| Index: src/x64/codegen-x64.cc
|
| diff --git a/src/x64/codegen-x64.cc b/src/x64/codegen-x64.cc
|
| index 9cf85c416069a8c6ceee523405e6949cd266b701..f8f2d6e687896f4150e9a3068dbb280693cce6c9 100644
|
| --- a/src/x64/codegen-x64.cc
|
| +++ b/src/x64/codegen-x64.cc
|
| @@ -29,81 +29,14 @@
|
|
|
| #if defined(V8_TARGET_ARCH_X64)
|
|
|
| -#include "bootstrapper.h"
|
| -#include "code-stubs.h"
|
| -#include "codegen-inl.h"
|
| -#include "compiler.h"
|
| -#include "debug.h"
|
| -#include "ic-inl.h"
|
| -#include "parser.h"
|
| -#include "regexp-macro-assembler.h"
|
| -#include "register-allocator-inl.h"
|
| -#include "scopes.h"
|
| -#include "virtual-frame-inl.h"
|
| +#include "codegen.h"
|
|
|
| namespace v8 {
|
| namespace internal {
|
|
|
| -#define __ ACCESS_MASM(masm)
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// Platform-specific FrameRegisterState functions.
|
| -
|
| -void FrameRegisterState::Save(MacroAssembler* masm) const {
|
| - for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
|
| - int action = registers_[i];
|
| - if (action == kPush) {
|
| - __ push(RegisterAllocator::ToRegister(i));
|
| - } else if (action != kIgnore && (action & kSyncedFlag) == 0) {
|
| - __ movq(Operand(rbp, action), RegisterAllocator::ToRegister(i));
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void FrameRegisterState::Restore(MacroAssembler* masm) const {
|
| - // Restore registers in reverse order due to the stack.
|
| - for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) {
|
| - int action = registers_[i];
|
| - if (action == kPush) {
|
| - __ pop(RegisterAllocator::ToRegister(i));
|
| - } else if (action != kIgnore) {
|
| - action &= ~kSyncedFlag;
|
| - __ movq(RegisterAllocator::ToRegister(i), Operand(rbp, action));
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -#undef __
|
| -#define __ ACCESS_MASM(masm_)
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// Platform-specific DeferredCode functions.
|
| -
|
| -void DeferredCode::SaveRegisters() {
|
| - frame_state_.Save(masm_);
|
| -}
|
| -
|
| -
|
| -void DeferredCode::RestoreRegisters() {
|
| - frame_state_.Restore(masm_);
|
| -}
|
| -
|
| -
|
| // -------------------------------------------------------------------------
|
| // Platform-specific RuntimeCallHelper functions.
|
|
|
| -void VirtualFrameRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
|
| - frame_state_->Save(masm);
|
| -}
|
| -
|
| -
|
| -void VirtualFrameRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
|
| - frame_state_->Restore(masm);
|
| -}
|
| -
|
| -
|
| void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
|
| masm->EnterInternalFrame();
|
| }
|
| @@ -114,8636 +47,6 @@ void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
|
| }
|
|
|
|
|
| -// -------------------------------------------------------------------------
|
| -// CodeGenState implementation.
|
| -
|
| -CodeGenState::CodeGenState(CodeGenerator* owner)
|
| - : owner_(owner),
|
| - destination_(NULL),
|
| - previous_(NULL) {
|
| - owner_->set_state(this);
|
| -}
|
| -
|
| -
|
| -CodeGenState::CodeGenState(CodeGenerator* owner,
|
| - ControlDestination* destination)
|
| - : owner_(owner),
|
| - destination_(destination),
|
| - previous_(owner->state()) {
|
| - owner_->set_state(this);
|
| -}
|
| -
|
| -
|
| -CodeGenState::~CodeGenState() {
|
| - ASSERT(owner_->state() == this);
|
| - owner_->set_state(previous_);
|
| -}
|
| -
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// CodeGenerator implementation.
|
| -
|
| -CodeGenerator::CodeGenerator(MacroAssembler* masm)
|
| - : deferred_(8),
|
| - masm_(masm),
|
| - info_(NULL),
|
| - frame_(NULL),
|
| - allocator_(NULL),
|
| - state_(NULL),
|
| - loop_nesting_(0),
|
| - function_return_is_shadowed_(false),
|
| - in_spilled_code_(false) {
|
| -}
|
| -
|
| -
|
| -// Calling conventions:
|
| -// rbp: caller's frame pointer
|
| -// rsp: stack pointer
|
| -// rdi: called JS function
|
| -// rsi: callee's context
|
| -
|
| -void CodeGenerator::Generate(CompilationInfo* info) {
|
| - // Record the position for debugging purposes.
|
| - CodeForFunctionPosition(info->function());
|
| - Comment cmnt(masm_, "[ function compiled by virtual frame code generator");
|
| -
|
| - // Initialize state.
|
| - info_ = info;
|
| - ASSERT(allocator_ == NULL);
|
| - RegisterAllocator register_allocator(this);
|
| - allocator_ = ®ister_allocator;
|
| - ASSERT(frame_ == NULL);
|
| - frame_ = new VirtualFrame();
|
| - set_in_spilled_code(false);
|
| -
|
| - // Adjust for function-level loop nesting.
|
| - ASSERT_EQ(0, loop_nesting_);
|
| - loop_nesting_ = info->is_in_loop() ? 1 : 0;
|
| -
|
| - Isolate::Current()->set_jump_target_compiling_deferred_code(false);
|
| -
|
| - {
|
| - CodeGenState state(this);
|
| - // Entry:
|
| - // Stack: receiver, arguments, return address.
|
| - // rbp: caller's frame pointer
|
| - // rsp: stack pointer
|
| - // rdi: called JS function
|
| - // rsi: callee's context
|
| - allocator_->Initialize();
|
| -
|
| -#ifdef DEBUG
|
| - if (strlen(FLAG_stop_at) > 0 &&
|
| - info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
|
| - frame_->SpillAll();
|
| - __ int3();
|
| - }
|
| -#endif
|
| -
|
| - frame_->Enter();
|
| -
|
| - // Allocate space for locals and initialize them.
|
| - frame_->AllocateStackSlots();
|
| -
|
| - // Allocate the local context if needed.
|
| - int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
|
| - if (heap_slots > 0) {
|
| - Comment cmnt(masm_, "[ allocate local context");
|
| - // Allocate local context.
|
| - // Get outer context and create a new context based on it.
|
| - frame_->PushFunction();
|
| - Result context;
|
| - if (heap_slots <= FastNewContextStub::kMaximumSlots) {
|
| - FastNewContextStub stub(heap_slots);
|
| - context = frame_->CallStub(&stub, 1);
|
| - } else {
|
| - context = frame_->CallRuntime(Runtime::kNewContext, 1);
|
| - }
|
| -
|
| - // Update context local.
|
| - frame_->SaveContextRegister();
|
| -
|
| - // Verify that the runtime call result and rsi agree.
|
| - if (FLAG_debug_code) {
|
| - __ cmpq(context.reg(), rsi);
|
| - __ Assert(equal, "Runtime::NewContext should end up in rsi");
|
| - }
|
| - }
|
| -
|
| - // TODO(1241774): Improve this code:
|
| - // 1) only needed if we have a context
|
| - // 2) no need to recompute context ptr every single time
|
| - // 3) don't copy parameter operand code from SlotOperand!
|
| - {
|
| - Comment cmnt2(masm_, "[ copy context parameters into .context");
|
| - // Note that iteration order is relevant here! If we have the same
|
| - // parameter twice (e.g., function (x, y, x)), and that parameter
|
| - // needs to be copied into the context, it must be the last argument
|
| - // passed to the parameter that needs to be copied. This is a rare
|
| - // case so we don't check for it, instead we rely on the copying
|
| - // order: such a parameter is copied repeatedly into the same
|
| - // context location and thus the last value is what is seen inside
|
| - // the function.
|
| - for (int i = 0; i < scope()->num_parameters(); i++) {
|
| - Variable* par = scope()->parameter(i);
|
| - Slot* slot = par->AsSlot();
|
| - if (slot != NULL && slot->type() == Slot::CONTEXT) {
|
| - // The use of SlotOperand below is safe in unspilled code
|
| - // because the slot is guaranteed to be a context slot.
|
| - //
|
| - // There are no parameters in the global scope.
|
| - ASSERT(!scope()->is_global_scope());
|
| - frame_->PushParameterAt(i);
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| -
|
| - // SlotOperand loads context.reg() with the context object
|
| - // stored to, used below in RecordWrite.
|
| - Result context = allocator_->Allocate();
|
| - ASSERT(context.is_valid());
|
| - __ movq(SlotOperand(slot, context.reg()), value.reg());
|
| - int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
|
| - Result scratch = allocator_->Allocate();
|
| - ASSERT(scratch.is_valid());
|
| - frame_->Spill(context.reg());
|
| - frame_->Spill(value.reg());
|
| - __ RecordWrite(context.reg(), offset, value.reg(), scratch.reg());
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Store the arguments object. This must happen after context
|
| - // initialization because the arguments object may be stored in
|
| - // the context.
|
| - if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) {
|
| - StoreArgumentsObject(true);
|
| - }
|
| -
|
| - // Initialize ThisFunction reference if present.
|
| - if (scope()->is_function_scope() && scope()->function() != NULL) {
|
| - frame_->Push(FACTORY->the_hole_value());
|
| - StoreToSlot(scope()->function()->AsSlot(), NOT_CONST_INIT);
|
| - }
|
| -
|
| - // Initialize the function return target after the locals are set
|
| - // up, because it needs the expected frame height from the frame.
|
| - function_return_.set_direction(JumpTarget::BIDIRECTIONAL);
|
| - function_return_is_shadowed_ = false;
|
| -
|
| - // Generate code to 'execute' declarations and initialize functions
|
| - // (source elements). In case of an illegal redeclaration we need to
|
| - // handle that instead of processing the declarations.
|
| - if (scope()->HasIllegalRedeclaration()) {
|
| - Comment cmnt(masm_, "[ illegal redeclarations");
|
| - scope()->VisitIllegalRedeclaration(this);
|
| - } else {
|
| - Comment cmnt(masm_, "[ declarations");
|
| - ProcessDeclarations(scope()->declarations());
|
| - // Bail out if a stack-overflow exception occurred when processing
|
| - // declarations.
|
| - if (HasStackOverflow()) return;
|
| - }
|
| -
|
| - if (FLAG_trace) {
|
| - frame_->CallRuntime(Runtime::kTraceEnter, 0);
|
| - // Ignore the return value.
|
| - }
|
| - CheckStack();
|
| -
|
| - // Compile the body of the function in a vanilla state. Don't
|
| - // bother compiling all the code if the scope has an illegal
|
| - // redeclaration.
|
| - if (!scope()->HasIllegalRedeclaration()) {
|
| - Comment cmnt(masm_, "[ function body");
|
| -#ifdef DEBUG
|
| - bool is_builtin = Isolate::Current()->bootstrapper()->IsActive();
|
| - bool should_trace =
|
| - is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
|
| - if (should_trace) {
|
| - frame_->CallRuntime(Runtime::kDebugTrace, 0);
|
| - // Ignore the return value.
|
| - }
|
| -#endif
|
| - VisitStatements(info->function()->body());
|
| -
|
| - // Handle the return from the function.
|
| - if (has_valid_frame()) {
|
| - // If there is a valid frame, control flow can fall off the end of
|
| - // the body. In that case there is an implicit return statement.
|
| - ASSERT(!function_return_is_shadowed_);
|
| - CodeForReturnPosition(info->function());
|
| - frame_->PrepareForReturn();
|
| - Result undefined(FACTORY->undefined_value());
|
| - if (function_return_.is_bound()) {
|
| - function_return_.Jump(&undefined);
|
| - } else {
|
| - function_return_.Bind(&undefined);
|
| - GenerateReturnSequence(&undefined);
|
| - }
|
| - } else if (function_return_.is_linked()) {
|
| - // If the return target has dangling jumps to it, then we have not
|
| - // yet generated the return sequence. This can happen when (a)
|
| - // control does not flow off the end of the body so we did not
|
| - // compile an artificial return statement just above, and (b) there
|
| - // are return statements in the body but (c) they are all shadowed.
|
| - Result return_value;
|
| - function_return_.Bind(&return_value);
|
| - GenerateReturnSequence(&return_value);
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Adjust for function-level loop nesting.
|
| - ASSERT_EQ(loop_nesting_, info->is_in_loop() ? 1 : 0);
|
| - loop_nesting_ = 0;
|
| -
|
| - // Code generation state must be reset.
|
| - ASSERT(state_ == NULL);
|
| - ASSERT(!function_return_is_shadowed_);
|
| - function_return_.Unuse();
|
| - DeleteFrame();
|
| -
|
| - // Process any deferred code using the register allocator.
|
| - if (!HasStackOverflow()) {
|
| - info->isolate()->set_jump_target_compiling_deferred_code(true);
|
| - ProcessDeferred();
|
| - info->isolate()->set_jump_target_compiling_deferred_code(false);
|
| - }
|
| -
|
| - // There is no need to delete the register allocator, it is a
|
| - // stack-allocated local.
|
| - allocator_ = NULL;
|
| -}
|
| -
|
| -
|
| -Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
|
| - // Currently, this assertion will fail if we try to assign to
|
| - // a constant variable that is constant because it is read-only
|
| - // (such as the variable referring to a named function expression).
|
| - // We need to implement assignments to read-only variables.
|
| - // Ideally, we should do this during AST generation (by converting
|
| - // such assignments into expression statements); however, in general
|
| - // we may not be able to make the decision until past AST generation,
|
| - // that is when the entire program is known.
|
| - ASSERT(slot != NULL);
|
| - int index = slot->index();
|
| - switch (slot->type()) {
|
| - case Slot::PARAMETER:
|
| - return frame_->ParameterAt(index);
|
| -
|
| - case Slot::LOCAL:
|
| - return frame_->LocalAt(index);
|
| -
|
| - case Slot::CONTEXT: {
|
| - // Follow the context chain if necessary.
|
| - ASSERT(!tmp.is(rsi)); // do not overwrite context register
|
| - Register context = rsi;
|
| - int chain_length = scope()->ContextChainLength(slot->var()->scope());
|
| - for (int i = 0; i < chain_length; i++) {
|
| - // Load the closure.
|
| - // (All contexts, even 'with' contexts, have a closure,
|
| - // and it is the same for all contexts inside a function.
|
| - // There is no need to go to the function context first.)
|
| - __ movq(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
|
| - // Load the function context (which is the incoming, outer context).
|
| - __ movq(tmp, FieldOperand(tmp, JSFunction::kContextOffset));
|
| - context = tmp;
|
| - }
|
| - // We may have a 'with' context now. Get the function context.
|
| - // (In fact this mov may never be the needed, since the scope analysis
|
| - // may not permit a direct context access in this case and thus we are
|
| - // always at a function context. However it is safe to dereference be-
|
| - // cause the function context of a function context is itself. Before
|
| - // deleting this mov we should try to create a counter-example first,
|
| - // though...)
|
| - __ movq(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
|
| - return ContextOperand(tmp, index);
|
| - }
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - return Operand(rsp, 0);
|
| - }
|
| -}
|
| -
|
| -
|
| -Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot,
|
| - Result tmp,
|
| - JumpTarget* slow) {
|
| - ASSERT(slot->type() == Slot::CONTEXT);
|
| - ASSERT(tmp.is_register());
|
| - Register context = rsi;
|
| -
|
| - for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
|
| - if (s->num_heap_slots() > 0) {
|
| - if (s->calls_eval()) {
|
| - // Check that extension is NULL.
|
| - __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
|
| - Immediate(0));
|
| - slow->Branch(not_equal, not_taken);
|
| - }
|
| - __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
|
| - __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
|
| - context = tmp.reg();
|
| - }
|
| - }
|
| - // Check that last extension is NULL.
|
| - __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0));
|
| - slow->Branch(not_equal, not_taken);
|
| - __ movq(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX));
|
| - return ContextOperand(tmp.reg(), slot->index());
|
| -}
|
| -
|
| -
|
| -// Emit code to load the value of an expression to the top of the
|
| -// frame. If the expression is boolean-valued it may be compiled (or
|
| -// partially compiled) into control flow to the control destination.
|
| -// If force_control is true, control flow is forced.
|
| -void CodeGenerator::LoadCondition(Expression* expr,
|
| - ControlDestination* dest,
|
| - bool force_control) {
|
| - ASSERT(!in_spilled_code());
|
| - int original_height = frame_->height();
|
| -
|
| - { CodeGenState new_state(this, dest);
|
| - Visit(expr);
|
| -
|
| - // If we hit a stack overflow, we may not have actually visited
|
| - // the expression. In that case, we ensure that we have a
|
| - // valid-looking frame state because we will continue to generate
|
| - // code as we unwind the C++ stack.
|
| - //
|
| - // It's possible to have both a stack overflow and a valid frame
|
| - // state (eg, a subexpression overflowed, visiting it returned
|
| - // with a dummied frame state, and visiting this expression
|
| - // returned with a normal-looking state).
|
| - if (HasStackOverflow() &&
|
| - !dest->is_used() &&
|
| - frame_->height() == original_height) {
|
| - dest->Goto(true);
|
| - }
|
| - }
|
| -
|
| - if (force_control && !dest->is_used()) {
|
| - // Convert the TOS value into flow to the control destination.
|
| - ToBoolean(dest);
|
| - }
|
| -
|
| - ASSERT(!(force_control && !dest->is_used()));
|
| - ASSERT(dest->is_used() || frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadAndSpill(Expression* expression) {
|
| - ASSERT(in_spilled_code());
|
| - set_in_spilled_code(false);
|
| - Load(expression);
|
| - frame_->SpillAll();
|
| - set_in_spilled_code(true);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::Load(Expression* expr) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - ASSERT(!in_spilled_code());
|
| - JumpTarget true_target;
|
| - JumpTarget false_target;
|
| - ControlDestination dest(&true_target, &false_target, true);
|
| - LoadCondition(expr, &dest, false);
|
| -
|
| - if (dest.false_was_fall_through()) {
|
| - // The false target was just bound.
|
| - JumpTarget loaded;
|
| - frame_->Push(FACTORY->false_value());
|
| - // There may be dangling jumps to the true target.
|
| - if (true_target.is_linked()) {
|
| - loaded.Jump();
|
| - true_target.Bind();
|
| - frame_->Push(FACTORY->true_value());
|
| - loaded.Bind();
|
| - }
|
| -
|
| - } else if (dest.is_used()) {
|
| - // There is true, and possibly false, control flow (with true as
|
| - // the fall through).
|
| - JumpTarget loaded;
|
| - frame_->Push(FACTORY->true_value());
|
| - if (false_target.is_linked()) {
|
| - loaded.Jump();
|
| - false_target.Bind();
|
| - frame_->Push(FACTORY->false_value());
|
| - loaded.Bind();
|
| - }
|
| -
|
| - } else {
|
| - // We have a valid value on top of the frame, but we still may
|
| - // have dangling jumps to the true and false targets from nested
|
| - // subexpressions (eg, the left subexpressions of the
|
| - // short-circuited boolean operators).
|
| - ASSERT(has_valid_frame());
|
| - if (true_target.is_linked() || false_target.is_linked()) {
|
| - JumpTarget loaded;
|
| - loaded.Jump(); // Don't lose the current TOS.
|
| - if (true_target.is_linked()) {
|
| - true_target.Bind();
|
| - frame_->Push(FACTORY->true_value());
|
| - if (false_target.is_linked()) {
|
| - loaded.Jump();
|
| - }
|
| - }
|
| - if (false_target.is_linked()) {
|
| - false_target.Bind();
|
| - frame_->Push(FACTORY->false_value());
|
| - }
|
| - loaded.Bind();
|
| - }
|
| - }
|
| -
|
| - ASSERT(has_valid_frame());
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadGlobal() {
|
| - if (in_spilled_code()) {
|
| - frame_->EmitPush(GlobalObjectOperand());
|
| - } else {
|
| - Result temp = allocator_->Allocate();
|
| - __ movq(temp.reg(), GlobalObjectOperand());
|
| - frame_->Push(&temp);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadGlobalReceiver() {
|
| - Result temp = allocator_->Allocate();
|
| - Register reg = temp.reg();
|
| - __ movq(reg, GlobalObjectOperand());
|
| - __ movq(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset));
|
| - frame_->Push(&temp);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadTypeofExpression(Expression* expr) {
|
| - // Special handling of identifiers as subexpressions of typeof.
|
| - Variable* variable = expr->AsVariableProxy()->AsVariable();
|
| - if (variable != NULL && !variable->is_this() && variable->is_global()) {
|
| - // For a global variable we build the property reference
|
| - // <global>.<variable> and perform a (regular non-contextual) property
|
| - // load to make sure we do not get reference errors.
|
| - Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
|
| - Literal key(variable->name());
|
| - Property property(&global, &key, RelocInfo::kNoPosition);
|
| - Reference ref(this, &property);
|
| - ref.GetValue();
|
| - } else if (variable != NULL && variable->AsSlot() != NULL) {
|
| - // For a variable that rewrites to a slot, we signal it is the immediate
|
| - // subexpression of a typeof.
|
| - LoadFromSlotCheckForArguments(variable->AsSlot(), INSIDE_TYPEOF);
|
| - } else {
|
| - // Anything else can be handled normally.
|
| - Load(expr);
|
| - }
|
| -}
|
| -
|
| -
|
| -ArgumentsAllocationMode CodeGenerator::ArgumentsMode() {
|
| - if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION;
|
| -
|
| - // In strict mode there is no need for shadow arguments.
|
| - ASSERT(scope()->arguments_shadow() != NULL || scope()->is_strict_mode());
|
| - // We don't want to do lazy arguments allocation for functions that
|
| - // have heap-allocated contexts, because it interfers with the
|
| - // uninitialized const tracking in the context objects.
|
| - return (scope()->num_heap_slots() > 0 || scope()->is_strict_mode())
|
| - ? EAGER_ARGUMENTS_ALLOCATION
|
| - : LAZY_ARGUMENTS_ALLOCATION;
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::StoreArgumentsObject(bool initial) {
|
| - ArgumentsAllocationMode mode = ArgumentsMode();
|
| - ASSERT(mode != NO_ARGUMENTS_ALLOCATION);
|
| -
|
| - Comment cmnt(masm_, "[ store arguments object");
|
| - if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) {
|
| - // When using lazy arguments allocation, we store the arguments marker value
|
| - // as a sentinel indicating that the arguments object hasn't been
|
| - // allocated yet.
|
| - frame_->Push(FACTORY->arguments_marker());
|
| - } else {
|
| - ArgumentsAccessStub stub(is_strict_mode()
|
| - ? ArgumentsAccessStub::NEW_STRICT
|
| - : ArgumentsAccessStub::NEW_NON_STRICT);
|
| - frame_->PushFunction();
|
| - frame_->PushReceiverSlotAddress();
|
| - frame_->Push(Smi::FromInt(scope()->num_parameters()));
|
| - Result result = frame_->CallStub(&stub, 3);
|
| - frame_->Push(&result);
|
| - }
|
| -
|
| - Variable* arguments = scope()->arguments();
|
| - Variable* shadow = scope()->arguments_shadow();
|
| - ASSERT(arguments != NULL && arguments->AsSlot() != NULL);
|
| - ASSERT((shadow != NULL && shadow->AsSlot() != NULL) ||
|
| - scope()->is_strict_mode());
|
| -
|
| - JumpTarget done;
|
| - bool skip_arguments = false;
|
| - if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) {
|
| - // We have to skip storing into the arguments slot if it has
|
| - // already been written to. This can happen if the a function
|
| - // has a local variable named 'arguments'.
|
| - LoadFromSlot(arguments->AsSlot(), NOT_INSIDE_TYPEOF);
|
| - Result probe = frame_->Pop();
|
| - if (probe.is_constant()) {
|
| - // We have to skip updating the arguments object if it has
|
| - // been assigned a proper value.
|
| - skip_arguments = !probe.handle()->IsArgumentsMarker();
|
| - } else {
|
| - __ CompareRoot(probe.reg(), Heap::kArgumentsMarkerRootIndex);
|
| - probe.Unuse();
|
| - done.Branch(not_equal);
|
| - }
|
| - }
|
| - if (!skip_arguments) {
|
| - StoreToSlot(arguments->AsSlot(), NOT_CONST_INIT);
|
| - if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind();
|
| - }
|
| - if (shadow != NULL) {
|
| - StoreToSlot(shadow->AsSlot(), NOT_CONST_INIT);
|
| - }
|
| - return frame_->Pop();
|
| -}
|
| -
|
| -//------------------------------------------------------------------------------
|
| -// CodeGenerator implementation of variables, lookups, and stores.
|
| -
|
| -Reference::Reference(CodeGenerator* cgen,
|
| - Expression* expression,
|
| - bool persist_after_get)
|
| - : cgen_(cgen),
|
| - expression_(expression),
|
| - type_(ILLEGAL),
|
| - persist_after_get_(persist_after_get) {
|
| - cgen->LoadReference(this);
|
| -}
|
| -
|
| -
|
| -Reference::~Reference() {
|
| - ASSERT(is_unloaded() || is_illegal());
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadReference(Reference* ref) {
|
| - // References are loaded from both spilled and unspilled code. Set the
|
| - // state to unspilled to allow that (and explicitly spill after
|
| - // construction at the construction sites).
|
| - bool was_in_spilled_code = in_spilled_code_;
|
| - in_spilled_code_ = false;
|
| -
|
| - Comment cmnt(masm_, "[ LoadReference");
|
| - Expression* e = ref->expression();
|
| - Property* property = e->AsProperty();
|
| - Variable* var = e->AsVariableProxy()->AsVariable();
|
| -
|
| - if (property != NULL) {
|
| - // The expression is either a property or a variable proxy that rewrites
|
| - // to a property.
|
| - Load(property->obj());
|
| - if (property->key()->IsPropertyName()) {
|
| - ref->set_type(Reference::NAMED);
|
| - } else {
|
| - Load(property->key());
|
| - ref->set_type(Reference::KEYED);
|
| - }
|
| - } else if (var != NULL) {
|
| - // The expression is a variable proxy that does not rewrite to a
|
| - // property. Global variables are treated as named property references.
|
| - if (var->is_global()) {
|
| - // If rax is free, the register allocator prefers it. Thus the code
|
| - // generator will load the global object into rax, which is where
|
| - // LoadIC wants it. Most uses of Reference call LoadIC directly
|
| - // after the reference is created.
|
| - frame_->Spill(rax);
|
| - LoadGlobal();
|
| - ref->set_type(Reference::NAMED);
|
| - } else {
|
| - ASSERT(var->AsSlot() != NULL);
|
| - ref->set_type(Reference::SLOT);
|
| - }
|
| - } else {
|
| - // Anything else is a runtime error.
|
| - Load(e);
|
| - frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
|
| - }
|
| -
|
| - in_spilled_code_ = was_in_spilled_code;
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::UnloadReference(Reference* ref) {
|
| - // Pop a reference from the stack while preserving TOS.
|
| - Comment cmnt(masm_, "[ UnloadReference");
|
| - frame_->Nip(ref->size());
|
| - ref->set_unloaded();
|
| -}
|
| -
|
| -
|
| -// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and
|
| -// convert it to a boolean in the condition code register or jump to
|
| -// 'false_target'/'true_target' as appropriate.
|
| -void CodeGenerator::ToBoolean(ControlDestination* dest) {
|
| - Comment cmnt(masm_, "[ ToBoolean");
|
| -
|
| - // The value to convert should be popped from the frame.
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| -
|
| - if (value.is_number()) {
|
| - // Fast case if TypeInfo indicates only numbers.
|
| - if (FLAG_debug_code) {
|
| - __ AbortIfNotNumber(value.reg());
|
| - }
|
| - // Smi => false iff zero.
|
| - __ Cmp(value.reg(), Smi::FromInt(0));
|
| - if (value.is_smi()) {
|
| - value.Unuse();
|
| - dest->Split(not_zero);
|
| - } else {
|
| - dest->false_target()->Branch(equal);
|
| - Condition is_smi = masm_->CheckSmi(value.reg());
|
| - dest->true_target()->Branch(is_smi);
|
| - __ xorpd(xmm0, xmm0);
|
| - __ ucomisd(xmm0, FieldOperand(value.reg(), HeapNumber::kValueOffset));
|
| - value.Unuse();
|
| - dest->Split(not_zero);
|
| - }
|
| - } else {
|
| - // Fast case checks.
|
| - // 'false' => false.
|
| - __ CompareRoot(value.reg(), Heap::kFalseValueRootIndex);
|
| - dest->false_target()->Branch(equal);
|
| -
|
| - // 'true' => true.
|
| - __ CompareRoot(value.reg(), Heap::kTrueValueRootIndex);
|
| - dest->true_target()->Branch(equal);
|
| -
|
| - // 'undefined' => false.
|
| - __ CompareRoot(value.reg(), Heap::kUndefinedValueRootIndex);
|
| - dest->false_target()->Branch(equal);
|
| -
|
| - // Smi => false iff zero.
|
| - __ Cmp(value.reg(), Smi::FromInt(0));
|
| - dest->false_target()->Branch(equal);
|
| - Condition is_smi = masm_->CheckSmi(value.reg());
|
| - dest->true_target()->Branch(is_smi);
|
| -
|
| - // Call the stub for all other cases.
|
| - frame_->Push(&value); // Undo the Pop() from above.
|
| - ToBooleanStub stub;
|
| - Result temp = frame_->CallStub(&stub, 1);
|
| - // Convert the result to a condition code.
|
| - __ testq(temp.reg(), temp.reg());
|
| - temp.Unuse();
|
| - dest->Split(not_equal);
|
| - }
|
| -}
|
| -
|
| -
|
| -// Call the specialized stub for a binary operation.
|
| -class DeferredInlineBinaryOperation: public DeferredCode {
|
| - public:
|
| - DeferredInlineBinaryOperation(Token::Value op,
|
| - Register dst,
|
| - Register left,
|
| - Register right,
|
| - OverwriteMode mode)
|
| - : op_(op), dst_(dst), left_(left), right_(right), mode_(mode) {
|
| - set_comment("[ DeferredInlineBinaryOperation");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Token::Value op_;
|
| - Register dst_;
|
| - Register left_;
|
| - Register right_;
|
| - OverwriteMode mode_;
|
| -};
|
| -
|
| -
|
| -void DeferredInlineBinaryOperation::Generate() {
|
| - Label done;
|
| - if ((op_ == Token::ADD)
|
| - || (op_ == Token::SUB)
|
| - || (op_ == Token::MUL)
|
| - || (op_ == Token::DIV)) {
|
| - Label call_runtime;
|
| - Label left_smi, right_smi, load_right, do_op;
|
| - __ JumpIfSmi(left_, &left_smi);
|
| - __ CompareRoot(FieldOperand(left_, HeapObject::kMapOffset),
|
| - Heap::kHeapNumberMapRootIndex);
|
| - __ j(not_equal, &call_runtime);
|
| - __ movsd(xmm0, FieldOperand(left_, HeapNumber::kValueOffset));
|
| - if (mode_ == OVERWRITE_LEFT) {
|
| - __ movq(dst_, left_);
|
| - }
|
| - __ jmp(&load_right);
|
| -
|
| - __ bind(&left_smi);
|
| - __ SmiToInteger32(left_, left_);
|
| - __ cvtlsi2sd(xmm0, left_);
|
| - __ Integer32ToSmi(left_, left_);
|
| - if (mode_ == OVERWRITE_LEFT) {
|
| - Label alloc_failure;
|
| - __ AllocateHeapNumber(dst_, no_reg, &call_runtime);
|
| - }
|
| -
|
| - __ bind(&load_right);
|
| - __ JumpIfSmi(right_, &right_smi);
|
| - __ CompareRoot(FieldOperand(right_, HeapObject::kMapOffset),
|
| - Heap::kHeapNumberMapRootIndex);
|
| - __ j(not_equal, &call_runtime);
|
| - __ movsd(xmm1, FieldOperand(right_, HeapNumber::kValueOffset));
|
| - if (mode_ == OVERWRITE_RIGHT) {
|
| - __ movq(dst_, right_);
|
| - } else if (mode_ == NO_OVERWRITE) {
|
| - Label alloc_failure;
|
| - __ AllocateHeapNumber(dst_, no_reg, &call_runtime);
|
| - }
|
| - __ jmp(&do_op);
|
| -
|
| - __ bind(&right_smi);
|
| - __ SmiToInteger32(right_, right_);
|
| - __ cvtlsi2sd(xmm1, right_);
|
| - __ Integer32ToSmi(right_, right_);
|
| - if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) {
|
| - Label alloc_failure;
|
| - __ AllocateHeapNumber(dst_, no_reg, &call_runtime);
|
| - }
|
| -
|
| - __ bind(&do_op);
|
| - switch (op_) {
|
| - case Token::ADD: __ addsd(xmm0, xmm1); break;
|
| - case Token::SUB: __ subsd(xmm0, xmm1); break;
|
| - case Token::MUL: __ mulsd(xmm0, xmm1); break;
|
| - case Token::DIV: __ divsd(xmm0, xmm1); break;
|
| - default: UNREACHABLE();
|
| - }
|
| - __ movsd(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0);
|
| - __ jmp(&done);
|
| -
|
| - __ bind(&call_runtime);
|
| - }
|
| - GenericBinaryOpStub stub(op_, mode_, NO_SMI_CODE_IN_STUB);
|
| - stub.GenerateCall(masm_, left_, right_);
|
| - if (!dst_.is(rax)) __ movq(dst_, rax);
|
| - __ bind(&done);
|
| -}
|
| -
|
| -
|
| -static TypeInfo CalculateTypeInfo(TypeInfo operands_type,
|
| - Token::Value op,
|
| - const Result& right,
|
| - const Result& left) {
|
| - // Set TypeInfo of result according to the operation performed.
|
| - // We rely on the fact that smis have a 32 bit payload on x64.
|
| - STATIC_ASSERT(kSmiValueSize == 32);
|
| - switch (op) {
|
| - case Token::COMMA:
|
| - return right.type_info();
|
| - case Token::OR:
|
| - case Token::AND:
|
| - // Result type can be either of the two input types.
|
| - return operands_type;
|
| - case Token::BIT_OR:
|
| - case Token::BIT_XOR:
|
| - case Token::BIT_AND:
|
| - // Result is always a smi.
|
| - return TypeInfo::Smi();
|
| - case Token::SAR:
|
| - case Token::SHL:
|
| - // Result is always a smi.
|
| - return TypeInfo::Smi();
|
| - case Token::SHR:
|
| - // Result of x >>> y is always a smi if masked y >= 1, otherwise a number.
|
| - return (right.is_constant() && right.handle()->IsSmi()
|
| - && (Smi::cast(*right.handle())->value() & 0x1F) >= 1)
|
| - ? TypeInfo::Smi()
|
| - : TypeInfo::Number();
|
| - case Token::ADD:
|
| - if (operands_type.IsNumber()) {
|
| - return TypeInfo::Number();
|
| - } else if (left.type_info().IsString() || right.type_info().IsString()) {
|
| - return TypeInfo::String();
|
| - } else {
|
| - return TypeInfo::Unknown();
|
| - }
|
| - case Token::SUB:
|
| - case Token::MUL:
|
| - case Token::DIV:
|
| - case Token::MOD:
|
| - // Result is always a number.
|
| - return TypeInfo::Number();
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - UNREACHABLE();
|
| - return TypeInfo::Unknown();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenericBinaryOperation(BinaryOperation* expr,
|
| - OverwriteMode overwrite_mode) {
|
| - Comment cmnt(masm_, "[ BinaryOperation");
|
| - Token::Value op = expr->op();
|
| - Comment cmnt_token(masm_, Token::String(op));
|
| -
|
| - if (op == Token::COMMA) {
|
| - // Simply discard left value.
|
| - frame_->Nip(1);
|
| - return;
|
| - }
|
| -
|
| - Result right = frame_->Pop();
|
| - Result left = frame_->Pop();
|
| -
|
| - if (op == Token::ADD) {
|
| - const bool left_is_string = left.type_info().IsString();
|
| - const bool right_is_string = right.type_info().IsString();
|
| - // Make sure constant strings have string type info.
|
| - ASSERT(!(left.is_constant() && left.handle()->IsString()) ||
|
| - left_is_string);
|
| - ASSERT(!(right.is_constant() && right.handle()->IsString()) ||
|
| - right_is_string);
|
| - if (left_is_string || right_is_string) {
|
| - frame_->Push(&left);
|
| - frame_->Push(&right);
|
| - Result answer;
|
| - if (left_is_string) {
|
| - if (right_is_string) {
|
| - StringAddStub stub(NO_STRING_CHECK_IN_STUB);
|
| - answer = frame_->CallStub(&stub, 2);
|
| - } else {
|
| - answer =
|
| - frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2);
|
| - }
|
| - } else if (right_is_string) {
|
| - answer =
|
| - frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2);
|
| - }
|
| - answer.set_type_info(TypeInfo::String());
|
| - frame_->Push(&answer);
|
| - return;
|
| - }
|
| - // Neither operand is known to be a string.
|
| - }
|
| -
|
| - bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi();
|
| - bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi();
|
| - bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi();
|
| - bool right_is_non_smi_constant =
|
| - right.is_constant() && !right.handle()->IsSmi();
|
| -
|
| - if (left_is_smi_constant && right_is_smi_constant) {
|
| - // Compute the constant result at compile time, and leave it on the frame.
|
| - int left_int = Smi::cast(*left.handle())->value();
|
| - int right_int = Smi::cast(*right.handle())->value();
|
| - if (FoldConstantSmis(op, left_int, right_int)) return;
|
| - }
|
| -
|
| - // Get number type of left and right sub-expressions.
|
| - TypeInfo operands_type =
|
| - TypeInfo::Combine(left.type_info(), right.type_info());
|
| -
|
| - TypeInfo result_type = CalculateTypeInfo(operands_type, op, right, left);
|
| -
|
| - Result answer;
|
| - if (left_is_non_smi_constant || right_is_non_smi_constant) {
|
| - // Go straight to the slow case, with no smi code.
|
| - GenericBinaryOpStub stub(op,
|
| - overwrite_mode,
|
| - NO_SMI_CODE_IN_STUB,
|
| - operands_type);
|
| - answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right);
|
| - } else if (right_is_smi_constant) {
|
| - answer = ConstantSmiBinaryOperation(expr, &left, right.handle(),
|
| - false, overwrite_mode);
|
| - } else if (left_is_smi_constant) {
|
| - answer = ConstantSmiBinaryOperation(expr, &right, left.handle(),
|
| - true, overwrite_mode);
|
| - } else {
|
| - // Set the flags based on the operation, type and loop nesting level.
|
| - // Bit operations always assume they likely operate on smis. Still only
|
| - // generate the inline Smi check code if this operation is part of a loop.
|
| - // For all other operations only inline the Smi check code for likely smis
|
| - // if the operation is part of a loop.
|
| - if (loop_nesting() > 0 &&
|
| - (Token::IsBitOp(op) ||
|
| - operands_type.IsInteger32() ||
|
| - expr->type()->IsLikelySmi())) {
|
| - answer = LikelySmiBinaryOperation(expr, &left, &right, overwrite_mode);
|
| - } else {
|
| - GenericBinaryOpStub stub(op,
|
| - overwrite_mode,
|
| - NO_GENERIC_BINARY_FLAGS,
|
| - operands_type);
|
| - answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right);
|
| - }
|
| - }
|
| -
|
| - answer.set_type_info(result_type);
|
| - frame_->Push(&answer);
|
| -}
|
| -
|
| -
|
| -bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) {
|
| - Object* answer_object = HEAP->undefined_value();
|
| - switch (op) {
|
| - case Token::ADD:
|
| - // Use intptr_t to detect overflow of 32-bit int.
|
| - if (Smi::IsValid(static_cast<intptr_t>(left) + right)) {
|
| - answer_object = Smi::FromInt(left + right);
|
| - }
|
| - break;
|
| - case Token::SUB:
|
| - // Use intptr_t to detect overflow of 32-bit int.
|
| - if (Smi::IsValid(static_cast<intptr_t>(left) - right)) {
|
| - answer_object = Smi::FromInt(left - right);
|
| - }
|
| - break;
|
| - case Token::MUL: {
|
| - double answer = static_cast<double>(left) * right;
|
| - if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) {
|
| - // If the product is zero and the non-zero factor is negative,
|
| - // the spec requires us to return floating point negative zero.
