': {}} |
| 422 |
| 423 NOTE: there might be ambiguity in the case of a dictionary representation |
| 424 of a single column. For example, the following description can be parsed |
| 425 in 2 different ways: {'a': ('b', 'c')} can be thought of a single column |
| 426 with the id 'a', of type 'b' and the label 'c', or as 2 columns: one named |
| 427 'a', and the other named 'b' of type 'c'. We choose the first option by |
| 428 default, and in case the second option is the right one, it is possible to |
| 429 make the key into a tuple (i.e. {('a',): ('b', 'c')}) or add more info |
| 430 into the tuple, thus making it look like this: {'a': ('b', 'c', 'b', {})} |
| 431 -- second 'b' is the label, and {} is the custom properties field. |
| 432 """ |
| 433 # For the recursion step, we check for a scalar object (string or tuple) |
| 434 if isinstance(table_description, (types.StringTypes, tuple)): |
| 435 parsed_col = DataTable.ColumnTypeParser(table_description) |
| 436 parsed_col["depth"] = depth |
| 437 parsed_col["container"] = "scalar" |
| 438 return [parsed_col] |
| 439 |
| 440 # Since it is not scalar, table_description must be iterable. |
| 441 if not hasattr(table_description, "__iter__"): |
| 442 raise DataTableException("Expected an iterable object, got %s" % |
| 443 type(table_description)) |
| 444 if not isinstance(table_description, dict): |
| 445 # We expects a non-dictionary iterable item. |
| 446 columns = [] |
| 447 for desc in table_description: |
| 448 parsed_col = DataTable.ColumnTypeParser(desc) |
| 449 parsed_col["depth"] = depth |
| 450 parsed_col["container"] = "iter" |
| 451 columns.append(parsed_col) |
| 452 if not columns: |
| 453 raise DataTableException("Description iterable objects should not" |
| 454 " be empty.") |
| 455 return columns |
| 456 # The other case is a dictionary |
| 457 if not table_description: |
| 458 raise DataTableException("Empty dictionaries are not allowed inside" |
| 459 " description") |
| 460 |
| 461 # To differentiate between the two cases of more levels below or this is |
| 462 # the most inner dictionary, we consider the number of keys (more then one |
| 463 # key is indication for most inner dictionary) and the type of the key and |
| 464 # value in case of only 1 key (if the type of key is string and the type of |
| 465 # the value is a tuple of 0-3 items, we assume this is the most inner |
| 466 # dictionary). |
| 467 # NOTE: this way of differentiating might create ambiguity. See docs. |
| 468 if (len(table_description) != 1 or |
| 469 (isinstance(table_description.keys()[0], types.StringTypes) and |
| 470 isinstance(table_description.values()[0], tuple) and |
| 471 len(table_description.values()[0]) < 4)): |
| 472 # This is the most inner dictionary. Parsing types. |
| 473 columns = [] |
| 474 # We sort the items, equivalent to sort the keys since they are unique |
| 475 for key, value in sorted(table_description.items()): |
| 476 # We parse the column type as (key, type) or (key, type, label) using |
| 477 # ColumnTypeParser. |
| 478 if isinstance(value, tuple): |
| 479 parsed_col = DataTable.ColumnTypeParser((key,) + value) |
| 480 else: |
| 481 parsed_col = DataTable.ColumnTypeParser((key, value)) |
| 482 parsed_col["depth"] = depth |
| 483 parsed_col["container"] = "dict" |
| 484 columns.append(parsed_col) |
| 485 return columns |
| 486 # This is an outer dictionary, must have at most one key. |
| 487 parsed_col = DataTable.ColumnTypeParser(table_description.keys()[0]) |