|
| - if (answer != 0 || (left >= 0 && right >= 0)) {
|
| - answer_object = Smi::FromInt(static_cast<int>(answer));
|
| - }
|
| - }
|
| - }
|
| - break;
|
| - case Token::DIV:
|
| - case Token::MOD:
|
| - break;
|
| - case Token::BIT_OR:
|
| - answer_object = Smi::FromInt(left | right);
|
| - break;
|
| - case Token::BIT_AND:
|
| - answer_object = Smi::FromInt(left & right);
|
| - break;
|
| - case Token::BIT_XOR:
|
| - answer_object = Smi::FromInt(left ^ right);
|
| - break;
|
| -
|
| - case Token::SHL: {
|
| - int shift_amount = right & 0x1F;
|
| - if (Smi::IsValid(left << shift_amount)) {
|
| - answer_object = Smi::FromInt(left << shift_amount);
|
| - }
|
| - break;
|
| - }
|
| - case Token::SHR: {
|
| - int shift_amount = right & 0x1F;
|
| - unsigned int unsigned_left = left;
|
| - unsigned_left >>= shift_amount;
|
| - if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) {
|
| - answer_object = Smi::FromInt(unsigned_left);
|
| - }
|
| - break;
|
| - }
|
| - case Token::SAR: {
|
| - int shift_amount = right & 0x1F;
|
| - unsigned int unsigned_left = left;
|
| - if (left < 0) {
|
| - // Perform arithmetic shift of a negative number by
|
| - // complementing number, logical shifting, complementing again.
|
| - unsigned_left = ~unsigned_left;
|
| - unsigned_left >>= shift_amount;
|
| - unsigned_left = ~unsigned_left;
|
| - } else {
|
| - unsigned_left >>= shift_amount;
|
| - }
|
| - ASSERT(Smi::IsValid(static_cast<int32_t>(unsigned_left)));
|
| - answer_object = Smi::FromInt(static_cast<int32_t>(unsigned_left));
|
| - break;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| - if (answer_object->IsUndefined()) {
|
| - return false;
|
| - }
|
| - frame_->Push(Handle<Object>(answer_object));
|
| - return true;
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::JumpIfBothSmiUsingTypeInfo(Result* left,
|
| - Result* right,
|
| - JumpTarget* both_smi) {
|
| - TypeInfo left_info = left->type_info();
|
| - TypeInfo right_info = right->type_info();
|
| - if (left_info.IsDouble() || left_info.IsString() ||
|
| - right_info.IsDouble() || right_info.IsString()) {
|
| - // We know that left and right are not both smi. Don't do any tests.
|
| - return;
|
| - }
|
| -
|
| - if (left->reg().is(right->reg())) {
|
| - if (!left_info.IsSmi()) {
|
| - Condition is_smi = masm()->CheckSmi(left->reg());
|
| - both_smi->Branch(is_smi);
|
| - } else {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(left->reg());
|
| - left->Unuse();
|
| - right->Unuse();
|
| - both_smi->Jump();
|
| - }
|
| - } else if (!left_info.IsSmi()) {
|
| - if (!right_info.IsSmi()) {
|
| - Condition is_smi = masm()->CheckBothSmi(left->reg(), right->reg());
|
| - both_smi->Branch(is_smi);
|
| - } else {
|
| - Condition is_smi = masm()->CheckSmi(left->reg());
|
| - both_smi->Branch(is_smi);
|
| - }
|
| - } else {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(left->reg());
|
| - if (!right_info.IsSmi()) {
|
| - Condition is_smi = masm()->CheckSmi(right->reg());
|
| - both_smi->Branch(is_smi);
|
| - } else {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(right->reg());
|
| - left->Unuse();
|
| - right->Unuse();
|
| - both_smi->Jump();
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::JumpIfNotSmiUsingTypeInfo(Register reg,
|
| - TypeInfo type,
|
| - DeferredCode* deferred) {
|
| - if (!type.IsSmi()) {
|
| - __ JumpIfNotSmi(reg, deferred->entry_label());
|
| - }
|
| - if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(reg);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left,
|
| - Register right,
|
| - TypeInfo left_info,
|
| - TypeInfo right_info,
|
| - DeferredCode* deferred) {
|
| - if (!left_info.IsSmi() && !right_info.IsSmi()) {
|
| - __ JumpIfNotBothSmi(left, right, deferred->entry_label());
|
| - } else if (!left_info.IsSmi()) {
|
| - __ JumpIfNotSmi(left, deferred->entry_label());
|
| - } else if (!right_info.IsSmi()) {
|
| - __ JumpIfNotSmi(right, deferred->entry_label());
|
| - }
|
| - if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(left);
|
| - __ AbortIfNotSmi(right);
|
| - }
|
| -}
|
| -
|
| -
|
| -// Implements a binary operation using a deferred code object and some
|
| -// inline code to operate on smis quickly.
|
| -Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
|
| - Result* left,
|
| - Result* right,
|
| - OverwriteMode overwrite_mode) {
|
| - // Copy the type info because left and right may be overwritten.
|
| - TypeInfo left_type_info = left->type_info();
|
| - TypeInfo right_type_info = right->type_info();
|
| - Token::Value op = expr->op();
|
| - Result answer;
|
| - // Special handling of div and mod because they use fixed registers.
|
| - if (op == Token::DIV || op == Token::MOD) {
|
| - // We need rax as the quotient register, rdx as the remainder
|
| - // register, neither left nor right in rax or rdx, and left copied
|
| - // to rax.
|
| - Result quotient;
|
| - Result remainder;
|
| - bool left_is_in_rax = false;
|
| - // Step 1: get rax for quotient.
|
| - if ((left->is_register() && left->reg().is(rax)) ||
|
| - (right->is_register() && right->reg().is(rax))) {
|
| - // One or both is in rax. Use a fresh non-rdx register for
|
| - // them.
|
| - Result fresh = allocator_->Allocate();
|
| - ASSERT(fresh.is_valid());
|
| - if (fresh.reg().is(rdx)) {
|
| - remainder = fresh;
|
| - fresh = allocator_->Allocate();
|
| - ASSERT(fresh.is_valid());
|
| - }
|
| - if (left->is_register() && left->reg().is(rax)) {
|
| - quotient = *left;
|
| - *left = fresh;
|
| - left_is_in_rax = true;
|
| - }
|
| - if (right->is_register() && right->reg().is(rax)) {
|
| - quotient = *right;
|
| - *right = fresh;
|
| - }
|
| - __ movq(fresh.reg(), rax);
|
| - } else {
|
| - // Neither left nor right is in rax.
|
| - quotient = allocator_->Allocate(rax);
|
| - }
|
| - ASSERT(quotient.is_register() && quotient.reg().is(rax));
|
| - ASSERT(!(left->is_register() && left->reg().is(rax)));
|
| - ASSERT(!(right->is_register() && right->reg().is(rax)));
|
| -
|
| - // Step 2: get rdx for remainder if necessary.
|
| - if (!remainder.is_valid()) {
|
| - if ((left->is_register() && left->reg().is(rdx)) ||
|
| - (right->is_register() && right->reg().is(rdx))) {
|
| - Result fresh = allocator_->Allocate();
|
| - ASSERT(fresh.is_valid());
|
| - if (left->is_register() && left->reg().is(rdx)) {
|
| - remainder = *left;
|
| - *left = fresh;
|
| - }
|
| - if (right->is_register() && right->reg().is(rdx)) {
|
| - remainder = *right;
|
| - *right = fresh;
|
| - }
|
| - __ movq(fresh.reg(), rdx);
|
| - } else {
|
| - // Neither left nor right is in rdx.
|
| - remainder = allocator_->Allocate(rdx);
|
| - }
|
| - }
|
| - ASSERT(remainder.is_register() && remainder.reg().is(rdx));
|
| - ASSERT(!(left->is_register() && left->reg().is(rdx)));
|
| - ASSERT(!(right->is_register() && right->reg().is(rdx)));
|
| -
|
| - left->ToRegister();
|
| - right->ToRegister();
|
| - frame_->Spill(rax);
|
| - frame_->Spill(rdx);
|
| -
|
| - // Check that left and right are smi tagged.
|
| - DeferredInlineBinaryOperation* deferred =
|
| - new DeferredInlineBinaryOperation(op,
|
| - (op == Token::DIV) ? rax : rdx,
|
| - left->reg(),
|
| - right->reg(),
|
| - overwrite_mode);
|
| - JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(),
|
| - left_type_info, right_type_info, deferred);
|
| -
|
| - if (op == Token::DIV) {
|
| - __ SmiDiv(rax, left->reg(), right->reg(), deferred->entry_label());
|
| - deferred->BindExit();
|
| - left->Unuse();
|
| - right->Unuse();
|
| - answer = quotient;
|
| - } else {
|
| - ASSERT(op == Token::MOD);
|
| - __ SmiMod(rdx, left->reg(), right->reg(), deferred->entry_label());
|
| - deferred->BindExit();
|
| - left->Unuse();
|
| - right->Unuse();
|
| - answer = remainder;
|
| - }
|
| - ASSERT(answer.is_valid());
|
| - return answer;
|
| - }
|
| -
|
| - // Special handling of shift operations because they use fixed
|
| - // registers.
|
| - if (op == Token::SHL || op == Token::SHR || op == Token::SAR) {
|
| - // Move left out of rcx if necessary.
|
| - if (left->is_register() && left->reg().is(rcx)) {
|
| - *left = allocator_->Allocate();
|
| - ASSERT(left->is_valid());
|
| - __ movq(left->reg(), rcx);
|
| - }
|
| - right->ToRegister(rcx);
|
| - left->ToRegister();
|
| - ASSERT(left->is_register() && !left->reg().is(rcx));
|
| - ASSERT(right->is_register() && right->reg().is(rcx));
|
| -
|
| - // We will modify right, it must be spilled.
|
| - frame_->Spill(rcx);
|
| -
|
| - // Use a fresh answer register to avoid spilling the left operand.
|
| - answer = allocator_->Allocate();
|
| - ASSERT(answer.is_valid());
|
| - // Check that both operands are smis using the answer register as a
|
| - // temporary.
|
| - DeferredInlineBinaryOperation* deferred =
|
| - new DeferredInlineBinaryOperation(op,
|
| - answer.reg(),
|
| - left->reg(),
|
| - rcx,
|
| - overwrite_mode);
|
| -
|
| - Label do_op;
|
| - // Left operand must be unchanged in left->reg() for deferred code.
|
| - // Left operand is in answer.reg(), possibly converted to int32, for
|
| - // inline code.
|
| - __ movq(answer.reg(), left->reg());
|
| - if (right_type_info.IsSmi()) {
|
| - if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(right->reg());
|
| - }
|
| - // If left is not known to be a smi, check if it is.
|
| - // If left is not known to be a number, and it isn't a smi, check if
|
| - // it is a HeapNumber.
|
| - if (!left_type_info.IsSmi()) {
|
| - __ JumpIfSmi(answer.reg(), &do_op);
|
| - if (!left_type_info.IsNumber()) {
|
| - // Branch if not a heapnumber.
|
| - __ Cmp(FieldOperand(answer.reg(), HeapObject::kMapOffset),
|
| - FACTORY->heap_number_map());
|
| - deferred->Branch(not_equal);
|
| - }
|
| - // Load integer value into answer register using truncation.
|
| - __ cvttsd2si(answer.reg(),
|
| - FieldOperand(answer.reg(), HeapNumber::kValueOffset));
|
| - // Branch if we might have overflowed.
|
| - // (False negative for Smi::kMinValue)
|
| - __ cmpl(answer.reg(), Immediate(0x80000000));
|
| - deferred->Branch(equal);
|
| - // TODO(lrn): Inline shifts on int32 here instead of first smi-tagging.
|
| - __ Integer32ToSmi(answer.reg(), answer.reg());
|
| - } else {
|
| - // Fast case - both are actually smis.
|
| - if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(left->reg());
|
| - }
|
| - }
|
| - } else {
|
| - JumpIfNotBothSmiUsingTypeInfo(left->reg(), rcx,
|
| - left_type_info, right_type_info, deferred);
|
| - }
|
| - __ bind(&do_op);
|
| -
|
| - // Perform the operation.
|
| - switch (op) {
|
| - case Token::SAR:
|
| - __ SmiShiftArithmeticRight(answer.reg(), answer.reg(), rcx);
|
| - break;
|
| - case Token::SHR: {
|
| - __ SmiShiftLogicalRight(answer.reg(),
|
| - answer.reg(),
|
| - rcx,
|
| - deferred->entry_label());
|
| - break;
|
| - }
|
| - case Token::SHL: {
|
| - __ SmiShiftLeft(answer.reg(),
|
| - answer.reg(),
|
| - rcx);
|
| - break;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - deferred->BindExit();
|
| - left->Unuse();
|
| - right->Unuse();
|
| - ASSERT(answer.is_valid());
|
| - return answer;
|
| - }
|
| -
|
| - // Handle the other binary operations.
|
| - left->ToRegister();
|
| - right->ToRegister();
|
| - // A newly allocated register answer is used to hold the answer. The
|
| - // registers containing left and right are not modified so they don't
|
| - // need to be spilled in the fast case.
|
| - answer = allocator_->Allocate();
|
| - ASSERT(answer.is_valid());
|
| -
|
| - // Perform the smi tag check.
|
| - DeferredInlineBinaryOperation* deferred =
|
| - new DeferredInlineBinaryOperation(op,
|
| - answer.reg(),
|
| - left->reg(),
|
| - right->reg(),
|
| - overwrite_mode);
|
| - JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(),
|
| - left_type_info, right_type_info, deferred);
|
| -
|
| - switch (op) {
|
| - case Token::ADD:
|
| - __ SmiAdd(answer.reg(),
|
| - left->reg(),
|
| - right->reg(),
|
| - deferred->entry_label());
|
| - break;
|
| -
|
| - case Token::SUB:
|
| - __ SmiSub(answer.reg(),
|
| - left->reg(),
|
| - right->reg(),
|
| - deferred->entry_label());
|
| - break;
|
| -
|
| - case Token::MUL: {
|
| - __ SmiMul(answer.reg(),
|
| - left->reg(),
|
| - right->reg(),
|
| - deferred->entry_label());
|
| - break;
|
| - }
|
| -
|
| - case Token::BIT_OR:
|
| - __ SmiOr(answer.reg(), left->reg(), right->reg());
|
| - break;
|
| -
|
| - case Token::BIT_AND:
|
| - __ SmiAnd(answer.reg(), left->reg(), right->reg());
|
| - break;
|
| -
|
| - case Token::BIT_XOR:
|
| - __ SmiXor(answer.reg(), left->reg(), right->reg());
|
| - break;
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| - deferred->BindExit();
|
| - left->Unuse();
|
| - right->Unuse();
|
| - ASSERT(answer.is_valid());
|
| - return answer;
|
| -}
|
| -
|
| -
|
| -// Call the appropriate binary operation stub to compute src op value
|
| -// and leave the result in dst.
|
| -class DeferredInlineSmiOperation: public DeferredCode {
|
| - public:
|
| - DeferredInlineSmiOperation(Token::Value op,
|
| - Register dst,
|
| - Register src,
|
| - Smi* value,
|
| - OverwriteMode overwrite_mode)
|
| - : op_(op),
|
| - dst_(dst),
|
| - src_(src),
|
| - value_(value),
|
| - overwrite_mode_(overwrite_mode) {
|
| - set_comment("[ DeferredInlineSmiOperation");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Token::Value op_;
|
| - Register dst_;
|
| - Register src_;
|
| - Smi* value_;
|
| - OverwriteMode overwrite_mode_;
|
| -};
|
| -
|
| -
|
| -void DeferredInlineSmiOperation::Generate() {
|
| - // For mod we don't generate all the Smi code inline.
|
| - GenericBinaryOpStub stub(
|
| - op_,
|
| - overwrite_mode_,
|
| - (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB);
|
| - stub.GenerateCall(masm_, src_, value_);
|
| - if (!dst_.is(rax)) __ movq(dst_, rax);
|
| -}
|
| -
|
| -
|
| -// Call the appropriate binary operation stub to compute value op src
|
| -// and leave the result in dst.
|
| -class DeferredInlineSmiOperationReversed: public DeferredCode {
|
| - public:
|
| - DeferredInlineSmiOperationReversed(Token::Value op,
|
| - Register dst,
|
| - Smi* value,
|
| - Register src,
|
| - OverwriteMode overwrite_mode)
|
| - : op_(op),
|
| - dst_(dst),
|
| - value_(value),
|
| - src_(src),
|
| - overwrite_mode_(overwrite_mode) {
|
| - set_comment("[ DeferredInlineSmiOperationReversed");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Token::Value op_;
|
| - Register dst_;
|
| - Smi* value_;
|
| - Register src_;
|
| - OverwriteMode overwrite_mode_;
|
| -};
|
| -
|
| -
|
| -void DeferredInlineSmiOperationReversed::Generate() {
|
| - GenericBinaryOpStub stub(
|
| - op_,
|
| - overwrite_mode_,
|
| - NO_SMI_CODE_IN_STUB);
|
| - stub.GenerateCall(masm_, value_, src_);
|
| - if (!dst_.is(rax)) __ movq(dst_, rax);
|
| -}
|
| -class DeferredInlineSmiAdd: public DeferredCode {
|
| - public:
|
| - DeferredInlineSmiAdd(Register dst,
|
| - Smi* value,
|
| - OverwriteMode overwrite_mode)
|
| - : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
|
| - set_comment("[ DeferredInlineSmiAdd");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Register dst_;
|
| - Smi* value_;
|
| - OverwriteMode overwrite_mode_;
|
| -};
|
| -
|
| -
|
| -void DeferredInlineSmiAdd::Generate() {
|
| - GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB);
|
| - igostub.GenerateCall(masm_, dst_, value_);
|
| - if (!dst_.is(rax)) __ movq(dst_, rax);
|
| -}
|
| -
|
| -
|
| -// The result of value + src is in dst. It either overflowed or was not
|
| -// smi tagged. Undo the speculative addition and call the appropriate
|
| -// specialized stub for add. The result is left in dst.
|
| -class DeferredInlineSmiAddReversed: public DeferredCode {
|
| - public:
|
| - DeferredInlineSmiAddReversed(Register dst,
|
| - Smi* value,
|
| - OverwriteMode overwrite_mode)
|
| - : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
|
| - set_comment("[ DeferredInlineSmiAddReversed");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Register dst_;
|
| - Smi* value_;
|
| - OverwriteMode overwrite_mode_;
|
| -};
|
| -
|
| -
|
| -void DeferredInlineSmiAddReversed::Generate() {
|
| - GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB);
|
| - igostub.GenerateCall(masm_, value_, dst_);
|
| - if (!dst_.is(rax)) __ movq(dst_, rax);
|
| -}
|
| -
|
| -
|
| -class DeferredInlineSmiSub: public DeferredCode {
|
| - public:
|
| - DeferredInlineSmiSub(Register dst,
|
| - Smi* value,
|
| - OverwriteMode overwrite_mode)
|
| - : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
|
| - set_comment("[ DeferredInlineSmiSub");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Register dst_;
|
| - Smi* value_;
|
| - OverwriteMode overwrite_mode_;
|
| -};
|
| -
|
| -
|
| -void DeferredInlineSmiSub::Generate() {
|
| - GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, NO_SMI_CODE_IN_STUB);
|
| - igostub.GenerateCall(masm_, dst_, value_);
|
| - if (!dst_.is(rax)) __ movq(dst_, rax);
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr,
|
| - Result* operand,
|
| - Handle<Object> value,
|
| - bool reversed,
|
| - OverwriteMode overwrite_mode) {
|
| - // Generate inline code for a binary operation when one of the
|
| - // operands is a constant smi. Consumes the argument "operand".
|
| - if (IsUnsafeSmi(value)) {
|
| - Result unsafe_operand(value);
|
| - if (reversed) {
|
| - return LikelySmiBinaryOperation(expr, &unsafe_operand, operand,
|
| - overwrite_mode);
|
| - } else {
|
| - return LikelySmiBinaryOperation(expr, operand, &unsafe_operand,
|
| - overwrite_mode);
|
| - }
|
| - }
|
| -
|
| - // Get the literal value.
|
| - Smi* smi_value = Smi::cast(*value);
|
| - int int_value = smi_value->value();
|
| -
|
| - Token::Value op = expr->op();
|
| - Result answer;
|
| - switch (op) {
|
| - case Token::ADD: {
|
| - operand->ToRegister();
|
| - frame_->Spill(operand->reg());
|
| - DeferredCode* deferred = NULL;
|
| - if (reversed) {
|
| - deferred = new DeferredInlineSmiAddReversed(operand->reg(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - } else {
|
| - deferred = new DeferredInlineSmiAdd(operand->reg(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - }
|
| - JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
|
| - deferred);
|
| - __ SmiAddConstant(operand->reg(),
|
| - operand->reg(),
|
| - smi_value,
|
| - deferred->entry_label());
|
| - deferred->BindExit();
|
| - answer = *operand;
|
| - break;
|
| - }
|
| -
|
| - case Token::SUB: {
|
| - if (reversed) {
|
| - Result constant_operand(value);
|
| - answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
|
| - overwrite_mode);
|
| - } else {
|
| - operand->ToRegister();
|
| - frame_->Spill(operand->reg());
|
| - answer = *operand;
|
| - DeferredCode* deferred = new DeferredInlineSmiSub(operand->reg(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
|
| - deferred);
|
| - // A smi currently fits in a 32-bit Immediate.
|
| - __ SmiSubConstant(operand->reg(),
|
| - operand->reg(),
|
| - smi_value,
|
| - deferred->entry_label());
|
| - deferred->BindExit();
|
| - operand->Unuse();
|
| - }
|
| - break;
|
| - }
|
| -
|
| - case Token::SAR:
|
| - if (reversed) {
|
| - Result constant_operand(value);
|
| - answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
|
| - overwrite_mode);
|
| - } else {
|
| - // Only the least significant 5 bits of the shift value are used.
|
| - // In the slow case, this masking is done inside the runtime call.
|
| - int shift_value = int_value & 0x1f;
|
| - operand->ToRegister();
|
| - frame_->Spill(operand->reg());
|
| - DeferredInlineSmiOperation* deferred =
|
| - new DeferredInlineSmiOperation(op,
|
| - operand->reg(),
|
| - operand->reg(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
|
| - deferred);
|
| - __ SmiShiftArithmeticRightConstant(operand->reg(),
|
| - operand->reg(),
|
| - shift_value);
|
| - deferred->BindExit();
|
| - answer = *operand;
|
| - }
|
| - break;
|
| -
|
| - case Token::SHR:
|
| - if (reversed) {
|
| - Result constant_operand(value);
|
| - answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
|
| - overwrite_mode);
|
| - } else {
|
| - // Only the least significant 5 bits of the shift value are used.
|
| - // In the slow case, this masking is done inside the runtime call.
|
| - int shift_value = int_value & 0x1f;
|
| - operand->ToRegister();
|
| - answer = allocator()->Allocate();
|
| - ASSERT(answer.is_valid());
|
| - DeferredInlineSmiOperation* deferred =
|
| - new DeferredInlineSmiOperation(op,
|
| - answer.reg(),
|
| - operand->reg(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
|
| - deferred);
|
| - __ SmiShiftLogicalRightConstant(answer.reg(),
|
| - operand->reg(),
|
| - shift_value,
|
| - deferred->entry_label());
|
| - deferred->BindExit();
|
| - operand->Unuse();
|
| - }
|
| - break;
|
| -
|
| - case Token::SHL:
|
| - if (reversed) {
|
| - operand->ToRegister();
|
| -
|
| - // We need rcx to be available to hold operand, and to be spilled.
|
| - // SmiShiftLeft implicitly modifies rcx.
|
| - if (operand->reg().is(rcx)) {
|
| - frame_->Spill(operand->reg());
|
| - answer = allocator()->Allocate();
|
| - } else {
|
| - Result rcx_reg = allocator()->Allocate(rcx);
|
| - // answer must not be rcx.
|
| - answer = allocator()->Allocate();
|
| - // rcx_reg goes out of scope.
|
| - }
|
| -
|
| - DeferredInlineSmiOperationReversed* deferred =
|
| - new DeferredInlineSmiOperationReversed(op,
|
| - answer.reg(),
|
| - smi_value,
|
| - operand->reg(),
|
| - overwrite_mode);
|
| - JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
|
| - deferred);
|
| -
|
| - __ Move(answer.reg(), smi_value);
|
| - __ SmiShiftLeft(answer.reg(), answer.reg(), operand->reg());
|
| - operand->Unuse();
|
| -
|
| - deferred->BindExit();
|
| - } else {
|
| - // Only the least significant 5 bits of the shift value are used.
|
| - // In the slow case, this masking is done inside the runtime call.
|
| - int shift_value = int_value & 0x1f;
|
| - operand->ToRegister();
|
| - if (shift_value == 0) {
|
| - // Spill operand so it can be overwritten in the slow case.
|
| - frame_->Spill(operand->reg());
|
| - DeferredInlineSmiOperation* deferred =
|
| - new DeferredInlineSmiOperation(op,
|
| - operand->reg(),
|
| - operand->reg(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
|
| - deferred);
|
| - deferred->BindExit();
|
| - answer = *operand;
|
| - } else {
|
| - // Use a fresh temporary for nonzero shift values.
|
| - answer = allocator()->Allocate();
|
| - ASSERT(answer.is_valid());
|
| - DeferredInlineSmiOperation* deferred =
|
| - new DeferredInlineSmiOperation(op,
|
| - answer.reg(),
|
| - operand->reg(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
|
| - deferred);
|
| - __ SmiShiftLeftConstant(answer.reg(),
|
| - operand->reg(),
|
| - shift_value);
|
| - deferred->BindExit();
|
| - operand->Unuse();
|
| - }
|
| - }
|
| - break;
|
| -
|
| - case Token::BIT_OR:
|
| - case Token::BIT_XOR:
|
| - case Token::BIT_AND: {
|
| - operand->ToRegister();
|
| - frame_->Spill(operand->reg());
|
| - if (reversed) {
|
| - // Bit operations with a constant smi are commutative.
|
| - // We can swap left and right operands with no problem.
|
| - // Swap left and right overwrite modes. 0->0, 1->2, 2->1.
|
| - overwrite_mode = static_cast<OverwriteMode>((2 * overwrite_mode) % 3);
|
| - }
|
| - DeferredCode* deferred = new DeferredInlineSmiOperation(op,
|
| - operand->reg(),
|
| - operand->reg(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
|
| - deferred);
|
| - if (op == Token::BIT_AND) {
|
| - __ SmiAndConstant(operand->reg(), operand->reg(), smi_value);
|
| - } else if (op == Token::BIT_XOR) {
|
| - if (int_value != 0) {
|
| - __ SmiXorConstant(operand->reg(), operand->reg(), smi_value);
|
| - }
|
| - } else {
|
| - ASSERT(op == Token::BIT_OR);
|
| - if (int_value != 0) {
|
| - __ SmiOrConstant(operand->reg(), operand->reg(), smi_value);
|
| - }
|
| - }
|
| - deferred->BindExit();
|
| - answer = *operand;
|
| - break;
|
| - }
|
| -
|
| - // Generate inline code for mod of powers of 2 and negative powers of 2.
|
| - case Token::MOD:
|
| - if (!reversed &&
|
| - int_value != 0 &&
|
| - (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) {
|
| - operand->ToRegister();
|
| - frame_->Spill(operand->reg());
|
| - DeferredCode* deferred =
|
| - new DeferredInlineSmiOperation(op,
|
| - operand->reg(),
|
| - operand->reg(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - __ JumpUnlessNonNegativeSmi(operand->reg(), deferred->entry_label());
|
| - if (int_value < 0) int_value = -int_value;
|
| - if (int_value == 1) {
|
| - __ Move(operand->reg(), Smi::FromInt(0));
|
| - } else {
|
| - __ SmiAndConstant(operand->reg(),
|
| - operand->reg(),
|
| - Smi::FromInt(int_value - 1));
|
| - }
|
| - deferred->BindExit();
|
| - answer = *operand;
|
| - break; // This break only applies if we generated code for MOD.
|
| - }
|
| - // Fall through if we did not find a power of 2 on the right hand side!
|
| - // The next case must be the default.
|
| -
|
| - default: {
|
| - Result constant_operand(value);
|
| - if (reversed) {
|
| - answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
|
| - overwrite_mode);
|
| - } else {
|
| - answer = LikelySmiBinaryOperation(expr, operand, &constant_operand,
|
| - overwrite_mode);
|
| - }
|
| - break;
|
| - }
|
| - }
|
| - ASSERT(answer.is_valid());
|
| - return answer;
|
| -}
|
| -
|
| -
|
| -static bool CouldBeNaN(const Result& result) {
|
| - if (result.type_info().IsSmi()) return false;
|
| - if (result.type_info().IsInteger32()) return false;
|
| - if (!result.is_constant()) return true;
|
| - if (!result.handle()->IsHeapNumber()) return false;
|
| - return isnan(HeapNumber::cast(*result.handle())->value());
|
| -}
|
| -
|
| -
|
| -// Convert from signed to unsigned comparison to match the way EFLAGS are set
|
| -// by FPU and XMM compare instructions.
|
| -static Condition DoubleCondition(Condition cc) {
|
| - switch (cc) {
|
| - case less: return below;
|
| - case equal: return equal;
|
| - case less_equal: return below_equal;
|
| - case greater: return above;
|
| - case greater_equal: return above_equal;
|
| - default: UNREACHABLE();
|
| - }
|
| - UNREACHABLE();
|
| - return equal;
|
| -}
|
| -
|
| -
|
| -static CompareFlags ComputeCompareFlags(NaNInformation nan_info,
|
| - bool inline_number_compare) {
|
| - CompareFlags flags = NO_SMI_COMPARE_IN_STUB;
|
| - if (nan_info == kCantBothBeNaN) {
|
| - flags = static_cast<CompareFlags>(flags | CANT_BOTH_BE_NAN);
|
| - }
|
| - if (inline_number_compare) {
|
| - flags = static_cast<CompareFlags>(flags | NO_NUMBER_COMPARE_IN_STUB);
|
| - }
|
| - return flags;
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::Comparison(AstNode* node,
|
| - Condition cc,
|
| - bool strict,
|
| - ControlDestination* dest) {
|
| - // Strict only makes sense for equality comparisons.
|
| - ASSERT(!strict || cc == equal);
|
| -
|
| - Result left_side;
|
| - Result right_side;
|
| - // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
|
| - if (cc == greater || cc == less_equal) {
|
| - cc = ReverseCondition(cc);
|
| - left_side = frame_->Pop();
|
| - right_side = frame_->Pop();
|
| - } else {
|
| - right_side = frame_->Pop();
|
| - left_side = frame_->Pop();
|
| - }
|
| - ASSERT(cc == less || cc == equal || cc == greater_equal);
|
| -
|
| - // If either side is a constant smi, optimize the comparison.
|
| - bool left_side_constant_smi = false;
|
| - bool left_side_constant_null = false;
|
| - bool left_side_constant_1_char_string = false;
|
| - if (left_side.is_constant()) {
|
| - left_side_constant_smi = left_side.handle()->IsSmi();
|
| - left_side_constant_null = left_side.handle()->IsNull();
|
| - left_side_constant_1_char_string =
|
| - (left_side.handle()->IsString() &&
|
| - String::cast(*left_side.handle())->length() == 1 &&
|
| - String::cast(*left_side.handle())->IsAsciiRepresentation());
|
| - }
|
| - bool right_side_constant_smi = false;
|
| - bool right_side_constant_null = false;
|
| - bool right_side_constant_1_char_string = false;
|
| - if (right_side.is_constant()) {
|
| - right_side_constant_smi = right_side.handle()->IsSmi();
|
| - right_side_constant_null = right_side.handle()->IsNull();
|
| - right_side_constant_1_char_string =
|
| - (right_side.handle()->IsString() &&
|
| - String::cast(*right_side.handle())->length() == 1 &&
|
| - String::cast(*right_side.handle())->IsAsciiRepresentation());
|
| - }
|
| -
|
| - if (left_side_constant_smi || right_side_constant_smi) {
|
| - bool is_loop_condition = (node->AsExpression() != NULL) &&
|
| - node->AsExpression()->is_loop_condition();
|
| - ConstantSmiComparison(cc, strict, dest, &left_side, &right_side,
|
| - left_side_constant_smi, right_side_constant_smi,
|
| - is_loop_condition);
|
| - } else if (left_side_constant_1_char_string ||
|
| - right_side_constant_1_char_string) {
|
| - if (left_side_constant_1_char_string && right_side_constant_1_char_string) {
|
| - // Trivial case, comparing two constants.
|
| - int left_value = String::cast(*left_side.handle())->Get(0);
|
| - int right_value = String::cast(*right_side.handle())->Get(0);
|
| - switch (cc) {
|
| - case less:
|
| - dest->Goto(left_value < right_value);
|
| - break;
|
| - case equal:
|
| - dest->Goto(left_value == right_value);
|
| - break;
|
| - case greater_equal:
|
| - dest->Goto(left_value >= right_value);
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - } else {
|
| - // Only one side is a constant 1 character string.
|
| - // If left side is a constant 1-character string, reverse the operands.
|
| - // Since one side is a constant string, conversion order does not matter.
|
| - if (left_side_constant_1_char_string) {
|
| - Result temp = left_side;
|
| - left_side = right_side;
|
| - right_side = temp;
|
| - cc = ReverseCondition(cc);
|
| - // This may reintroduce greater or less_equal as the value of cc.
|
| - // CompareStub and the inline code both support all values of cc.
|
| - }
|
| - // Implement comparison against a constant string, inlining the case
|
| - // where both sides are strings.
|
| - left_side.ToRegister();
|
| -
|
| - // Here we split control flow to the stub call and inlined cases
|
| - // before finally splitting it to the control destination. We use
|
| - // a jump target and branching to duplicate the virtual frame at
|
| - // the first split. We manually handle the off-frame references
|
| - // by reconstituting them on the non-fall-through path.
|
| - JumpTarget is_not_string, is_string;
|
| - Register left_reg = left_side.reg();
|
| - Handle<Object> right_val = right_side.handle();
|
| - ASSERT(StringShape(String::cast(*right_val)).IsSymbol());
|
| - Condition is_smi = masm()->CheckSmi(left_reg);
|
| - is_not_string.Branch(is_smi, &left_side);
|
| - Result temp = allocator_->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - __ movq(temp.reg(),
|
| - FieldOperand(left_reg, HeapObject::kMapOffset));
|
| - __ movzxbl(temp.reg(),
|
| - FieldOperand(temp.reg(), Map::kInstanceTypeOffset));
|
| - // If we are testing for equality then make use of the symbol shortcut.
|
| - // Check if the left hand side has the same type as the right hand
|
| - // side (which is always a symbol).
|
| - if (cc == equal) {
|
| - Label not_a_symbol;
|
| - STATIC_ASSERT(kSymbolTag != 0);
|
| - // Ensure that no non-strings have the symbol bit set.
|
| - STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
|
| - __ testb(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit.
|
| - __ j(zero, ¬_a_symbol);
|
| - // They are symbols, so do identity compare.
|
| - __ Cmp(left_reg, right_side.handle());
|
| - dest->true_target()->Branch(equal);
|
| - dest->false_target()->Branch(not_equal);
|
| - __ bind(¬_a_symbol);
|
| - }
|
| - // Call the compare stub if the left side is not a flat ascii string.
|
| - __ andb(temp.reg(),
|
| - Immediate(kIsNotStringMask |
|
| - kStringRepresentationMask |
|
| - kStringEncodingMask));
|
| - __ cmpb(temp.reg(),
|
| - Immediate(kStringTag | kSeqStringTag | kAsciiStringTag));
|
| - temp.Unuse();
|
| - is_string.Branch(equal, &left_side);
|
| -
|
| - // Setup and call the compare stub.
|
| - is_not_string.Bind(&left_side);
|
| - CompareFlags flags =
|
| - static_cast<CompareFlags>(CANT_BOTH_BE_NAN | NO_SMI_CODE_IN_STUB);
|
| - CompareStub stub(cc, strict, flags);
|
| - Result result = frame_->CallStub(&stub, &left_side, &right_side);
|
| - result.ToRegister();
|
| - __ testq(result.reg(), result.reg());
|
| - result.Unuse();
|
| - dest->true_target()->Branch(cc);
|
| - dest->false_target()->Jump();
|
| -
|
| - is_string.Bind(&left_side);
|
| - // left_side is a sequential ASCII string.
|
| - ASSERT(left_side.reg().is(left_reg));
|
| - right_side = Result(right_val);
|
| - Result temp2 = allocator_->Allocate();
|
| - ASSERT(temp2.is_valid());
|
| - // Test string equality and comparison.
|
| - if (cc == equal) {
|
| - Label comparison_done;
|
| - __ SmiCompare(FieldOperand(left_side.reg(), String::kLengthOffset),
|
| - Smi::FromInt(1));
|
| - __ j(not_equal, &comparison_done);
|
| - uint8_t char_value =
|
| - static_cast<uint8_t>(String::cast(*right_val)->Get(0));
|
| - __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize),
|
| - Immediate(char_value));
|
| - __ bind(&comparison_done);
|
| - } else {
|
| - __ movq(temp2.reg(),
|
| - FieldOperand(left_side.reg(), String::kLengthOffset));
|
| - __ SmiSubConstant(temp2.reg(), temp2.reg(), Smi::FromInt(1));
|
| - Label comparison;
|
| - // If the length is 0 then the subtraction gave -1 which compares less
|
| - // than any character.
|
| - __ j(negative, &comparison);
|
| - // Otherwise load the first character.
|
| - __ movzxbl(temp2.reg(),
|
| - FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize));
|
| - __ bind(&comparison);
|
| - // Compare the first character of the string with the
|
| - // constant 1-character string.
|
| - uint8_t char_value =
|
| - static_cast<uint8_t>(String::cast(*right_side.handle())->Get(0));
|
| - __ cmpb(temp2.reg(), Immediate(char_value));
|
| - Label characters_were_different;
|
| - __ j(not_equal, &characters_were_different);
|
| - // If the first character is the same then the long string sorts after
|
| - // the short one.
|
| - __ SmiCompare(FieldOperand(left_side.reg(), String::kLengthOffset),
|
| - Smi::FromInt(1));
|
| - __ bind(&characters_were_different);
|
| - }
|
| - temp2.Unuse();
|
| - left_side.Unuse();
|
| - right_side.Unuse();
|
| - dest->Split(cc);
|
| - }
|
| - } else {
|
| - // Neither side is a constant Smi, constant 1-char string, or constant null.
|
| - // If either side is a non-smi constant, or known to be a heap number,
|
| - // skip the smi check.
|
| - bool known_non_smi =
|
| - (left_side.is_constant() && !left_side.handle()->IsSmi()) ||
|
| - (right_side.is_constant() && !right_side.handle()->IsSmi()) ||
|
| - left_side.type_info().IsDouble() ||
|
| - right_side.type_info().IsDouble();
|
| -
|
| - NaNInformation nan_info =
|
| - (CouldBeNaN(left_side) && CouldBeNaN(right_side)) ?
|
| - kBothCouldBeNaN :
|
| - kCantBothBeNaN;
|
| -
|
| - // Inline number comparison handling any combination of smi's and heap
|
| - // numbers if:
|
| - // code is in a loop
|
| - // the compare operation is different from equal
|
| - // compare is not a for-loop comparison
|
| - // The reason for excluding equal is that it will most likely be done
|
| - // with smi's (not heap numbers) and the code to comparing smi's is inlined
|
| - // separately. The same reason applies for for-loop comparison which will
|
| - // also most likely be smi comparisons.
|
| - bool is_loop_condition = (node->AsExpression() != NULL)
|
| - && node->AsExpression()->is_loop_condition();
|
| - bool inline_number_compare =
|
| - loop_nesting() > 0 && cc != equal && !is_loop_condition;
|
| -
|
| - // Left and right needed in registers for the following code.
|
| - left_side.ToRegister();
|
| - right_side.ToRegister();
|
| -
|
| - if (known_non_smi) {
|
| - // Inlined equality check:
|
| - // If at least one of the objects is not NaN, then if the objects
|
| - // are identical, they are equal.
|
| - if (nan_info == kCantBothBeNaN && cc == equal) {
|
| - __ cmpq(left_side.reg(), right_side.reg());
|
| - dest->true_target()->Branch(equal);
|
| - }
|
| -
|
| - // Inlined number comparison:
|
| - if (inline_number_compare) {
|
| - GenerateInlineNumberComparison(&left_side, &right_side, cc, dest);
|
| - }
|
| -
|
| - // End of in-line compare, call out to the compare stub. Don't include
|
| - // number comparison in the stub if it was inlined.