| 488 parsed_col["depth"] = depth |
| 489 parsed_col["container"] = "dict" |
| 490 return ([parsed_col] + |
| 491 DataTable.TableDescriptionParser(table_description.values()[0], |
| 492 depth=depth + 1)) |
| 493 |
| 494 @property |
| 495 def columns(self): |
| 496 """Returns the parsed table description.""" |
| 497 return self.__columns |
| 498 |
| 499 def NumberOfRows(self): |
| 500 """Returns the number of rows in the current data stored in the table.""" |
| 501 return len(self.__data) |
| 502 |
| 503 def SetRowsCustomProperties(self, rows, custom_properties): |
| 504 """Sets the custom properties for given row(s). |
| 505 |
| 506 Can accept a single row or an iterable of rows. |
| 507 Sets the given custom properties for all specified rows. |
| 508 |
| 509 Args: |
| 510 rows: The row, or rows, to set the custom properties for. |
| 511 custom_properties: A string to string dictionary of custom properties to |
| 512 set for all rows. |
| 513 """ |
| 514 if not hasattr(rows, "__iter__"): |
| 515 rows = [rows] |
| 516 for row in rows: |
| 517 self.__data[row] = (self.__data[row][0], custom_properties) |
| 518 |
| 519 def LoadData(self, data, custom_properties=None): |
| 520 """Loads new rows to the data table, clearing existing rows. |
| 521 |
| 522 May also set the custom_properties for the added rows. The given custom |
| 523 properties dictionary specifies the dictionary that will be used for *all* |
| 524 given rows. |
| 525 |
| 526 Args: |
| 527 data: The rows that the table will contain. |
| 528 custom_properties: A dictionary of string to string to set as the custom |
| 529 properties for all rows. |
| 530 """ |
| 531 self.__data = [] |
| 532 self.AppendData(data, custom_properties) |
| 533 |
| 534 def AppendData(self, data, custom_properties=None): |
| 535 """Appends new data to the table. |
| 536 |
| 537 Data is appended in rows. Data must comply with |
| 538 the table schema passed in to __init__(). See SingleValueToJS() for a list |
| 539 of acceptable data types. See the class documentation for more information |
| 540 and examples of schema and data values. |
| 541 |
| 542 Args: |
| 543 data: The row to add to the table. The data must conform to the table |
| 544 description format. |
| 545 custom_properties: A dictionary of string to string, representing the |
| 546 custom properties to add to all the rows. |
| 547 |
| 548 Raises: |
| 549 DataTableException: The data structure does not match the description. |
| 550 """ |
| 551 # If the maximal depth is 0, we simply iterate over the data table |
| 552 # lines and insert them using _InnerAppendData. Otherwise, we simply |
| 553 # let the _InnerAppendData handle all the levels. |
| 554 if not self.__columns[-1]["depth"]: |
| 555 for row in data: |
| 556 self._InnerAppendData(({}, custom_properties), row, 0) |
| 557 else: |
| 558 self._InnerAppendData(({}, custom_properties), data, 0) |
| 559 |
| 560 def _InnerAppendData(self, prev_col_values, data, col_index): |
| 561 """Inner function to assist LoadData.""" |
| 562 # We first check that col_index has not exceeded the columns size |
| 563 if col_index >= len(self.__columns): |
| 564 raise DataTableException("The data does not match description, too deep") |
| 565 |
| 566 # Dealing with the scalar case, the data is the last value. |
| 567 if self.__columns[col_index]["container"] == "scalar": |
| 568 prev_col_values[0][self.__columns[col_index]["id"]] = data |