|
| - CompareFlags flags = ComputeCompareFlags(nan_info, inline_number_compare);
|
| - CompareStub stub(cc, strict, flags);
|
| - Result answer = frame_->CallStub(&stub, &left_side, &right_side);
|
| - __ testq(answer.reg(), answer.reg()); // Sets both zero and sign flag.
|
| - answer.Unuse();
|
| - dest->Split(cc);
|
| - } else {
|
| - // Here we split control flow to the stub call and inlined cases
|
| - // before finally splitting it to the control destination. We use
|
| - // a jump target and branching to duplicate the virtual frame at
|
| - // the first split. We manually handle the off-frame references
|
| - // by reconstituting them on the non-fall-through path.
|
| - JumpTarget is_smi;
|
| - Register left_reg = left_side.reg();
|
| - Register right_reg = right_side.reg();
|
| -
|
| - // In-line check for comparing two smis.
|
| - JumpIfBothSmiUsingTypeInfo(&left_side, &right_side, &is_smi);
|
| -
|
| - if (has_valid_frame()) {
|
| - // Inline the equality check if both operands can't be a NaN. If both
|
| - // objects are the same they are equal.
|
| - if (nan_info == kCantBothBeNaN && cc == equal) {
|
| - __ cmpq(left_side.reg(), right_side.reg());
|
| - dest->true_target()->Branch(equal);
|
| - }
|
| -
|
| - // Inlined number comparison:
|
| - if (inline_number_compare) {
|
| - GenerateInlineNumberComparison(&left_side, &right_side, cc, dest);
|
| - }
|
| -
|
| - // End of in-line compare, call out to the compare stub. Don't include
|
| - // number comparison in the stub if it was inlined.
|
| - CompareFlags flags =
|
| - ComputeCompareFlags(nan_info, inline_number_compare);
|
| - CompareStub stub(cc, strict, flags);
|
| - Result answer = frame_->CallStub(&stub, &left_side, &right_side);
|
| - __ testq(answer.reg(), answer.reg()); // Sets both zero and sign flags.
|
| - answer.Unuse();
|
| - if (is_smi.is_linked()) {
|
| - dest->true_target()->Branch(cc);
|
| - dest->false_target()->Jump();
|
| - } else {
|
| - dest->Split(cc);
|
| - }
|
| - }
|
| -
|
| - if (is_smi.is_linked()) {
|
| - is_smi.Bind();
|
| - left_side = Result(left_reg);
|
| - right_side = Result(right_reg);
|
| - __ SmiCompare(left_side.reg(), right_side.reg());
|
| - right_side.Unuse();
|
| - left_side.Unuse();
|
| - dest->Split(cc);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::ConstantSmiComparison(Condition cc,
|
| - bool strict,
|
| - ControlDestination* dest,
|
| - Result* left_side,
|
| - Result* right_side,
|
| - bool left_side_constant_smi,
|
| - bool right_side_constant_smi,
|
| - bool is_loop_condition) {
|
| - if (left_side_constant_smi && right_side_constant_smi) {
|
| - // Trivial case, comparing two constants.
|
| - int left_value = Smi::cast(*left_side->handle())->value();
|
| - int right_value = Smi::cast(*right_side->handle())->value();
|
| - switch (cc) {
|
| - case less:
|
| - dest->Goto(left_value < right_value);
|
| - break;
|
| - case equal:
|
| - dest->Goto(left_value == right_value);
|
| - break;
|
| - case greater_equal:
|
| - dest->Goto(left_value >= right_value);
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - } else {
|
| - // Only one side is a constant Smi.
|
| - // If left side is a constant Smi, reverse the operands.
|
| - // Since one side is a constant Smi, conversion order does not matter.
|
| - if (left_side_constant_smi) {
|
| - Result* temp = left_side;
|
| - left_side = right_side;
|
| - right_side = temp;
|
| - cc = ReverseCondition(cc);
|
| - // This may re-introduce greater or less_equal as the value of cc.
|
| - // CompareStub and the inline code both support all values of cc.
|
| - }
|
| - // Implement comparison against a constant Smi, inlining the case
|
| - // where both sides are smis.
|
| - left_side->ToRegister();
|
| - Register left_reg = left_side->reg();
|
| - Smi* constant_smi = Smi::cast(*right_side->handle());
|
| -
|
| - if (left_side->is_smi()) {
|
| - if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(left_reg);
|
| - }
|
| - // Test smi equality and comparison by signed int comparison.
|
| - __ SmiCompare(left_reg, constant_smi);
|
| - left_side->Unuse();
|
| - right_side->Unuse();
|
| - dest->Split(cc);
|
| - } else {
|
| - // Only the case where the left side could possibly be a non-smi is left.
|
| - JumpTarget is_smi;
|
| - if (cc == equal) {
|
| - // We can do the equality comparison before the smi check.
|
| - __ Cmp(left_reg, constant_smi);
|
| - dest->true_target()->Branch(equal);
|
| - Condition left_is_smi = masm_->CheckSmi(left_reg);
|
| - dest->false_target()->Branch(left_is_smi);
|
| - } else {
|
| - // Do the smi check, then the comparison.
|
| - Condition left_is_smi = masm_->CheckSmi(left_reg);
|
| - is_smi.Branch(left_is_smi, left_side, right_side);
|
| - }
|
| -
|
| - // Jump or fall through to here if we are comparing a non-smi to a
|
| - // constant smi. If the non-smi is a heap number and this is not
|
| - // a loop condition, inline the floating point code.
|
| - if (!is_loop_condition) {
|
| - // Right side is a constant smi and left side has been checked
|
| - // not to be a smi.
|
| - JumpTarget not_number;
|
| - __ Cmp(FieldOperand(left_reg, HeapObject::kMapOffset),
|
| - FACTORY->heap_number_map());
|
| - not_number.Branch(not_equal, left_side);
|
| - __ movsd(xmm1,
|
| - FieldOperand(left_reg, HeapNumber::kValueOffset));
|
| - int value = constant_smi->value();
|
| - if (value == 0) {
|
| - __ xorpd(xmm0, xmm0);
|
| - } else {
|
| - Result temp = allocator()->Allocate();
|
| - __ movl(temp.reg(), Immediate(value));
|
| - __ cvtlsi2sd(xmm0, temp.reg());
|
| - temp.Unuse();
|
| - }
|
| - __ ucomisd(xmm1, xmm0);
|
| - // Jump to builtin for NaN.
|
| - not_number.Branch(parity_even, left_side);
|
| - left_side->Unuse();
|
| - dest->true_target()->Branch(DoubleCondition(cc));
|
| - dest->false_target()->Jump();
|
| - not_number.Bind(left_side);
|
| - }
|
| -
|
| - // Setup and call the compare stub.
|
| - CompareFlags flags =
|
| - static_cast<CompareFlags>(CANT_BOTH_BE_NAN | NO_SMI_CODE_IN_STUB);
|
| - CompareStub stub(cc, strict, flags);
|
| - Result result = frame_->CallStub(&stub, left_side, right_side);
|
| - result.ToRegister();
|
| - __ testq(result.reg(), result.reg());
|
| - result.Unuse();
|
| - if (cc == equal) {
|
| - dest->Split(cc);
|
| - } else {
|
| - dest->true_target()->Branch(cc);
|
| - dest->false_target()->Jump();
|
| -
|
| - // It is important for performance for this case to be at the end.
|
| - is_smi.Bind(left_side, right_side);
|
| - __ SmiCompare(left_reg, constant_smi);
|
| - left_side->Unuse();
|
| - right_side->Unuse();
|
| - dest->Split(cc);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -// Load a comparison operand into into a XMM register. Jump to not_numbers jump
|
| -// target passing the left and right result if the operand is not a number.
|
| -static void LoadComparisonOperand(MacroAssembler* masm_,
|
| - Result* operand,
|
| - XMMRegister xmm_reg,
|
| - Result* left_side,
|
| - Result* right_side,
|
| - JumpTarget* not_numbers) {
|
| - Label done;
|
| - if (operand->type_info().IsDouble()) {
|
| - // Operand is known to be a heap number, just load it.
|
| - __ movsd(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset));
|
| - } else if (operand->type_info().IsSmi()) {
|
| - // Operand is known to be a smi. Convert it to double and keep the original
|
| - // smi.
|
| - __ SmiToInteger32(kScratchRegister, operand->reg());
|
| - __ cvtlsi2sd(xmm_reg, kScratchRegister);
|
| - } else {
|
| - // Operand type not known, check for smi or heap number.
|
| - Label smi;
|
| - __ JumpIfSmi(operand->reg(), &smi);
|
| - if (!operand->type_info().IsNumber()) {
|
| - __ LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex);
|
| - __ cmpq(FieldOperand(operand->reg(), HeapObject::kMapOffset),
|
| - kScratchRegister);
|
| - not_numbers->Branch(not_equal, left_side, right_side, taken);
|
| - }
|
| - __ movsd(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset));
|
| - __ jmp(&done);
|
| -
|
| - __ bind(&smi);
|
| - // Comvert smi to float and keep the original smi.
|
| - __ SmiToInteger32(kScratchRegister, operand->reg());
|
| - __ cvtlsi2sd(xmm_reg, kScratchRegister);
|
| - __ jmp(&done);
|
| - }
|
| - __ bind(&done);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateInlineNumberComparison(Result* left_side,
|
| - Result* right_side,
|
| - Condition cc,
|
| - ControlDestination* dest) {
|
| - ASSERT(left_side->is_register());
|
| - ASSERT(right_side->is_register());
|
| -
|
| - JumpTarget not_numbers;
|
| - // Load left and right operand into registers xmm0 and xmm1 and compare.
|
| - LoadComparisonOperand(masm_, left_side, xmm0, left_side, right_side,
|
| - ¬_numbers);
|
| - LoadComparisonOperand(masm_, right_side, xmm1, left_side, right_side,
|
| - ¬_numbers);
|
| - __ ucomisd(xmm0, xmm1);
|
| - // Bail out if a NaN is involved.
|
| - not_numbers.Branch(parity_even, left_side, right_side);
|
| -
|
| - // Split to destination targets based on comparison.
|
| - left_side->Unuse();
|
| - right_side->Unuse();
|
| - dest->true_target()->Branch(DoubleCondition(cc));
|
| - dest->false_target()->Jump();
|
| -
|
| - not_numbers.Bind(left_side, right_side);
|
| -}
|
| -
|
| -
|
| -// Call the function just below TOS on the stack with the given
|
| -// arguments. The receiver is the TOS.
|
| -void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
|
| - CallFunctionFlags flags,
|
| - int position) {
|
| - // Push the arguments ("left-to-right") on the stack.
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - Load(args->at(i));
|
| - frame_->SpillTop();
|
| - }
|
| -
|
| - // Record the position for debugging purposes.
|
| - CodeForSourcePosition(position);
|
| -
|
| - // Use the shared code stub to call the function.
|
| - InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
|
| - CallFunctionStub call_function(arg_count, in_loop, flags);
|
| - Result answer = frame_->CallStub(&call_function, arg_count + 1);
|
| - // Restore context and replace function on the stack with the
|
| - // result of the stub invocation.
|
| - frame_->RestoreContextRegister();
|
| - frame_->SetElementAt(0, &answer);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::CallApplyLazy(Expression* applicand,
|
| - Expression* receiver,
|
| - VariableProxy* arguments,
|
| - int position) {
|
| - // An optimized implementation of expressions of the form
|
| - // x.apply(y, arguments).
|
| - // If the arguments object of the scope has not been allocated,
|
| - // and x.apply is Function.prototype.apply, this optimization
|
| - // just copies y and the arguments of the current function on the
|
| - // stack, as receiver and arguments, and calls x.
|
| - // In the implementation comments, we call x the applicand
|
| - // and y the receiver.
|
| - ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION);
|
| - ASSERT(arguments->IsArguments());
|
| -
|
| - // Load applicand.apply onto the stack. This will usually
|
| - // give us a megamorphic load site. Not super, but it works.
|
| - Load(applicand);
|
| - frame()->Dup();
|
| - Handle<String> name = FACTORY->LookupAsciiSymbol("apply");
|
| - frame()->Push(name);
|
| - Result answer = frame()->CallLoadIC(RelocInfo::CODE_TARGET);
|
| - __ nop();
|
| - frame()->Push(&answer);
|
| -
|
| - // Load the receiver and the existing arguments object onto the
|
| - // expression stack. Avoid allocating the arguments object here.
|
| - Load(receiver);
|
| - LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF);
|
| -
|
| - // Emit the source position information after having loaded the
|
| - // receiver and the arguments.
|
| - CodeForSourcePosition(position);
|
| - // Contents of frame at this point:
|
| - // Frame[0]: arguments object of the current function or the hole.
|
| - // Frame[1]: receiver
|
| - // Frame[2]: applicand.apply
|
| - // Frame[3]: applicand.
|
| -
|
| - // Check if the arguments object has been lazily allocated
|
| - // already. If so, just use that instead of copying the arguments
|
| - // from the stack. This also deals with cases where a local variable
|
| - // named 'arguments' has been introduced.
|
| - frame_->Dup();
|
| - Result probe = frame_->Pop();
|
| - { VirtualFrame::SpilledScope spilled_scope;
|
| - Label slow, done;
|
| - bool try_lazy = true;
|
| - if (probe.is_constant()) {
|
| - try_lazy = probe.handle()->IsArgumentsMarker();
|
| - } else {
|
| - __ CompareRoot(probe.reg(), Heap::kArgumentsMarkerRootIndex);
|
| - probe.Unuse();
|
| - __ j(not_equal, &slow);
|
| - }
|
| -
|
| - if (try_lazy) {
|
| - Label build_args;
|
| - // Get rid of the arguments object probe.
|
| - frame_->Drop(); // Can be called on a spilled frame.
|
| - // Stack now has 3 elements on it.
|
| - // Contents of stack at this point:
|
| - // rsp[0]: receiver
|
| - // rsp[1]: applicand.apply
|
| - // rsp[2]: applicand.
|
| -
|
| - // Check that the receiver really is a JavaScript object.
|
| - __ movq(rax, Operand(rsp, 0));
|
| - Condition is_smi = masm_->CheckSmi(rax);
|
| - __ j(is_smi, &build_args);
|
| - // We allow all JSObjects including JSFunctions. As long as
|
| - // JS_FUNCTION_TYPE is the last instance type and it is right
|
| - // after LAST_JS_OBJECT_TYPE, we do not have to check the upper
|
| - // bound.
|
| - STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
| - STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
|
| - __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
|
| - __ j(below, &build_args);
|
| -
|
| - // Check that applicand.apply is Function.prototype.apply.
|
| - __ movq(rax, Operand(rsp, kPointerSize));
|
| - is_smi = masm_->CheckSmi(rax);
|
| - __ j(is_smi, &build_args);
|
| - __ CmpObjectType(rax, JS_FUNCTION_TYPE, rcx);
|
| - __ j(not_equal, &build_args);
|
| - __ movq(rcx, FieldOperand(rax, JSFunction::kCodeEntryOffset));
|
| - __ subq(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag));
|
| - Handle<Code> apply_code = Isolate::Current()->builtins()->FunctionApply();
|
| - __ Cmp(rcx, apply_code);
|
| - __ j(not_equal, &build_args);
|
| -
|
| - // Check that applicand is a function.
|
| - __ movq(rdi, Operand(rsp, 2 * kPointerSize));
|
| - is_smi = masm_->CheckSmi(rdi);
|
| - __ j(is_smi, &build_args);
|
| - __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
|
| - __ j(not_equal, &build_args);
|
| -
|
| - // Copy the arguments to this function possibly from the
|
| - // adaptor frame below it.
|
| - Label invoke, adapted;
|
| - __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
|
| - __ Cmp(Operand(rdx, StandardFrameConstants::kContextOffset),
|
| - Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
|
| - __ j(equal, &adapted);
|
| -
|
| - // No arguments adaptor frame. Copy fixed number of arguments.
|
| - __ Set(rax, scope()->num_parameters());
|
| - for (int i = 0; i < scope()->num_parameters(); i++) {
|
| - __ push(frame_->ParameterAt(i));
|
| - }
|
| - __ jmp(&invoke);
|
| -
|
| - // Arguments adaptor frame present. Copy arguments from there, but
|
| - // avoid copying too many arguments to avoid stack overflows.
|
| - __ bind(&adapted);
|
| - static const uint32_t kArgumentsLimit = 1 * KB;
|
| - __ SmiToInteger32(rax,
|
| - Operand(rdx,
|
| - ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| - __ movl(rcx, rax);
|
| - __ cmpl(rax, Immediate(kArgumentsLimit));
|
| - __ j(above, &build_args);
|
| -
|
| - // Loop through the arguments pushing them onto the execution
|
| - // stack. We don't inform the virtual frame of the push, so we don't
|
| - // have to worry about getting rid of the elements from the virtual
|
| - // frame.
|
| - Label loop;
|
| - // rcx is a small non-negative integer, due to the test above.
|
| - __ testl(rcx, rcx);
|
| - __ j(zero, &invoke);
|
| - __ bind(&loop);
|
| - __ push(Operand(rdx, rcx, times_pointer_size, 1 * kPointerSize));
|
| - __ decl(rcx);
|
| - __ j(not_zero, &loop);
|
| -
|
| - // Invoke the function.
|
| - __ bind(&invoke);
|
| - ParameterCount actual(rax);
|
| - __ InvokeFunction(rdi, actual, CALL_FUNCTION);
|
| - // Drop applicand.apply and applicand from the stack, and push
|
| - // the result of the function call, but leave the spilled frame
|
| - // unchanged, with 3 elements, so it is correct when we compile the
|
| - // slow-case code.
|
| - __ addq(rsp, Immediate(2 * kPointerSize));
|
| - __ push(rax);
|
| - // Stack now has 1 element:
|
| - // rsp[0]: result
|
| - __ jmp(&done);
|
| -
|
| - // Slow-case: Allocate the arguments object since we know it isn't
|
| - // there, and fall-through to the slow-case where we call
|
| - // applicand.apply.
|
| - __ bind(&build_args);
|
| - // Stack now has 3 elements, because we have jumped from where:
|
| - // rsp[0]: receiver
|
| - // rsp[1]: applicand.apply
|
| - // rsp[2]: applicand.
|
| -
|
| - // StoreArgumentsObject requires a correct frame, and may modify it.
|
| - Result arguments_object = StoreArgumentsObject(false);
|
| - frame_->SpillAll();
|
| - arguments_object.ToRegister();
|
| - frame_->EmitPush(arguments_object.reg());
|
| - arguments_object.Unuse();
|
| - // Stack and frame now have 4 elements.
|
| - __ bind(&slow);
|
| - }
|
| -
|
| - // Generic computation of x.apply(y, args) with no special optimization.
|
| - // Flip applicand.apply and applicand on the stack, so
|
| - // applicand looks like the receiver of the applicand.apply call.
|
| - // Then process it as a normal function call.
|
| - __ movq(rax, Operand(rsp, 3 * kPointerSize));
|
| - __ movq(rbx, Operand(rsp, 2 * kPointerSize));
|
| - __ movq(Operand(rsp, 2 * kPointerSize), rax);
|
| - __ movq(Operand(rsp, 3 * kPointerSize), rbx);
|
| -
|
| - CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS);
|
| - Result res = frame_->CallStub(&call_function, 3);
|
| - // The function and its two arguments have been dropped.
|
| - frame_->Drop(1); // Drop the receiver as well.
|
| - res.ToRegister();
|
| - frame_->EmitPush(res.reg());
|
| - // Stack now has 1 element:
|
| - // rsp[0]: result
|
| - if (try_lazy) __ bind(&done);
|
| - } // End of spilled scope.
|
| - // Restore the context register after a call.
|
| - frame_->RestoreContextRegister();
|
| -}
|
| -
|
| -
|
| -class DeferredStackCheck: public DeferredCode {
|
| - public:
|
| - DeferredStackCheck() {
|
| - set_comment("[ DeferredStackCheck");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -};
|
| -
|
| -
|
| -void DeferredStackCheck::Generate() {
|
| - StackCheckStub stub;
|
| - __ CallStub(&stub);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::CheckStack() {
|
| - DeferredStackCheck* deferred = new DeferredStackCheck;
|
| - __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
|
| - deferred->Branch(below);
|
| - deferred->BindExit();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitAndSpill(Statement* statement) {
|
| - ASSERT(in_spilled_code());
|
| - set_in_spilled_code(false);
|
| - Visit(statement);
|
| - if (frame_ != NULL) {
|
| - frame_->SpillAll();
|
| - }
|
| - set_in_spilled_code(true);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - ASSERT(in_spilled_code());
|
| - set_in_spilled_code(false);
|
| - VisitStatements(statements);
|
| - if (frame_ != NULL) {
|
| - frame_->SpillAll();
|
| - }
|
| - set_in_spilled_code(true);
|
| -
|
| - ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - ASSERT(!in_spilled_code());
|
| - for (int i = 0; has_valid_frame() && i < statements->length(); i++) {
|
| - Visit(statements->at(i));
|
| - }
|
| - ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitBlock(Block* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ Block");
|
| - CodeForStatementPosition(node);
|
| - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - VisitStatements(node->statements());
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - node->break_target()->Unuse();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
|
| - // Call the runtime to declare the globals. The inevitable call
|
| - // will sync frame elements to memory anyway, so we do it eagerly to
|
| - // allow us to push the arguments directly into place.
|
| - frame_->SyncRange(0, frame_->element_count() - 1);
|
| -
|
| - __ movq(kScratchRegister, pairs, RelocInfo::EMBEDDED_OBJECT);
|
| - frame_->EmitPush(rsi); // The context is the first argument.
|
| - frame_->EmitPush(kScratchRegister);
|
| - frame_->EmitPush(Smi::FromInt(is_eval() ? 1 : 0));
|
| - frame_->EmitPush(Smi::FromInt(strict_mode_flag()));
|
| - Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 4);
|
| - // Return value is ignored.
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitDeclaration(Declaration* node) {
|
| - Comment cmnt(masm_, "[ Declaration");
|
| - Variable* var = node->proxy()->var();
|
| - ASSERT(var != NULL); // must have been resolved
|
| - Slot* slot = var->AsSlot();
|
| -
|
| - // If it was not possible to allocate the variable at compile time,
|
| - // we need to "declare" it at runtime to make sure it actually
|
| - // exists in the local context.
|
| - if (slot != NULL && slot->type() == Slot::LOOKUP) {
|
| - // Variables with a "LOOKUP" slot were introduced as non-locals
|
| - // during variable resolution and must have mode DYNAMIC.
|
| - ASSERT(var->is_dynamic());
|
| - // For now, just do a runtime call. Sync the virtual frame eagerly
|
| - // so we can simply push the arguments into place.
|
| - frame_->SyncRange(0, frame_->element_count() - 1);
|
| - frame_->EmitPush(rsi);
|
| - __ movq(kScratchRegister, var->name(), RelocInfo::EMBEDDED_OBJECT);
|
| - frame_->EmitPush(kScratchRegister);
|
| - // Declaration nodes are always introduced in one of two modes.
|
| - ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
|
| - PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
|
| - frame_->EmitPush(Smi::FromInt(attr));
|
| - // Push initial value, if any.
|
| - // Note: For variables we must not push an initial value (such as
|
| - // 'undefined') because we may have a (legal) redeclaration and we
|
| - // must not destroy the current value.
|
| - if (node->mode() == Variable::CONST) {
|
| - frame_->EmitPush(Heap::kTheHoleValueRootIndex);
|
| - } else if (node->fun() != NULL) {
|
| - Load(node->fun());
|
| - } else {
|
| - frame_->EmitPush(Smi::FromInt(0)); // no initial value!
|
| - }
|
| - Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
|
| - // Ignore the return value (declarations are statements).
|
| - return;
|
| - }
|
| -
|
| - ASSERT(!var->is_global());
|
| -
|
| - // If we have a function or a constant, we need to initialize the variable.
|
| - Expression* val = NULL;
|
| - if (node->mode() == Variable::CONST) {
|
| - val = new Literal(FACTORY->the_hole_value());
|
| - } else {
|
| - val = node->fun(); // NULL if we don't have a function
|
| - }
|
| -
|
| - if (val != NULL) {
|
| - {
|
| - // Set the initial value.
|
| - Reference target(this, node->proxy());
|
| - Load(val);
|
| - target.SetValue(NOT_CONST_INIT);
|
| - // The reference is removed from the stack (preserving TOS) when
|
| - // it goes out of scope.
|
| - }
|
| - // Get rid of the assigned value (declarations are statements).
|
| - frame_->Drop();
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ ExpressionStatement");
|
| - CodeForStatementPosition(node);
|
| - Expression* expression = node->expression();
|
| - expression->MarkAsStatement();
|
| - Load(expression);
|
| - // Remove the lingering expression result from the top of stack.
|
| - frame_->Drop();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "// EmptyStatement");
|
| - CodeForStatementPosition(node);
|
| - // nothing to do
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitIfStatement(IfStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ IfStatement");
|
| - // Generate different code depending on which parts of the if statement
|
| - // are present or not.
|
| - bool has_then_stm = node->HasThenStatement();
|
| - bool has_else_stm = node->HasElseStatement();
|
| -
|
| - CodeForStatementPosition(node);
|
| - JumpTarget exit;
|
| - if (has_then_stm && has_else_stm) {
|
| - JumpTarget then;
|
| - JumpTarget else_;
|
| - ControlDestination dest(&then, &else_, true);
|
| - LoadCondition(node->condition(), &dest, true);
|
| -
|
| - if (dest.false_was_fall_through()) {
|
| - // The else target was bound, so we compile the else part first.
|
| - Visit(node->else_statement());
|
| -
|
| - // We may have dangling jumps to the then part.
|
| - if (then.is_linked()) {
|
| - if (has_valid_frame()) exit.Jump();
|
| - then.Bind();
|
| - Visit(node->then_statement());
|
| - }
|
| - } else {
|
| - // The then target was bound, so we compile the then part first.
|
| - Visit(node->then_statement());
|
| -
|
| - if (else_.is_linked()) {
|
| - if (has_valid_frame()) exit.Jump();
|
| - else_.Bind();
|
| - Visit(node->else_statement());
|
| - }
|
| - }
|
| -
|
| - } else if (has_then_stm) {
|
| - ASSERT(!has_else_stm);
|
| - JumpTarget then;
|
| - ControlDestination dest(&then, &exit, true);
|
| - LoadCondition(node->condition(), &dest, true);
|
| -
|
| - if (dest.false_was_fall_through()) {
|
| - // The exit label was bound. We may have dangling jumps to the
|
| - // then part.
|
| - if (then.is_linked()) {
|
| - exit.Unuse();
|
| - exit.Jump();
|
| - then.Bind();
|
| - Visit(node->then_statement());
|
| - }
|
| - } else {
|
| - // The then label was bound.
|
| - Visit(node->then_statement());
|
| - }
|
| -
|
| - } else if (has_else_stm) {
|
| - ASSERT(!has_then_stm);
|
| - JumpTarget else_;
|
| - ControlDestination dest(&exit, &else_, false);
|
| - LoadCondition(node->condition(), &dest, true);
|
| -
|
| - if (dest.true_was_fall_through()) {
|
| - // The exit label was bound. We may have dangling jumps to the
|
| - // else part.
|
| - if (else_.is_linked()) {
|
| - exit.Unuse();
|
| - exit.Jump();
|
| - else_.Bind();
|
| - Visit(node->else_statement());
|
| - }
|
| - } else {
|
| - // The else label was bound.
|
| - Visit(node->else_statement());
|
| - }
|
| -
|
| - } else {
|
| - ASSERT(!has_then_stm && !has_else_stm);
|
| - // We only care about the condition's side effects (not its value
|
| - // or control flow effect). LoadCondition is called without
|
| - // forcing control flow.
|
| - ControlDestination dest(&exit, &exit, true);
|
| - LoadCondition(node->condition(), &dest, false);
|
| - if (!dest.is_used()) {
|
| - // We got a value on the frame rather than (or in addition to)
|
| - // control flow.
|
| - frame_->Drop();
|
| - }
|
| - }
|
| -
|
| - if (exit.is_linked()) {
|
| - exit.Bind();
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ ContinueStatement");
|
| - CodeForStatementPosition(node);
|
| - node->target()->continue_target()->Jump();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ BreakStatement");
|
| - CodeForStatementPosition(node);
|
| - node->target()->break_target()->Jump();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ ReturnStatement");
|
| -
|
| - CodeForStatementPosition(node);
|
| - Load(node->expression());
|
| - Result return_value = frame_->Pop();
|
| - masm()->positions_recorder()->WriteRecordedPositions();
|
| - if (function_return_is_shadowed_) {
|
| - function_return_.Jump(&return_value);
|
| - } else {
|
| - frame_->PrepareForReturn();
|
| - if (function_return_.is_bound()) {
|
| - // If the function return label is already bound we reuse the
|
| - // code by jumping to the return site.
|
| - function_return_.Jump(&return_value);
|
| - } else {
|
| - function_return_.Bind(&return_value);
|
| - GenerateReturnSequence(&return_value);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateReturnSequence(Result* return_value) {
|
| - // The return value is a live (but not currently reference counted)
|
| - // reference to rax. This is safe because the current frame does not
|
| - // contain a reference to rax (it is prepared for the return by spilling
|
| - // all registers).
|
| - if (FLAG_trace) {
|
| - frame_->Push(return_value);
|
| - *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1);
|
| - }
|
| - return_value->ToRegister(rax);
|
| -
|
| - // Add a label for checking the size of the code used for returning.
|
| -#ifdef DEBUG
|
| - Label check_exit_codesize;
|
| - masm_->bind(&check_exit_codesize);
|
| -#endif
|
| -
|
| - // Leave the frame and return popping the arguments and the
|
| - // receiver.
|
| - frame_->Exit();
|
| - int arguments_bytes = (scope()->num_parameters() + 1) * kPointerSize;
|
| - __ Ret(arguments_bytes, rcx);
|
| - DeleteFrame();
|
| -
|
| -#ifdef ENABLE_DEBUGGER_SUPPORT
|
| - // Add padding that will be overwritten by a debugger breakpoint.
|
| - // The shortest return sequence generated is "movq rsp, rbp; pop rbp; ret k"
|
| - // with length 7 (3 + 1 + 3).
|
| - const int kPadding = Assembler::kJSReturnSequenceLength - 7;
|
| - for (int i = 0; i < kPadding; ++i) {
|
| - masm_->int3();
|
| - }
|
| - // Check that the size of the code used for returning is large enough
|
| - // for the debugger's requirements.
|
| - ASSERT(Assembler::kJSReturnSequenceLength <=
|
| - masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
|
| -#endif
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ WithEnterStatement");
|
| - CodeForStatementPosition(node);
|
| - Load(node->expression());
|
| - Result context;
|
| - if (node->is_catch_block()) {
|
| - context = frame_->CallRuntime(Runtime::kPushCatchContext, 1);
|
| - } else {
|
| - context = frame_->CallRuntime(Runtime::kPushContext, 1);
|
| - }
|
| -
|
| - // Update context local.
|
| - frame_->SaveContextRegister();
|
| -
|
| - // Verify that the runtime call result and rsi agree.
|
| - if (FLAG_debug_code) {
|
| - __ cmpq(context.reg(), rsi);
|
| - __ Assert(equal, "Runtime::NewContext should end up in rsi");
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ WithExitStatement");
|
| - CodeForStatementPosition(node);
|
| - // Pop context.
|
| - __ movq(rsi, ContextOperand(rsi, Context::PREVIOUS_INDEX));
|
| - // Update context local.
|
| - frame_->SaveContextRegister();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ SwitchStatement");
|
| - CodeForStatementPosition(node);
|
| - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| -
|
| - // Compile the switch value.
|
| - Load(node->tag());
|
| -
|
| - ZoneList<CaseClause*>* cases = node->cases();
|
| - int length = cases->length();
|
| - CaseClause* default_clause = NULL;
|
| -
|
| - JumpTarget next_test;
|
| - // Compile the case label expressions and comparisons. Exit early
|
| - // if a comparison is unconditionally true. The target next_test is
|
| - // bound before the loop in order to indicate control flow to the
|
| - // first comparison.
|
| - next_test.Bind();
|
| - for (int i = 0; i < length && !next_test.is_unused(); i++) {
|
| - CaseClause* clause = cases->at(i);
|
| - // The default is not a test, but remember it for later.
|
| - if (clause->is_default()) {
|
| - default_clause = clause;
|
| - continue;
|
| - }
|
| -
|
| - Comment cmnt(masm_, "[ Case comparison");
|
| - // We recycle the same target next_test for each test. Bind it if
|
| - // the previous test has not done so and then unuse it for the
|
| - // loop.
|
| - if (next_test.is_linked()) {
|
| - next_test.Bind();
|
| - }
|
| - next_test.Unuse();
|
| -
|
| - // Duplicate the switch value.
|
| - frame_->Dup();
|
| -
|
| - // Compile the label expression.
|
| - Load(clause->label());
|
| -
|
| - // Compare and branch to the body if true or the next test if
|
| - // false. Prefer the next test as a fall through.
|
| - ControlDestination dest(clause->body_target(), &next_test, false);
|
| - Comparison(node, equal, true, &dest);
|
| -
|
| - // If the comparison fell through to the true target, jump to the
|
| - // actual body.
|
| - if (dest.true_was_fall_through()) {
|
| - clause->body_target()->Unuse();
|
| - clause->body_target()->Jump();
|
| - }
|
| - }
|
| -
|
| - // If there was control flow to a next test from the last one
|
| - // compiled, compile a jump to the default or break target.
|
| - if (!next_test.is_unused()) {
|
| - if (next_test.is_linked()) {
|
| - next_test.Bind();
|
| - }
|
| - // Drop the switch value.
|
| - frame_->Drop();
|
| - if (default_clause != NULL) {
|
| - default_clause->body_target()->Jump();
|
| - } else {
|
| - node->break_target()->Jump();
|
| - }
|
| - }
|
| -
|
| - // The last instruction emitted was a jump, either to the default
|
| - // clause or the break target, or else to a case body from the loop
|
| - // that compiles the tests.
|
| - ASSERT(!has_valid_frame());
|
| - // Compile case bodies as needed.
|
| - for (int i = 0; i < length; i++) {
|
| - CaseClause* clause = cases->at(i);
|
| -
|
| - // There are two ways to reach the body: from the corresponding
|
| - // test or as the fall through of the previous body.
|
| - if (clause->body_target()->is_linked() || has_valid_frame()) {
|
| - if (clause->body_target()->is_linked()) {
|
| - if (has_valid_frame()) {
|
| - // If we have both a jump to the test and a fall through, put
|
| - // a jump on the fall through path to avoid the dropping of
|
| - // the switch value on the test path. The exception is the
|
| - // default which has already had the switch value dropped.
|
| - if (clause->is_default()) {
|
| - clause->body_target()->Bind();
|
| - } else {
|
| - JumpTarget body;
|
| - body.Jump();
|
| - clause->body_target()->Bind();
|
| - frame_->Drop();
|
| - body.Bind();
|
| - }
|
| - } else {
|
| - // No fall through to worry about.
|
| - clause->body_target()->Bind();
|
| - if (!clause->is_default()) {
|
| - frame_->Drop();
|
| - }
|
| - }
|
| - } else {
|
| - // Otherwise, we have only fall through.
|
| - ASSERT(has_valid_frame());
|
| - }
|
| -
|
| - // We are now prepared to compile the body.
|
| - Comment cmnt(masm_, "[ Case body");
|
| - VisitStatements(clause->statements());
|
| - }
|
| - clause->body_target()->Unuse();
|
| - }
|
| -
|
| - // We may not have a valid frame here so bind the break target only
|
| - // if needed.
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - node->break_target()->Unuse();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ DoWhileStatement");
|
| - CodeForStatementPosition(node);
|
| - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - JumpTarget body(JumpTarget::BIDIRECTIONAL);
|
| - IncrementLoopNesting();
|
| -
|
| - ConditionAnalysis info = AnalyzeCondition(node->cond());
|
| - // Label the top of the loop for the backward jump if necessary.
|
| - switch (info) {
|
| - case ALWAYS_TRUE:
|
| - // Use the continue target.
|
| - node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
|
| - node->continue_target()->Bind();
|
| - break;
|
| - case ALWAYS_FALSE:
|
| - // No need to label it.
|
| - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - break;
|
| - case DONT_KNOW:
|
| - // Continue is the test, so use the backward body target.
|
| - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - body.Bind();
|
| - break;
|
| - }
|
| -
|
| - CheckStack(); // TODO(1222600): ignore if body contains calls.
|
| - Visit(node->body());
|
| -
|
| - // Compile the test.
|
| - switch (info) {
|
| - case ALWAYS_TRUE:
|
| - // If control flow can fall off the end of the body, jump back
|
| - // to the top and bind the break target at the exit.
|
| - if (has_valid_frame()) {
|
| - node->continue_target()->Jump();
|
| - }
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - break;
|
| - case ALWAYS_FALSE:
|
| - // We may have had continues or breaks in the body.
|
| - if (node->continue_target()->is_linked()) {
|
| - node->continue_target()->Bind();
|
| - }
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - break;
|
| - case DONT_KNOW:
|
| - // We have to compile the test expression if it can be reached by
|
| - // control flow falling out of the body or via continue.
|
| - if (node->continue_target()->is_linked()) {
|
| - node->continue_target()->Bind();
|
| - }
|
| - if (has_valid_frame()) {
|
| - Comment cmnt(masm_, "[ DoWhileCondition");
|
| - CodeForDoWhileConditionPosition(node);
|
| - ControlDestination dest(&body, node->break_target(), false);
|
| - LoadCondition(node->cond(), &dest, true);
|
| - }
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - break;
|
| - }
|
| -
|
| - DecrementLoopNesting();
|
| - node->continue_target()->Unuse();
|
| - node->break_target()->Unuse();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitWhileStatement(WhileStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ WhileStatement");
|
| - CodeForStatementPosition(node);
|
| -
|
| - // If the condition is always false and has no side effects, we do not
|
| - // need to compile anything.
|
| - ConditionAnalysis info = AnalyzeCondition(node->cond());
|
| - if (info == ALWAYS_FALSE) return;
|
| -
|
| - // Do not duplicate conditions that may have function literal
|
| - // subexpressions. This can cause us to compile the function literal
|
| - // twice.
|
| - bool test_at_bottom = !node->may_have_function_literal();
|
| - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - IncrementLoopNesting();
|
| - JumpTarget body;
|
| - if (test_at_bottom) {
|
| - body.set_direction(JumpTarget::BIDIRECTIONAL);
|
| - }
|
| -
|
| - // Based on the condition analysis, compile the test as necessary.
|
| - switch (info) {
|
| - case ALWAYS_TRUE:
|
| - // We will not compile the test expression. Label the top of the
|
| - // loop with the continue target.
|
| - node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
|
| - node->continue_target()->Bind();
|
| - break;
|
| - case DONT_KNOW: {
|
| - if (test_at_bottom) {
|
| - // Continue is the test at the bottom, no need to label the test
|
| - // at the top. The body is a backward target.
|
| - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - } else {
|
| - // Label the test at the top as the continue target. The body
|
| - // is a forward-only target.
|
| - node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
|
| - node->continue_target()->Bind();
|
| - }
|
| - // Compile the test with the body as the true target and preferred
|
| - // fall-through and with the break target as the false target.
|
| - ControlDestination dest(&body, node->break_target(), true);
|
| - LoadCondition(node->cond(), &dest, true);
|
| -
|
| - if (dest.false_was_fall_through()) {
|
| - // If we got the break target as fall-through, the test may have
|
| - // been unconditionally false (if there are no jumps to the
|
| - // body).
|
| - if (!body.is_linked()) {
|
| - DecrementLoopNesting();
|
| - return;
|
| - }
|
| -
|
| - // Otherwise, jump around the body on the fall through and then
|
| - // bind the body target.
|
| - node->break_target()->Unuse();
|
| - node->break_target()->Jump();
|
| - body.Bind();
|
| - }
|
| - break;
|
| - }
|
| - case ALWAYS_FALSE:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| -
|
| - CheckStack(); // TODO(1222600): ignore if body contains calls.
|
| - Visit(node->body());
|
| -
|
| - // Based on the condition analysis, compile the backward jump as
|
| - // necessary.
|
| - switch (info) {
|
| - case ALWAYS_TRUE:
|
| - // The loop body has been labeled with the continue target.
|
| - if (has_valid_frame()) {
|
| - node->continue_target()->Jump();
|
| - }
|
| - break;
|
| - case DONT_KNOW:
|
| - if (test_at_bottom) {
|
| - // If we have chosen to recompile the test at the bottom,
|
| - // then it is the continue target.
|
| - if (node->continue_target()->is_linked()) {
|
| - node->continue_target()->Bind();
|
| - }
|
| - if (has_valid_frame()) {
|
| - // The break target is the fall-through (body is a backward
|
| - // jump from here and thus an invalid fall-through).
|
| - ControlDestination dest(&body, node->break_target(), false);
|
| - LoadCondition(node->cond(), &dest, true);
|
| - }
|
| - } else {
|
| - // If we have chosen not to recompile the test at the bottom,
|
| - // jump back to the one at the top.
|
| - if (has_valid_frame()) {
|
| - node->continue_target()->Jump();
|
| - }
|
| - }
|
| - break;
|
| - case ALWAYS_FALSE:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| -
|
| - // The break target may be already bound (by the condition), or there
|
| - // may not be a valid frame. Bind it only if needed.
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - DecrementLoopNesting();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::SetTypeForStackSlot(Slot* slot, TypeInfo info) {
|
| - ASSERT(slot->type() == Slot::LOCAL || slot->type() == Slot::PARAMETER);
|
| - if (slot->type() == Slot::LOCAL) {
|
| - frame_->SetTypeForLocalAt(slot->index(), info);
|
| - } else {
|
| - frame_->SetTypeForParamAt(slot->index(), info);
|
| - }
|
| - if (FLAG_debug_code && info.IsSmi()) {
|
| - if (slot->type() == Slot::LOCAL) {
|
| - frame_->PushLocalAt(slot->index());
|
| - } else {
|
| - frame_->PushParameterAt(slot->index());
|
| - }
|
| - Result var = frame_->Pop();
|
| - var.ToRegister();
|
| - __ AbortIfNotSmi(var.reg());
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateFastSmiLoop(ForStatement* node) {
|
| - // A fast smi loop is a for loop with an initializer
|
| - // that is a simple assignment of a smi to a stack variable,
|
| - // a test that is a simple test of that variable against a smi constant,
|
| - // and a step that is a increment/decrement of the variable, and
|
| - // where the variable isn't modified in the loop body.
|
| - // This guarantees that the variable is always a smi.
|
| -
|
| - Variable* loop_var = node->loop_variable();
|
| - Smi* initial_value = *Handle<Smi>::cast(node->init()
|
| - ->StatementAsSimpleAssignment()->value()->AsLiteral()->handle());
|
| - Smi* limit_value = *Handle<Smi>::cast(
|
| - node->cond()->AsCompareOperation()->right()->AsLiteral()->handle());
|
| - Token::Value compare_op =
|
| - node->cond()->AsCompareOperation()->op();
|
| - bool increments =
|
| - node->next()->StatementAsCountOperation()->op() == Token::INC;
|
| -
|
| - // Check that the condition isn't initially false.
|
| - bool initially_false = false;
|
| - int initial_int_value = initial_value->value();
|
| - int limit_int_value = limit_value->value();
|
| - switch (compare_op) {
|
| - case Token::LT:
|
| - initially_false = initial_int_value >= limit_int_value;
|
| - break;
|
| - case Token::LTE:
|
| - initially_false = initial_int_value > limit_int_value;
|
| - break;
|
| - case Token::GT:
|
| - initially_false = initial_int_value <= limit_int_value;
|
| - break;
|
| - case Token::GTE:
|
| - initially_false = initial_int_value < limit_int_value;
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - if (initially_false) return;
|
| -
|
| - // Only check loop condition at the end.
|
| -
|
| - Visit(node->init());
|
| -
|
| - JumpTarget loop(JumpTarget::BIDIRECTIONAL);
|
| - // Set type and stack height of BreakTargets.
|
| - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| -
|
| - IncrementLoopNesting();
|
| - loop.Bind();
|
| -
|
| - // Set number type of the loop variable to smi.
|
| - CheckStack(); // TODO(1222600): ignore if body contains calls.
|
| -
|
| - SetTypeForStackSlot(loop_var->AsSlot(), TypeInfo::Smi());
|
| - Visit(node->body());
|
| -
|
| - if (node->continue_target()->is_linked()) {
|
| - node->continue_target()->Bind();
|
| - }
|
| -
|
| - if (has_valid_frame()) {
|
| - CodeForStatementPosition(node);
|
| - Slot* loop_var_slot = loop_var->AsSlot();
|
| - if (loop_var_slot->type() == Slot::LOCAL) {
|
| - frame_->TakeLocalAt(loop_var_slot->index());
|
| - } else {
|
| - ASSERT(loop_var_slot->type() == Slot::PARAMETER);
|
| - frame_->TakeParameterAt(loop_var_slot->index());
|
| - }
|
| - Result loop_var_result = frame_->Pop();
|
| - if (!loop_var_result.is_register()) {
|
| - loop_var_result.ToRegister();
|
| - }
|
| - Register loop_var_reg = loop_var_result.reg();
|
| - frame_->Spill(loop_var_reg);
|
| - if (increments) {
|
| - __ SmiAddConstant(loop_var_reg,
|
| - loop_var_reg,
|
| - Smi::FromInt(1));
|
| - } else {
|
| - __ SmiSubConstant(loop_var_reg,
|
| - loop_var_reg,
|
| - Smi::FromInt(1));
|
| - }
|
| -
|
| - frame_->Push(&loop_var_result);
|
| - if (loop_var_slot->type() == Slot::LOCAL) {
|
| - frame_->StoreToLocalAt(loop_var_slot->index());
|
| - } else {
|
| - ASSERT(loop_var_slot->type() == Slot::PARAMETER);
|
| - frame_->StoreToParameterAt(loop_var_slot->index());
|
| - }
|
| - frame_->Drop();
|
| -
|
| - __ SmiCompare(loop_var_reg, limit_value);
|
| - Condition condition;
|
| - switch (compare_op) {
|
| - case Token::LT:
|
| - condition = less;
|
| - break;
|
| - case Token::LTE:
|
| - condition = less_equal;
|
| - break;
|
| - case Token::GT:
|
| - condition = greater;
|
| - break;
|
| - case Token::GTE:
|
| - condition = greater_equal;
|
| - break;
|
| - default:
|
| - condition = never;
|
| - UNREACHABLE();
|
| - }
|
| - loop.Branch(condition);
|
| - }
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - DecrementLoopNesting();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitForStatement(ForStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ ForStatement");
|
| - CodeForStatementPosition(node);
|
| -
|
| - if (node->is_fast_smi_loop()) {
|
| - GenerateFastSmiLoop(node);
|
| - return;
|
| - }
|
| -
|
| - // Compile the init expression if present.
|
| - if (node->init() != NULL) {
|
| - Visit(node->init());
|
| - }
|
| -
|
| - // If the condition is always false and has no side effects, we do not
|
| - // need to compile anything else.
|
| - ConditionAnalysis info = AnalyzeCondition(node->cond());
|
| - if (info == ALWAYS_FALSE) return;
|
| -
|
| - // Do not duplicate conditions that may have function literal
|
| - // subexpressions. This can cause us to compile the function literal
|
| - // twice.
|
| - bool test_at_bottom = !node->may_have_function_literal();
|
| - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - IncrementLoopNesting();
|
| -
|
| - // Target for backward edge if no test at the bottom, otherwise
|
| - // unused.
|
| - JumpTarget loop(JumpTarget::BIDIRECTIONAL);
|
| -
|
| - // Target for backward edge if there is a test at the bottom,
|
| - // otherwise used as target for test at the top.
|
| - JumpTarget body;
|
| - if (test_at_bottom) {
|
| - body.set_direction(JumpTarget::BIDIRECTIONAL);
|
| - }
|
| -
|
| - // Based on the condition analysis, compile the test as necessary.
|
| - switch (info) {
|
| - case ALWAYS_TRUE:
|
| - // We will not compile the test expression. Label the top of the
|
| - // loop.
|
| - if (node->next() == NULL) {
|
| - // Use the continue target if there is no update expression.
|
| - node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
|
| - node->continue_target()->Bind();
|
| - } else {
|
| - // Otherwise use the backward loop target.
|
| - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - loop.Bind();
|
| - }
|
| - break;
|
| - case DONT_KNOW: {
|
| - if (test_at_bottom) {
|
| - // Continue is either the update expression or the test at the
|
| - // bottom, no need to label the test at the top.
|
| - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - } else if (node->next() == NULL) {
|
| - // We are not recompiling the test at the bottom and there is no
|
| - // update expression.
|
| - node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
|
| - node->continue_target()->Bind();
|
| - } else {
|
| - // We are not recompiling the test at the bottom and there is an
|
| - // update expression.
|
| - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - loop.Bind();
|
| - }
|
| -
|
| - // Compile the test with the body as the true target and preferred
|
| - // fall-through and with the break target as the false target.
|
| - ControlDestination dest(&body, node->break_target(), true);
|
| - LoadCondition(node->cond(), &dest, true);
|
| -
|
| - if (dest.false_was_fall_through()) {
|
| - // If we got the break target as fall-through, the test may have
|
| - // been unconditionally false (if there are no jumps to the
|
| - // body).
|
| - if (!body.is_linked()) {
|
| - DecrementLoopNesting();
|
| - return;
|
| - }
|
| -
|
| - // Otherwise, jump around the body on the fall through and then
|
| - // bind the body target.
|
| - node->break_target()->Unuse();
|
| - node->break_target()->Jump();
|
| - body.Bind();
|
| - }
|
| - break;
|
| - }
|
| - case ALWAYS_FALSE:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| -
|
| - CheckStack(); // TODO(1222600): ignore if body contains calls.
|
| -
|
| - Visit(node->body());
|
| -
|
| - // If there is an update expression, compile it if necessary.
|
| - if (node->next() != NULL) {
|
| - if (node->continue_target()->is_linked()) {
|
| - node->continue_target()->Bind();
|
| - }
|
| -
|
| - // Control can reach the update by falling out of the body or by a
|
| - // continue.
|
| - if (has_valid_frame()) {
|
| - // Record the source position of the statement as this code which
|
| - // is after the code for the body actually belongs to the loop
|
| - // statement and not the body.
|
| - CodeForStatementPosition(node);
|
| - Visit(node->next());
|
| - }
|
| - }
|
| -
|
| - // Based on the condition analysis, compile the backward jump as
|
| - // necessary.
|
| - switch (info) {
|
| - case ALWAYS_TRUE:
|
| - if (has_valid_frame()) {
|
| - if (node->next() == NULL) {
|
| - node->continue_target()->Jump();
|
| - } else {
|
| - loop.Jump();
|
| - }
|
| - }
|
| - break;
|
| - case DONT_KNOW:
|
| - if (test_at_bottom) {
|
| - if (node->continue_target()->is_linked()) {
|
| - // We can have dangling jumps to the continue target if there
|
| - // was no update expression.
|
| - node->continue_target()->Bind();
|
| - }
|
| - // Control can reach the test at the bottom by falling out of
|
| - // the body, by a continue in the body, or from the update
|
| - // expression.
|
| - if (has_valid_frame()) {
|
| - // The break target is the fall-through (body is a backward
|
| - // jump from here).
|
| - ControlDestination dest(&body, node->break_target(), false);
|
| - LoadCondition(node->cond(), &dest, true);
|
| - }
|
| - } else {
|
| - // Otherwise, jump back to the test at the top.
|
| - if (has_valid_frame()) {
|
| - if (node->next() == NULL) {
|
| - node->continue_target()->Jump();
|
| - } else {
|
| - loop.Jump();
|
| - }
|
| - }
|
| - }
|
| - break;
|
| - case ALWAYS_FALSE:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| -
|
| - // The break target may be already bound (by the condition), or there
|
| - // may not be a valid frame. Bind it only if needed.
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - DecrementLoopNesting();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitForInStatement(ForInStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - VirtualFrame::SpilledScope spilled_scope;
|
| - Comment cmnt(masm_, "[ ForInStatement");
|
| - CodeForStatementPosition(node);
|
| -
|
| - JumpTarget primitive;
|
| - JumpTarget jsobject;
|
| - JumpTarget fixed_array;
|
| - JumpTarget entry(JumpTarget::BIDIRECTIONAL);
|
| - JumpTarget end_del_check;
|
| - JumpTarget exit;
|
| -
|
| - // Get the object to enumerate over (converted to JSObject).
|
| - LoadAndSpill(node->enumerable());
|
| -
|
| - // Both SpiderMonkey and kjs ignore null and undefined in contrast
|
| - // to the specification. 12.6.4 mandates a call to ToObject.
|
| - frame_->EmitPop(rax);
|
| -
|
| - // rax: value to be iterated over
|
| - __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
|
| - exit.Branch(equal);
|
| - __ CompareRoot(rax, Heap::kNullValueRootIndex);
|
| - exit.Branch(equal);
|
| -
|
| - // Stack layout in body:
|
| - // [iteration counter (smi)] <- slot 0
|
| - // [length of array] <- slot 1
|
| - // [FixedArray] <- slot 2
|
| - // [Map or 0] <- slot 3
|
| - // [Object] <- slot 4
|
| -
|
| - // Check if enumerable is already a JSObject
|
| - // rax: value to be iterated over
|
| - Condition is_smi = masm_->CheckSmi(rax);
|
| - primitive.Branch(is_smi);
|
| - __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
|
| - jsobject.Branch(above_equal);
|
| -
|
| - primitive.Bind();
|
| - frame_->EmitPush(rax);
|
| - frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1);
|
| - // function call returns the value in rax, which is where we want it below
|
| -
|
| - jsobject.Bind();
|
| - // Get the set of properties (as a FixedArray or Map).
|
| - // rax: value to be iterated over
|
| - frame_->EmitPush(rax); // Push the object being iterated over.
|
| -
|
| -
|
| - // Check cache validity in generated code. This is a fast case for
|
| - // the JSObject::IsSimpleEnum cache validity checks. If we cannot
|
| - // guarantee cache validity, call the runtime system to check cache
|
| - // validity or get the property names in a fixed array.
|
| - JumpTarget call_runtime;
|
| - JumpTarget loop(JumpTarget::BIDIRECTIONAL);
|
| - JumpTarget check_prototype;
|
| - JumpTarget use_cache;
|
| - __ movq(rcx, rax);
|
| - loop.Bind();
|
| - // Check that there are no elements.
|
| - __ movq(rdx, FieldOperand(rcx, JSObject::kElementsOffset));
|
| - __ CompareRoot(rdx, Heap::kEmptyFixedArrayRootIndex);
|
| - call_runtime.Branch(not_equal);
|
| - // Check that instance descriptors are not empty so that we can
|
| - // check for an enum cache. Leave the map in ebx for the subsequent
|
| - // prototype load.
|
| - __ movq(rbx, FieldOperand(rcx, HeapObject::kMapOffset));
|
| - __ movq(rdx, FieldOperand(rbx, Map::kInstanceDescriptorsOffset));
|
| - __ CompareRoot(rdx, Heap::kEmptyDescriptorArrayRootIndex);
|
| - call_runtime.Branch(equal);
|
| - // Check that there in an enum cache in the non-empty instance
|
| - // descriptors. This is the case if the next enumeration index
|
| - // field does not contain a smi.
|
| - __ movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumerationIndexOffset));
|
| - is_smi = masm_->CheckSmi(rdx);
|
| - call_runtime.Branch(is_smi);
|
| - // For all objects but the receiver, check that the cache is empty.
|
| - __ cmpq(rcx, rax);
|
| - check_prototype.Branch(equal);
|
| - __ movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumCacheBridgeCacheOffset));
|
| - __ CompareRoot(rdx, Heap::kEmptyFixedArrayRootIndex);
|
| - call_runtime.Branch(not_equal);
|
| - check_prototype.Bind();
|
| - // Load the prototype from the map and loop if non-null.
|
| - __ movq(rcx, FieldOperand(rbx, Map::kPrototypeOffset));
|
| - __ CompareRoot(rcx, Heap::kNullValueRootIndex);
|
| - loop.Branch(not_equal);
|
| - // The enum cache is valid. Load the map of the object being
|
| - // iterated over and use the cache for the iteration.
|
| - __ movq(rax, FieldOperand(rax, HeapObject::kMapOffset));
|
| - use_cache.Jump();
|
| -
|
| - call_runtime.Bind();
|
| - // Call the runtime to get the property names for the object.
|
| - frame_->EmitPush(rax); // push the Object (slot 4) for the runtime call
|
| - frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1);
|
| -
|
| - // If we got a Map, we can do a fast modification check.
|
| - // Otherwise, we got a FixedArray, and we have to do a slow check.
|
| - // rax: map or fixed array (result from call to
|
| - // Runtime::kGetPropertyNamesFast)
|
| - __ movq(rdx, rax);
|
| - __ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
|
| - __ CompareRoot(rcx, Heap::kMetaMapRootIndex);
|
| - fixed_array.Branch(not_equal);
|
| -
|
| - use_cache.Bind();
|
| - // Get enum cache
|
| - // rax: map (either the result from a call to
|
| - // Runtime::kGetPropertyNamesFast or has been fetched directly from
|
| - // the object)
|
| - __ movq(rcx, rax);
|
| - __ movq(rcx, FieldOperand(rcx, Map::kInstanceDescriptorsOffset));
|
| - // Get the bridge array held in the enumeration index field.
|
| - __ movq(rcx, FieldOperand(rcx, DescriptorArray::kEnumerationIndexOffset));
|
| - // Get the cache from the bridge array.
|
| - __ movq(rdx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset));
|
| -
|
| - frame_->EmitPush(rax); // <- slot 3
|
| - frame_->EmitPush(rdx); // <- slot 2
|
| - __ movq(rax, FieldOperand(rdx, FixedArray::kLengthOffset));
|
| - frame_->EmitPush(rax); // <- slot 1
|
| - frame_->EmitPush(Smi::FromInt(0)); // <- slot 0
|
| - entry.Jump();
|
| -
|
| - fixed_array.Bind();
|
| - // rax: fixed array (result from call to Runtime::kGetPropertyNamesFast)
|
| - frame_->EmitPush(Smi::FromInt(0)); // <- slot 3
|
| - frame_->EmitPush(rax); // <- slot 2
|
| -
|
| - // Push the length of the array and the initial index onto the stack.
|
| - __ movq(rax, FieldOperand(rax, FixedArray::kLengthOffset));
|
| - frame_->EmitPush(rax); // <- slot 1
|
| - frame_->EmitPush(Smi::FromInt(0)); // <- slot 0
|
| -
|
| - // Condition.
|
| - entry.Bind();
|
| - // Grab the current frame's height for the break and continue
|
| - // targets only after all the state is pushed on the frame.
|
| - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| -
|
| - __ movq(rax, frame_->ElementAt(0)); // load the current count
|
| - __ SmiCompare(frame_->ElementAt(1), rax); // compare to the array length
|
| - node->break_target()->Branch(below_equal);
|
| -
|
| - // Get the i'th entry of the array.
|
| - __ movq(rdx, frame_->ElementAt(2));
|
| - SmiIndex index = masm_->SmiToIndex(rbx, rax, kPointerSizeLog2);
|
| - __ movq(rbx,
|
| - FieldOperand(rdx, index.reg, index.scale, FixedArray::kHeaderSize));
|
| -
|
| - // Get the expected map from the stack or a zero map in the
|
| - // permanent slow case rax: current iteration count rbx: i'th entry
|
| - // of the enum cache
|
| - __ movq(rdx, frame_->ElementAt(3));
|
| - // Check if the expected map still matches that of the enumerable.
|
| - // If not, we have to filter the key.
|
| - // rax: current iteration count
|
| - // rbx: i'th entry of the enum cache
|
| - // rdx: expected map value
|
| - __ movq(rcx, frame_->ElementAt(4));
|
| - __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
|
| - __ cmpq(rcx, rdx);
|
| - end_del_check.Branch(equal);
|
| -
|
| - // Convert the entry to a string (or null if it isn't a property anymore).
|
| - frame_->EmitPush(frame_->ElementAt(4)); // push enumerable
|
| - frame_->EmitPush(rbx); // push entry
|
| - frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2);
|
| - __ movq(rbx, rax);
|
| -
|
| - // If the property has been removed while iterating, we just skip it.
|
| - __ Cmp(rbx, Smi::FromInt(0));
|
| - node->continue_target()->Branch(equal);
|
| -
|
| - end_del_check.Bind();
|
| - // Store the entry in the 'each' expression and take another spin in the
|
| - // loop. rdx: i'th entry of the enum cache (or string there of)
|
| - frame_->EmitPush(rbx);
|
| - { Reference each(this, node->each());
|
| - // Loading a reference may leave the frame in an unspilled state.
|
| - frame_->SpillAll();
|
| - if (!each.is_illegal()) {
|
| - if (each.size() > 0) {
|
| - frame_->EmitPush(frame_->ElementAt(each.size()));
|
| - each.SetValue(NOT_CONST_INIT);
|
| - frame_->Drop(2); // Drop the original and the copy of the element.
|
| - } else {
|
| - // If the reference has size zero then we can use the value below
|
| - // the reference as if it were above the reference, instead of pushing
|
| - // a new copy of it above the reference.
|
| - each.SetValue(NOT_CONST_INIT);
|
| - frame_->Drop(); // Drop the original of the element.
|
| - }
|
| - }
|
| - }
|
| - // Unloading a reference may leave the frame in an unspilled state.
|
| - frame_->SpillAll();
|
| -
|
| - // Body.
|
| - CheckStack(); // TODO(1222600): ignore if body contains calls.
|
| - VisitAndSpill(node->body());
|
| -
|
| - // Next. Reestablish a spilled frame in case we are coming here via
|
| - // a continue in the body.
|
| - node->continue_target()->Bind();
|
| - frame_->SpillAll();
|
| - frame_->EmitPop(rax);
|
| - __ SmiAddConstant(rax, rax, Smi::FromInt(1));
|
| - frame_->EmitPush(rax);
|
| - entry.Jump();
|
| -
|
| - // Cleanup. No need to spill because VirtualFrame::Drop is safe for
|
| - // any frame.
|
| - node->break_target()->Bind();
|
| - frame_->Drop(5);
|
| -
|
| - // Exit.
|
| - exit.Bind();
|
| -
|
| - node->continue_target()->Unuse();
|
| - node->break_target()->Unuse();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - VirtualFrame::SpilledScope spilled_scope;
|
| - Comment cmnt(masm_, "[ TryCatchStatement");
|
| - CodeForStatementPosition(node);
|
| -
|
| - JumpTarget try_block;
|
| - JumpTarget exit;
|
| -
|
| - try_block.Call();
|
| - // --- Catch block ---
|
| - frame_->EmitPush(rax);
|
| -
|
| - // Store the caught exception in the catch variable.
|
| - Variable* catch_var = node->catch_var()->var();
|
| - ASSERT(catch_var != NULL && catch_var->AsSlot() != NULL);
|
| - StoreToSlot(catch_var->AsSlot(), NOT_CONST_INIT);
|
| -
|
| - // Remove the exception from the stack.
|
| - frame_->Drop();
|
| -
|
| - VisitStatementsAndSpill(node->catch_block()->statements());
|
| - if (has_valid_frame()) {
|
| - exit.Jump();
|
| - }
|
| -
|
| -
|
| - // --- Try block ---
|
| - try_block.Bind();
|
| -
|
| - frame_->PushTryHandler(TRY_CATCH_HANDLER);
|
| - int handler_height = frame_->height();
|
| -
|
| - // Shadow the jump targets for all escapes from the try block, including
|
| - // returns. During shadowing, the original target is hidden as the
|
| - // ShadowTarget and operations on the original actually affect the
|
| - // shadowing target.
|
| - //
|
| - // We should probably try to unify the escaping targets and the return
|
| - // target.
|
| - int nof_escapes = node->escaping_targets()->length();
|
| - List<ShadowTarget*> shadows(1 + nof_escapes);
|
| -
|
| - // Add the shadow target for the function return.
|
| - static const int kReturnShadowIndex = 0;
|
| - shadows.Add(new ShadowTarget(&function_return_));
|
| - bool function_return_was_shadowed = function_return_is_shadowed_;
|
| - function_return_is_shadowed_ = true;
|
| - ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
|
| -
|
| - // Add the remaining shadow targets.
|
| - for (int i = 0; i < nof_escapes; i++) {
|
| - shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
|
| - }
|
| -
|
| - // Generate code for the statements in the try block.
|
| - VisitStatementsAndSpill(node->try_block()->statements());
|
| -
|
| - // Stop the introduced shadowing and count the number of required unlinks.
|
| - // After shadowing stops, the original targets are unshadowed and the
|
| - // ShadowTargets represent the formerly shadowing targets.
|
| - bool has_unlinks = false;
|
| - for (int i = 0; i < shadows.length(); i++) {
|
| - shadows[i]->StopShadowing();
|
| - has_unlinks = has_unlinks || shadows[i]->is_linked();
|
| - }
|
| - function_return_is_shadowed_ = function_return_was_shadowed;
|
| -
|
| - // Get an external reference to the handler address.
|
| - ExternalReference handler_address(Isolate::k_handler_address, isolate());
|
| -
|
| - // Make sure that there's nothing left on the stack above the
|
| - // handler structure.
|
| - if (FLAG_debug_code) {
|
| - __ movq(kScratchRegister, handler_address);
|
| - __ cmpq(rsp, Operand(kScratchRegister, 0));
|
| - __ Assert(equal, "stack pointer should point to top handler");
|
| - }
|
| -
|
| - // If we can fall off the end of the try block, unlink from try chain.
|
| - if (has_valid_frame()) {
|
| - // The next handler address is on top of the frame. Unlink from
|
| - // the handler list and drop the rest of this handler from the
|
| - // frame.
|
| - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
| - __ movq(kScratchRegister, handler_address);
|
| - frame_->EmitPop(Operand(kScratchRegister, 0));
|
| - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
| - if (has_unlinks) {
|
| - exit.Jump();
|
| - }
|
| - }
|
| -
|
| - // Generate unlink code for the (formerly) shadowing targets that
|
| - // have been jumped to. Deallocate each shadow target.
|
| - Result return_value;
|
| - for (int i = 0; i < shadows.length(); i++) {
|
| - if (shadows[i]->is_linked()) {
|
| - // Unlink from try chain; be careful not to destroy the TOS if
|
| - // there is one.
|
| - if (i == kReturnShadowIndex) {
|
| - shadows[i]->Bind(&return_value);
|
| - return_value.ToRegister(rax);
|
| - } else {
|
| - shadows[i]->Bind();
|
| - }
|
| - // Because we can be jumping here (to spilled code) from
|
| - // unspilled code, we need to reestablish a spilled frame at
|
| - // this block.
|
| - frame_->SpillAll();
|
| -
|
| - // Reload sp from the top handler, because some statements that we
|
| - // break from (eg, for...in) may have left stuff on the stack.
|
| - __ movq(kScratchRegister, handler_address);
|
| - __ movq(rsp, Operand(kScratchRegister, 0));
|
| - frame_->Forget(frame_->height() - handler_height);
|
| -
|
| - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
| - __ movq(kScratchRegister, handler_address);
|
| - frame_->EmitPop(Operand(kScratchRegister, 0));
|
| - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
| -
|
| - if (i == kReturnShadowIndex) {
|
| - if (!function_return_is_shadowed_) frame_->PrepareForReturn();
|
| - shadows[i]->other_target()->Jump(&return_value);
|
| - } else {
|
| - shadows[i]->other_target()->Jump();
|
| - }
|
| - }
|
| - }
|
| -
|
| - exit.Bind();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - VirtualFrame::SpilledScope spilled_scope;
|
| - Comment cmnt(masm_, "[ TryFinallyStatement");
|
| - CodeForStatementPosition(node);
|
| -
|
| - // State: Used to keep track of reason for entering the finally
|
| - // block. Should probably be extended to hold information for
|
| - // break/continue from within the try block.
|
| - enum { FALLING, THROWING, JUMPING };
|
| -
|
| - JumpTarget try_block;
|
| - JumpTarget finally_block;
|
| -
|
| - try_block.Call();
|
| -
|
| - frame_->EmitPush(rax);
|
| - // In case of thrown exceptions, this is where we continue.
|
| - __ Move(rcx, Smi::FromInt(THROWING));
|
| - finally_block.Jump();
|
| -
|
| - // --- Try block ---
|
| - try_block.Bind();
|
| -
|
| - frame_->PushTryHandler(TRY_FINALLY_HANDLER);
|
| - int handler_height = frame_->height();
|
| -
|
| - // Shadow the jump targets for all escapes from the try block, including
|
| - // returns. During shadowing, the original target is hidden as the
|
| - // ShadowTarget and operations on the original actually affect the
|
| - // shadowing target.
|
| - //
|
| - // We should probably try to unify the escaping targets and the return
|
| - // target.
|
| - int nof_escapes = node->escaping_targets()->length();
|
| - List<ShadowTarget*> shadows(1 + nof_escapes);
|
| -
|
| - // Add the shadow target for the function return.
|
| - static const int kReturnShadowIndex = 0;
|
| - shadows.Add(new ShadowTarget(&function_return_));
|
| - bool function_return_was_shadowed = function_return_is_shadowed_;
|
| - function_return_is_shadowed_ = true;
|
| - ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
|
| -
|
| - // Add the remaining shadow targets.
|
| - for (int i = 0; i < nof_escapes; i++) {
|
| - shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
|
| - }
|
| -
|
| - // Generate code for the statements in the try block.
|
| - VisitStatementsAndSpill(node->try_block()->statements());
|
| -
|
| - // Stop the introduced shadowing and count the number of required unlinks.
|
| - // After shadowing stops, the original targets are unshadowed and the
|
| - // ShadowTargets represent the formerly shadowing targets.
|
| - int nof_unlinks = 0;
|
| - for (int i = 0; i < shadows.length(); i++) {
|
| - shadows[i]->StopShadowing();
|
| - if (shadows[i]->is_linked()) nof_unlinks++;
|
| - }
|
| - function_return_is_shadowed_ = function_return_was_shadowed;
|
| -
|
| - // Get an external reference to the handler address.
|
| - ExternalReference handler_address(Isolate::k_handler_address, isolate());
|
| -
|
| - // If we can fall off the end of the try block, unlink from the try
|
| - // chain and set the state on the frame to FALLING.
|
| - if (has_valid_frame()) {
|
| - // The next handler address is on top of the frame.
|
| - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
| - __ movq(kScratchRegister, handler_address);
|
| - frame_->EmitPop(Operand(kScratchRegister, 0));
|
| - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
| -
|
| - // Fake a top of stack value (unneeded when FALLING) and set the
|
| - // state in ecx, then jump around the unlink blocks if any.
|
| - frame_->EmitPush(Heap::kUndefinedValueRootIndex);
|
| - __ Move(rcx, Smi::FromInt(FALLING));
|
| - if (nof_unlinks > 0) {
|
| - finally_block.Jump();
|
| - }
|
| - }
|
| -
|
| - // Generate code to unlink and set the state for the (formerly)
|
| - // shadowing targets that have been jumped to.
|
| - for (int i = 0; i < shadows.length(); i++) {
|
| - if (shadows[i]->is_linked()) {
|
| - // If we have come from the shadowed return, the return value is
|
| - // on the virtual frame. We must preserve it until it is
|
| - // pushed.
|
| - if (i == kReturnShadowIndex) {
|
| - Result return_value;
|
| - shadows[i]->Bind(&return_value);
|
| - return_value.ToRegister(rax);
|
| - } else {
|
| - shadows[i]->Bind();
|
| - }
|
| - // Because we can be jumping here (to spilled code) from
|
| - // unspilled code, we need to reestablish a spilled frame at
|
| - // this block.
|
| - frame_->SpillAll();
|
| -
|
| - // Reload sp from the top handler, because some statements that
|
| - // we break from (eg, for...in) may have left stuff on the
|
| - // stack.
|
| - __ movq(kScratchRegister, handler_address);
|
| - __ movq(rsp, Operand(kScratchRegister, 0));
|
| - frame_->Forget(frame_->height() - handler_height);
|
| -
|
| - // Unlink this handler and drop it from the frame.
|
| - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
| - __ movq(kScratchRegister, handler_address);
|
| - frame_->EmitPop(Operand(kScratchRegister, 0));
|
| - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
| -
|
| - if (i == kReturnShadowIndex) {
|
| - // If this target shadowed the function return, materialize
|
| - // the return value on the stack.
|
| - frame_->EmitPush(rax);
|
| - } else {
|
| - // Fake TOS for targets that shadowed breaks and continues.
|
| - frame_->EmitPush(Heap::kUndefinedValueRootIndex);
|
| - }
|
| - __ Move(rcx, Smi::FromInt(JUMPING + i));
|
| - if (--nof_unlinks > 0) {
|
| - // If this is not the last unlink block, jump around the next.
|
| - finally_block.Jump();
|
| - }
|
| - }
|
| - }
|
| -
|
| - // --- Finally block ---
|
| - finally_block.Bind();
|
| -
|
| - // Push the state on the stack.
|
| - frame_->EmitPush(rcx);
|
| -
|
| - // We keep two elements on the stack - the (possibly faked) result
|
| - // and the state - while evaluating the finally block.
|
| - //
|
| - // Generate code for the statements in the finally block.
|
| - VisitStatementsAndSpill(node->finally_block()->statements());
|
| -
|
| - if (has_valid_frame()) {
|
| - // Restore state and return value or faked TOS.
|
| - frame_->EmitPop(rcx);
|
| - frame_->EmitPop(rax);
|
| - }
|
| -
|
| - // Generate code to jump to the right destination for all used
|
| - // formerly shadowing targets. Deallocate each shadow target.
|
| - for (int i = 0; i < shadows.length(); i++) {
|
| - if (has_valid_frame() && shadows[i]->is_bound()) {
|
| - BreakTarget* original = shadows[i]->other_target();
|
| - __ SmiCompare(rcx, Smi::FromInt(JUMPING + i));
|
| - if (i == kReturnShadowIndex) {
|
| - // The return value is (already) in rax.
|
| - Result return_value = allocator_->Allocate(rax);
|
| - ASSERT(return_value.is_valid());
|
| - if (function_return_is_shadowed_) {
|
| - original->Branch(equal, &return_value);
|
| - } else {
|
| - // Branch around the preparation for return which may emit
|
| - // code.
|
| - JumpTarget skip;
|
| - skip.Branch(not_equal);
|
| - frame_->PrepareForReturn();
|
| - original->Jump(&return_value);
|
| - skip.Bind();
|
| - }
|
| - } else {
|
| - original->Branch(equal);
|
| - }
|
| - }
|
| - }
|
| -
|
| - if (has_valid_frame()) {
|
| - // Check if we need to rethrow the exception.
|
| - JumpTarget exit;
|
| - __ SmiCompare(rcx, Smi::FromInt(THROWING));
|
| - exit.Branch(not_equal);
|
| -
|
| - // Rethrow exception.
|
| - frame_->EmitPush(rax); // undo pop from above
|
| - frame_->CallRuntime(Runtime::kReThrow, 1);
|
| -
|
| - // Done.
|
| - exit.Bind();
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ DebuggerStatement");
|
| - CodeForStatementPosition(node);
|
| -#ifdef ENABLE_DEBUGGER_SUPPORT
|
| - // Spill everything, even constants, to the frame.
|
| - frame_->SpillAll();
|
| -
|
| - frame_->DebugBreak();
|
| - // Ignore the return value.
|
| -#endif
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::InstantiateFunction(
|
| - Handle<SharedFunctionInfo> function_info,
|
| - bool pretenure) {
|
| - // The inevitable call will sync frame elements to memory anyway, so
|
| - // we do it eagerly to allow us to push the arguments directly into
|
| - // place.
|
| - frame_->SyncRange(0, frame_->element_count() - 1);
|
| -
|
| - // Use the fast case closure allocation code that allocates in new
|
| - // space for nested functions that don't need literals cloning.
|
| - if (!pretenure &&
|
| - scope()->is_function_scope() &&
|
| - function_info->num_literals() == 0) {
|
| - FastNewClosureStub stub(
|
| - function_info->strict_mode() ? kStrictMode : kNonStrictMode);
|
| - frame_->Push(function_info);
|
| - Result answer = frame_->CallStub(&stub, 1);
|
| - frame_->Push(&answer);
|
| - } else {
|
| - // Call the runtime to instantiate the function based on the
|
| - // shared function info.
|
| - frame_->EmitPush(rsi);
|
| - frame_->EmitPush(function_info);
|
| - frame_->EmitPush(pretenure
|
| - ? FACTORY->true_value()
|
| - : FACTORY->false_value());
|
| - Result result = frame_->CallRuntime(Runtime::kNewClosure, 3);
|
| - frame_->Push(&result);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
|
| - Comment cmnt(masm_, "[ FunctionLiteral");
|
| -
|
| - // Build the function info and instantiate it.
|
| - Handle<SharedFunctionInfo> function_info =
|
| - Compiler::BuildFunctionInfo(node, script());
|
| - // Check for stack-overflow exception.
|
| - if (function_info.is_null()) {
|
| - SetStackOverflow();
|
| - return;
|
| - }
|
| - InstantiateFunction(function_info, node->pretenure());
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitSharedFunctionInfoLiteral(
|
| - SharedFunctionInfoLiteral* node) {
|
| - Comment cmnt(masm_, "[ SharedFunctionInfoLiteral");
|
| - InstantiateFunction(node->shared_function_info(), false);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitConditional(Conditional* node) {
|
| - Comment cmnt(masm_, "[ Conditional");
|
| - JumpTarget then;
|
| - JumpTarget else_;
|
| - JumpTarget exit;
|
| - ControlDestination dest(&then, &else_, true);
|
| - LoadCondition(node->condition(), &dest, true);
|
| -
|
| - if (dest.false_was_fall_through()) {
|
| - // The else target was bound, so we compile the else part first.
|
| - Load(node->else_expression());
|
| -
|
| - if (then.is_linked()) {
|
| - exit.Jump();
|
| - then.Bind();
|
| - Load(node->then_expression());
|
| - }
|
| - } else {
|
| - // The then target was bound, so we compile the then part first.
|
| - Load(node->then_expression());
|
| -
|
| - if (else_.is_linked()) {
|
| - exit.Jump();
|
| - else_.Bind();
|
| - Load(node->else_expression());
|
| - }
|
| - }
|
| -
|
| - exit.Bind();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
|
| - if (slot->type() == Slot::LOOKUP) {
|
| - ASSERT(slot->var()->is_dynamic());
|
| -
|
| - JumpTarget slow;
|
| - JumpTarget done;
|
| - Result value;
|
| -
|
| - // Generate fast case for loading from slots that correspond to
|
| - // local/global variables or arguments unless they are shadowed by
|
| - // eval-introduced bindings.
|
| - EmitDynamicLoadFromSlotFastCase(slot,
|
| - typeof_state,
|
| - &value,
|
| - &slow,
|
| - &done);
|
| -
|
| - slow.Bind();
|
| - // A runtime call is inevitable. We eagerly sync frame elements
|
| - // to memory so that we can push the arguments directly into place
|
| - // on top of the frame.
|
| - frame_->SyncRange(0, frame_->element_count() - 1);
|
| - frame_->EmitPush(rsi);
|
| - __ movq(kScratchRegister, slot->var()->name(), RelocInfo::EMBEDDED_OBJECT);
|
| - frame_->EmitPush(kScratchRegister);
|
| - if (typeof_state == INSIDE_TYPEOF) {
|
| - value =
|
| - frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
|
| - } else {
|
| - value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
|
| - }
|
| -
|
| - done.Bind(&value);
|
| - frame_->Push(&value);
|
| -
|
| - } else if (slot->var()->mode() == Variable::CONST) {
|
| - // Const slots may contain 'the hole' value (the constant hasn't been
|
| - // initialized yet) which needs to be converted into the 'undefined'
|
| - // value.
|
| - //
|
| - // We currently spill the virtual frame because constants use the
|
| - // potentially unsafe direct-frame access of SlotOperand.
|
| - VirtualFrame::SpilledScope spilled_scope;
|
| - Comment cmnt(masm_, "[ Load const");
|
| - JumpTarget exit;
|
| - __ movq(rcx, SlotOperand(slot, rcx));
|
| - __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex);
|
| - exit.Branch(not_equal);
|
| - __ LoadRoot(rcx, Heap::kUndefinedValueRootIndex);
|
| - exit.Bind();
|
| - frame_->EmitPush(rcx);
|
| -
|
| - } else if (slot->type() == Slot::PARAMETER) {
|
| - frame_->PushParameterAt(slot->index());
|
| -
|
| - } else if (slot->type() == Slot::LOCAL) {
|
| - frame_->PushLocalAt(slot->index());
|
| -
|
| - } else {
|
| - // The other remaining slot types (LOOKUP and GLOBAL) cannot reach
|
| - // here.