| 569 self.__data.append(prev_col_values) |
| 570 return |
| 571 |
| 572 if self.__columns[col_index]["container"] == "iter": |
| 573 if not hasattr(data, "__iter__") or isinstance(data, dict): |
| 574 raise DataTableException("Expected iterable object, got %s" % |
| 575 type(data)) |
| 576 # We only need to insert the rest of the columns |
| 577 # If there are less items than expected, we only add what there is. |
| 578 for value in data: |
| 579 if col_index >= len(self.__columns): |
| 580 raise DataTableException("Too many elements given in data") |
| 581 prev_col_values[0][self.__columns[col_index]["id"]] = value |
| 582 col_index += 1 |
| 583 self.__data.append(prev_col_values) |
| 584 return |
| 585 |
| 586 # We know the current level is a dictionary, we verify the type. |
| 587 if not isinstance(data, dict): |
| 588 raise DataTableException("Expected dictionary at current level, got %s" % |
| 589 type(data)) |
| 590 # We check if this is the last level |
| 591 if self.__columns[col_index]["depth"] == self.__columns[-1]["depth"]: |
| 592 # We need to add the keys in the dictionary as they are |
| 593 for col in self.__columns[col_index:]: |
| 594 if col["id"] in data: |
| 595 prev_col_values[0][col["id"]] = data[col["id"]] |
| 596 self.__data.append(prev_col_values) |
| 597 return |
| 598 |
| 599 # We have a dictionary in an inner depth level. |
| 600 if not data.keys(): |
| 601 # In case this is an empty dictionary, we add a record with the columns |
| 602 # filled only until this point. |
| 603 self.__data.append(prev_col_values) |
| 604 else: |
| 605 for key in sorted(data): |
| 606 col_values = dict(prev_col_values[0]) |
| 607 col_values[self.__columns[col_index]["id"]] = key |
| 608 self._InnerAppendData((col_values, prev_col_values[1]), |
| 609 data[key], col_index + 1) |
| 610 |
| 611 def _PreparedData(self, order_by=()): |
| 612 """Prepares the data for enumeration - sorting it by order_by. |
| 613 |
| 614 Args: |
| 615 order_by: Optional. Specifies the name of the column(s) to sort by, and |
| 616 (optionally) which direction to sort in. Default sort direction |
| 617 is asc. Following formats are accepted: |
| 618 "string_col_name" -- For a single key in default (asc) order. |
| 619 ("string_col_name", "asc|desc") -- For a single key. |
| 620 [("col_1","asc|desc"), ("col_2","asc|desc")] -- For more than |
| 621 one column, an array of tuples of (col_name, "asc|desc"). |
| 622 |
| 623 Returns: |
| 624 The data sorted by the keys given. |
| 625 |
| 626 Raises: |
| 627 DataTableException: Sort direction not in 'asc' or 'desc' |
| 628 """ |
| 629 if not order_by: |
| 630 return self.__data |
| 631 |
| 632 proper_sort_keys = [] |
| 633 if isinstance(order_by, types.StringTypes) or ( |
| 634 isinstance(order_by, tuple) and len(order_by) == 2 and |
| 635 order_by[1].lower() in ["asc", "desc"]): |
| 636 order_by = (order_by,) |
| 637 for key in order_by: |
| 638 if isinstance(key, types.StringTypes): |
| 639 proper_sort_keys.append((key, 1)) |
| 640 elif (isinstance(key, (list, tuple)) and len(key) == 2 and |
| 641 key[1].lower() in ("asc", "desc")): |
| 642 proper_sort_keys.append((key[0], key[1].lower() == "asc" and 1 or -1)) |
| 643 else: |
| 644 raise DataTableException("Expected tuple with second value: " |
| 645 "'asc' or 'desc'") |
| 646 |
| 647 def SortCmpFunc(row1, row2): |
| 648 """cmp function for sorted. Compares by keys and 'asc'/'desc' keywords.""" |
| 649 for key, asc_mult in proper_sort_keys: |