|
| - //
|
| - // The use of SlotOperand below is safe for an unspilled frame
|
| - // because it will always be a context slot.
|
| - ASSERT(slot->type() == Slot::CONTEXT);
|
| - Result temp = allocator_->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - __ movq(temp.reg(), SlotOperand(slot, temp.reg()));
|
| - frame_->Push(&temp);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot,
|
| - TypeofState state) {
|
| - LoadFromSlot(slot, state);
|
| -
|
| - // Bail out quickly if we're not using lazy arguments allocation.
|
| - if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return;
|
| -
|
| - // ... or if the slot isn't a non-parameter arguments slot.
|
| - if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return;
|
| -
|
| - // Pop the loaded value from the stack.
|
| - Result value = frame_->Pop();
|
| -
|
| - // If the loaded value is a constant, we know if the arguments
|
| - // object has been lazily loaded yet.
|
| - if (value.is_constant()) {
|
| - if (value.handle()->IsArgumentsMarker()) {
|
| - Result arguments = StoreArgumentsObject(false);
|
| - frame_->Push(&arguments);
|
| - } else {
|
| - frame_->Push(&value);
|
| - }
|
| - return;
|
| - }
|
| -
|
| - // The loaded value is in a register. If it is the sentinel that
|
| - // indicates that we haven't loaded the arguments object yet, we
|
| - // need to do it now.
|
| - JumpTarget exit;
|
| - __ CompareRoot(value.reg(), Heap::kArgumentsMarkerRootIndex);
|
| - frame_->Push(&value);
|
| - exit.Branch(not_equal);
|
| - Result arguments = StoreArgumentsObject(false);
|
| - frame_->SetElementAt(0, &arguments);
|
| - exit.Bind();
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::LoadFromGlobalSlotCheckExtensions(
|
| - Slot* slot,
|
| - TypeofState typeof_state,
|
| - JumpTarget* slow) {
|
| - // Check that no extension objects have been created by calls to
|
| - // eval from the current scope to the global scope.
|
| - Register context = rsi;
|
| - Result tmp = allocator_->Allocate();
|
| - ASSERT(tmp.is_valid()); // All non-reserved registers were available.
|
| -
|
| - Scope* s = scope();
|
| - while (s != NULL) {
|
| - if (s->num_heap_slots() > 0) {
|
| - if (s->calls_eval()) {
|
| - // Check that extension is NULL.
|
| - __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
|
| - Immediate(0));
|
| - slow->Branch(not_equal, not_taken);
|
| - }
|
| - // Load next context in chain.
|
| - __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
|
| - __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
|
| - context = tmp.reg();
|
| - }
|
| - // If no outer scope calls eval, we do not need to check more
|
| - // context extensions. If we have reached an eval scope, we check
|
| - // all extensions from this point.
|
| - if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
|
| - s = s->outer_scope();
|
| - }
|
| -
|
| - if (s->is_eval_scope()) {
|
| - // Loop up the context chain. There is no frame effect so it is
|
| - // safe to use raw labels here.
|
| - Label next, fast;
|
| - if (!context.is(tmp.reg())) {
|
| - __ movq(tmp.reg(), context);
|
| - }
|
| - // Load map for comparison into register, outside loop.
|
| - __ LoadRoot(kScratchRegister, Heap::kGlobalContextMapRootIndex);
|
| - __ bind(&next);
|
| - // Terminate at global context.
|
| - __ cmpq(kScratchRegister, FieldOperand(tmp.reg(), HeapObject::kMapOffset));
|
| - __ j(equal, &fast);
|
| - // Check that extension is NULL.
|
| - __ cmpq(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0));
|
| - slow->Branch(not_equal);
|
| - // Load next context in chain.
|
| - __ movq(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX));
|
| - __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
|
| - __ jmp(&next);
|
| - __ bind(&fast);
|
| - }
|
| - tmp.Unuse();
|
| -
|
| - // All extension objects were empty and it is safe to use a global
|
| - // load IC call.
|
| - LoadGlobal();
|
| - frame_->Push(slot->var()->name());
|
| - RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
|
| - ? RelocInfo::CODE_TARGET
|
| - : RelocInfo::CODE_TARGET_CONTEXT;
|
| - Result answer = frame_->CallLoadIC(mode);
|
| - // A test rax instruction following the call signals that the inobject
|
| - // property case was inlined. Ensure that there is not a test rax
|
| - // instruction here.
|
| - masm_->nop();
|
| - return answer;
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot,
|
| - TypeofState typeof_state,
|
| - Result* result,
|
| - JumpTarget* slow,
|
| - JumpTarget* done) {
|
| - // Generate fast-case code for variables that might be shadowed by
|
| - // eval-introduced variables. Eval is used a lot without
|
| - // introducing variables. In those cases, we do not want to
|
| - // perform a runtime call for all variables in the scope
|
| - // containing the eval.
|
| - if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
|
| - *result = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow);
|
| - done->Jump(result);
|
| -
|
| - } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
|
| - Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot();
|
| - Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite();
|
| - if (potential_slot != NULL) {
|
| - // Generate fast case for locals that rewrite to slots.
|
| - // Allocate a fresh register to use as a temp in
|
| - // ContextSlotOperandCheckExtensions and to hold the result
|
| - // value.
|
| - *result = allocator_->Allocate();
|
| - ASSERT(result->is_valid());
|
| - __ movq(result->reg(),
|
| - ContextSlotOperandCheckExtensions(potential_slot,
|
| - *result,
|
| - slow));
|
| - if (potential_slot->var()->mode() == Variable::CONST) {
|
| - __ CompareRoot(result->reg(), Heap::kTheHoleValueRootIndex);
|
| - done->Branch(not_equal, result);
|
| - __ LoadRoot(result->reg(), Heap::kUndefinedValueRootIndex);
|
| - }
|
| - done->Jump(result);
|
| - } else if (rewrite != NULL) {
|
| - // Generate fast case for argument loads.
|
| - Property* property = rewrite->AsProperty();
|
| - if (property != NULL) {
|
| - VariableProxy* obj_proxy = property->obj()->AsVariableProxy();
|
| - Literal* key_literal = property->key()->AsLiteral();
|
| - if (obj_proxy != NULL &&
|
| - key_literal != NULL &&
|
| - obj_proxy->IsArguments() &&
|
| - key_literal->handle()->IsSmi()) {
|
| - // Load arguments object if there are no eval-introduced
|
| - // variables. Then load the argument from the arguments
|
| - // object using keyed load.
|
| - Result arguments = allocator()->Allocate();
|
| - ASSERT(arguments.is_valid());
|
| - __ movq(arguments.reg(),
|
| - ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(),
|
| - arguments,
|
| - slow));
|
| - frame_->Push(&arguments);
|
| - frame_->Push(key_literal->handle());
|
| - *result = EmitKeyedLoad();
|
| - done->Jump(result);
|
| - }
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
|
| - if (slot->type() == Slot::LOOKUP) {
|
| - ASSERT(slot->var()->is_dynamic());
|
| -
|
| - // For now, just do a runtime call. Since the call is inevitable,
|
| - // we eagerly sync the virtual frame so we can directly push the
|
| - // arguments into place.
|
| - frame_->SyncRange(0, frame_->element_count() - 1);
|
| -
|
| - frame_->EmitPush(rsi);
|
| - frame_->EmitPush(slot->var()->name());
|
| -
|
| - Result value;
|
| - if (init_state == CONST_INIT) {
|
| - // Same as the case for a normal store, but ignores attribute
|
| - // (e.g. READ_ONLY) of context slot so that we can initialize const
|
| - // properties (introduced via eval("const foo = (some expr);")). Also,
|
| - // uses the current function context instead of the top context.
|
| - //
|
| - // Note that we must declare the foo upon entry of eval(), via a
|
| - // context slot declaration, but we cannot initialize it at the same
|
| - // time, because the const declaration may be at the end of the eval
|
| - // code (sigh...) and the const variable may have been used before
|
| - // (where its value is 'undefined'). Thus, we can only do the
|
| - // initialization when we actually encounter the expression and when
|
| - // the expression operands are defined and valid, and thus we need the
|
| - // split into 2 operations: declaration of the context slot followed
|
| - // by initialization.
|
| - value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
|
| - } else {
|
| - frame_->Push(Smi::FromInt(strict_mode_flag()));
|
| - value = frame_->CallRuntime(Runtime::kStoreContextSlot, 4);
|
| - }
|
| - // Storing a variable must keep the (new) value on the expression
|
| - // stack. This is necessary for compiling chained assignment
|
| - // expressions.
|
| - frame_->Push(&value);
|
| - } else {
|
| - ASSERT(!slot->var()->is_dynamic());
|
| -
|
| - JumpTarget exit;
|
| - if (init_state == CONST_INIT) {
|
| - ASSERT(slot->var()->mode() == Variable::CONST);
|
| - // Only the first const initialization must be executed (the slot
|
| - // still contains 'the hole' value). When the assignment is executed,
|
| - // the code is identical to a normal store (see below).
|
| - //
|
| - // We spill the frame in the code below because the direct-frame
|
| - // access of SlotOperand is potentially unsafe with an unspilled
|
| - // frame.
|
| - VirtualFrame::SpilledScope spilled_scope;
|
| - Comment cmnt(masm_, "[ Init const");
|
| - __ movq(rcx, SlotOperand(slot, rcx));
|
| - __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex);
|
| - exit.Branch(not_equal);
|
| - }
|
| -
|
| - // We must execute the store. Storing a variable must keep the (new)
|
| - // value on the stack. This is necessary for compiling assignment
|
| - // expressions.
|
| - //
|
| - // Note: We will reach here even with slot->var()->mode() ==
|
| - // Variable::CONST because of const declarations which will initialize
|
| - // consts to 'the hole' value and by doing so, end up calling this code.
|
| - if (slot->type() == Slot::PARAMETER) {
|
| - frame_->StoreToParameterAt(slot->index());
|
| - } else if (slot->type() == Slot::LOCAL) {
|
| - frame_->StoreToLocalAt(slot->index());
|
| - } else {
|
| - // The other slot types (LOOKUP and GLOBAL) cannot reach here.
|
| - //
|
| - // The use of SlotOperand below is safe for an unspilled frame
|
| - // because the slot is a context slot.
|
| - ASSERT(slot->type() == Slot::CONTEXT);
|
| - frame_->Dup();
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| - Result start = allocator_->Allocate();
|
| - ASSERT(start.is_valid());
|
| - __ movq(SlotOperand(slot, start.reg()), value.reg());
|
| - // RecordWrite may destroy the value registers.
|
| - //
|
| - // TODO(204): Avoid actually spilling when the value is not
|
| - // needed (probably the common case).
|
| - frame_->Spill(value.reg());
|
| - int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
|
| - Result temp = allocator_->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - __ RecordWrite(start.reg(), offset, value.reg(), temp.reg());
|
| - // The results start, value, and temp are unused by going out of
|
| - // scope.
|
| - }
|
| -
|
| - exit.Bind();
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitSlot(Slot* node) {
|
| - Comment cmnt(masm_, "[ Slot");
|
| - LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
|
| - Comment cmnt(masm_, "[ VariableProxy");
|
| - Variable* var = node->var();
|
| - Expression* expr = var->rewrite();
|
| - if (expr != NULL) {
|
| - Visit(expr);
|
| - } else {
|
| - ASSERT(var->is_global());
|
| - Reference ref(this, node);
|
| - ref.GetValue();
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitLiteral(Literal* node) {
|
| - Comment cmnt(masm_, "[ Literal");
|
| - frame_->Push(node->handle());
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadUnsafeSmi(Register target, Handle<Object> value) {
|
| - UNIMPLEMENTED();
|
| - // TODO(X64): Implement security policy for loads of smis.
|
| -}
|
| -
|
| -
|
| -bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) {
|
| - return false;
|
| -}
|
| -
|
| -
|
| -// Materialize the regexp literal 'node' in the literals array
|
| -// 'literals' of the function. Leave the regexp boilerplate in
|
| -// 'boilerplate'.
|
| -class DeferredRegExpLiteral: public DeferredCode {
|
| - public:
|
| - DeferredRegExpLiteral(Register boilerplate,
|
| - Register literals,
|
| - RegExpLiteral* node)
|
| - : boilerplate_(boilerplate), literals_(literals), node_(node) {
|
| - set_comment("[ DeferredRegExpLiteral");
|
| - }
|
| -
|
| - void Generate();
|
| -
|
| - private:
|
| - Register boilerplate_;
|
| - Register literals_;
|
| - RegExpLiteral* node_;
|
| -};
|
| -
|
| -
|
| -void DeferredRegExpLiteral::Generate() {
|
| - // Since the entry is undefined we call the runtime system to
|
| - // compute the literal.
|
| - // Literal array (0).
|
| - __ push(literals_);
|
| - // Literal index (1).
|
| - __ Push(Smi::FromInt(node_->literal_index()));
|
| - // RegExp pattern (2).
|
| - __ Push(node_->pattern());
|
| - // RegExp flags (3).
|
| - __ Push(node_->flags());
|
| - __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
|
| - if (!boilerplate_.is(rax)) __ movq(boilerplate_, rax);
|
| -}
|
| -
|
| -
|
| -class DeferredAllocateInNewSpace: public DeferredCode {
|
| - public:
|
| - DeferredAllocateInNewSpace(int size,
|
| - Register target,
|
| - int registers_to_save = 0)
|
| - : size_(size), target_(target), registers_to_save_(registers_to_save) {
|
| - ASSERT(size >= kPointerSize && size <= HEAP->MaxObjectSizeInNewSpace());
|
| - set_comment("[ DeferredAllocateInNewSpace");
|
| - }
|
| - void Generate();
|
| -
|
| - private:
|
| - int size_;
|
| - Register target_;
|
| - int registers_to_save_;
|
| -};
|
| -
|
| -
|
| -void DeferredAllocateInNewSpace::Generate() {
|
| - for (int i = 0; i < kNumRegs; i++) {
|
| - if (registers_to_save_ & (1 << i)) {
|
| - Register save_register = { i };
|
| - __ push(save_register);
|
| - }
|
| - }
|
| - __ Push(Smi::FromInt(size_));
|
| - __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
|
| - if (!target_.is(rax)) {
|
| - __ movq(target_, rax);
|
| - }
|
| - for (int i = kNumRegs - 1; i >= 0; i--) {
|
| - if (registers_to_save_ & (1 << i)) {
|
| - Register save_register = { i };
|
| - __ pop(save_register);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
|
| - Comment cmnt(masm_, "[ RegExp Literal");
|
| -
|
| - // Retrieve the literals array and check the allocated entry. Begin
|
| - // with a writable copy of the function of this activation in a
|
| - // register.
|
| - frame_->PushFunction();
|
| - Result literals = frame_->Pop();
|
| - literals.ToRegister();
|
| - frame_->Spill(literals.reg());
|
| -
|
| - // Load the literals array of the function.
|
| - __ movq(literals.reg(),
|
| - FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
|
| -
|
| - // Load the literal at the ast saved index.
|
| - Result boilerplate = allocator_->Allocate();
|
| - ASSERT(boilerplate.is_valid());
|
| - int literal_offset =
|
| - FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
|
| - __ movq(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
|
| -
|
| - // Check whether we need to materialize the RegExp object. If so,
|
| - // jump to the deferred code passing the literals array.
|
| - DeferredRegExpLiteral* deferred =
|
| - new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node);
|
| - __ CompareRoot(boilerplate.reg(), Heap::kUndefinedValueRootIndex);
|
| - deferred->Branch(equal);
|
| - deferred->BindExit();
|
| -
|
| - // Register of boilerplate contains RegExp object.
|
| -
|
| - Result tmp = allocator()->Allocate();
|
| - ASSERT(tmp.is_valid());
|
| -
|
| - int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
|
| -
|
| - DeferredAllocateInNewSpace* allocate_fallback =
|
| - new DeferredAllocateInNewSpace(size, literals.reg());
|
| - frame_->Push(&boilerplate);
|
| - frame_->SpillTop();
|
| - __ AllocateInNewSpace(size,
|
| - literals.reg(),
|
| - tmp.reg(),
|
| - no_reg,
|
| - allocate_fallback->entry_label(),
|
| - TAG_OBJECT);
|
| - allocate_fallback->BindExit();
|
| - boilerplate = frame_->Pop();
|
| - // Copy from boilerplate to clone and return clone.
|
| -
|
| - for (int i = 0; i < size; i += kPointerSize) {
|
| - __ movq(tmp.reg(), FieldOperand(boilerplate.reg(), i));
|
| - __ movq(FieldOperand(literals.reg(), i), tmp.reg());
|
| - }
|
| - frame_->Push(&literals);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
|
| - Comment cmnt(masm_, "[ ObjectLiteral");
|
| -
|
| - // Load a writable copy of the function of this activation in a
|
| - // register.
|
| - frame_->PushFunction();
|
| - Result literals = frame_->Pop();
|
| - literals.ToRegister();
|
| - frame_->Spill(literals.reg());
|
| -
|
| - // Load the literals array of the function.
|
| - __ movq(literals.reg(),
|
| - FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
|
| - // Literal array.
|
| - frame_->Push(&literals);
|
| - // Literal index.
|
| - frame_->Push(Smi::FromInt(node->literal_index()));
|
| - // Constant properties.
|
| - frame_->Push(node->constant_properties());
|
| - // Should the object literal have fast elements?
|
| - frame_->Push(Smi::FromInt(node->fast_elements() ? 1 : 0));
|
| - Result clone;
|
| - if (node->depth() > 1) {
|
| - clone = frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4);
|
| - } else {
|
| - clone = frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
|
| - }
|
| - frame_->Push(&clone);
|
| -
|
| - // Mark all computed expressions that are bound to a key that
|
| - // is shadowed by a later occurrence of the same key. For the
|
| - // marked expressions, no store code is emitted.
|
| - node->CalculateEmitStore();
|
| -
|
| - for (int i = 0; i < node->properties()->length(); i++) {
|
| - ObjectLiteral::Property* property = node->properties()->at(i);
|
| - switch (property->kind()) {
|
| - case ObjectLiteral::Property::CONSTANT:
|
| - break;
|
| - case ObjectLiteral::Property::MATERIALIZED_LITERAL:
|
| - if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
|
| - // else fall through.
|
| - case ObjectLiteral::Property::COMPUTED: {
|
| - Handle<Object> key(property->key()->handle());
|
| - if (key->IsSymbol()) {
|
| - // Duplicate the object as the IC receiver.
|
| - frame_->Dup();
|
| - Load(property->value());
|
| - if (property->emit_store()) {
|
| - Result ignored =
|
| - frame_->CallStoreIC(Handle<String>::cast(key), false,
|
| - strict_mode_flag());
|
| - // A test rax instruction following the store IC call would
|
| - // indicate the presence of an inlined version of the
|
| - // store. Add a nop to indicate that there is no such
|
| - // inlined version.
|
| - __ nop();
|
| - } else {
|
| - frame_->Drop(2);
|
| - }
|
| - break;
|
| - }
|
| - // Fall through
|
| - }
|
| - case ObjectLiteral::Property::PROTOTYPE: {
|
| - // Duplicate the object as an argument to the runtime call.
|
| - frame_->Dup();
|
| - Load(property->key());
|
| - Load(property->value());
|
| - if (property->emit_store()) {
|
| - frame_->Push(Smi::FromInt(NONE)); // PropertyAttributes
|
| - // Ignore the result.
|
| - Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 4);
|
| - } else {
|
| - frame_->Drop(3);
|
| - }
|
| - break;
|
| - }
|
| - case ObjectLiteral::Property::SETTER: {
|
| - // Duplicate the object as an argument to the runtime call.
|
| - frame_->Dup();
|
| - Load(property->key());
|
| - frame_->Push(Smi::FromInt(1));
|
| - Load(property->value());
|
| - Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
|
| - // Ignore the result.
|
| - break;
|
| - }
|
| - case ObjectLiteral::Property::GETTER: {
|
| - // Duplicate the object as an argument to the runtime call.
|
| - frame_->Dup();
|
| - Load(property->key());
|
| - frame_->Push(Smi::FromInt(0));
|
| - Load(property->value());
|
| - Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
|
| - // Ignore the result.
|
| - break;
|
| - }
|
| - default: UNREACHABLE();
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
|
| - Comment cmnt(masm_, "[ ArrayLiteral");
|
| -
|
| - // Load a writable copy of the function of this activation in a
|
| - // register.
|
| - frame_->PushFunction();
|
| - Result literals = frame_->Pop();
|
| - literals.ToRegister();
|
| - frame_->Spill(literals.reg());
|
| -
|
| - // Load the literals array of the function.
|
| - __ movq(literals.reg(),
|
| - FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
|
| -
|
| - frame_->Push(&literals);
|
| - frame_->Push(Smi::FromInt(node->literal_index()));
|
| - frame_->Push(node->constant_elements());
|
| - int length = node->values()->length();
|
| - Result clone;
|
| - if (node->constant_elements()->map() == HEAP->fixed_cow_array_map()) {
|
| - FastCloneShallowArrayStub stub(
|
| - FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length);
|
| - clone = frame_->CallStub(&stub, 3);
|
| - Counters* counters = masm()->isolate()->counters();
|
| - __ IncrementCounter(counters->cow_arrays_created_stub(), 1);
|
| - } else if (node->depth() > 1) {
|
| - clone = frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3);
|
| - } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
|
| - clone = frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
|
| - } else {
|
| - FastCloneShallowArrayStub stub(
|
| - FastCloneShallowArrayStub::CLONE_ELEMENTS, length);
|
| - clone = frame_->CallStub(&stub, 3);
|
| - }
|
| - frame_->Push(&clone);
|
| -
|
| - // Generate code to set the elements in the array that are not
|
| - // literals.
|
| - for (int i = 0; i < length; i++) {
|
| - Expression* value = node->values()->at(i);
|
| -
|
| - if (!CompileTimeValue::ArrayLiteralElementNeedsInitialization(value)) {
|
| - continue;
|
| - }
|
| -
|
| - // The property must be set by generated code.
|
| - Load(value);
|
| -
|
| - // Get the property value off the stack.
|
| - Result prop_value = frame_->Pop();
|
| - prop_value.ToRegister();
|
| -
|
| - // Fetch the array literal while leaving a copy on the stack and
|
| - // use it to get the elements array.
|
| - frame_->Dup();
|
| - Result elements = frame_->Pop();
|
| - elements.ToRegister();
|
| - frame_->Spill(elements.reg());
|
| - // Get the elements FixedArray.
|
| - __ movq(elements.reg(),
|
| - FieldOperand(elements.reg(), JSObject::kElementsOffset));
|
| -
|
| - // Write to the indexed properties array.
|
| - int offset = i * kPointerSize + FixedArray::kHeaderSize;
|
| - __ movq(FieldOperand(elements.reg(), offset), prop_value.reg());
|
| -
|
| - // Update the write barrier for the array address.
|
| - frame_->Spill(prop_value.reg()); // Overwritten by the write barrier.
|
| - Result scratch = allocator_->Allocate();
|
| - ASSERT(scratch.is_valid());
|
| - __ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg());
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) {
|
| - ASSERT(!in_spilled_code());
|
| - // Call runtime routine to allocate the catch extension object and
|
| - // assign the exception value to the catch variable.
|
| - Comment cmnt(masm_, "[ CatchExtensionObject");
|
| - Load(node->key());
|
| - Load(node->value());
|
| - Result result =
|
| - frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::EmitSlotAssignment(Assignment* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame()->height();
|
| -#endif
|
| - Comment cmnt(masm(), "[ Variable Assignment");
|
| - Variable* var = node->target()->AsVariableProxy()->AsVariable();
|
| - ASSERT(var != NULL);
|
| - Slot* slot = var->AsSlot();
|
| - ASSERT(slot != NULL);
|
| -
|
| - // Evaluate the right-hand side.
|
| - if (node->is_compound()) {
|
| - // For a compound assignment the right-hand side is a binary operation
|
| - // between the current property value and the actual right-hand side.
|
| - LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
|
| - Load(node->value());
|
| -
|
| - // Perform the binary operation.
|
| - bool overwrite_value = node->value()->ResultOverwriteAllowed();
|
| - // Construct the implicit binary operation.
|
| - BinaryOperation expr(node);
|
| - GenericBinaryOperation(&expr,
|
| - overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
|
| - } else {
|
| - // For non-compound assignment just load the right-hand side.
|
| - Load(node->value());
|
| - }
|
| -
|
| - // Perform the assignment.
|
| - if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) {
|
| - CodeForSourcePosition(node->position());
|
| - StoreToSlot(slot,
|
| - node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT);
|
| - }
|
| - ASSERT(frame()->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame()->height();
|
| -#endif
|
| - Comment cmnt(masm(), "[ Named Property Assignment");
|
| - Variable* var = node->target()->AsVariableProxy()->AsVariable();
|
| - Property* prop = node->target()->AsProperty();
|
| - ASSERT(var == NULL || (prop == NULL && var->is_global()));
|
| -
|
| - // Initialize name and evaluate the receiver sub-expression if necessary. If
|
| - // the receiver is trivial it is not placed on the stack at this point, but
|
| - // loaded whenever actually needed.
|
| - Handle<String> name;
|
| - bool is_trivial_receiver = false;
|
| - if (var != NULL) {
|
| - name = var->name();
|
| - } else {
|
| - Literal* lit = prop->key()->AsLiteral();
|
| - ASSERT_NOT_NULL(lit);
|
| - name = Handle<String>::cast(lit->handle());
|
| - // Do not materialize the receiver on the frame if it is trivial.
|
| - is_trivial_receiver = prop->obj()->IsTrivial();
|
| - if (!is_trivial_receiver) Load(prop->obj());
|
| - }
|
| -
|
| - // Change to slow case in the beginning of an initialization block to
|
| - // avoid the quadratic behavior of repeatedly adding fast properties.
|
| - if (node->starts_initialization_block()) {
|
| - // Initialization block consists of assignments of the form expr.x = ..., so
|
| - // this will never be an assignment to a variable, so there must be a
|
| - // receiver object.
|
| - ASSERT_EQ(NULL, var);
|
| - if (is_trivial_receiver) {
|
| - frame()->Push(prop->obj());
|
| - } else {
|
| - frame()->Dup();
|
| - }
|
| - Result ignored = frame()->CallRuntime(Runtime::kToSlowProperties, 1);
|
| - }
|
| -
|
| - // Change to fast case at the end of an initialization block. To prepare for
|
| - // that add an extra copy of the receiver to the frame, so that it can be
|
| - // converted back to fast case after the assignment.
|
| - if (node->ends_initialization_block() && !is_trivial_receiver) {
|
| - frame()->Dup();
|
| - }
|
| -
|
| - // Stack layout:
|
| - // [tos] : receiver (only materialized if non-trivial)
|
| - // [tos+1] : receiver if at the end of an initialization block
|
| -
|
| - // Evaluate the right-hand side.
|
| - if (node->is_compound()) {
|
| - // For a compound assignment the right-hand side is a binary operation
|
| - // between the current property value and the actual right-hand side.
|
| - if (is_trivial_receiver) {
|
| - frame()->Push(prop->obj());
|
| - } else if (var != NULL) {
|
| - // The LoadIC stub expects the object in rax.
|
| - // Freeing rax causes the code generator to load the global into it.
|
| - frame_->Spill(rax);
|
| - LoadGlobal();
|
| - } else {
|
| - frame()->Dup();
|
| - }
|
| - Result value = EmitNamedLoad(name, var != NULL);
|
| - frame()->Push(&value);
|
| - Load(node->value());
|
| -
|
| - bool overwrite_value = node->value()->ResultOverwriteAllowed();
|
| - // Construct the implicit binary operation.
|
| - BinaryOperation expr(node);
|
| - GenericBinaryOperation(&expr,
|
| - overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
|
| - } else {
|
| - // For non-compound assignment just load the right-hand side.
|
| - Load(node->value());
|
| - }
|
| -
|
| - // Stack layout:
|
| - // [tos] : value
|
| - // [tos+1] : receiver (only materialized if non-trivial)
|
| - // [tos+2] : receiver if at the end of an initialization block
|
| -
|
| - // Perform the assignment. It is safe to ignore constants here.
|
| - ASSERT(var == NULL || var->mode() != Variable::CONST);
|
| - ASSERT_NE(Token::INIT_CONST, node->op());
|
| - if (is_trivial_receiver) {
|
| - Result value = frame()->Pop();
|
| - frame()->Push(prop->obj());
|
| - frame()->Push(&value);
|
| - }
|
| - CodeForSourcePosition(node->position());
|
| - bool is_contextual = (var != NULL);
|
| - Result answer = EmitNamedStore(name, is_contextual);
|
| - frame()->Push(&answer);
|
| -
|
| - // Stack layout:
|
| - // [tos] : result
|
| - // [tos+1] : receiver if at the end of an initialization block
|
| -
|
| - if (node->ends_initialization_block()) {
|
| - ASSERT_EQ(NULL, var);
|
| - // The argument to the runtime call is the receiver.
|
| - if (is_trivial_receiver) {
|
| - frame()->Push(prop->obj());
|
| - } else {
|
| - // A copy of the receiver is below the value of the assignment. Swap
|
| - // the receiver and the value of the assignment expression.
|
| - Result result = frame()->Pop();
|
| - Result receiver = frame()->Pop();
|
| - frame()->Push(&result);
|
| - frame()->Push(&receiver);
|
| - }
|
| - Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
|
| - }
|
| -
|
| - // Stack layout:
|
| - // [tos] : result
|
| -
|
| - ASSERT_EQ(frame()->height(), original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame()->height();
|
| -#endif
|
| - Comment cmnt(masm_, "[ Keyed Property Assignment");
|
| - Property* prop = node->target()->AsProperty();
|
| - ASSERT_NOT_NULL(prop);
|
| -
|
| - // Evaluate the receiver subexpression.
|
| - Load(prop->obj());
|
| -
|
| - // Change to slow case in the beginning of an initialization block to
|
| - // avoid the quadratic behavior of repeatedly adding fast properties.
|
| - if (node->starts_initialization_block()) {
|
| - frame_->Dup();
|
| - Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1);
|
| - }
|
| -
|
| - // Change to fast case at the end of an initialization block. To prepare for
|
| - // that add an extra copy of the receiver to the frame, so that it can be
|
| - // converted back to fast case after the assignment.
|
| - if (node->ends_initialization_block()) {
|
| - frame_->Dup();
|
| - }
|
| -
|
| - // Evaluate the key subexpression.
|
| - Load(prop->key());
|
| -
|
| - // Stack layout:
|
| - // [tos] : key
|
| - // [tos+1] : receiver
|
| - // [tos+2] : receiver if at the end of an initialization block
|
| -
|
| - // Evaluate the right-hand side.
|
| - if (node->is_compound()) {
|
| - // For a compound assignment the right-hand side is a binary operation
|
| - // between the current property value and the actual right-hand side.
|
| - // Duplicate receiver and key for loading the current property value.
|
| - frame()->PushElementAt(1);
|
| - frame()->PushElementAt(1);
|
| - Result value = EmitKeyedLoad();
|
| - frame()->Push(&value);
|
| - Load(node->value());
|
| -
|
| - // Perform the binary operation.
|
| - bool overwrite_value = node->value()->ResultOverwriteAllowed();
|
| - BinaryOperation expr(node);
|
| - GenericBinaryOperation(&expr,
|
| - overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
|
| - } else {
|
| - // For non-compound assignment just load the right-hand side.
|
| - Load(node->value());
|
| - }
|
| -
|
| - // Stack layout:
|
| - // [tos] : value
|
| - // [tos+1] : key
|
| - // [tos+2] : receiver
|
| - // [tos+3] : receiver if at the end of an initialization block
|
| -
|
| - // Perform the assignment. It is safe to ignore constants here.
|
| - ASSERT(node->op() != Token::INIT_CONST);
|
| - CodeForSourcePosition(node->position());
|
| - Result answer = EmitKeyedStore(prop->key()->type());
|
| - frame()->Push(&answer);
|
| -
|
| - // Stack layout:
|
| - // [tos] : result
|
| - // [tos+1] : receiver if at the end of an initialization block
|
| -
|
| - // Change to fast case at the end of an initialization block.
|
| - if (node->ends_initialization_block()) {
|
| - // The argument to the runtime call is the extra copy of the receiver,
|
| - // which is below the value of the assignment. Swap the receiver and
|
| - // the value of the assignment expression.
|
| - Result result = frame()->Pop();
|
| - Result receiver = frame()->Pop();
|
| - frame()->Push(&result);
|
| - frame()->Push(&receiver);
|
| - Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
|
| - }
|
| -
|
| - // Stack layout:
|
| - // [tos] : result
|
| -
|
| - ASSERT(frame()->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitAssignment(Assignment* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame()->height();
|
| -#endif
|
| - Variable* var = node->target()->AsVariableProxy()->AsVariable();
|
| - Property* prop = node->target()->AsProperty();
|
| -
|
| - if (var != NULL && !var->is_global()) {
|
| - EmitSlotAssignment(node);
|
| -
|
| - } else if ((prop != NULL && prop->key()->IsPropertyName()) ||
|
| - (var != NULL && var->is_global())) {
|
| - // Properties whose keys are property names and global variables are
|
| - // treated as named property references. We do not need to consider
|
| - // global 'this' because it is not a valid left-hand side.
|
| - EmitNamedPropertyAssignment(node);
|
| -
|
| - } else if (prop != NULL) {
|
| - // Other properties (including rewritten parameters for a function that
|
| - // uses arguments) are keyed property assignments.
|
| - EmitKeyedPropertyAssignment(node);
|
| -
|
| - } else {
|
| - // Invalid left-hand side.
|
| - Load(node->target());
|
| - Result result = frame()->CallRuntime(Runtime::kThrowReferenceError, 1);
|
| - // The runtime call doesn't actually return but the code generator will
|
| - // still generate code and expects a certain frame height.
|
| - frame()->Push(&result);
|
| - }
|
| -
|
| - ASSERT(frame()->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitThrow(Throw* node) {
|
| - Comment cmnt(masm_, "[ Throw");
|
| - Load(node->exception());
|
| - Result result = frame_->CallRuntime(Runtime::kThrow, 1);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitProperty(Property* node) {
|
| - Comment cmnt(masm_, "[ Property");
|
| - Reference property(this, node);
|
| - property.GetValue();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCall(Call* node) {
|
| - Comment cmnt(masm_, "[ Call");
|
| -
|
| - ZoneList<Expression*>* args = node->arguments();
|
| -
|
| - // Check if the function is a variable or a property.
|
| - Expression* function = node->expression();
|
| - Variable* var = function->AsVariableProxy()->AsVariable();
|
| - Property* property = function->AsProperty();
|
| -
|
| - // ------------------------------------------------------------------------
|
| - // Fast-case: Use inline caching.
|
| - // ---
|
| - // According to ECMA-262, section 11.2.3, page 44, the function to call
|
| - // must be resolved after the arguments have been evaluated. The IC code
|
| - // automatically handles this by loading the arguments before the function
|
| - // is resolved in cache misses (this also holds for megamorphic calls).
|
| - // ------------------------------------------------------------------------
|
| -
|
| - if (var != NULL && var->is_possibly_eval()) {
|
| - // ----------------------------------
|
| - // JavaScript example: 'eval(arg)' // eval is not known to be shadowed
|
| - // ----------------------------------
|
| -
|
| - // In a call to eval, we first call %ResolvePossiblyDirectEval to
|
| - // resolve the function we need to call and the receiver of the
|
| - // call. Then we call the resolved function using the given
|
| - // arguments.
|
| -
|
| - // Prepare the stack for the call to the resolved function.
|
| - Load(function);
|
| -
|
| - // Allocate a frame slot for the receiver.
|
| - frame_->Push(FACTORY->undefined_value());
|
| -
|
| - // Load the arguments.
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - Load(args->at(i));
|
| - frame_->SpillTop();
|
| - }
|
| -
|
| - // Result to hold the result of the function resolution and the
|
| - // final result of the eval call.
|
| - Result result;
|
| -
|
| - // If we know that eval can only be shadowed by eval-introduced
|
| - // variables we attempt to load the global eval function directly
|
| - // in generated code. If we succeed, there is no need to perform a
|
| - // context lookup in the runtime system.
|
| - JumpTarget done;
|
| - if (var->AsSlot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) {
|
| - ASSERT(var->AsSlot()->type() == Slot::LOOKUP);
|
| - JumpTarget slow;
|
| - // Prepare the stack for the call to
|
| - // ResolvePossiblyDirectEvalNoLookup by pushing the loaded
|
| - // function, the first argument to the eval call and the
|
| - // receiver.
|
| - Result fun = LoadFromGlobalSlotCheckExtensions(var->AsSlot(),
|
| - NOT_INSIDE_TYPEOF,
|
| - &slow);
|
| - frame_->Push(&fun);
|
| - if (arg_count > 0) {
|
| - frame_->PushElementAt(arg_count);
|
| - } else {
|
| - frame_->Push(FACTORY->undefined_value());
|
| - }
|
| - frame_->PushParameterAt(-1);
|
| -
|
| - // Push the strict mode flag.
|
| - frame_->Push(Smi::FromInt(strict_mode_flag()));
|
| -
|
| - // Resolve the call.
|
| - result =
|
| - frame_->CallRuntime(Runtime::kResolvePossiblyDirectEvalNoLookup, 4);
|
| -
|
| - done.Jump(&result);
|
| - slow.Bind();
|
| - }
|
| -
|
| - // Prepare the stack for the call to ResolvePossiblyDirectEval by
|
| - // pushing the loaded function, the first argument to the eval
|
| - // call and the receiver.
|
| - frame_->PushElementAt(arg_count + 1);
|
| - if (arg_count > 0) {
|
| - frame_->PushElementAt(arg_count);
|
| - } else {
|
| - frame_->Push(FACTORY->undefined_value());
|
| - }
|
| - frame_->PushParameterAt(-1);
|
| -
|
| - // Push the strict mode flag.
|
| - frame_->Push(Smi::FromInt(strict_mode_flag()));
|
| -
|
| - // Resolve the call.
|
| - result = frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 4);
|
| -
|
| - // If we generated fast-case code bind the jump-target where fast
|
| - // and slow case merge.
|
| - if (done.is_linked()) done.Bind(&result);
|
| -
|
| - // The runtime call returns a pair of values in rax (function) and
|
| - // rdx (receiver). Touch up the stack with the right values.
|
| - Result receiver = allocator_->Allocate(rdx);
|
| - frame_->SetElementAt(arg_count + 1, &result);
|
| - frame_->SetElementAt(arg_count, &receiver);
|
| - receiver.Unuse();
|
| -
|
| - // Call the function.
|
| - CodeForSourcePosition(node->position());
|
| - InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
|
| - CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE);
|
| - result = frame_->CallStub(&call_function, arg_count + 1);
|
| -
|
| - // Restore the context and overwrite the function on the stack with
|
| - // the result.
|
| - frame_->RestoreContextRegister();
|
| - frame_->SetElementAt(0, &result);
|
| -
|
| - } else if (var != NULL && !var->is_this() && var->is_global()) {
|
| - // ----------------------------------
|
| - // JavaScript example: 'foo(1, 2, 3)' // foo is global
|
| - // ----------------------------------
|
| -
|
| - // Pass the global object as the receiver and let the IC stub
|
| - // patch the stack to use the global proxy as 'this' in the
|
| - // invoked function.
|
| - LoadGlobal();
|
| -
|
| - // Load the arguments.