| 650 cmp_result = asc_mult * cmp(row1[0].get(key), row2[0].get(key)) |
| 651 if cmp_result: |
| 652 return cmp_result |
| 653 return 0 |
| 654 |
| 655 return sorted(self.__data, cmp=SortCmpFunc) |
| 656 |
| 657 def ToJSCode(self, name, columns_order=None, order_by=()): |
| 658 """Writes the data table as a JS code string. |
| 659 |
| 660 This method writes a string of JS code that can be run to |
| 661 generate a DataTable with the specified data. Typically used for debugging |
| 662 only. |
| 663 |
| 664 Args: |
| 665 name: The name of the table. The name would be used as the DataTable's |
| 666 variable name in the created JS code. |
| 667 columns_order: Optional. Specifies the order of columns in the |
| 668 output table. Specify a list of all column IDs in the order |
| 669 in which you want the table created. |
| 670 Note that you must list all column IDs in this parameter, |
| 671 if you use it. |
| 672 order_by: Optional. Specifies the name of the column(s) to sort by. |
| 673 Passed as is to _PreparedData. |
| 674 |
| 675 Returns: |
| 676 A string of JS code that, when run, generates a DataTable with the given |
| 677 name and the data stored in the DataTable object. |
| 678 Example result: |
| 679 "var tab1 = new google.visualization.DataTable(); |
| 680 tab1.addColumn('string', 'a', 'a'); |
| 681 tab1.addColumn('number', 'b', 'b'); |
| 682 tab1.addColumn('boolean', 'c', 'c'); |
| 683 tab1.addRows(10); |
| 684 tab1.setCell(0, 0, 'a'); |
| 685 tab1.setCell(0, 1, 1, null, {'foo': 'bar'}); |
| 686 tab1.setCell(0, 2, true); |
| 687 ... |
| 688 tab1.setCell(9, 0, 'c'); |
| 689 tab1.setCell(9, 1, 3, '3$'); |
| 690 tab1.setCell(9, 2, false);" |
| 691 |
| 692 Raises: |
| 693 DataTableException: The data does not match the type. |
| 694 """ |
| 695 if columns_order is None: |
| 696 columns_order = [col["id"] for col in self.__columns] |
| 697 col_dict = dict([(col["id"], col) for col in self.__columns]) |
| 698 |
| 699 # We first create the table with the given name |
| 700 jscode = "var %s = new google.visualization.DataTable();\n" % name |
| 701 if self.custom_properties: |
| 702 jscode += "%s.setTableProperties(%s);\n" % ( |
| 703 name, DataTable._EscapeCustomProperties(self.custom_properties)) |
| 704 |
| 705 # We add the columns to the table |
| 706 for i, col in enumerate(columns_order): |
| 707 jscode += "%s.addColumn('%s', %s, %s);\n" % ( |
| 708 name, |
| 709 col_dict[col]["type"], |
| 710 DataTable._EscapeValue(col_dict[col]["label"]), |
| 711 DataTable._EscapeValue(col_dict[col]["id"])) |
| 712 if col_dict[col]["custom_properties"]: |
| 713 jscode += "%s.setColumnProperties(%d, %s);\n" % ( |
| 714 name, i, DataTable._EscapeCustomProperties( |
| 715 col_dict[col]["custom_properties"])) |
| 716 jscode += "%s.addRows(%d);\n" % (name, len(self.__data)) |
| 717 |
| 718 # We now go over the data and add each row |
| 719 for (i, (row, cp)) in enumerate(self._PreparedData(order_by)): |
| 720 # We add all the elements of this row by their order |
| 721 for (j, col) in enumerate(columns_order): |
| 722 if col not in row or row[col] is None: |
| 723 continue |
| 724 cell_cp = "" |
| 725 if isinstance(row[col], tuple) and len(row[col]) == 3: |
| 726 cell_cp = ", %s" % DataTable._EscapeCustomProperties(row[col][2]) |
| 727 value = self.SingleValueToJS(row[col], col_dict[col]["type"]) |
| 728 if isinstance(value, tuple): |
| 729 # We have a formatted value or custom property as well |
| 730 if value[1] is None: |
| 731 value = (value[0], "null") |
| 732 jscode += ("%s.setCell(%d, %d, %s, %s%s);\n" % |
| 733 (name, i, j, value[0], value[1], cell_cp)) |
| 734 else: |
| 735 jscode += "%s.setCell(%d, %d, %s);\n" % (name, i, j, value) |
| 736 if cp: |
| 737 jscode += "%s.setRowProperties(%d, %s);\n" % ( |
| 738 name, i, DataTable._EscapeCustomProperties(cp)) |
| 739 return jscode |
| 740 |
| 741 def ToHtml(self, columns_order=None, order_by=()): |
| 742 """Writes the data table as an HTML table code string. |
| 743 |
| 744 Args: |
| 745 columns_order: Optional. Specifies the order of columns in the |
| 746 output table. Specify a list of all column IDs in the order |
| 747 in which you want the table created. |
| 748 Note that you must list all column IDs in this parameter, |
| 749 if you use it. |
| 750 order_by: Optional. Specifies the name of the column(s) to sort by. |
| 751 Passed as is to _PreparedData. |
| 752 |
| 753 Returns: |
| 754 An HTML table code string. |
| 755 Example result (the result is without the newlines): |
| 756 <html><body><table border='1'> |
| 757 <thead><tr><th>a</th><th>b</th><th>c</th></tr></thead> |
| 758 <tbody> |
| 759 <tr><td>1</td><td>"z"</td><td>2</td></tr> |
| 760 <tr><td>"3$"</td><td>"w"</td><td></td></tr> |
| 761 </tbody> |
| 762 </table></body></html> |
| 763 |
| 764 Raises: |
| 765 DataTableException: The data does not match the type. |
| 766 """ |
| 767 table_template = "<html><body><table border='1'>%s</table></body></html>" |
| 768 columns_template = "<thead><tr>%s</tr></thead>" |
| 769 rows_template = "<tbody>%s</tbody>" |
| 770 row_template = "<tr>%s</tr>" |
| 771 header_cell_template = "<th>%s</th>" |
| 772 cell_template = "<td>%s</td>" |
| 773 |
| 774 if columns_order is None: |
| 775 columns_order = [col["id"] for col in self.__columns] |
| 776 col_dict = dict([(col["id"], col) for col in self.__columns]) |
| 777 |
| 778 columns_list = [] |
| 779 for col in columns_order: |
| 780 columns_list.append(header_cell_template % |
| 781 cgi.escape(col_dict[col]["label"])) |
| 782 columns_html = columns_template % "".join(columns_list) |
| 783 |
| 784 rows_list = [] |
| 785 # We now go over the data and add each row |
| 786 for row, unused_cp in self._PreparedData(order_by): |
| 787 cells_list = [] |
| 788 # We add all the elements of this row by their order |
| 789 for col in columns_order: |
| 790 # For empty string we want empty quotes (""). |
| 791 value = "" |
| 792 if col in row and row[col] is not None: |
| 793 value = self.SingleValueToJS(row[col], col_dict[col]["type"]) |
| 794 if isinstance(value, tuple): |
| 795 # We have a formatted value and we're going to use it |
| 796 cells_list.append(cell_template % cgi.escape(value[1])) |
| 797 else: |
| 798 cells_list.append(cell_template % cgi.escape(value)) |
| 799 rows_list.append(row_template % "".join(cells_list)) |
| 800 rows_html = rows_template % "".join(rows_list) |
| 801 |
| 802 return table_template % (columns_html + rows_html) |
| 803 |
| 804 def ToCsv(self, columns_order=None, order_by=(), separator=", "): |
| 805 """Writes the data table as a CSV string. |
| 806 |
| 807 Args: |
| 808 columns_order: Optional. Specifies the order of columns in the |
| 809 output table. Specify a list of all column IDs in the order |
| 810 in which you want the table created. |
| 811 Note that you must list all column IDs in this parameter, |
| 812 if you use it. |
| 813 order_by: Optional. Specifies the name of the column(s) to sort by. |