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - Load(args->at(i));
|
| - frame_->SpillTop();
|
| - }
|
| -
|
| - // Push the name of the function on the frame.
|
| - frame_->Push(var->name());
|
| -
|
| - // Call the IC initialization code.
|
| - CodeForSourcePosition(node->position());
|
| - Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT,
|
| - arg_count,
|
| - loop_nesting());
|
| - frame_->RestoreContextRegister();
|
| - // Replace the function on the stack with the result.
|
| - frame_->Push(&result);
|
| -
|
| - } else if (var != NULL && var->AsSlot() != NULL &&
|
| - var->AsSlot()->type() == Slot::LOOKUP) {
|
| - // ----------------------------------
|
| - // JavaScript examples:
|
| - //
|
| - // with (obj) foo(1, 2, 3) // foo may be in obj.
|
| - //
|
| - // function f() {};
|
| - // function g() {
|
| - // eval(...);
|
| - // f(); // f could be in extension object.
|
| - // }
|
| - // ----------------------------------
|
| -
|
| - JumpTarget slow, done;
|
| - Result function;
|
| -
|
| - // Generate fast case for loading functions from slots that
|
| - // correspond to local/global variables or arguments unless they
|
| - // are shadowed by eval-introduced bindings.
|
| - EmitDynamicLoadFromSlotFastCase(var->AsSlot(),
|
| - NOT_INSIDE_TYPEOF,
|
| - &function,
|
| - &slow,
|
| - &done);
|
| -
|
| - slow.Bind();
|
| - // Load the function from the context. Sync the frame so we can
|
| - // push the arguments directly into place.
|
| - frame_->SyncRange(0, frame_->element_count() - 1);
|
| - frame_->EmitPush(rsi);
|
| - frame_->EmitPush(var->name());
|
| - frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
|
| - // The runtime call returns a pair of values in rax and rdx. The
|
| - // looked-up function is in rax and the receiver is in rdx. These
|
| - // register references are not ref counted here. We spill them
|
| - // eagerly since they are arguments to an inevitable call (and are
|
| - // not sharable by the arguments).
|
| - ASSERT(!allocator()->is_used(rax));
|
| - frame_->EmitPush(rax);
|
| -
|
| - // Load the receiver.
|
| - ASSERT(!allocator()->is_used(rdx));
|
| - frame_->EmitPush(rdx);
|
| -
|
| - // If fast case code has been generated, emit code to push the
|
| - // function and receiver and have the slow path jump around this
|
| - // code.
|
| - if (done.is_linked()) {
|
| - JumpTarget call;
|
| - call.Jump();
|
| - done.Bind(&function);
|
| - frame_->Push(&function);
|
| - LoadGlobalReceiver();
|
| - call.Bind();
|
| - }
|
| -
|
| - // Call the function.
|
| - CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position());
|
| -
|
| - } else if (property != NULL) {
|
| - // Check if the key is a literal string.
|
| - Literal* literal = property->key()->AsLiteral();
|
| -
|
| - if (literal != NULL && literal->handle()->IsSymbol()) {
|
| - // ------------------------------------------------------------------
|
| - // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
|
| - // ------------------------------------------------------------------
|
| -
|
| - Handle<String> name = Handle<String>::cast(literal->handle());
|
| -
|
| - if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION &&
|
| - name->IsEqualTo(CStrVector("apply")) &&
|
| - args->length() == 2 &&
|
| - args->at(1)->AsVariableProxy() != NULL &&
|
| - args->at(1)->AsVariableProxy()->IsArguments()) {
|
| - // Use the optimized Function.prototype.apply that avoids
|
| - // allocating lazily allocated arguments objects.
|
| - CallApplyLazy(property->obj(),
|
| - args->at(0),
|
| - args->at(1)->AsVariableProxy(),
|
| - node->position());
|
| -
|
| - } else {
|
| - // Push the receiver onto the frame.
|
| - Load(property->obj());
|
| -
|
| - // Load the arguments.
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - Load(args->at(i));
|
| - frame_->SpillTop();
|
| - }
|
| -
|
| - // Push the name of the function onto the frame.
|
| - frame_->Push(name);
|
| -
|
| - // Call the IC initialization code.
|
| - CodeForSourcePosition(node->position());
|
| - Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET,
|
| - arg_count,
|
| - loop_nesting());
|
| - frame_->RestoreContextRegister();
|
| - frame_->Push(&result);
|
| - }
|
| -
|
| - } else {
|
| - // -------------------------------------------
|
| - // JavaScript example: 'array[index](1, 2, 3)'
|
| - // -------------------------------------------
|
| -
|
| - // Load the function to call from the property through a reference.
|
| - if (property->is_synthetic()) {
|
| - Reference ref(this, property, false);
|
| - ref.GetValue();
|
| - // Use global object as receiver.
|
| - LoadGlobalReceiver();
|
| - // Call the function.
|
| - CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position());
|
| - } else {
|
| - // Push the receiver onto the frame.
|
| - Load(property->obj());
|
| -
|
| - // Load the name of the function.
|
| - Load(property->key());
|
| -
|
| - // Swap the name of the function and the receiver on the stack to follow
|
| - // the calling convention for call ICs.
|
| - Result key = frame_->Pop();
|
| - Result receiver = frame_->Pop();
|
| - frame_->Push(&key);
|
| - frame_->Push(&receiver);
|
| - key.Unuse();
|
| - receiver.Unuse();
|
| -
|
| - // Load the arguments.
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - Load(args->at(i));
|
| - frame_->SpillTop();
|
| - }
|
| -
|
| - // Place the key on top of stack and call the IC initialization code.
|
| - frame_->PushElementAt(arg_count + 1);
|
| - CodeForSourcePosition(node->position());
|
| - Result result = frame_->CallKeyedCallIC(RelocInfo::CODE_TARGET,
|
| - arg_count,
|
| - loop_nesting());
|
| - frame_->Drop(); // Drop the key still on the stack.
|
| - frame_->RestoreContextRegister();
|
| - frame_->Push(&result);
|
| - }
|
| - }
|
| - } else {
|
| - // ----------------------------------
|
| - // JavaScript example: 'foo(1, 2, 3)' // foo is not global
|
| - // ----------------------------------
|
| -
|
| - // Load the function.
|
| - Load(function);
|
| -
|
| - // Pass the global proxy as the receiver.
|
| - LoadGlobalReceiver();
|
| -
|
| - // Call the function.
|
| - CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position());
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCallNew(CallNew* node) {
|
| - Comment cmnt(masm_, "[ CallNew");
|
| -
|
| - // According to ECMA-262, section 11.2.2, page 44, the function
|
| - // expression in new calls must be evaluated before the
|
| - // arguments. This is different from ordinary calls, where the
|
| - // actual function to call is resolved after the arguments have been
|
| - // evaluated.
|
| -
|
| - // Push constructor on the stack. If it's not a function it's used as
|
| - // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
|
| - // ignored.
|
| - Load(node->expression());
|
| -
|
| - // Push the arguments ("left-to-right") on the stack.
|
| - ZoneList<Expression*>* args = node->arguments();
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - Load(args->at(i));
|
| - }
|
| -
|
| - // Call the construct call builtin that handles allocation and
|
| - // constructor invocation.
|
| - CodeForSourcePosition(node->position());
|
| - Result result = frame_->CallConstructor(arg_count);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| - ASSERT(value.is_valid());
|
| - Condition is_smi = masm_->CheckSmi(value.reg());
|
| - value.Unuse();
|
| - destination()->Split(is_smi);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
|
| - // Conditionally generate a log call.
|
| - // Args:
|
| - // 0 (literal string): The type of logging (corresponds to the flags).
|
| - // This is used to determine whether or not to generate the log call.
|
| - // 1 (string): Format string. Access the string at argument index 2
|
| - // with '%2s' (see Logger::LogRuntime for all the formats).
|
| - // 2 (array): Arguments to the format string.
|
| - ASSERT_EQ(args->length(), 3);
|
| -#ifdef ENABLE_LOGGING_AND_PROFILING
|
| - if (ShouldGenerateLog(args->at(0))) {
|
| - Load(args->at(1));
|
| - Load(args->at(2));
|
| - frame_->CallRuntime(Runtime::kLog, 2);
|
| - }
|
| -#endif
|
| - // Finally, we're expected to leave a value on the top of the stack.
|
| - frame_->Push(FACTORY->undefined_value());
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| - ASSERT(value.is_valid());
|
| - Condition non_negative_smi = masm_->CheckNonNegativeSmi(value.reg());
|
| - value.Unuse();
|
| - destination()->Split(non_negative_smi);
|
| -}
|
| -
|
| -
|
| -class DeferredStringCharCodeAt : public DeferredCode {
|
| - public:
|
| - DeferredStringCharCodeAt(Register object,
|
| - Register index,
|
| - Register scratch,
|
| - Register result)
|
| - : result_(result),
|
| - char_code_at_generator_(object,
|
| - index,
|
| - scratch,
|
| - result,
|
| - &need_conversion_,
|
| - &need_conversion_,
|
| - &index_out_of_range_,
|
| - STRING_INDEX_IS_NUMBER) {}
|
| -
|
| - StringCharCodeAtGenerator* fast_case_generator() {
|
| - return &char_code_at_generator_;
|
| - }
|
| -
|
| - virtual void Generate() {
|
| - VirtualFrameRuntimeCallHelper call_helper(frame_state());
|
| - char_code_at_generator_.GenerateSlow(masm(), call_helper);
|
| -
|
| - __ bind(&need_conversion_);
|
| - // Move the undefined value into the result register, which will
|
| - // trigger conversion.
|
| - __ LoadRoot(result_, Heap::kUndefinedValueRootIndex);
|
| - __ jmp(exit_label());
|
| -
|
| - __ bind(&index_out_of_range_);
|
| - // When the index is out of range, the spec requires us to return
|
| - // NaN.
|
| - __ LoadRoot(result_, Heap::kNanValueRootIndex);
|
| - __ jmp(exit_label());
|
| - }
|
| -
|
| - private:
|
| - Register result_;
|
| -
|
| - Label need_conversion_;
|
| - Label index_out_of_range_;
|
| -
|
| - StringCharCodeAtGenerator char_code_at_generator_;
|
| -};
|
| -
|
| -
|
| -// This generates code that performs a String.prototype.charCodeAt() call
|
| -// or returns a smi in order to trigger conversion.
|
| -void CodeGenerator::GenerateStringCharCodeAt(ZoneList<Expression*>* args) {
|
| - Comment(masm_, "[ GenerateStringCharCodeAt");
|
| - ASSERT(args->length() == 2);
|
| -
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| - Result index = frame_->Pop();
|
| - Result object = frame_->Pop();
|
| - object.ToRegister();
|
| - index.ToRegister();
|
| - // We might mutate the object register.
|
| - frame_->Spill(object.reg());
|
| -
|
| - // We need two extra registers.
|
| - Result result = allocator()->Allocate();
|
| - ASSERT(result.is_valid());
|
| - Result scratch = allocator()->Allocate();
|
| - ASSERT(scratch.is_valid());
|
| -
|
| - DeferredStringCharCodeAt* deferred =
|
| - new DeferredStringCharCodeAt(object.reg(),
|
| - index.reg(),
|
| - scratch.reg(),
|
| - result.reg());
|
| - deferred->fast_case_generator()->GenerateFast(masm_);
|
| - deferred->BindExit();
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -class DeferredStringCharFromCode : public DeferredCode {
|
| - public:
|
| - DeferredStringCharFromCode(Register code,
|
| - Register result)
|
| - : char_from_code_generator_(code, result) {}
|
| -
|
| - StringCharFromCodeGenerator* fast_case_generator() {
|
| - return &char_from_code_generator_;
|
| - }
|
| -
|
| - virtual void Generate() {
|
| - VirtualFrameRuntimeCallHelper call_helper(frame_state());
|
| - char_from_code_generator_.GenerateSlow(masm(), call_helper);
|
| - }
|
| -
|
| - private:
|
| - StringCharFromCodeGenerator char_from_code_generator_;
|
| -};
|
| -
|
| -
|
| -// Generates code for creating a one-char string from a char code.
|
| -void CodeGenerator::GenerateStringCharFromCode(ZoneList<Expression*>* args) {
|
| - Comment(masm_, "[ GenerateStringCharFromCode");
|
| - ASSERT(args->length() == 1);
|
| -
|
| - Load(args->at(0));
|
| -
|
| - Result code = frame_->Pop();
|
| - code.ToRegister();
|
| - ASSERT(code.is_valid());
|
| -
|
| - Result result = allocator()->Allocate();
|
| - ASSERT(result.is_valid());
|
| -
|
| - DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode(
|
| - code.reg(), result.reg());
|
| - deferred->fast_case_generator()->GenerateFast(masm_);
|
| - deferred->BindExit();
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -class DeferredStringCharAt : public DeferredCode {
|
| - public:
|
| - DeferredStringCharAt(Register object,
|
| - Register index,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register result)
|
| - : result_(result),
|
| - char_at_generator_(object,
|
| - index,
|
| - scratch1,
|
| - scratch2,
|
| - result,
|
| - &need_conversion_,
|
| - &need_conversion_,
|
| - &index_out_of_range_,
|
| - STRING_INDEX_IS_NUMBER) {}
|
| -
|
| - StringCharAtGenerator* fast_case_generator() {
|
| - return &char_at_generator_;
|
| - }
|
| -
|
| - virtual void Generate() {
|
| - VirtualFrameRuntimeCallHelper call_helper(frame_state());
|
| - char_at_generator_.GenerateSlow(masm(), call_helper);
|
| -
|
| - __ bind(&need_conversion_);
|
| - // Move smi zero into the result register, which will trigger
|
| - // conversion.
|
| - __ Move(result_, Smi::FromInt(0));
|
| - __ jmp(exit_label());
|
| -
|
| - __ bind(&index_out_of_range_);
|
| - // When the index is out of range, the spec requires us to return
|
| - // the empty string.
|
| - __ LoadRoot(result_, Heap::kEmptyStringRootIndex);
|
| - __ jmp(exit_label());
|
| - }
|
| -
|
| - private:
|
| - Register result_;
|
| -
|
| - Label need_conversion_;
|
| - Label index_out_of_range_;
|
| -
|
| - StringCharAtGenerator char_at_generator_;
|
| -};
|
| -
|
| -
|
| -// This generates code that performs a String.prototype.charAt() call
|
| -// or returns a smi in order to trigger conversion.
|
| -void CodeGenerator::GenerateStringCharAt(ZoneList<Expression*>* args) {
|
| - Comment(masm_, "[ GenerateStringCharAt");
|
| - ASSERT(args->length() == 2);
|
| -
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| - Result index = frame_->Pop();
|
| - Result object = frame_->Pop();
|
| - object.ToRegister();
|
| - index.ToRegister();
|
| - // We might mutate the object register.
|
| - frame_->Spill(object.reg());
|
| -
|
| - // We need three extra registers.
|
| - Result result = allocator()->Allocate();
|
| - ASSERT(result.is_valid());
|
| - Result scratch1 = allocator()->Allocate();
|
| - ASSERT(scratch1.is_valid());
|
| - Result scratch2 = allocator()->Allocate();
|
| - ASSERT(scratch2.is_valid());
|
| -
|
| - DeferredStringCharAt* deferred =
|
| - new DeferredStringCharAt(object.reg(),
|
| - index.reg(),
|
| - scratch1.reg(),
|
| - scratch2.reg(),
|
| - result.reg());
|
| - deferred->fast_case_generator()->GenerateFast(masm_);
|
| - deferred->BindExit();
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| - ASSERT(value.is_valid());
|
| - Condition is_smi = masm_->CheckSmi(value.reg());
|
| - destination()->false_target()->Branch(is_smi);
|
| - // It is a heap object - get map.
|
| - // Check if the object is a JS array or not.
|
| - __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, kScratchRegister);
|
| - value.Unuse();
|
| - destination()->Split(equal);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| - ASSERT(value.is_valid());
|
| - Condition is_smi = masm_->CheckSmi(value.reg());
|
| - destination()->false_target()->Branch(is_smi);
|
| - // It is a heap object - get map.
|
| - // Check if the object is a regexp.
|
| - __ CmpObjectType(value.reg(), JS_REGEXP_TYPE, kScratchRegister);
|
| - value.Unuse();
|
| - destination()->Split(equal);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) {
|
| - // This generates a fast version of:
|
| - // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp')
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result obj = frame_->Pop();
|
| - obj.ToRegister();
|
| - Condition is_smi = masm_->CheckSmi(obj.reg());
|
| - destination()->false_target()->Branch(is_smi);
|
| -
|
| - __ Move(kScratchRegister, FACTORY->null_value());
|
| - __ cmpq(obj.reg(), kScratchRegister);
|
| - destination()->true_target()->Branch(equal);
|
| -
|
| - __ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset));
|
| - // Undetectable objects behave like undefined when tested with typeof.
|
| - __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
|
| - Immediate(1 << Map::kIsUndetectable));
|
| - destination()->false_target()->Branch(not_zero);
|
| - __ movzxbq(kScratchRegister,
|
| - FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
|
| - __ cmpq(kScratchRegister, Immediate(FIRST_JS_OBJECT_TYPE));
|
| - destination()->false_target()->Branch(below);
|
| - __ cmpq(kScratchRegister, Immediate(LAST_JS_OBJECT_TYPE));
|
| - obj.Unuse();
|
| - destination()->Split(below_equal);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsSpecObject(ZoneList<Expression*>* args) {
|
| - // This generates a fast version of:
|
| - // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp' ||
|
| - // typeof(arg) == function).
|
| - // It includes undetectable objects (as opposed to IsObject).
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| - ASSERT(value.is_valid());
|
| - Condition is_smi = masm_->CheckSmi(value.reg());
|
| - destination()->false_target()->Branch(is_smi);
|
| - // Check that this is an object.
|
| - __ CmpObjectType(value.reg(), FIRST_JS_OBJECT_TYPE, kScratchRegister);
|
| - value.Unuse();
|
| - destination()->Split(above_equal);
|
| -}
|
| -
|
| -
|
| -// Deferred code to check whether the String JavaScript object is safe for using
|
| -// default value of. This code is called after the bit caching this information
|
| -// in the map has been checked with the map for the object in the map_result_
|
| -// register. On return the register map_result_ contains 1 for true and 0 for
|
| -// false.
|
| -class DeferredIsStringWrapperSafeForDefaultValueOf : public DeferredCode {
|
| - public:
|
| - DeferredIsStringWrapperSafeForDefaultValueOf(Register object,
|
| - Register map_result,
|
| - Register scratch1,
|
| - Register scratch2)
|
| - : object_(object),
|
| - map_result_(map_result),
|
| - scratch1_(scratch1),
|
| - scratch2_(scratch2) { }
|
| -
|
| - virtual void Generate() {
|
| - Label false_result;
|
| -
|
| - // Check that map is loaded as expected.
|
| - if (FLAG_debug_code) {
|
| - __ cmpq(map_result_, FieldOperand(object_, HeapObject::kMapOffset));
|
| - __ Assert(equal, "Map not in expected register");
|
| - }
|
| -
|
| - // Check for fast case object. Generate false result for slow case object.
|
| - __ movq(scratch1_, FieldOperand(object_, JSObject::kPropertiesOffset));
|
| - __ movq(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset));
|
| - __ CompareRoot(scratch1_, Heap::kHashTableMapRootIndex);
|
| - __ j(equal, &false_result);
|
| -
|
| - // Look for valueOf symbol in the descriptor array, and indicate false if
|
| - // found. The type is not checked, so if it is a transition it is a false
|
| - // negative.
|
| - __ movq(map_result_,
|
| - FieldOperand(map_result_, Map::kInstanceDescriptorsOffset));
|
| - __ movq(scratch1_, FieldOperand(map_result_, FixedArray::kLengthOffset));
|
| - // map_result_: descriptor array
|
| - // scratch1_: length of descriptor array
|
| - // Calculate the end of the descriptor array.
|
| - SmiIndex index = masm_->SmiToIndex(scratch2_, scratch1_, kPointerSizeLog2);
|
| - __ lea(scratch1_,
|
| - Operand(
|
| - map_result_, index.reg, index.scale, FixedArray::kHeaderSize));
|
| - // Calculate location of the first key name.
|
| - __ addq(map_result_,
|
| - Immediate(FixedArray::kHeaderSize +
|
| - DescriptorArray::kFirstIndex * kPointerSize));
|
| - // Loop through all the keys in the descriptor array. If one of these is the
|
| - // symbol valueOf the result is false.
|
| - Label entry, loop;
|
| - __ jmp(&entry);
|
| - __ bind(&loop);
|
| - __ movq(scratch2_, FieldOperand(map_result_, 0));
|
| - __ Cmp(scratch2_, FACTORY->value_of_symbol());
|
| - __ j(equal, &false_result);
|
| - __ addq(map_result_, Immediate(kPointerSize));
|
| - __ bind(&entry);
|
| - __ cmpq(map_result_, scratch1_);
|
| - __ j(not_equal, &loop);
|
| -
|
| - // Reload map as register map_result_ was used as temporary above.
|
| - __ movq(map_result_, FieldOperand(object_, HeapObject::kMapOffset));
|
| -
|
| - // If a valueOf property is not found on the object check that it's
|
| - // prototype is the un-modified String prototype. If not result is false.
|
| - __ movq(scratch1_, FieldOperand(map_result_, Map::kPrototypeOffset));
|
| - __ testq(scratch1_, Immediate(kSmiTagMask));
|
| - __ j(zero, &false_result);
|
| - __ movq(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset));
|
| - __ movq(scratch2_,
|
| - Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
| - __ movq(scratch2_,
|
| - FieldOperand(scratch2_, GlobalObject::kGlobalContextOffset));
|
| - __ cmpq(scratch1_,
|
| - ContextOperand(
|
| - scratch2_, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
|
| - __ j(not_equal, &false_result);
|
| - // Set the bit in the map to indicate that it has been checked safe for
|
| - // default valueOf and set true result.
|
| - __ or_(FieldOperand(map_result_, Map::kBitField2Offset),
|
| - Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf));
|
| - __ Set(map_result_, 1);
|
| - __ jmp(exit_label());
|
| - __ bind(&false_result);
|
| - // Set false result.
|
| - __ Set(map_result_, 0);
|
| - }
|
| -
|
| - private:
|
| - Register object_;
|
| - Register map_result_;
|
| - Register scratch1_;
|
| - Register scratch2_;
|
| -};
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsStringWrapperSafeForDefaultValueOf(
|
| - ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result obj = frame_->Pop(); // Pop the string wrapper.
|
| - obj.ToRegister();
|
| - ASSERT(obj.is_valid());
|
| - if (FLAG_debug_code) {
|
| - __ AbortIfSmi(obj.reg());
|
| - }
|
| -
|
| - // Check whether this map has already been checked to be safe for default
|
| - // valueOf.
|
| - Result map_result = allocator()->Allocate();
|
| - ASSERT(map_result.is_valid());
|
| - __ movq(map_result.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset));
|
| - __ testb(FieldOperand(map_result.reg(), Map::kBitField2Offset),
|
| - Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf));
|
| - destination()->true_target()->Branch(not_zero);
|
| -
|
| - // We need an additional two scratch registers for the deferred code.
|
| - Result temp1 = allocator()->Allocate();
|
| - ASSERT(temp1.is_valid());
|
| - Result temp2 = allocator()->Allocate();
|
| - ASSERT(temp2.is_valid());
|
| -
|
| - DeferredIsStringWrapperSafeForDefaultValueOf* deferred =
|
| - new DeferredIsStringWrapperSafeForDefaultValueOf(
|
| - obj.reg(), map_result.reg(), temp1.reg(), temp2.reg());
|
| - deferred->Branch(zero);
|
| - deferred->BindExit();
|
| - __ testq(map_result.reg(), map_result.reg());
|
| - obj.Unuse();
|
| - map_result.Unuse();
|
| - temp1.Unuse();
|
| - temp2.Unuse();
|
| - destination()->Split(not_equal);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) {
|
| - // This generates a fast version of:
|
| - // (%_ClassOf(arg) === 'Function')
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result obj = frame_->Pop();
|
| - obj.ToRegister();
|
| - Condition is_smi = masm_->CheckSmi(obj.reg());
|
| - destination()->false_target()->Branch(is_smi);
|
| - __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister);
|
| - obj.Unuse();
|
| - destination()->Split(equal);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result obj = frame_->Pop();
|
| - obj.ToRegister();
|
| - Condition is_smi = masm_->CheckSmi(obj.reg());
|
| - destination()->false_target()->Branch(is_smi);
|
| - __ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset));
|
| - __ movzxbl(kScratchRegister,
|
| - FieldOperand(kScratchRegister, Map::kBitFieldOffset));
|
| - __ testl(kScratchRegister, Immediate(1 << Map::kIsUndetectable));
|
| - obj.Unuse();
|
| - destination()->Split(not_zero);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 0);
|
| -
|
| - // Get the frame pointer for the calling frame.
|
| - Result fp = allocator()->Allocate();
|
| - __ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset));
|
| -
|
| - // Skip the arguments adaptor frame if it exists.
|
| - Label check_frame_marker;
|
| - __ Cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
|
| - Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
|
| - __ j(not_equal, &check_frame_marker);
|
| - __ movq(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset));
|
| -
|
| - // Check the marker in the calling frame.
|
| - __ bind(&check_frame_marker);
|
| - __ Cmp(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset),
|
| - Smi::FromInt(StackFrame::CONSTRUCT));
|
| - fp.Unuse();
|
| - destination()->Split(equal);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 0);
|
| -
|
| - Result fp = allocator_->Allocate();
|
| - Result result = allocator_->Allocate();
|
| - ASSERT(fp.is_valid() && result.is_valid());
|
| -
|
| - Label exit;
|
| -
|
| - // Get the number of formal parameters.
|
| - __ Move(result.reg(), Smi::FromInt(scope()->num_parameters()));
|
| -
|
| - // Check if the calling frame is an arguments adaptor frame.
|
| - __ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset));
|
| - __ Cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
|
| - Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
|
| - __ j(not_equal, &exit);
|
| -
|
| - // Arguments adaptor case: Read the arguments length from the
|
| - // adaptor frame.
|
| - __ movq(result.reg(),
|
| - Operand(fp.reg(), ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| -
|
| - __ bind(&exit);
|
| - result.set_type_info(TypeInfo::Smi());
|
| - if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(result.reg());
|
| - }
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - JumpTarget leave, null, function, non_function_constructor;
|
| - Load(args->at(0)); // Load the object.
|
| - Result obj = frame_->Pop();
|
| - obj.ToRegister();
|
| - frame_->Spill(obj.reg());
|
| -
|
| - // If the object is a smi, we return null.
|
| - Condition is_smi = masm_->CheckSmi(obj.reg());
|
| - null.Branch(is_smi);
|
| -
|
| - // Check that the object is a JS object but take special care of JS
|
| - // functions to make sure they have 'Function' as their class.
|
| -
|
| - __ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg());
|
| - null.Branch(below);
|
| -
|
| - // As long as JS_FUNCTION_TYPE is the last instance type and it is
|
| - // right after LAST_JS_OBJECT_TYPE, we can avoid checking for
|
| - // LAST_JS_OBJECT_TYPE.
|
| - ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
| - ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
|
| - __ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE);
|
| - function.Branch(equal);
|
| -
|
| - // Check if the constructor in the map is a function.
|
| - __ movq(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset));
|
| - __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister);
|
| - non_function_constructor.Branch(not_equal);
|
| -
|
| - // The obj register now contains the constructor function. Grab the
|
| - // instance class name from there.
|
| - __ movq(obj.reg(),
|
| - FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset));
|
| - __ movq(obj.reg(),
|
| - FieldOperand(obj.reg(),
|
| - SharedFunctionInfo::kInstanceClassNameOffset));
|
| - frame_->Push(&obj);
|
| - leave.Jump();
|
| -
|
| - // Functions have class 'Function'.
|
| - function.Bind();
|
| - frame_->Push(FACTORY->function_class_symbol());
|
| - leave.Jump();
|
| -
|
| - // Objects with a non-function constructor have class 'Object'.
|
| - non_function_constructor.Bind();
|
| - frame_->Push(FACTORY->Object_symbol());
|
| - leave.Jump();
|
| -
|
| - // Non-JS objects have class null.
|
| - null.Bind();
|
| - frame_->Push(FACTORY->null_value());
|
| -
|
| - // All done.
|
| - leave.Bind();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - JumpTarget leave;
|
| - Load(args->at(0)); // Load the object.
|
| - frame_->Dup();
|
| - Result object = frame_->Pop();
|
| - object.ToRegister();
|
| - ASSERT(object.is_valid());
|
| - // if (object->IsSmi()) return object.
|
| - Condition is_smi = masm_->CheckSmi(object.reg());
|
| - leave.Branch(is_smi);
|
| - // It is a heap object - get map.
|
| - Result temp = allocator()->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - // if (!object->IsJSValue()) return object.
|
| - __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg());
|
| - leave.Branch(not_equal);
|
| - __ movq(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset));
|
| - object.Unuse();
|
| - frame_->SetElementAt(0, &temp);
|
| - leave.Bind();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 2);
|
| - JumpTarget leave;
|
| - Load(args->at(0)); // Load the object.
|
| - Load(args->at(1)); // Load the value.
|
| - Result value = frame_->Pop();
|
| - Result object = frame_->Pop();
|
| - value.ToRegister();
|
| - object.ToRegister();
|
| -
|
| - // if (object->IsSmi()) return value.
|
| - Condition is_smi = masm_->CheckSmi(object.reg());
|
| - leave.Branch(is_smi, &value);
|
| -
|
| - // It is a heap object - get its map.
|
| - Result scratch = allocator_->Allocate();
|
| - ASSERT(scratch.is_valid());
|
| - // if (!object->IsJSValue()) return value.
|
| - __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg());
|
| - leave.Branch(not_equal, &value);
|
| -
|
| - // Store the value.
|
| - __ movq(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg());
|
| - // Update the write barrier. Save the value as it will be
|
| - // overwritten by the write barrier code and is needed afterward.
|
| - Result duplicate_value = allocator_->Allocate();
|
| - ASSERT(duplicate_value.is_valid());
|
| - __ movq(duplicate_value.reg(), value.reg());
|
| - // The object register is also overwritten by the write barrier and
|
| - // possibly aliased in the frame.
|
| - frame_->Spill(object.reg());
|
| - __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(),
|
| - scratch.reg());
|
| - object.Unuse();
|
| - scratch.Unuse();
|
| - duplicate_value.Unuse();
|
| -
|
| - // Leave.
|
| - leave.Bind(&value);
|
| - frame_->Push(&value);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| -
|
| - // ArgumentsAccessStub expects the key in rdx and the formal
|
| - // parameter count in rax.
|
| - Load(args->at(0));
|
| - Result key = frame_->Pop();
|
| - // Explicitly create a constant result.
|
| - Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters())));
|
| - // Call the shared stub to get to arguments[key].
|
| - ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
|
| - Result result = frame_->CallStub(&stub, &key, &count);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 2);
|
| -
|
| - // Load the two objects into registers and perform the comparison.
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| - Result right = frame_->Pop();
|
| - Result left = frame_->Pop();
|
| - right.ToRegister();
|
| - left.ToRegister();
|
| - __ cmpq(right.reg(), left.reg());
|
| - right.Unuse();
|
| - left.Unuse();
|
| - destination()->Split(equal);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 0);
|
| - // RBP value is aligned, so it should be tagged as a smi (without necesarily
|
| - // being padded as a smi, so it should not be treated as a smi.).
|
| - STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
| - Result rbp_as_smi = allocator_->Allocate();
|
| - ASSERT(rbp_as_smi.is_valid());
|
| - __ movq(rbp_as_smi.reg(), rbp);
|
| - frame_->Push(&rbp_as_smi);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateRandomHeapNumber(
|
| - ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 0);
|
| - frame_->SpillAll();
|
| -
|
| - Label slow_allocate_heapnumber;
|
| - Label heapnumber_allocated;
|
| - __ AllocateHeapNumber(rbx, rcx, &slow_allocate_heapnumber);
|
| - __ jmp(&heapnumber_allocated);
|
| -
|
| - __ bind(&slow_allocate_heapnumber);
|
| - // Allocate a heap number.
|
| - __ CallRuntime(Runtime::kNumberAlloc, 0);
|
| - __ movq(rbx, rax);
|
| -
|
| - __ bind(&heapnumber_allocated);
|
| -
|
| - // Return a random uint32 number in rax.
|
| - // The fresh HeapNumber is in rbx, which is callee-save on both x64 ABIs.
|
| - __ PrepareCallCFunction(1);
|
| -#ifdef _WIN64
|
| - __ LoadAddress(rcx, ExternalReference::isolate_address());
|
| -#else
|
| - __ LoadAddress(rdi, ExternalReference::isolate_address());
|
| -#endif
|
| - __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1);
|
| -
|
| - // Convert 32 random bits in rax to 0.(32 random bits) in a double
|
| - // by computing:
|
| - // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
|
| - __ movl(rcx, Immediate(0x49800000)); // 1.0 x 2^20 as single.
|
| - __ movd(xmm1, rcx);
|
| - __ movd(xmm0, rax);
|
| - __ cvtss2sd(xmm1, xmm1);
|
| - __ xorpd(xmm0, xmm1);
|
| - __ subsd(xmm0, xmm1);
|
| - __ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0);
|
| -
|
| - __ movq(rax, rbx);
|
| - Result result = allocator_->Allocate(rax);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(2, args->length());
|
| -
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| -
|
| - StringAddStub stub(NO_STRING_ADD_FLAGS);
|
| - Result answer = frame_->CallStub(&stub, 2);
|
| - frame_->Push(&answer);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(3, args->length());
|
| -
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| - Load(args->at(2));
|
| -
|
| - SubStringStub stub;
|
| - Result answer = frame_->CallStub(&stub, 3);
|
| - frame_->Push(&answer);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(2, args->length());
|
| -
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| -
|
| - StringCompareStub stub;
|
| - Result answer = frame_->CallStub(&stub, 2);
|
| - frame_->Push(&answer);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(args->length(), 4);
|
| -
|
| - // Load the arguments on the stack and call the runtime system.
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| - Load(args->at(2));
|
| - Load(args->at(3));
|
| - RegExpExecStub stub;
|
| - Result result = frame_->CallStub(&stub, 4);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateRegExpConstructResult(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(3, args->length());
|
| - Load(args->at(0)); // Size of array, smi.
|
| - Load(args->at(1)); // "index" property value.
|
| - Load(args->at(2)); // "input" property value.
|
| - RegExpConstructResultStub stub;
|
| - Result result = frame_->CallStub(&stub, 3);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -class DeferredSearchCache: public DeferredCode {
|
| - public:
|
| - DeferredSearchCache(Register dst,
|
| - Register cache,
|
| - Register key,
|
| - Register scratch)
|
| - : dst_(dst), cache_(cache), key_(key), scratch_(scratch) {
|
| - set_comment("[ DeferredSearchCache");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Register dst_; // on invocation index of finger (as int32), on exit
|
| - // holds value being looked up.
|
| - Register cache_; // instance of JSFunctionResultCache.
|
| - Register key_; // key being looked up.
|
| - Register scratch_;
|
| -};
|
| -
|
| -
|
| -// Return a position of the element at |index| + |additional_offset|
|
| -// in FixedArray pointer to which is held in |array|. |index| is int32.
|
| -static Operand ArrayElement(Register array,
|
| - Register index,
|
| - int additional_offset = 0) {
|
| - int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
|
| - return FieldOperand(array, index, times_pointer_size, offset);
|
| -}
|
| -
|
| -
|
| -void DeferredSearchCache::Generate() {
|
| - Label first_loop, search_further, second_loop, cache_miss;
|
| -
|
| - Immediate kEntriesIndexImm = Immediate(JSFunctionResultCache::kEntriesIndex);
|
| - Immediate kEntrySizeImm = Immediate(JSFunctionResultCache::kEntrySize);
|
| -
|
| - // Check the cache from finger to start of the cache.
|
| - __ bind(&first_loop);
|
| - __ subl(dst_, kEntrySizeImm);
|
| - __ cmpl(dst_, kEntriesIndexImm);
|
| - __ j(less, &search_further);
|
| -
|
| - __ cmpq(ArrayElement(cache_, dst_), key_);
|
| - __ j(not_equal, &first_loop);
|
| -
|
| - __ Integer32ToSmiField(
|
| - FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_);
|
| - __ movq(dst_, ArrayElement(cache_, dst_, 1));
|
| - __ jmp(exit_label());
|
| -
|
| - __ bind(&search_further);
|
| -
|
| - // Check the cache from end of cache up to finger.
|
| - __ SmiToInteger32(dst_,
|
| - FieldOperand(cache_,
|
| - JSFunctionResultCache::kCacheSizeOffset));
|
| - __ SmiToInteger32(scratch_,
|
| - FieldOperand(cache_, JSFunctionResultCache::kFingerOffset));
|
| -
|
| - __ bind(&second_loop);
|
| - __ subl(dst_, kEntrySizeImm);
|
| - __ cmpl(dst_, scratch_);
|
| - __ j(less_equal, &cache_miss);
|
| -
|
| - __ cmpq(ArrayElement(cache_, dst_), key_);
|
| - __ j(not_equal, &second_loop);
|
| -
|
| - __ Integer32ToSmiField(
|
| - FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_);
|
| - __ movq(dst_, ArrayElement(cache_, dst_, 1));
|
| - __ jmp(exit_label());
|
| -
|
| - __ bind(&cache_miss);
|
| - __ push(cache_); // store a reference to cache
|
| - __ push(key_); // store a key
|
| - __ push(Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
| - __ push(key_);
|
| - // On x64 function must be in rdi.
|
| - __ movq(rdi, FieldOperand(cache_, JSFunctionResultCache::kFactoryOffset));
|
| - ParameterCount expected(1);
|
| - __ InvokeFunction(rdi, expected, CALL_FUNCTION);
|
| -
|
| - // Find a place to put new cached value into.
|
| - Label add_new_entry, update_cache;
|
| - __ movq(rcx, Operand(rsp, kPointerSize)); // restore the cache
|
| - // Possible optimization: cache size is constant for the given cache
|
| - // so technically we could use a constant here. However, if we have
|
| - // cache miss this optimization would hardly matter much.
|
| -
|
| - // Check if we could add new entry to cache.
|
| - __ SmiToInteger32(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
|
| - __ SmiToInteger32(r9,
|
| - FieldOperand(rcx, JSFunctionResultCache::kCacheSizeOffset));
|
| - __ cmpl(rbx, r9);
|
| - __ j(greater, &add_new_entry);
|
| -
|
| - // Check if we could evict entry after finger.
|
| - __ SmiToInteger32(rdx,
|
| - FieldOperand(rcx, JSFunctionResultCache::kFingerOffset));
|
| - __ addl(rdx, kEntrySizeImm);
|
| - Label forward;
|
| - __ cmpl(rbx, rdx);
|
| - __ j(greater, &forward);
|
| - // Need to wrap over the cache.
|
| - __ movl(rdx, kEntriesIndexImm);
|
| - __ bind(&forward);
|
| - __ movl(r9, rdx);
|
| - __ jmp(&update_cache);
|
| -
|
| - __ bind(&add_new_entry);
|
| - // r9 holds cache size as int32.
|
| - __ leal(rbx, Operand(r9, JSFunctionResultCache::kEntrySize));
|
| - __ Integer32ToSmiField(
|
| - FieldOperand(rcx, JSFunctionResultCache::kCacheSizeOffset), rbx);
|
| -
|
| - // Update the cache itself.
|
| - // r9 holds the index as int32.
|
| - __ bind(&update_cache);
|
| - __ pop(rbx); // restore the key
|
| - __ Integer32ToSmiField(
|
| - FieldOperand(rcx, JSFunctionResultCache::kFingerOffset), r9);
|
| - // Store key.
|
| - __ movq(ArrayElement(rcx, r9), rbx);
|
| - __ RecordWrite(rcx, 0, rbx, r9);
|
| -
|
| - // Store value.
|
| - __ pop(rcx); // restore the cache.
|
| - __ SmiToInteger32(rdx,
|
| - FieldOperand(rcx, JSFunctionResultCache::kFingerOffset));
|
| - __ incl(rdx);
|
| - // Backup rax, because the RecordWrite macro clobbers its arguments.
|
| - __ movq(rbx, rax);
|
| - __ movq(ArrayElement(rcx, rdx), rax);
|
| - __ RecordWrite(rcx, 0, rbx, rdx);
|
| -
|
| - if (!dst_.is(rax)) {
|
| - __ movq(dst_, rax);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(2, args->length());
|
| -
|
| - ASSERT_NE(NULL, args->at(0)->AsLiteral());
|
| - int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value();
|
| -
|
| - Handle<FixedArray> jsfunction_result_caches(
|
| - Isolate::Current()->global_context()->jsfunction_result_caches());
|
| - if (jsfunction_result_caches->length() <= cache_id) {
|
| - __ Abort("Attempt to use undefined cache.");
|
| - frame_->Push(FACTORY->undefined_value());
|
| - return;
|
| - }
|
| -
|
| - Load(args->at(1));
|
| - Result key = frame_->Pop();
|
| - key.ToRegister();
|
| -
|
| - Result cache = allocator()->Allocate();
|
| - ASSERT(cache.is_valid());
|
| - __ movq(cache.reg(), ContextOperand(rsi, Context::GLOBAL_INDEX));
|
| - __ movq(cache.reg(),
|
| - FieldOperand(cache.reg(), GlobalObject::kGlobalContextOffset));
|
| - __ movq(cache.reg(),
|
| - ContextOperand(cache.reg(), Context::JSFUNCTION_RESULT_CACHES_INDEX));
|
| - __ movq(cache.reg(),
|
| - FieldOperand(cache.reg(), FixedArray::OffsetOfElementAt(cache_id)));
|
| -
|
| - Result tmp = allocator()->Allocate();
|
| - ASSERT(tmp.is_valid());
|
| -
|
| - Result scratch = allocator()->Allocate();
|
| - ASSERT(scratch.is_valid());
|
| -
|
| - DeferredSearchCache* deferred = new DeferredSearchCache(tmp.reg(),
|
| - cache.reg(),
|
| - key.reg(),
|
| - scratch.reg());
|
| -
|
| - const int kFingerOffset =
|
| - FixedArray::OffsetOfElementAt(JSFunctionResultCache::kFingerIndex);
|
| - // tmp.reg() now holds finger offset as a smi.