| 814 Passed as is to _PreparedData. |
| 815 separator: Optional. The separator to use between the values. |
| 816 |
| 817 Returns: |
| 818 A CSV string representing the table. |
| 819 Example result: |
| 820 'a', 'b', 'c' |
| 821 1, 'z', 2 |
| 822 3, 'w', '' |
| 823 |
| 824 Raises: |
| 825 DataTableException: The data does not match the type. |
| 826 """ |
| 827 if columns_order is None: |
| 828 columns_order = [col["id"] for col in self.__columns] |
| 829 col_dict = dict([(col["id"], col) for col in self.__columns]) |
| 830 |
| 831 columns_list = [] |
| 832 for col in columns_order: |
| 833 columns_list.append(DataTable._EscapeValueForCsv(col_dict[col]["label"])) |
| 834 columns_line = separator.join(columns_list) |
| 835 |
| 836 rows_list = [] |
| 837 # We now go over the data and add each row |
| 838 for row, unused_cp in self._PreparedData(order_by): |
| 839 cells_list = [] |
| 840 # We add all the elements of this row by their order |
| 841 for col in columns_order: |
| 842 value = '""' |
| 843 if col in row and row[col] is not None: |
| 844 value = self.SingleValueToJS(row[col], col_dict[col]["type"], |
| 845 DataTable._EscapeValueForCsv) |
| 846 if isinstance(value, tuple): |
| 847 # We have a formatted value. Using it only for date/time types. |
| 848 if col_dict[col]["type"] in ["date", "datetime", "timeofday"]: |
| 849 cells_list.append(value[1]) |
| 850 else: |
| 851 cells_list.append(value[0]) |
| 852 else: |
| 853 # We need to quote date types, because they contain commas. |
| 854 if (col_dict[col]["type"] in ["date", "datetime", "timeofday"] and |
| 855 value != '""'): |
| 856 value = '"%s"' % value |
| 857 cells_list.append(value) |
| 858 rows_list.append(separator.join(cells_list)) |
| 859 rows = "\n".join(rows_list) |
| 860 |
| 861 return "%s\n%s" % (columns_line, rows) |
| 862 |
| 863 def ToTsvExcel(self, columns_order=None, order_by=()): |
| 864 """Returns a file in tab-separated-format readable by MS Excel. |
| 865 |
| 866 Returns a file in UTF-16 little endian encoding, with tabs separating the |
| 867 values. |
| 868 |
| 869 Args: |
| 870 columns_order: Delegated to ToCsv. |
| 871 order_by: Delegated to ToCsv. |
| 872 |
| 873 Returns: |
| 874 A tab-separated little endian UTF16 file representing the table. |
| 875 """ |
| 876 return self.ToCsv( |
| 877 columns_order, order_by, separator="\t").encode("UTF-16LE") |
| 878 |
| 879 def ToJSon(self, columns_order=None, order_by=()): |
| 880 """Writes a JSON string that can be used in a JS DataTable constructor. |
| 881 |
| 882 This method writes a JSON string that can be passed directly into a Google |
| 883 Visualization API DataTable constructor. Use this output if you are |
| 884 hosting the visualization HTML on your site, and want to code the data |
| 885 table in Python. Pass this string into the |
| 886 google.visualization.DataTable constructor, e.g,: |
| 887 ... on my page that hosts my visualization ... |
| 888 google.setOnLoadCallback(drawTable); |
| 889 function drawTable() { |
| 890 var data = new google.visualization.DataTable(_my_JSon_string, 0.6); |
| 891 myTable.draw(data); |
| 892 } |
| 893 |
| 894 Args: |
| 895 columns_order: Optional. Specifies the order of columns in the |
| 896 output table. Specify a list of all column IDs in the order |
| 897 in which you want the table created. |
| 898 Note that you must list all column IDs in this parameter, |
| 899 if you use it. |