|
| - __ SmiToInteger32(tmp.reg(), FieldOperand(cache.reg(), kFingerOffset));
|
| - __ cmpq(key.reg(), FieldOperand(cache.reg(),
|
| - tmp.reg(), times_pointer_size,
|
| - FixedArray::kHeaderSize));
|
| - deferred->Branch(not_equal);
|
| - __ movq(tmp.reg(), FieldOperand(cache.reg(),
|
| - tmp.reg(), times_pointer_size,
|
| - FixedArray::kHeaderSize + kPointerSize));
|
| -
|
| - deferred->BindExit();
|
| - frame_->Push(&tmp);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(args->length(), 1);
|
| -
|
| - // Load the argument on the stack and jump to the runtime.
|
| - Load(args->at(0));
|
| -
|
| - NumberToStringStub stub;
|
| - Result result = frame_->CallStub(&stub, 1);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -class DeferredSwapElements: public DeferredCode {
|
| - public:
|
| - DeferredSwapElements(Register object, Register index1, Register index2)
|
| - : object_(object), index1_(index1), index2_(index2) {
|
| - set_comment("[ DeferredSwapElements");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Register object_, index1_, index2_;
|
| -};
|
| -
|
| -
|
| -void DeferredSwapElements::Generate() {
|
| - __ push(object_);
|
| - __ push(index1_);
|
| - __ push(index2_);
|
| - __ CallRuntime(Runtime::kSwapElements, 3);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateSwapElements(ZoneList<Expression*>* args) {
|
| - Comment cmnt(masm_, "[ GenerateSwapElements");
|
| -
|
| - ASSERT_EQ(3, args->length());
|
| -
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| - Load(args->at(2));
|
| -
|
| - Result index2 = frame_->Pop();
|
| - index2.ToRegister();
|
| -
|
| - Result index1 = frame_->Pop();
|
| - index1.ToRegister();
|
| -
|
| - Result object = frame_->Pop();
|
| - object.ToRegister();
|
| -
|
| - Result tmp1 = allocator()->Allocate();
|
| - tmp1.ToRegister();
|
| - Result tmp2 = allocator()->Allocate();
|
| - tmp2.ToRegister();
|
| -
|
| - frame_->Spill(object.reg());
|
| - frame_->Spill(index1.reg());
|
| - frame_->Spill(index2.reg());
|
| -
|
| - DeferredSwapElements* deferred = new DeferredSwapElements(object.reg(),
|
| - index1.reg(),
|
| - index2.reg());
|
| -
|
| - // Fetch the map and check if array is in fast case.
|
| - // Check that object doesn't require security checks and
|
| - // has no indexed interceptor.
|
| - __ CmpObjectType(object.reg(), JS_ARRAY_TYPE, tmp1.reg());
|
| - deferred->Branch(not_equal);
|
| - __ testb(FieldOperand(tmp1.reg(), Map::kBitFieldOffset),
|
| - Immediate(KeyedLoadIC::kSlowCaseBitFieldMask));
|
| - deferred->Branch(not_zero);
|
| -
|
| - // Check the object's elements are in fast case and writable.
|
| - __ movq(tmp1.reg(), FieldOperand(object.reg(), JSObject::kElementsOffset));
|
| - __ CompareRoot(FieldOperand(tmp1.reg(), HeapObject::kMapOffset),
|
| - Heap::kFixedArrayMapRootIndex);
|
| - deferred->Branch(not_equal);
|
| -
|
| - // Check that both indices are smis.
|
| - Condition both_smi = masm()->CheckBothSmi(index1.reg(), index2.reg());
|
| - deferred->Branch(NegateCondition(both_smi));
|
| -
|
| - // Check that both indices are valid.
|
| - __ movq(tmp2.reg(), FieldOperand(object.reg(), JSArray::kLengthOffset));
|
| - __ SmiCompare(tmp2.reg(), index1.reg());
|
| - deferred->Branch(below_equal);
|
| - __ SmiCompare(tmp2.reg(), index2.reg());
|
| - deferred->Branch(below_equal);
|
| -
|
| - // Bring addresses into index1 and index2.
|
| - __ SmiToInteger32(index1.reg(), index1.reg());
|
| - __ lea(index1.reg(), FieldOperand(tmp1.reg(),
|
| - index1.reg(),
|
| - times_pointer_size,
|
| - FixedArray::kHeaderSize));
|
| - __ SmiToInteger32(index2.reg(), index2.reg());
|
| - __ lea(index2.reg(), FieldOperand(tmp1.reg(),
|
| - index2.reg(),
|
| - times_pointer_size,
|
| - FixedArray::kHeaderSize));
|
| -
|
| - // Swap elements.
|
| - __ movq(object.reg(), Operand(index1.reg(), 0));
|
| - __ movq(tmp2.reg(), Operand(index2.reg(), 0));
|
| - __ movq(Operand(index2.reg(), 0), object.reg());
|
| - __ movq(Operand(index1.reg(), 0), tmp2.reg());
|
| -
|
| - Label done;
|
| - __ InNewSpace(tmp1.reg(), tmp2.reg(), equal, &done);
|
| - // Possible optimization: do a check that both values are smis
|
| - // (or them and test against Smi mask.)
|
| -
|
| - __ movq(tmp2.reg(), tmp1.reg());
|
| - __ RecordWriteHelper(tmp1.reg(), index1.reg(), object.reg());
|
| - __ RecordWriteHelper(tmp2.reg(), index2.reg(), object.reg());
|
| - __ bind(&done);
|
| -
|
| - deferred->BindExit();
|
| - frame_->Push(FACTORY->undefined_value());
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateCallFunction(ZoneList<Expression*>* args) {
|
| - Comment cmnt(masm_, "[ GenerateCallFunction");
|
| -
|
| - ASSERT(args->length() >= 2);
|
| -
|
| - int n_args = args->length() - 2; // for receiver and function.
|
| - Load(args->at(0)); // receiver
|
| - for (int i = 0; i < n_args; i++) {
|
| - Load(args->at(i + 1));
|
| - }
|
| - Load(args->at(n_args + 1)); // function
|
| - Result result = frame_->CallJSFunction(n_args);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -// Generates the Math.pow method. Only handles special cases and
|
| -// branches to the runtime system for everything else. Please note
|
| -// that this function assumes that the callsite has executed ToNumber
|
| -// on both arguments.
|
| -void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 2);
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| -
|
| - Label allocate_return;
|
| - // Load the two operands while leaving the values on the frame.
|
| - frame()->Dup();
|
| - Result exponent = frame()->Pop();
|
| - exponent.ToRegister();
|
| - frame()->Spill(exponent.reg());
|
| - frame()->PushElementAt(1);
|
| - Result base = frame()->Pop();
|
| - base.ToRegister();
|
| - frame()->Spill(base.reg());
|
| -
|
| - Result answer = allocator()->Allocate();
|
| - ASSERT(answer.is_valid());
|
| - ASSERT(!exponent.reg().is(base.reg()));
|
| - JumpTarget call_runtime;
|
| -
|
| - // Save 1 in xmm3 - we need this several times later on.
|
| - __ movl(answer.reg(), Immediate(1));
|
| - __ cvtlsi2sd(xmm3, answer.reg());
|
| -
|
| - Label exponent_nonsmi;
|
| - Label base_nonsmi;
|
| - // If the exponent is a heap number go to that specific case.
|
| - __ JumpIfNotSmi(exponent.reg(), &exponent_nonsmi);
|
| - __ JumpIfNotSmi(base.reg(), &base_nonsmi);
|
| -
|
| - // Optimized version when y is an integer.
|
| - Label powi;
|
| - __ SmiToInteger32(base.reg(), base.reg());
|
| - __ cvtlsi2sd(xmm0, base.reg());
|
| - __ jmp(&powi);
|
| - // exponent is smi and base is a heapnumber.
|
| - __ bind(&base_nonsmi);
|
| - __ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset),
|
| - Heap::kHeapNumberMapRootIndex);
|
| - call_runtime.Branch(not_equal);
|
| -
|
| - __ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
|
| -
|
| - // Optimized version of pow if y is an integer.
|
| - __ bind(&powi);
|
| - __ SmiToInteger32(exponent.reg(), exponent.reg());
|
| -
|
| - // Save exponent in base as we need to check if exponent is negative later.
|
| - // We know that base and exponent are in different registers.
|
| - __ movl(base.reg(), exponent.reg());
|
| -
|
| - // Get absolute value of exponent.
|
| - Label no_neg;
|
| - __ cmpl(exponent.reg(), Immediate(0));
|
| - __ j(greater_equal, &no_neg);
|
| - __ negl(exponent.reg());
|
| - __ bind(&no_neg);
|
| -
|
| - // Load xmm1 with 1.
|
| - __ movsd(xmm1, xmm3);
|
| - Label while_true;
|
| - Label no_multiply;
|
| -
|
| - __ bind(&while_true);
|
| - __ shrl(exponent.reg(), Immediate(1));
|
| - __ j(not_carry, &no_multiply);
|
| - __ mulsd(xmm1, xmm0);
|
| - __ bind(&no_multiply);
|
| - __ testl(exponent.reg(), exponent.reg());
|
| - __ mulsd(xmm0, xmm0);
|
| - __ j(not_zero, &while_true);
|
| -
|
| - // x has the original value of y - if y is negative return 1/result.
|
| - __ testl(base.reg(), base.reg());
|
| - __ j(positive, &allocate_return);
|
| - // Special case if xmm1 has reached infinity.
|
| - __ movl(answer.reg(), Immediate(0x7FB00000));
|
| - __ movd(xmm0, answer.reg());
|
| - __ cvtss2sd(xmm0, xmm0);
|
| - __ ucomisd(xmm0, xmm1);
|
| - call_runtime.Branch(equal);
|
| - __ divsd(xmm3, xmm1);
|
| - __ movsd(xmm1, xmm3);
|
| - __ jmp(&allocate_return);
|
| -
|
| - // exponent (or both) is a heapnumber - no matter what we should now work
|
| - // on doubles.
|
| - __ bind(&exponent_nonsmi);
|
| - __ CompareRoot(FieldOperand(exponent.reg(), HeapObject::kMapOffset),
|
| - Heap::kHeapNumberMapRootIndex);
|
| - call_runtime.Branch(not_equal);
|
| - __ movsd(xmm1, FieldOperand(exponent.reg(), HeapNumber::kValueOffset));
|
| - // Test if exponent is nan.
|
| - __ ucomisd(xmm1, xmm1);
|
| - call_runtime.Branch(parity_even);
|
| -
|
| - Label base_not_smi;
|
| - Label handle_special_cases;
|
| - __ JumpIfNotSmi(base.reg(), &base_not_smi);
|
| - __ SmiToInteger32(base.reg(), base.reg());
|
| - __ cvtlsi2sd(xmm0, base.reg());
|
| - __ jmp(&handle_special_cases);
|
| - __ bind(&base_not_smi);
|
| - __ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset),
|
| - Heap::kHeapNumberMapRootIndex);
|
| - call_runtime.Branch(not_equal);
|
| - __ movl(answer.reg(), FieldOperand(base.reg(), HeapNumber::kExponentOffset));
|
| - __ andl(answer.reg(), Immediate(HeapNumber::kExponentMask));
|
| - __ cmpl(answer.reg(), Immediate(HeapNumber::kExponentMask));
|
| - // base is NaN or +/-Infinity
|
| - call_runtime.Branch(greater_equal);
|
| - __ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
|
| -
|
| - // base is in xmm0 and exponent is in xmm1.
|
| - __ bind(&handle_special_cases);
|
| - Label not_minus_half;
|
| - // Test for -0.5.
|
| - // Load xmm2 with -0.5.
|
| - __ movl(answer.reg(), Immediate(0xBF000000));
|
| - __ movd(xmm2, answer.reg());
|
| - __ cvtss2sd(xmm2, xmm2);
|
| - // xmm2 now has -0.5.
|
| - __ ucomisd(xmm2, xmm1);
|
| - __ j(not_equal, ¬_minus_half);
|
| -
|
| - // Calculates reciprocal of square root.
|
| - // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
|
| - __ xorpd(xmm1, xmm1);
|
| - __ addsd(xmm1, xmm0);
|
| - __ sqrtsd(xmm1, xmm1);
|
| - __ divsd(xmm3, xmm1);
|
| - __ movsd(xmm1, xmm3);
|
| - __ jmp(&allocate_return);
|
| -
|
| - // Test for 0.5.
|
| - __ bind(¬_minus_half);
|
| - // Load xmm2 with 0.5.
|
| - // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3.
|
| - __ addsd(xmm2, xmm3);
|
| - // xmm2 now has 0.5.
|
| - __ ucomisd(xmm2, xmm1);
|
| - call_runtime.Branch(not_equal);
|
| -
|
| - // Calculates square root.
|
| - // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
|
| - __ xorpd(xmm1, xmm1);
|
| - __ addsd(xmm1, xmm0);
|
| - __ sqrtsd(xmm1, xmm1);
|
| -
|
| - JumpTarget done;
|
| - Label failure, success;
|
| - __ bind(&allocate_return);
|
| - // Make a copy of the frame to enable us to handle allocation
|
| - // failure after the JumpTarget jump.
|
| - VirtualFrame* clone = new VirtualFrame(frame());
|
| - __ AllocateHeapNumber(answer.reg(), exponent.reg(), &failure);
|
| - __ movsd(FieldOperand(answer.reg(), HeapNumber::kValueOffset), xmm1);
|
| - // Remove the two original values from the frame - we only need those
|
| - // in the case where we branch to runtime.
|
| - frame()->Drop(2);
|
| - exponent.Unuse();
|
| - base.Unuse();
|
| - done.Jump(&answer);
|
| - // Use the copy of the original frame as our current frame.
|
| - RegisterFile empty_regs;
|
| - SetFrame(clone, &empty_regs);
|
| - // If we experience an allocation failure we branch to runtime.
|
| - __ bind(&failure);
|
| - call_runtime.Bind();
|
| - answer = frame()->CallRuntime(Runtime::kMath_pow_cfunction, 2);
|
| -
|
| - done.Bind(&answer);
|
| - frame()->Push(&answer);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(args->length(), 1);
|
| - Load(args->at(0));
|
| - TranscendentalCacheStub stub(TranscendentalCache::SIN,
|
| - TranscendentalCacheStub::TAGGED);
|
| - Result result = frame_->CallStub(&stub, 1);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(args->length(), 1);
|
| - Load(args->at(0));
|
| - TranscendentalCacheStub stub(TranscendentalCache::COS,
|
| - TranscendentalCacheStub::TAGGED);
|
| - Result result = frame_->CallStub(&stub, 1);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateMathLog(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(args->length(), 1);
|
| - Load(args->at(0));
|
| - TranscendentalCacheStub stub(TranscendentalCache::LOG,
|
| - TranscendentalCacheStub::TAGGED);
|
| - Result result = frame_->CallStub(&stub, 1);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -// Generates the Math.sqrt method. Please note - this function assumes that
|
| -// the callsite has executed ToNumber on the argument.
|
| -void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| -
|
| - // Leave original value on the frame if we need to call runtime.
|
| - frame()->Dup();
|
| - Result result = frame()->Pop();
|
| - result.ToRegister();
|
| - frame()->Spill(result.reg());
|
| - Label runtime;
|
| - Label non_smi;
|
| - Label load_done;
|
| - JumpTarget end;
|
| -
|
| - __ JumpIfNotSmi(result.reg(), &non_smi);
|
| - __ SmiToInteger32(result.reg(), result.reg());
|
| - __ cvtlsi2sd(xmm0, result.reg());
|
| - __ jmp(&load_done);
|
| - __ bind(&non_smi);
|
| - __ CompareRoot(FieldOperand(result.reg(), HeapObject::kMapOffset),
|
| - Heap::kHeapNumberMapRootIndex);
|
| - __ j(not_equal, &runtime);
|
| - __ movsd(xmm0, FieldOperand(result.reg(), HeapNumber::kValueOffset));
|
| -
|
| - __ bind(&load_done);
|
| - __ sqrtsd(xmm0, xmm0);
|
| - // A copy of the virtual frame to allow us to go to runtime after the
|
| - // JumpTarget jump.
|
| - Result scratch = allocator()->Allocate();
|
| - VirtualFrame* clone = new VirtualFrame(frame());
|
| - __ AllocateHeapNumber(result.reg(), scratch.reg(), &runtime);
|
| -
|
| - __ movsd(FieldOperand(result.reg(), HeapNumber::kValueOffset), xmm0);
|
| - frame()->Drop(1);
|
| - scratch.Unuse();
|
| - end.Jump(&result);
|
| - // We only branch to runtime if we have an allocation error.
|
| - // Use the copy of the original frame as our current frame.
|
| - RegisterFile empty_regs;
|
| - SetFrame(clone, &empty_regs);
|
| - __ bind(&runtime);
|
| - result = frame()->CallRuntime(Runtime::kMath_sqrt, 1);
|
| -
|
| - end.Bind(&result);
|
| - frame()->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsRegExpEquivalent(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(2, args->length());
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| - Result right_res = frame_->Pop();
|
| - Result left_res = frame_->Pop();
|
| - right_res.ToRegister();
|
| - left_res.ToRegister();
|
| - Result tmp_res = allocator()->Allocate();
|
| - ASSERT(tmp_res.is_valid());
|
| - Register right = right_res.reg();
|
| - Register left = left_res.reg();
|
| - Register tmp = tmp_res.reg();
|
| - right_res.Unuse();
|
| - left_res.Unuse();
|
| - tmp_res.Unuse();
|
| - __ cmpq(left, right);
|
| - destination()->true_target()->Branch(equal);
|
| - // Fail if either is a non-HeapObject.
|
| - Condition either_smi =
|
| - masm()->CheckEitherSmi(left, right, tmp);
|
| - destination()->false_target()->Branch(either_smi);
|
| - __ movq(tmp, FieldOperand(left, HeapObject::kMapOffset));
|
| - __ cmpb(FieldOperand(tmp, Map::kInstanceTypeOffset),
|
| - Immediate(JS_REGEXP_TYPE));
|
| - destination()->false_target()->Branch(not_equal);
|
| - __ cmpq(tmp, FieldOperand(right, HeapObject::kMapOffset));
|
| - destination()->false_target()->Branch(not_equal);
|
| - __ movq(tmp, FieldOperand(left, JSRegExp::kDataOffset));
|
| - __ cmpq(tmp, FieldOperand(right, JSRegExp::kDataOffset));
|
| - destination()->Split(equal);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateHasCachedArrayIndex(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| - ASSERT(value.is_valid());
|
| - __ testl(FieldOperand(value.reg(), String::kHashFieldOffset),
|
| - Immediate(String::kContainsCachedArrayIndexMask));
|
| - value.Unuse();
|
| - destination()->Split(zero);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateGetCachedArrayIndex(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result string = frame_->Pop();
|
| - string.ToRegister();
|
| -
|
| - Result number = allocator()->Allocate();
|
| - ASSERT(number.is_valid());
|
| - __ movl(number.reg(), FieldOperand(string.reg(), String::kHashFieldOffset));
|
| - __ IndexFromHash(number.reg(), number.reg());
|
| - string.Unuse();
|
| - frame_->Push(&number);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateFastAsciiArrayJoin(ZoneList<Expression*>* args) {
|
| - frame_->Push(FACTORY->undefined_value());
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
|
| - if (CheckForInlineRuntimeCall(node)) {
|
| - return;
|
| - }
|
| -
|
| - ZoneList<Expression*>* args = node->arguments();
|
| - Comment cmnt(masm_, "[ CallRuntime");
|
| - const Runtime::Function* function = node->function();
|
| -
|
| - if (function == NULL) {
|
| - // Push the builtins object found in the current global object.
|
| - Result temp = allocator()->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - __ movq(temp.reg(), GlobalObjectOperand());
|
| - __ movq(temp.reg(),
|
| - FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset));
|
| - frame_->Push(&temp);
|
| - }
|
| -
|
| - // Push the arguments ("left-to-right").
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - Load(args->at(i));
|
| - }
|
| -
|
| - if (function == NULL) {
|
| - // Call the JS runtime function.
|
| - frame_->Push(node->name());
|
| - Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET,
|
| - arg_count,
|
| - loop_nesting_);
|
| - frame_->RestoreContextRegister();
|
| - frame_->Push(&answer);
|
| - } else {
|
| - // Call the C runtime function.
|
| - Result answer = frame_->CallRuntime(function, arg_count);
|
| - frame_->Push(&answer);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
|
| - Comment cmnt(masm_, "[ UnaryOperation");
|
| -
|
| - Token::Value op = node->op();
|
| -
|
| - if (op == Token::NOT) {
|
| - // Swap the true and false targets but keep the same actual label
|
| - // as the fall through.
|
| - destination()->Invert();
|
| - LoadCondition(node->expression(), destination(), true);
|
| - // Swap the labels back.
|
| - destination()->Invert();
|
| -
|
| - } else if (op == Token::DELETE) {
|
| - Property* property = node->expression()->AsProperty();
|
| - if (property != NULL) {
|
| - Load(property->obj());
|
| - Load(property->key());
|
| - frame_->Push(Smi::FromInt(strict_mode_flag()));
|
| - Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 3);
|
| - frame_->Push(&answer);
|
| - return;
|
| - }
|
| -
|
| - Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
|
| - if (variable != NULL) {
|
| - // Delete of an unqualified identifier is disallowed in strict mode
|
| - // but "delete this" is.
|
| - ASSERT(strict_mode_flag() == kNonStrictMode || variable->is_this());
|
| - Slot* slot = variable->AsSlot();
|
| - if (variable->is_global()) {
|
| - LoadGlobal();
|
| - frame_->Push(variable->name());
|
| - frame_->Push(Smi::FromInt(kNonStrictMode));
|
| - Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
|
| - CALL_FUNCTION, 3);
|
| - frame_->Push(&answer);
|
| -
|
| - } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
|
| - // Call the runtime to delete from the context holding the named
|
| - // variable. Sync the virtual frame eagerly so we can push the
|
| - // arguments directly into place.
|
| - frame_->SyncRange(0, frame_->element_count() - 1);
|
| - frame_->EmitPush(rsi);
|
| - frame_->EmitPush(variable->name());
|
| - Result answer = frame_->CallRuntime(Runtime::kDeleteContextSlot, 2);
|
| - frame_->Push(&answer);
|
| - } else {
|
| - // Default: Result of deleting non-global, not dynamically
|
| - // introduced variables is false.
|
| - frame_->Push(FACTORY->false_value());
|
| - }
|
| - } else {
|
| - // Default: Result of deleting expressions is true.
|
| - Load(node->expression()); // may have side-effects
|
| - frame_->SetElementAt(0, FACTORY->true_value());
|
| - }
|
| -
|
| - } else if (op == Token::TYPEOF) {
|
| - // Special case for loading the typeof expression; see comment on
|
| - // LoadTypeofExpression().
|
| - LoadTypeofExpression(node->expression());
|
| - Result answer = frame_->CallRuntime(Runtime::kTypeof, 1);
|
| - frame_->Push(&answer);
|
| -
|
| - } else if (op == Token::VOID) {
|
| - Expression* expression = node->expression();
|
| - if (expression && expression->AsLiteral() && (
|
| - expression->AsLiteral()->IsTrue() ||
|
| - expression->AsLiteral()->IsFalse() ||
|
| - expression->AsLiteral()->handle()->IsNumber() ||
|
| - expression->AsLiteral()->handle()->IsString() ||
|
| - expression->AsLiteral()->handle()->IsJSRegExp() ||
|
| - expression->AsLiteral()->IsNull())) {
|
| - // Omit evaluating the value of the primitive literal.
|
| - // It will be discarded anyway, and can have no side effect.
|
| - frame_->Push(FACTORY->undefined_value());
|
| - } else {
|
| - Load(node->expression());
|
| - frame_->SetElementAt(0, FACTORY->undefined_value());
|
| - }
|
| -
|
| - } else {
|
| - bool can_overwrite = node->expression()->ResultOverwriteAllowed();
|
| - UnaryOverwriteMode overwrite =
|
| - can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
|
| - bool no_negative_zero = node->expression()->no_negative_zero();
|
| - Load(node->expression());
|
| - switch (op) {
|
| - case Token::NOT:
|
| - case Token::DELETE:
|
| - case Token::TYPEOF:
|
| - UNREACHABLE(); // handled above
|
| - break;
|
| -
|
| - case Token::SUB: {
|
| - GenericUnaryOpStub stub(
|
| - Token::SUB,
|
| - overwrite,
|
| - NO_UNARY_FLAGS,
|
| - no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero);
|
| - Result operand = frame_->Pop();
|
| - Result answer = frame_->CallStub(&stub, &operand);
|
| - answer.set_type_info(TypeInfo::Number());
|
| - frame_->Push(&answer);
|
| - break;
|
| - }
|
| -
|
| - case Token::BIT_NOT: {
|
| - // Smi check.
|
| - JumpTarget smi_label;
|
| - JumpTarget continue_label;
|
| - Result operand = frame_->Pop();
|
| - operand.ToRegister();
|
| -
|
| - Condition is_smi = masm_->CheckSmi(operand.reg());
|
| - smi_label.Branch(is_smi, &operand);
|
| -
|
| - GenericUnaryOpStub stub(Token::BIT_NOT,
|
| - overwrite,
|
| - NO_UNARY_SMI_CODE_IN_STUB);
|
| - Result answer = frame_->CallStub(&stub, &operand);
|
| - continue_label.Jump(&answer);
|
| -
|
| - smi_label.Bind(&answer);
|
| - answer.ToRegister();
|
| - frame_->Spill(answer.reg());
|
| - __ SmiNot(answer.reg(), answer.reg());
|
| - continue_label.Bind(&answer);
|
| - answer.set_type_info(TypeInfo::Smi());
|
| - frame_->Push(&answer);
|
| - break;
|
| - }
|
| -
|
| - case Token::ADD: {
|
| - // Smi check.
|
| - JumpTarget continue_label;
|
| - Result operand = frame_->Pop();
|
| - TypeInfo operand_info = operand.type_info();
|
| - operand.ToRegister();
|
| - Condition is_smi = masm_->CheckSmi(operand.reg());
|
| - continue_label.Branch(is_smi, &operand);
|
| - frame_->Push(&operand);
|
| - Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER,
|
| - CALL_FUNCTION, 1);
|
| -
|
| - continue_label.Bind(&answer);
|
| - if (operand_info.IsSmi()) {
|
| - answer.set_type_info(TypeInfo::Smi());
|
| - } else if (operand_info.IsInteger32()) {
|
| - answer.set_type_info(TypeInfo::Integer32());
|
| - } else {
|
| - answer.set_type_info(TypeInfo::Number());
|
| - }
|
| - frame_->Push(&answer);
|
| - break;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -// The value in dst was optimistically incremented or decremented.
|
| -// The result overflowed or was not smi tagged. Call into the runtime
|
| -// to convert the argument to a number, and call the specialized add
|
| -// or subtract stub. The result is left in dst.
|
| -class DeferredPrefixCountOperation: public DeferredCode {
|
| - public:
|
| - DeferredPrefixCountOperation(Register dst,
|
| - bool is_increment,
|
| - TypeInfo input_type)
|
| - : dst_(dst), is_increment_(is_increment), input_type_(input_type) {
|
| - set_comment("[ DeferredCountOperation");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Register dst_;
|
| - bool is_increment_;
|
| - TypeInfo input_type_;
|
| -};
|
| -
|
| -
|
| -void DeferredPrefixCountOperation::Generate() {
|
| - Register left;
|
| - if (input_type_.IsNumber()) {
|
| - left = dst_;
|
| - } else {
|
| - __ push(dst_);
|
| - __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
|
| - left = rax;
|
| - }
|
| -
|
| - GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB,
|
| - NO_OVERWRITE,
|
| - NO_GENERIC_BINARY_FLAGS,
|
| - TypeInfo::Number());
|
| - stub.GenerateCall(masm_, left, Smi::FromInt(1));
|
| -
|
| - if (!dst_.is(rax)) __ movq(dst_, rax);
|
| -}
|
| -
|
| -
|
| -// The value in dst was optimistically incremented or decremented.
|
| -// The result overflowed or was not smi tagged. Call into the runtime
|
| -// to convert the argument to a number. Update the original value in
|
| -// old. Call the specialized add or subtract stub. The result is
|
| -// left in dst.
|
| -class DeferredPostfixCountOperation: public DeferredCode {
|
| - public:
|
| - DeferredPostfixCountOperation(Register dst,
|
| - Register old,
|
| - bool is_increment,
|
| - TypeInfo input_type)
|
| - : dst_(dst),
|
| - old_(old),
|
| - is_increment_(is_increment),
|
| - input_type_(input_type) {
|
| - set_comment("[ DeferredCountOperation");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Register dst_;
|
| - Register old_;
|
| - bool is_increment_;
|
| - TypeInfo input_type_;
|
| -};
|
| -
|
| -
|
| -void DeferredPostfixCountOperation::Generate() {
|
| - Register left;
|
| - if (input_type_.IsNumber()) {
|
| - __ push(dst_); // Save the input to use as the old value.
|
| - left = dst_;
|
| - } else {
|
| - __ push(dst_);
|
| - __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
|
| - __ push(rax); // Save the result of ToNumber to use as the old value.
|
| - left = rax;
|
| - }
|
| -
|
| - GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB,
|
| - NO_OVERWRITE,
|
| - NO_GENERIC_BINARY_FLAGS,
|
| - TypeInfo::Number());
|
| - stub.GenerateCall(masm_, left, Smi::FromInt(1));
|
| -
|
| - if (!dst_.is(rax)) __ movq(dst_, rax);
|
| - __ pop(old_);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCountOperation(CountOperation* node) {
|
| - Comment cmnt(masm_, "[ CountOperation");
|
| -
|
| - bool is_postfix = node->is_postfix();
|
| - bool is_increment = node->op() == Token::INC;
|
| -
|
| - Variable* var = node->expression()->AsVariableProxy()->AsVariable();
|
| - bool is_const = (var != NULL && var->mode() == Variable::CONST);
|
| -
|
| - // Postfix operations need a stack slot under the reference to hold
|
| - // the old value while the new value is being stored. This is so that
|
| - // in the case that storing the new value requires a call, the old
|
| - // value will be in the frame to be spilled.
|
| - if (is_postfix) frame_->Push(Smi::FromInt(0));
|
| -
|
| - // A constant reference is not saved to, so the reference is not a
|
| - // compound assignment reference.
|
| - { Reference target(this, node->expression(), !is_const);
|
| - if (target.is_illegal()) {
|
| - // Spoof the virtual frame to have the expected height (one higher
|
| - // than on entry).
|
| - if (!is_postfix) frame_->Push(Smi::FromInt(0));
|
| - return;
|
| - }
|
| - target.TakeValue();
|
| -
|
| - Result new_value = frame_->Pop();
|
| - new_value.ToRegister();
|
| -
|
| - Result old_value; // Only allocated in the postfix case.
|
| - if (is_postfix) {
|
| - // Allocate a temporary to preserve the old value.
|
| - old_value = allocator_->Allocate();
|
| - ASSERT(old_value.is_valid());
|
| - __ movq(old_value.reg(), new_value.reg());
|
| -
|
| - // The return value for postfix operations is ToNumber(input).
|
| - // Keep more precise type info if the input is some kind of
|
| - // number already. If the input is not a number we have to wait
|
| - // for the deferred code to convert it.
|
| - if (new_value.type_info().IsNumber()) {
|
| - old_value.set_type_info(new_value.type_info());
|
| - }
|
| - }
|
| - // Ensure the new value is writable.
|
| - frame_->Spill(new_value.reg());
|
| -
|
| - DeferredCode* deferred = NULL;
|
| - if (is_postfix) {
|
| - deferred = new DeferredPostfixCountOperation(new_value.reg(),
|
| - old_value.reg(),
|
| - is_increment,
|
| - new_value.type_info());
|
| - } else {
|
| - deferred = new DeferredPrefixCountOperation(new_value.reg(),
|
| - is_increment,
|
| - new_value.type_info());
|
| - }
|
| -
|
| - if (new_value.is_smi()) {
|
| - if (FLAG_debug_code) { __ AbortIfNotSmi(new_value.reg()); }
|
| - } else {
|
| - __ JumpIfNotSmi(new_value.reg(), deferred->entry_label());
|
| - }
|
| - if (is_increment) {
|
| - __ SmiAddConstant(new_value.reg(),
|
| - new_value.reg(),
|
| - Smi::FromInt(1),
|
| - deferred->entry_label());
|
| - } else {
|
| - __ SmiSubConstant(new_value.reg(),
|
| - new_value.reg(),
|
| - Smi::FromInt(1),
|
| - deferred->entry_label());
|
| - }
|
| - deferred->BindExit();
|
| -
|
| - // Postfix count operations return their input converted to
|
| - // number. The case when the input is already a number is covered
|
| - // above in the allocation code for old_value.
|
| - if (is_postfix && !new_value.type_info().IsNumber()) {
|
| - old_value.set_type_info(TypeInfo::Number());
|
| - }
|
| -
|
| - new_value.set_type_info(TypeInfo::Number());
|
| -
|
| - // Postfix: store the old value in the allocated slot under the
|
| - // reference.
|
| - if (is_postfix) frame_->SetElementAt(target.size(), &old_value);
|
| -
|
| - frame_->Push(&new_value);
|
| - // Non-constant: update the reference.
|
| - if (!is_const) target.SetValue(NOT_CONST_INIT);
|
| - }
|
| -
|
| - // Postfix: drop the new value and use the old.
|
| - if (is_postfix) frame_->Drop();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) {
|
| - // According to ECMA-262 section 11.11, page 58, the binary logical
|
| - // operators must yield the result of one of the two expressions
|
| - // before any ToBoolean() conversions. This means that the value
|
| - // produced by a && or || operator is not necessarily a boolean.
|
| -
|
| - // NOTE: If the left hand side produces a materialized value (not
|
| - // control flow), we force the right hand side to do the same. This
|
| - // is necessary because we assume that if we get control flow on the
|
| - // last path out of an expression we got it on all paths.
|
| - if (node->op() == Token::AND) {
|
| - JumpTarget is_true;
|
| - ControlDestination dest(&is_true, destination()->false_target(), true);
|
| - LoadCondition(node->left(), &dest, false);
|
| -
|
| - if (dest.false_was_fall_through()) {
|
| - // The current false target was used as the fall-through. If
|
| - // there are no dangling jumps to is_true then the left
|
| - // subexpression was unconditionally false. Otherwise we have
|
| - // paths where we do have to evaluate the right subexpression.
|
| - if (is_true.is_linked()) {
|
| - // We need to compile the right subexpression. If the jump to
|
| - // the current false target was a forward jump then we have a
|
| - // valid frame, we have just bound the false target, and we
|
| - // have to jump around the code for the right subexpression.
|
| - if (has_valid_frame()) {
|
| - destination()->false_target()->Unuse();
|
| - destination()->false_target()->Jump();
|
| - }
|
| - is_true.Bind();
|
| - // The left subexpression compiled to control flow, so the
|
| - // right one is free to do so as well.
|
| - LoadCondition(node->right(), destination(), false);
|
| - } else {
|
| - // We have actually just jumped to or bound the current false
|
| - // target but the current control destination is not marked as
|
| - // used.
|
| - destination()->Use(false);
|
| - }
|
| -
|
| - } else if (dest.is_used()) {
|
| - // The left subexpression compiled to control flow (and is_true
|
| - // was just bound), so the right is free to do so as well.
|
| - LoadCondition(node->right(), destination(), false);
|
| -
|
| - } else {
|
| - // We have a materialized value on the frame, so we exit with
|
| - // one on all paths. There are possibly also jumps to is_true
|
| - // from nested subexpressions.
|
| - JumpTarget pop_and_continue;
|
| - JumpTarget exit;
|
| -
|
| - // Avoid popping the result if it converts to 'false' using the
|
| - // standard ToBoolean() conversion as described in ECMA-262,
|
| - // section 9.2, page 30.
|
| - //
|
| - // Duplicate the TOS value. The duplicate will be popped by
|
| - // ToBoolean.
|
| - frame_->Dup();
|
| - ControlDestination dest(&pop_and_continue, &exit, true);
|
| - ToBoolean(&dest);
|
| -
|
| - // Pop the result of evaluating the first part.
|
| - frame_->Drop();
|
| -
|
| - // Compile right side expression.
|
| - is_true.Bind();
|
| - Load(node->right());
|
| -
|
| - // Exit (always with a materialized value).
|
| - exit.Bind();
|
| - }
|
| -
|
| - } else {
|
| - ASSERT(node->op() == Token::OR);
|
| - JumpTarget is_false;
|
| - ControlDestination dest(destination()->true_target(), &is_false, false);
|
| - LoadCondition(node->left(), &dest, false);
|
| -
|
| - if (dest.true_was_fall_through()) {
|
| - // The current true target was used as the fall-through. If
|
| - // there are no dangling jumps to is_false then the left
|
| - // subexpression was unconditionally true. Otherwise we have
|
| - // paths where we do have to evaluate the right subexpression.
|
| - if (is_false.is_linked()) {
|
| - // We need to compile the right subexpression. If the jump to
|
| - // the current true target was a forward jump then we have a
|
| - // valid frame, we have just bound the true target, and we
|
| - // have to jump around the code for the right subexpression.
|
| - if (has_valid_frame()) {
|
| - destination()->true_target()->Unuse();
|
| - destination()->true_target()->Jump();
|
| - }
|
| - is_false.Bind();
|
| - // The left subexpression compiled to control flow, so the
|
| - // right one is free to do so as well.
|
| - LoadCondition(node->right(), destination(), false);
|
| - } else {
|
| - // We have just jumped to or bound the current true target but
|
| - // the current control destination is not marked as used.
|
| - destination()->Use(true);
|
| - }
|
| -
|
| - } else if (dest.is_used()) {
|
| - // The left subexpression compiled to control flow (and is_false
|
| - // was just bound), so the right is free to do so as well.
|
| - LoadCondition(node->right(), destination(), false);
|
| -
|
| - } else {
|
| - // We have a materialized value on the frame, so we exit with
|
| - // one on all paths. There are possibly also jumps to is_false
|
| - // from nested subexpressions.
|
| - JumpTarget pop_and_continue;
|
| - JumpTarget exit;
|
| -
|
| - // Avoid popping the result if it converts to 'true' using the
|
| - // standard ToBoolean() conversion as described in ECMA-262,
|
| - // section 9.2, page 30.
|
| - //
|
| - // Duplicate the TOS value. The duplicate will be popped by
|
| - // ToBoolean.
|
| - frame_->Dup();
|
| - ControlDestination dest(&exit, &pop_and_continue, false);
|
| - ToBoolean(&dest);
|
| -
|
| - // Pop the result of evaluating the first part.
|
| - frame_->Drop();
|
| -
|
| - // Compile right side expression.
|
| - is_false.Bind();
|
| - Load(node->right());
|
| -
|
| - // Exit (always with a materialized value).
|
| - exit.Bind();
|
| - }
|
| - }
|
| -}
|
| -
|
| -void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
|
| - Comment cmnt(masm_, "[ BinaryOperation");
|
| -
|
| - if (node->op() == Token::AND || node->op() == Token::OR) {
|
| - GenerateLogicalBooleanOperation(node);
|
| - } else {
|
| - // NOTE: The code below assumes that the slow cases (calls to runtime)
|
| - // never return a constant/immutable object.
|
| - OverwriteMode overwrite_mode = NO_OVERWRITE;
|
| - if (node->left()->ResultOverwriteAllowed()) {
|
| - overwrite_mode = OVERWRITE_LEFT;
|
| - } else if (node->right()->ResultOverwriteAllowed()) {
|
| - overwrite_mode = OVERWRITE_RIGHT;
|
| - }
|
| -
|
| - if (node->left()->IsTrivial()) {
|
| - Load(node->right());
|
| - Result right = frame_->Pop();
|
| - frame_->Push(node->left());
|
| - frame_->Push(&right);
|
| - } else {
|
| - Load(node->left());
|
| - Load(node->right());
|
| - }
|
| - GenericBinaryOperation(node, overwrite_mode);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitThisFunction(ThisFunction* node) {
|
| - frame_->PushFunction();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
|
| - Comment cmnt(masm_, "[ CompareOperation");
|
| -
|
| - // Get the expressions from the node.