| 900 order_by: Optional. Specifies the name of the column(s) to sort by. |
| 901 Passed as is to _PreparedData(). |
| 902 |
| 903 Returns: |
| 904 A JSon constructor string to generate a JS DataTable with the data |
| 905 stored in the DataTable object. |
| 906 Example result (the result is without the newlines): |
| 907 {cols: [{id:'a',label:'a',type:'number'}, |
| 908 {id:'b',label:'b',type:'string'}, |
| 909 {id:'c',label:'c',type:'number'}], |
| 910 rows: [{c:[{v:1},{v:'z'},{v:2}]}, c:{[{v:3,f:'3$'},{v:'w'},{v:null}]}], |
| 911 p: {'foo': 'bar'}} |
| 912 |
| 913 Raises: |
| 914 DataTableException: The data does not match the type. |
| 915 """ |
| 916 if columns_order is None: |
| 917 columns_order = [col["id"] for col in self.__columns] |
| 918 col_dict = dict([(col["id"], col) for col in self.__columns]) |
| 919 |
| 920 # Creating the columns jsons |
| 921 cols_jsons = [] |
| 922 for col_id in columns_order: |
| 923 d = dict(col_dict[col_id]) |
| 924 d["id"] = DataTable._EscapeValue(d["id"]) |
| 925 d["label"] = DataTable._EscapeValue(d["label"]) |
| 926 d["cp"] = "" |
| 927 if col_dict[col_id]["custom_properties"]: |
| 928 d["cp"] = ",p:%s" % DataTable._EscapeCustomProperties( |
| 929 col_dict[col_id]["custom_properties"]) |
| 930 cols_jsons.append( |
| 931 "{id:%(id)s,label:%(label)s,type:'%(type)s'%(cp)s}" % d) |
| 932 |
| 933 # Creating the rows jsons |
| 934 rows_jsons = [] |
| 935 for row, cp in self._PreparedData(order_by): |
| 936 cells_jsons = [] |
| 937 for col in columns_order: |
| 938 # We omit the {v:null} for a None value of the not last column |
| 939 value = row.get(col, None) |
| 940 if value is None and col != columns_order[-1]: |
| 941 cells_jsons.append("") |
| 942 else: |
| 943 value = self.SingleValueToJS(value, col_dict[col]["type"]) |
| 944 if isinstance(value, tuple): |
| 945 # We have a formatted value or custom property as well |
| 946 if len(row.get(col)) == 3: |
| 947 if value[1] is None: |
| 948 cells_jsons.append("{v:%s,p:%s}" % ( |
| 949 value[0], |
| 950 DataTable._EscapeCustomProperties(row.get(col)[2]))) |
| 951 else: |
| 952 cells_jsons.append("{v:%s,f:%s,p:%s}" % (value + ( |
| 953 DataTable._EscapeCustomProperties(row.get(col)[2]),))) |
| 954 else: |
| 955 cells_jsons.append("{v:%s,f:%s}" % value) |
| 956 else: |
| 957 cells_jsons.append("{v:%s}" % value) |
| 958 if cp: |
| 959 rows_jsons.append("{c:[%s],p:%s}" % ( |
| 960 ",".join(cells_jsons), DataTable._EscapeCustomProperties(cp))) |
| 961 else: |
| 962 rows_jsons.append("{c:[%s]}" % ",".join(cells_jsons)) |
| 963 |
| 964 general_custom_properties = "" |
| 965 if self.custom_properties: |
| 966 general_custom_properties = ( |
| 967 ",p:%s" % DataTable._EscapeCustomProperties(self.custom_properties)) |
| 968 |
| 969 # We now join the columns jsons and the rows jsons |
| 970 json = "{cols:[%s],rows:[%s]%s}" % (",".join(cols_jsons), |
| 971 ",".join(rows_jsons), |
| 972 general_custom_properties) |
| 973 return json |
| 974 |
| 975 def ToJSonResponse(self, columns_order=None, order_by=(), req_id=0, |
| 976 response_handler="google.visualization.Query.setResponse"): |
| 977 """Writes a table as a JSON response that can be returned as-is to a client. |
| 978 |
| 979 This method writes a JSON response to return to a client in response to a |
| 980 Google Visualization API query. This string can be processed by the calling |
| 981 page, and is used to deliver a data table to a visualization hosted on |
| 982 a different page. |