|
| - Expression* left = node->left();
|
| - Expression* right = node->right();
|
| - Token::Value op = node->op();
|
| - // To make typeof testing for natives implemented in JavaScript really
|
| - // efficient, we generate special code for expressions of the form:
|
| - // 'typeof <expression> == <string>'.
|
| - UnaryOperation* operation = left->AsUnaryOperation();
|
| - if ((op == Token::EQ || op == Token::EQ_STRICT) &&
|
| - (operation != NULL && operation->op() == Token::TYPEOF) &&
|
| - (right->AsLiteral() != NULL &&
|
| - right->AsLiteral()->handle()->IsString())) {
|
| - Handle<String> check(Handle<String>::cast(right->AsLiteral()->handle()));
|
| -
|
| - // Load the operand and move it to a register.
|
| - LoadTypeofExpression(operation->expression());
|
| - Result answer = frame_->Pop();
|
| - answer.ToRegister();
|
| -
|
| - if (check->Equals(HEAP->number_symbol())) {
|
| - Condition is_smi = masm_->CheckSmi(answer.reg());
|
| - destination()->true_target()->Branch(is_smi);
|
| - frame_->Spill(answer.reg());
|
| - __ movq(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
|
| - __ CompareRoot(answer.reg(), Heap::kHeapNumberMapRootIndex);
|
| - answer.Unuse();
|
| - destination()->Split(equal);
|
| -
|
| - } else if (check->Equals(HEAP->string_symbol())) {
|
| - Condition is_smi = masm_->CheckSmi(answer.reg());
|
| - destination()->false_target()->Branch(is_smi);
|
| -
|
| - // It can be an undetectable string object.
|
| - __ movq(kScratchRegister,
|
| - FieldOperand(answer.reg(), HeapObject::kMapOffset));
|
| - __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
|
| - Immediate(1 << Map::kIsUndetectable));
|
| - destination()->false_target()->Branch(not_zero);
|
| - __ CmpInstanceType(kScratchRegister, FIRST_NONSTRING_TYPE);
|
| - answer.Unuse();
|
| - destination()->Split(below); // Unsigned byte comparison needed.
|
| -
|
| - } else if (check->Equals(HEAP->boolean_symbol())) {
|
| - __ CompareRoot(answer.reg(), Heap::kTrueValueRootIndex);
|
| - destination()->true_target()->Branch(equal);
|
| - __ CompareRoot(answer.reg(), Heap::kFalseValueRootIndex);
|
| - answer.Unuse();
|
| - destination()->Split(equal);
|
| -
|
| - } else if (check->Equals(HEAP->undefined_symbol())) {
|
| - __ CompareRoot(answer.reg(), Heap::kUndefinedValueRootIndex);
|
| - destination()->true_target()->Branch(equal);
|
| -
|
| - Condition is_smi = masm_->CheckSmi(answer.reg());
|
| - destination()->false_target()->Branch(is_smi);
|
| -
|
| - // It can be an undetectable object.
|
| - __ movq(kScratchRegister,
|
| - FieldOperand(answer.reg(), HeapObject::kMapOffset));
|
| - __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
|
| - Immediate(1 << Map::kIsUndetectable));
|
| - answer.Unuse();
|
| - destination()->Split(not_zero);
|
| -
|
| - } else if (check->Equals(HEAP->function_symbol())) {
|
| - Condition is_smi = masm_->CheckSmi(answer.reg());
|
| - destination()->false_target()->Branch(is_smi);
|
| - frame_->Spill(answer.reg());
|
| - __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg());
|
| - destination()->true_target()->Branch(equal);
|
| - // Regular expressions are callable so typeof == 'function'.
|
| - __ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE);
|
| - answer.Unuse();
|
| - destination()->Split(equal);
|
| -
|
| - } else if (check->Equals(HEAP->object_symbol())) {
|
| - Condition is_smi = masm_->CheckSmi(answer.reg());
|
| - destination()->false_target()->Branch(is_smi);
|
| - __ CompareRoot(answer.reg(), Heap::kNullValueRootIndex);
|
| - destination()->true_target()->Branch(equal);
|
| -
|
| - // Regular expressions are typeof == 'function', not 'object'.
|
| - __ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, kScratchRegister);
|
| - destination()->false_target()->Branch(equal);
|
| -
|
| - // It can be an undetectable object.
|
| - __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
|
| - Immediate(1 << Map::kIsUndetectable));
|
| - destination()->false_target()->Branch(not_zero);
|
| - __ CmpInstanceType(kScratchRegister, FIRST_JS_OBJECT_TYPE);
|
| - destination()->false_target()->Branch(below);
|
| - __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
|
| - answer.Unuse();
|
| - destination()->Split(below_equal);
|
| - } else {
|
| - // Uncommon case: typeof testing against a string literal that is
|
| - // never returned from the typeof operator.
|
| - answer.Unuse();
|
| - destination()->Goto(false);
|
| - }
|
| - return;
|
| - }
|
| -
|
| - Condition cc = no_condition;
|
| - bool strict = false;
|
| - switch (op) {
|
| - case Token::EQ_STRICT:
|
| - strict = true;
|
| - // Fall through
|
| - case Token::EQ:
|
| - cc = equal;
|
| - break;
|
| - case Token::LT:
|
| - cc = less;
|
| - break;
|
| - case Token::GT:
|
| - cc = greater;
|
| - break;
|
| - case Token::LTE:
|
| - cc = less_equal;
|
| - break;
|
| - case Token::GTE:
|
| - cc = greater_equal;
|
| - break;
|
| - case Token::IN: {
|
| - Load(left);
|
| - Load(right);
|
| - Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2);
|
| - frame_->Push(&answer); // push the result
|
| - return;
|
| - }
|
| - case Token::INSTANCEOF: {
|
| - Load(left);
|
| - Load(right);
|
| - InstanceofStub stub(InstanceofStub::kNoFlags);
|
| - Result answer = frame_->CallStub(&stub, 2);
|
| - answer.ToRegister();
|
| - __ testq(answer.reg(), answer.reg());
|
| - answer.Unuse();
|
| - destination()->Split(zero);
|
| - return;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -
|
| - if (left->IsTrivial()) {
|
| - Load(right);
|
| - Result right_result = frame_->Pop();
|
| - frame_->Push(left);
|
| - frame_->Push(&right_result);
|
| - } else {
|
| - Load(left);
|
| - Load(right);
|
| - }
|
| -
|
| - Comparison(node, cc, strict, destination());
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCompareToNull(CompareToNull* node) {
|
| - Comment cmnt(masm_, "[ CompareToNull");
|
| -
|
| - Load(node->expression());
|
| - Result operand = frame_->Pop();
|
| - operand.ToRegister();
|
| - __ CompareRoot(operand.reg(), Heap::kNullValueRootIndex);
|
| - if (node->is_strict()) {
|
| - operand.Unuse();
|
| - destination()->Split(equal);
|
| - } else {
|
| - // The 'null' value is only equal to 'undefined' if using non-strict
|
| - // comparisons.
|
| - destination()->true_target()->Branch(equal);
|
| - __ CompareRoot(operand.reg(), Heap::kUndefinedValueRootIndex);
|
| - destination()->true_target()->Branch(equal);
|
| - Condition is_smi = masm_->CheckSmi(operand.reg());
|
| - destination()->false_target()->Branch(is_smi);
|
| -
|
| - // It can be an undetectable object.
|
| - // Use a scratch register in preference to spilling operand.reg().
|
| - Result temp = allocator()->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - __ movq(temp.reg(),
|
| - FieldOperand(operand.reg(), HeapObject::kMapOffset));
|
| - __ testb(FieldOperand(temp.reg(), Map::kBitFieldOffset),
|
| - Immediate(1 << Map::kIsUndetectable));
|
| - temp.Unuse();
|
| - operand.Unuse();
|
| - destination()->Split(not_zero);
|
| - }
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -bool CodeGenerator::HasValidEntryRegisters() {
|
| - return (allocator()->count(rax) == (frame()->is_used(rax) ? 1 : 0))
|
| - && (allocator()->count(rbx) == (frame()->is_used(rbx) ? 1 : 0))
|
| - && (allocator()->count(rcx) == (frame()->is_used(rcx) ? 1 : 0))
|
| - && (allocator()->count(rdx) == (frame()->is_used(rdx) ? 1 : 0))
|
| - && (allocator()->count(rdi) == (frame()->is_used(rdi) ? 1 : 0))
|
| - && (allocator()->count(r8) == (frame()->is_used(r8) ? 1 : 0))
|
| - && (allocator()->count(r9) == (frame()->is_used(r9) ? 1 : 0))
|
| - && (allocator()->count(r11) == (frame()->is_used(r11) ? 1 : 0))
|
| - && (allocator()->count(r14) == (frame()->is_used(r14) ? 1 : 0))
|
| - && (allocator()->count(r15) == (frame()->is_used(r15) ? 1 : 0));
|
| -}
|
| -#endif
|
| -
|
| -
|
| -
|
| -// Emit a LoadIC call to get the value from receiver and leave it in
|
| -// dst. The receiver register is restored after the call.
|
| -class DeferredReferenceGetNamedValue: public DeferredCode {
|
| - public:
|
| - DeferredReferenceGetNamedValue(Register dst,
|
| - Register receiver,
|
| - Handle<String> name)
|
| - : dst_(dst), receiver_(receiver), name_(name) {
|
| - set_comment("[ DeferredReferenceGetNamedValue");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - Label* patch_site() { return &patch_site_; }
|
| -
|
| - private:
|
| - Label patch_site_;
|
| - Register dst_;
|
| - Register receiver_;
|
| - Handle<String> name_;
|
| -};
|
| -
|
| -
|
| -void DeferredReferenceGetNamedValue::Generate() {
|
| - if (!receiver_.is(rax)) {
|
| - __ movq(rax, receiver_);
|
| - }
|
| - __ Move(rcx, name_);
|
| - Handle<Code> ic = Isolate::Current()->builtins()->LoadIC_Initialize();
|
| - __ Call(ic, RelocInfo::CODE_TARGET);
|
| - // The call must be followed by a test rax instruction to indicate
|
| - // that the inobject property case was inlined.
|
| - //
|
| - // Store the delta to the map check instruction here in the test
|
| - // instruction. Use masm_-> instead of the __ macro since the
|
| - // latter can't return a value.
|
| - int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
|
| - // Here we use masm_-> instead of the __ macro because this is the
|
| - // instruction that gets patched and coverage code gets in the way.
|
| - masm_->testl(rax, Immediate(-delta_to_patch_site));
|
| - Counters* counters = masm()->isolate()->counters();
|
| - __ IncrementCounter(counters->named_load_inline_miss(), 1);
|
| -
|
| - if (!dst_.is(rax)) __ movq(dst_, rax);
|
| -}
|
| -
|
| -
|
| -class DeferredReferenceGetKeyedValue: public DeferredCode {
|
| - public:
|
| - explicit DeferredReferenceGetKeyedValue(Register dst,
|
| - Register receiver,
|
| - Register key)
|
| - : dst_(dst), receiver_(receiver), key_(key) {
|
| - set_comment("[ DeferredReferenceGetKeyedValue");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - Label* patch_site() { return &patch_site_; }
|
| -
|
| - private:
|
| - Label patch_site_;
|
| - Register dst_;
|
| - Register receiver_;
|
| - Register key_;
|
| -};
|
| -
|
| -
|
| -void DeferredReferenceGetKeyedValue::Generate() {
|
| - if (receiver_.is(rdx)) {
|
| - if (!key_.is(rax)) {
|
| - __ movq(rax, key_);
|
| - } // else do nothing.
|
| - } else if (receiver_.is(rax)) {
|
| - if (key_.is(rdx)) {
|
| - __ xchg(rax, rdx);
|
| - } else if (key_.is(rax)) {
|
| - __ movq(rdx, receiver_);
|
| - } else {
|
| - __ movq(rdx, receiver_);
|
| - __ movq(rax, key_);
|
| - }
|
| - } else if (key_.is(rax)) {
|
| - __ movq(rdx, receiver_);
|
| - } else {
|
| - __ movq(rax, key_);
|
| - __ movq(rdx, receiver_);
|
| - }
|
| - // Calculate the delta from the IC call instruction to the map check
|
| - // movq instruction in the inlined version. This delta is stored in
|
| - // a test(rax, delta) instruction after the call so that we can find
|
| - // it in the IC initialization code and patch the movq instruction.
|
| - // This means that we cannot allow test instructions after calls to
|
| - // KeyedLoadIC stubs in other places.
|
| - Handle<Code> ic = Isolate::Current()->builtins()->KeyedLoadIC_Initialize();
|
| - __ Call(ic, RelocInfo::CODE_TARGET);
|
| - // The delta from the start of the map-compare instruction to the
|
| - // test instruction. We use masm_-> directly here instead of the __
|
| - // macro because the macro sometimes uses macro expansion to turn
|
| - // into something that can't return a value. This is encountered
|
| - // when doing generated code coverage tests.
|
| - int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
|
| - // Here we use masm_-> instead of the __ macro because this is the
|
| - // instruction that gets patched and coverage code gets in the way.
|
| - // TODO(X64): Consider whether it's worth switching the test to a
|
| - // 7-byte NOP with non-zero immediate (0f 1f 80 xxxxxxxx) which won't
|
| - // be generated normally.
|
| - masm_->testl(rax, Immediate(-delta_to_patch_site));
|
| - Counters* counters = masm()->isolate()->counters();
|
| - __ IncrementCounter(counters->keyed_load_inline_miss(), 1);
|
| -
|
| - if (!dst_.is(rax)) __ movq(dst_, rax);
|
| -}
|
| -
|
| -
|
| -class DeferredReferenceSetKeyedValue: public DeferredCode {
|
| - public:
|
| - DeferredReferenceSetKeyedValue(Register value,
|
| - Register key,
|
| - Register receiver,
|
| - StrictModeFlag strict_mode)
|
| - : value_(value),
|
| - key_(key),
|
| - receiver_(receiver),
|
| - strict_mode_(strict_mode) {
|
| - set_comment("[ DeferredReferenceSetKeyedValue");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - Label* patch_site() { return &patch_site_; }
|
| -
|
| - private:
|
| - Register value_;
|
| - Register key_;
|
| - Register receiver_;
|
| - Label patch_site_;
|
| - StrictModeFlag strict_mode_;
|
| -};
|
| -
|
| -
|
| -void DeferredReferenceSetKeyedValue::Generate() {
|
| - Counters* counters = masm()->isolate()->counters();
|
| - __ IncrementCounter(counters->keyed_store_inline_miss(), 1);
|
| - // Move value, receiver, and key to registers rax, rdx, and rcx, as
|
| - // the IC stub expects.
|
| - // Move value to rax, using xchg if the receiver or key is in rax.
|
| - if (!value_.is(rax)) {
|
| - if (!receiver_.is(rax) && !key_.is(rax)) {
|
| - __ movq(rax, value_);
|
| - } else {
|
| - __ xchg(rax, value_);
|
| - // Update receiver_ and key_ if they are affected by the swap.
|
| - if (receiver_.is(rax)) {
|
| - receiver_ = value_;
|
| - } else if (receiver_.is(value_)) {
|
| - receiver_ = rax;
|
| - }
|
| - if (key_.is(rax)) {
|
| - key_ = value_;
|
| - } else if (key_.is(value_)) {
|
| - key_ = rax;
|
| - }
|
| - }
|
| - }
|
| - // Value is now in rax. Its original location is remembered in value_,
|
| - // and the value is restored to value_ before returning.
|
| - // The variables receiver_ and key_ are not preserved.
|
| - // Move receiver and key to rdx and rcx, swapping if necessary.
|
| - if (receiver_.is(rdx)) {
|
| - if (!key_.is(rcx)) {
|
| - __ movq(rcx, key_);
|
| - } // Else everything is already in the right place.
|
| - } else if (receiver_.is(rcx)) {
|
| - if (key_.is(rdx)) {
|
| - __ xchg(rcx, rdx);
|
| - } else if (key_.is(rcx)) {
|
| - __ movq(rdx, receiver_);
|
| - } else {
|
| - __ movq(rdx, receiver_);
|
| - __ movq(rcx, key_);
|
| - }
|
| - } else if (key_.is(rcx)) {
|
| - __ movq(rdx, receiver_);
|
| - } else {
|
| - __ movq(rcx, key_);
|
| - __ movq(rdx, receiver_);
|
| - }
|
| -
|
| - // Call the IC stub.
|
| - Handle<Code> ic(Isolate::Current()->builtins()->builtin(
|
| - (strict_mode_ == kStrictMode) ? Builtins::kKeyedStoreIC_Initialize_Strict
|
| - : Builtins::kKeyedStoreIC_Initialize));
|
| - __ Call(ic, RelocInfo::CODE_TARGET);
|
| - // The delta from the start of the map-compare instructions (initial movq)
|
| - // to the test instruction. We use masm_-> directly here instead of the
|
| - // __ macro because the macro sometimes uses macro expansion to turn
|
| - // into something that can't return a value. This is encountered
|
| - // when doing generated code coverage tests.
|
| - int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
|
| - // Here we use masm_-> instead of the __ macro because this is the
|
| - // instruction that gets patched and coverage code gets in the way.
|
| - masm_->testl(rax, Immediate(-delta_to_patch_site));
|
| - // Restore value (returned from store IC).
|
| - if (!value_.is(rax)) __ movq(value_, rax);
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) {
|
| -#ifdef DEBUG
|
| - int original_height = frame()->height();
|
| -#endif
|
| - Result result;
|
| - // Do not inline the inobject property case for loads from the global
|
| - // object. Also do not inline for unoptimized code. This saves time
|
| - // in the code generator. Unoptimized code is toplevel code or code
|
| - // that is not in a loop.
|
| - if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) {
|
| - Comment cmnt(masm(), "[ Load from named Property");
|
| - frame()->Push(name);
|
| -
|
| - RelocInfo::Mode mode = is_contextual
|
| - ? RelocInfo::CODE_TARGET_CONTEXT
|
| - : RelocInfo::CODE_TARGET;
|
| - result = frame()->CallLoadIC(mode);
|
| - // A test rax instruction following the call signals that the
|
| - // inobject property case was inlined. Ensure that there is not
|
| - // a test rax instruction here.
|
| - __ nop();
|
| - } else {
|
| - // Inline the inobject property case.
|
| - Comment cmnt(masm(), "[ Inlined named property load");
|
| - Result receiver = frame()->Pop();
|
| - receiver.ToRegister();
|
| - result = allocator()->Allocate();
|
| - ASSERT(result.is_valid());
|
| -
|
| - // r12 is now a reserved register, so it cannot be the receiver.
|
| - // If it was, the distance to the fixup location would not be constant.
|
| - ASSERT(!receiver.reg().is(r12));
|
| -
|
| - DeferredReferenceGetNamedValue* deferred =
|
| - new DeferredReferenceGetNamedValue(result.reg(), receiver.reg(), name);
|
| -
|
| - // Check that the receiver is a heap object.
|
| - __ JumpIfSmi(receiver.reg(), deferred->entry_label());
|
| -
|
| - __ bind(deferred->patch_site());
|
| - // This is the map check instruction that will be patched (so we can't
|
| - // use the double underscore macro that may insert instructions).
|
| - // Initially use an invalid map to force a failure.
|
| - masm()->movq(kScratchRegister, FACTORY->null_value(),
|
| - RelocInfo::EMBEDDED_OBJECT);
|
| - masm()->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
|
| - kScratchRegister);
|
| - // This branch is always a forwards branch so it's always a fixed
|
| - // size which allows the assert below to succeed and patching to work.
|
| - // Don't use deferred->Branch(...), since that might add coverage code.
|
| - masm()->j(not_equal, deferred->entry_label());
|
| -
|
| - // The delta from the patch label to the load offset must be
|
| - // statically known.
|
| - ASSERT(masm()->SizeOfCodeGeneratedSince(deferred->patch_site()) ==
|
| - LoadIC::kOffsetToLoadInstruction);
|
| - // The initial (invalid) offset has to be large enough to force
|
| - // a 32-bit instruction encoding to allow patching with an
|
| - // arbitrary offset. Use kMaxInt (minus kHeapObjectTag).
|
| - int offset = kMaxInt;
|
| - masm()->movq(result.reg(), FieldOperand(receiver.reg(), offset));
|
| -
|
| - Counters* counters = masm()->isolate()->counters();
|
| - __ IncrementCounter(counters->named_load_inline(), 1);
|
| - deferred->BindExit();
|
| - }
|
| - ASSERT(frame()->height() == original_height - 1);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::EmitNamedStore(Handle<String> name, bool is_contextual) {
|
| -#ifdef DEBUG
|
| - int expected_height = frame()->height() - (is_contextual ? 1 : 2);
|
| -#endif
|
| -
|
| - Result result;
|
| - if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) {
|
| - result = frame()->CallStoreIC(name, is_contextual, strict_mode_flag());
|
| - // A test rax instruction following the call signals that the inobject
|
| - // property case was inlined. Ensure that there is not a test rax
|
| - // instruction here.
|
| - __ nop();
|
| - } else {
|
| - // Inline the in-object property case.
|
| - JumpTarget slow, done;
|
| - Label patch_site;
|
| -
|
| - // Get the value and receiver from the stack.
|
| - Result value = frame()->Pop();
|
| - value.ToRegister();
|
| - Result receiver = frame()->Pop();
|
| - receiver.ToRegister();
|
| -
|
| - // Allocate result register.
|
| - result = allocator()->Allocate();
|
| - ASSERT(result.is_valid() && receiver.is_valid() && value.is_valid());
|
| -
|
| - // r12 is now a reserved register, so it cannot be the receiver.
|
| - // If it was, the distance to the fixup location would not be constant.
|
| - ASSERT(!receiver.reg().is(r12));
|
| -
|
| - // Check that the receiver is a heap object.
|
| - Condition is_smi = masm()->CheckSmi(receiver.reg());
|
| - slow.Branch(is_smi, &value, &receiver);
|
| -
|
| - // This is the map check instruction that will be patched.
|
| - // Initially use an invalid map to force a failure. The exact
|
| - // instruction sequence is important because we use the
|
| - // kOffsetToStoreInstruction constant for patching. We avoid using
|
| - // the __ macro for the following two instructions because it
|
| - // might introduce extra instructions.
|
| - __ bind(&patch_site);
|
| - masm()->movq(kScratchRegister, FACTORY->null_value(),
|
| - RelocInfo::EMBEDDED_OBJECT);
|
| - masm()->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
|
| - kScratchRegister);
|
| - // This branch is always a forwards branch so it's always a fixed size
|
| - // which allows the assert below to succeed and patching to work.
|
| - slow.Branch(not_equal, &value, &receiver);
|
| -
|
| - // The delta from the patch label to the store offset must be
|
| - // statically known.
|
| - ASSERT(masm()->SizeOfCodeGeneratedSince(&patch_site) ==
|
| - StoreIC::kOffsetToStoreInstruction);
|
| -
|
| - // The initial (invalid) offset has to be large enough to force a 32-bit
|
| - // instruction encoding to allow patching with an arbitrary offset. Use
|
| - // kMaxInt (minus kHeapObjectTag).
|
| - int offset = kMaxInt;
|
| - __ movq(FieldOperand(receiver.reg(), offset), value.reg());
|
| - __ movq(result.reg(), value.reg());
|
| -
|
| - // Allocate scratch register for write barrier.
|
| - Result scratch = allocator()->Allocate();
|
| - ASSERT(scratch.is_valid());
|
| -
|
| - // The write barrier clobbers all input registers, so spill the
|
| - // receiver and the value.
|
| - frame_->Spill(receiver.reg());
|
| - frame_->Spill(value.reg());
|
| -
|
| - // If the receiver and the value share a register allocate a new
|
| - // register for the receiver.
|
| - if (receiver.reg().is(value.reg())) {
|
| - receiver = allocator()->Allocate();
|
| - ASSERT(receiver.is_valid());
|
| - __ movq(receiver.reg(), value.reg());
|
| - }
|
| -
|
| - // Update the write barrier. To save instructions in the inlined
|
| - // version we do not filter smis.
|
| - Label skip_write_barrier;
|
| - __ InNewSpace(receiver.reg(), value.reg(), equal, &skip_write_barrier);
|
| - int delta_to_record_write = masm_->SizeOfCodeGeneratedSince(&patch_site);
|
| - __ lea(scratch.reg(), Operand(receiver.reg(), offset));
|
| - __ RecordWriteHelper(receiver.reg(), scratch.reg(), value.reg());
|
| - if (FLAG_debug_code) {
|
| - __ movq(receiver.reg(), BitCast<int64_t>(kZapValue), RelocInfo::NONE);
|
| - __ movq(value.reg(), BitCast<int64_t>(kZapValue), RelocInfo::NONE);
|
| - __ movq(scratch.reg(), BitCast<int64_t>(kZapValue), RelocInfo::NONE);
|
| - }
|
| - __ bind(&skip_write_barrier);
|
| - value.Unuse();
|
| - scratch.Unuse();
|
| - receiver.Unuse();
|
| - done.Jump(&result);
|
| -
|
| - slow.Bind(&value, &receiver);
|
| - frame()->Push(&receiver);
|
| - frame()->Push(&value);
|
| - result = frame()->CallStoreIC(name, is_contextual, strict_mode_flag());
|
| - // Encode the offset to the map check instruction and the offset
|
| - // to the write barrier store address computation in a test rax
|
| - // instruction.
|
| - int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site);
|
| - __ testl(rax,
|
| - Immediate((delta_to_record_write << 16) | delta_to_patch_site));
|
| - done.Bind(&result);
|
| - }
|
| -
|
| - ASSERT_EQ(expected_height, frame()->height());
|
| - return result;
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::EmitKeyedLoad() {
|
| -#ifdef DEBUG
|
| - int original_height = frame()->height();
|
| -#endif
|
| - Result result;
|
| - // Inline array load code if inside of a loop. We do not know
|
| - // the receiver map yet, so we initially generate the code with
|
| - // a check against an invalid map. In the inline cache code, we
|
| - // patch the map check if appropriate.
|
| - if (loop_nesting() > 0) {
|
| - Comment cmnt(masm_, "[ Inlined load from keyed Property");
|
| -
|
| - // Use a fresh temporary to load the elements without destroying
|
| - // the receiver which is needed for the deferred slow case.
|
| - // Allocate the temporary early so that we use rax if it is free.
|
| - Result elements = allocator()->Allocate();
|
| - ASSERT(elements.is_valid());
|
| -
|
| - Result key = frame_->Pop();
|
| - Result receiver = frame_->Pop();
|
| - key.ToRegister();
|
| - receiver.ToRegister();
|
| -
|
| - // If key and receiver are shared registers on the frame, their values will
|
| - // be automatically saved and restored when going to deferred code.
|
| - // The result is returned in elements, which is not shared.
|
| - DeferredReferenceGetKeyedValue* deferred =
|
| - new DeferredReferenceGetKeyedValue(elements.reg(),
|
| - receiver.reg(),
|
| - key.reg());
|
| -
|
| - __ JumpIfSmi(receiver.reg(), deferred->entry_label());
|
| -
|
| - // Check that the receiver has the expected map.
|
| - // Initially, use an invalid map. The map is patched in the IC
|
| - // initialization code.
|
| - __ bind(deferred->patch_site());
|
| - // Use masm-> here instead of the double underscore macro since extra
|
| - // coverage code can interfere with the patching. Do not use a load
|
| - // from the root array to load null_value, since the load must be patched
|
| - // with the expected receiver map, which is not in the root array.
|
| - masm_->movq(kScratchRegister, FACTORY->null_value(),
|
| - RelocInfo::EMBEDDED_OBJECT);
|
| - masm_->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
|
| - kScratchRegister);
|
| - deferred->Branch(not_equal);
|
| -
|
| - __ JumpUnlessNonNegativeSmi(key.reg(), deferred->entry_label());
|
| -
|
| - // Get the elements array from the receiver.
|
| - __ movq(elements.reg(),
|
| - FieldOperand(receiver.reg(), JSObject::kElementsOffset));
|
| - __ AssertFastElements(elements.reg());
|
| -
|
| - // Check that key is within bounds.
|
| - __ SmiCompare(key.reg(),
|
| - FieldOperand(elements.reg(), FixedArray::kLengthOffset));
|
| - deferred->Branch(above_equal);
|
| -
|
| - // Load and check that the result is not the hole. We could
|
| - // reuse the index or elements register for the value.
|
| - //
|
| - // TODO(206): Consider whether it makes sense to try some
|
| - // heuristic about which register to reuse. For example, if
|
| - // one is rax, the we can reuse that one because the value
|
| - // coming from the deferred code will be in rax.
|
| - SmiIndex index =
|
| - masm_->SmiToIndex(kScratchRegister, key.reg(), kPointerSizeLog2);
|
| - __ movq(elements.reg(),
|
| - FieldOperand(elements.reg(),
|
| - index.reg,
|
| - index.scale,
|
| - FixedArray::kHeaderSize));
|
| - result = elements;
|
| - __ CompareRoot(result.reg(), Heap::kTheHoleValueRootIndex);
|
| - deferred->Branch(equal);
|
| - Counters* counters = masm()->isolate()->counters();
|
| - __ IncrementCounter(counters->keyed_load_inline(), 1);
|
| -
|
| - deferred->BindExit();
|
| - } else {
|
| - Comment cmnt(masm_, "[ Load from keyed Property");
|
| - result = frame_->CallKeyedLoadIC(RelocInfo::CODE_TARGET);
|
| - // Make sure that we do not have a test instruction after the
|
| - // call. A test instruction after the call is used to
|
| - // indicate that we have generated an inline version of the
|
| - // keyed load. The explicit nop instruction is here because
|
| - // the push that follows might be peep-hole optimized away.
|
| - __ nop();
|
| - }
|
| - ASSERT(frame()->height() == original_height - 2);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::EmitKeyedStore(StaticType* key_type) {
|
| -#ifdef DEBUG
|
| - int original_height = frame()->height();
|
| -#endif
|
| - Result result;
|
| - // Generate inlined version of the keyed store if the code is in a loop
|
| - // and the key is likely to be a smi.
|
| - if (loop_nesting() > 0 && key_type->IsLikelySmi()) {
|
| - Comment cmnt(masm(), "[ Inlined store to keyed Property");
|
| -
|
| - // Get the receiver, key and value into registers.
|
| - result = frame()->Pop();
|
| - Result key = frame()->Pop();
|
| - Result receiver = frame()->Pop();
|
| -
|
| - Result tmp = allocator_->Allocate();
|
| - ASSERT(tmp.is_valid());
|
| - Result tmp2 = allocator_->Allocate();
|
| - ASSERT(tmp2.is_valid());
|
| -
|
| - // Determine whether the value is a constant before putting it in a
|
| - // register.
|
| - bool value_is_constant = result.is_constant();
|
| -
|
| - // Make sure that value, key and receiver are in registers.
|
| - result.ToRegister();
|
| - key.ToRegister();
|
| - receiver.ToRegister();
|
| -
|
| - DeferredReferenceSetKeyedValue* deferred =
|
| - new DeferredReferenceSetKeyedValue(result.reg(),
|
| - key.reg(),
|
| - receiver.reg(),
|
| - strict_mode_flag());
|
| -
|
| - // Check that the receiver is not a smi.
|
| - __ JumpIfSmi(receiver.reg(), deferred->entry_label());
|
| -
|
| - // Check that the key is a smi.
|
| - if (!key.is_smi()) {
|
| - __ JumpIfNotSmi(key.reg(), deferred->entry_label());
|
| - } else if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(key.reg());
|
| - }
|
| -
|
| - // Check that the receiver is a JSArray.
|
| - __ CmpObjectType(receiver.reg(), JS_ARRAY_TYPE, kScratchRegister);
|
| - deferred->Branch(not_equal);
|
| -
|
| - // Get the elements array from the receiver and check that it is not a
|
| - // dictionary.
|
| - __ movq(tmp.reg(),
|
| - FieldOperand(receiver.reg(), JSArray::kElementsOffset));
|
| -
|
| - // Check whether it is possible to omit the write barrier. If the elements
|
| - // array is in new space or the value written is a smi we can safely update
|
| - // the elements array without write barrier.
|
| - Label in_new_space;
|
| - __ InNewSpace(tmp.reg(), tmp2.reg(), equal, &in_new_space);
|
| - if (!value_is_constant) {
|
| - __ JumpIfNotSmi(result.reg(), deferred->entry_label());
|
| - }
|
| -
|
| - __ bind(&in_new_space);
|
| - // Bind the deferred code patch site to be able to locate the fixed
|
| - // array map comparison. When debugging, we patch this comparison to
|
| - // always fail so that we will hit the IC call in the deferred code
|
| - // which will allow the debugger to break for fast case stores.
|
| - __ bind(deferred->patch_site());
|
| - // Avoid using __ to ensure the distance from patch_site
|
| - // to the map address is always the same.
|
| - masm()->movq(kScratchRegister, FACTORY->fixed_array_map(),
|
| - RelocInfo::EMBEDDED_OBJECT);
|
| - __ cmpq(FieldOperand(tmp.reg(), HeapObject::kMapOffset),
|
| - kScratchRegister);
|
| - deferred->Branch(not_equal);
|
| -
|
| - // Check that the key is within bounds. Both the key and the length of
|
| - // the JSArray are smis (because the fixed array check above ensures the
|
| - // elements are in fast case). Use unsigned comparison to handle negative
|
| - // keys.
|
| - __ SmiCompare(FieldOperand(receiver.reg(), JSArray::kLengthOffset),
|
| - key.reg());
|
| - deferred->Branch(below_equal);
|
| -
|
| - // Store the value.
|
| - SmiIndex index =
|
| - masm()->SmiToIndex(kScratchRegister, key.reg(), kPointerSizeLog2);
|
| - __ movq(FieldOperand(tmp.reg(),
|
| - index.reg,
|
| - index.scale,
|
| - FixedArray::kHeaderSize),
|
| - result.reg());
|
| - Counters* counters = masm()->isolate()->counters();
|
| - __ IncrementCounter(counters->keyed_store_inline(), 1);
|
| -
|
| - deferred->BindExit();
|
| - } else {
|
| - result = frame()->CallKeyedStoreIC(strict_mode_flag());
|
| - // Make sure that we do not have a test instruction after the
|
| - // call. A test instruction after the call is used to
|
| - // indicate that we have generated an inline version of the
|
| - // keyed store.
|
| - __ nop();
|
| - }
|
| - ASSERT(frame()->height() == original_height - 3);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -#undef __
|
| -#define __ ACCESS_MASM(masm)
|
| -
|
| -
|
| -Handle<String> Reference::GetName() {
|
| - ASSERT(type_ == NAMED);
|
| - Property* property = expression_->AsProperty();
|
| - if (property == NULL) {
|
| - // Global variable reference treated as a named property reference.
|
| - VariableProxy* proxy = expression_->AsVariableProxy();
|
| - ASSERT(proxy->AsVariable() != NULL);
|
| - ASSERT(proxy->AsVariable()->is_global());
|
| - return proxy->name();
|
| - } else {
|
| - Literal* raw_name = property->key()->AsLiteral();
|
| - ASSERT(raw_name != NULL);
|
| - return Handle<String>(String::cast(*raw_name->handle()));
|
| - }
|
| -}
|
| -
|
| -
|
| -void Reference::GetValue() {
|
| - ASSERT(!cgen_->in_spilled_code());
|
| - ASSERT(cgen_->HasValidEntryRegisters());
|
| - ASSERT(!is_illegal());
|
| - MacroAssembler* masm = cgen_->masm();
|
| -
|
| - // Record the source position for the property load.
|
| - Property* property = expression_->AsProperty();
|
| - if (property != NULL) {
|
| - cgen_->CodeForSourcePosition(property->position());
|
| - }
|
| -
|
| - switch (type_) {
|
| - case SLOT: {
|
| - Comment cmnt(masm, "[ Load from Slot");
|
| - Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot();
|
| - ASSERT(slot != NULL);
|
| - cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
|
| - break;
|
| - }
|
| -
|
| - case NAMED: {
|
| - Variable* var = expression_->AsVariableProxy()->AsVariable();
|
| - bool is_global = var != NULL;
|
| - ASSERT(!is_global || var->is_global());
|
| - if (persist_after_get_) {
|
| - cgen_->frame()->Dup();
|
| - }
|
| - Result result = cgen_->EmitNamedLoad(GetName(), is_global);
|
| - cgen_->frame()->Push(&result);
|
| - break;
|
| - }
|
| -
|
| - case KEYED: {
|
| - // A load of a bare identifier (load from global) cannot be keyed.
|
| - ASSERT(expression_->AsVariableProxy()->AsVariable() == NULL);
|
| - if (persist_after_get_) {
|
| - cgen_->frame()->PushElementAt(1);
|
| - cgen_->frame()->PushElementAt(1);
|
| - }
|
| - Result value = cgen_->EmitKeyedLoad();
|
| - cgen_->frame()->Push(&value);
|
| - break;
|
| - }
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -
|
| - if (!persist_after_get_) {
|
| - set_unloaded();
|
| - }
|
| -}
|
| -
|
| -
|
| -void Reference::TakeValue() {
|
| - // TODO(X64): This function is completely architecture independent. Move
|
| - // it somewhere shared.
|
| -
|
| - // For non-constant frame-allocated slots, we invalidate the value in the
|
| - // slot. For all others, we fall back on GetValue.
|
| - ASSERT(!cgen_->in_spilled_code());
|
| - ASSERT(!is_illegal());
|
| - if (type_ != SLOT) {
|
| - GetValue();
|
| - return;
|
| - }
|
| -
|
| - Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot();
|
| - ASSERT(slot != NULL);
|
| - if (slot->type() == Slot::LOOKUP ||
|
| - slot->type() == Slot::CONTEXT ||
|
| - slot->var()->mode() == Variable::CONST ||
|
| - slot->is_arguments()) {
|
| - GetValue();
|
| - return;
|
| - }
|
| -
|
| - // Only non-constant, frame-allocated parameters and locals can reach
|
| - // here. Be careful not to use the optimizations for arguments
|
| - // object access since it may not have been initialized yet.
|
| - ASSERT(!slot->is_arguments());
|
| - if (slot->type() == Slot::PARAMETER) {
|
| - cgen_->frame()->TakeParameterAt(slot->index());
|
| - } else {
|
| - ASSERT(slot->type() == Slot::LOCAL);
|
| - cgen_->frame()->TakeLocalAt(slot->index());
|
| - }
|
| -
|
| - ASSERT(persist_after_get_);
|
| - // Do not unload the reference, because it is used in SetValue.
|
| -}
|
| -
|
| -
|
| -void Reference::SetValue(InitState init_state) {
|
| - ASSERT(cgen_->HasValidEntryRegisters());
|
| - ASSERT(!is_illegal());
|
| - MacroAssembler* masm = cgen_->masm();
|
| - switch (type_) {
|
| - case SLOT: {
|
| - Comment cmnt(masm, "[ Store to Slot");
|
| - Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot();
|
| - ASSERT(slot != NULL);
|
| - cgen_->StoreToSlot(slot, init_state);
|
| - set_unloaded();
|
| - break;
|
| - }
|
| -
|
| - case NAMED: {
|
| - Comment cmnt(masm, "[ Store to named Property");
|
| - Result answer = cgen_->EmitNamedStore(GetName(), false);
|
| - cgen_->frame()->Push(&answer);
|
| - set_unloaded();
|
| - break;
|
| - }
|
| -
|
| - case KEYED: {
|
| - Comment cmnt(masm, "[ Store to keyed Property");
|
| - Property* property = expression()->AsProperty();
|
| - ASSERT(property != NULL);
|
| -
|
| - Result answer = cgen_->EmitKeyedStore(property->key()->type());
|
| - cgen_->frame()->Push(&answer);
|
| - set_unloaded();
|
| - break;
|
| - }
|
| -
|
| - case UNLOADED:
|
| - case ILLEGAL:
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::GenerateGenericBinaryOpStubCall(GenericBinaryOpStub* stub,
|
| - Result* left,
|
| - Result* right) {
|
| - if (stub->ArgsInRegistersSupported()) {
|
| - stub->SetArgsInRegisters();
|
| - return frame_->CallStub(stub, left, right);
|
| - } else {
|
| - frame_->Push(left);
|
| - frame_->Push(right);
|
| - return frame_->CallStub(stub, 2);
|
| - }
|
| -}
|
| -
|
| -#undef __
|
| -
|
| #define __ masm.
|
|
|
| #ifdef _WIN64
|
|
|