| 983 |
| 984 Args: |
| 985 columns_order: Optional. Passed straight to self.ToJSon(). |
| 986 order_by: Optional. Passed straight to self.ToJSon(). |
| 987 req_id: Optional. The response id, as retrieved by the request. |
| 988 response_handler: Optional. The response handler, as retrieved by the |
| 989 request. |
| 990 |
| 991 Returns: |
| 992 A JSON response string to be received by JS the visualization Query |
| 993 object. This response would be translated into a DataTable on the |
| 994 client side. |
| 995 Example result (newlines added for readability): |
| 996 google.visualization.Query.setResponse({ |
| 997 'version':'0.6', 'reqId':'0', 'status':'OK', |
| 998 'table': {cols: [...], rows: [...]}}); |
| 999 |
| 1000 Note: The URL returning this string can be used as a data source by Google |
| 1001 Visualization Gadgets or from JS code. |
| 1002 """ |
| 1003 table = self.ToJSon(columns_order, order_by) |
| 1004 return ("%s({'version':'0.6', 'reqId':'%s', 'status':'OK', " |
| 1005 "'table': %s});") % (response_handler, req_id, table) |
| 1006 |
| 1007 def ToResponse(self, columns_order=None, order_by=(), tqx=""): |
| 1008 """Writes the right response according to the request string passed in tqx. |
| 1009 |
| 1010 This method parses the tqx request string (format of which is defined in |
| 1011 the documentation for implementing a data source of Google Visualization), |
| 1012 and returns the right response according to the request. |
| 1013 It parses out the "out" parameter of tqx, calls the relevant response |
| 1014 (ToJSonResponse() for "json", ToCsv() for "csv", ToHtml() for "html", |
| 1015 ToTsvExcel() for "tsv-excel") and passes the response function the rest of |
| 1016 the relevant request keys. |
| 1017 |
| 1018 Args: |
| 1019 columns_order: Optional. Passed as is to the relevant response function. |
| 1020 order_by: Optional. Passed as is to the relevant response function. |
| 1021 tqx: Optional. The request string as received by HTTP GET. Should be in |
| 1022 the format "key1:value1;key2:value2...". All keys have a default |
| 1023 value, so an empty string will just do the default (which is calling |
| 1024 ToJSonResponse() with no extra parameters). |
| 1025 |
| 1026 Returns: |
| 1027 A response string, as returned by the relevant response function. |
| 1028 |
| 1029 Raises: |
| 1030 DataTableException: One of the parameters passed in tqx is not supported. |
| 1031 """ |
| 1032 tqx_dict = {} |
| 1033 if tqx: |
| 1034 tqx_dict = dict(opt.split(":") for opt in tqx.split(";")) |
| 1035 if tqx_dict.get("version", "0.6") != "0.6": |
| 1036 raise DataTableException( |
| 1037 "Version (%s) passed by request is not supported." |
| 1038 % tqx_dict["version"]) |
| 1039 |
| 1040 if tqx_dict.get("out", "json") == "json": |
| 1041 response_handler = tqx_dict.get("responseHandler", |
| 1042 "google.visualization.Query.setResponse") |
| 1043 return self.ToJSonResponse(columns_order, order_by, |
| 1044 req_id=tqx_dict.get("reqId", 0), |
| 1045 response_handler=response_handler) |
| 1046 elif tqx_dict["out"] == "html": |
| 1047 return self.ToHtml(columns_order, order_by) |
| 1048 elif tqx_dict["out"] == "csv": |
| 1049 return self.ToCsv(columns_order, order_by) |
| 1050 elif tqx_dict["out"] == "tsv-excel": |
| 1051 return self.ToTsvExcel(columns_order, order_by) |
| 1052 else: |
| 1053 raise DataTableException( |
| 1054 "'out' parameter: '%s' is not supported" % tqx_dict["out"]) |
OLD | NEW |