| OLD | NEW |
| (Empty) |
| 1 // Copyright 2011 the V8 project authors. All rights reserved. | |
| 2 // Redistribution and use in source and binary forms, with or without | |
| 3 // modification, are permitted provided that the following conditions are | |
| 4 // met: | |
| 5 // | |
| 6 // * Redistributions of source code must retain the above copyright | |
| 7 // notice, this list of conditions and the following disclaimer. | |
| 8 // * Redistributions in binary form must reproduce the above | |
| 9 // copyright notice, this list of conditions and the following | |
| 10 // disclaimer in the documentation and/or other materials provided | |
| 11 // with the distribution. | |
| 12 // * Neither the name of Google Inc. nor the names of its | |
| 13 // contributors may be used to endorse or promote products derived | |
| 14 // from this software without specific prior written permission. | |
| 15 // | |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 27 | |
| 28 #include "v8.h" | |
| 29 | |
| 30 #if defined(V8_TARGET_ARCH_X64) | |
| 31 | |
| 32 #include "codegen-inl.h" | |
| 33 #include "register-allocator-inl.h" | |
| 34 #include "scopes.h" | |
| 35 #include "stub-cache.h" | |
| 36 #include "virtual-frame-inl.h" | |
| 37 | |
| 38 namespace v8 { | |
| 39 namespace internal { | |
| 40 | |
| 41 #define __ ACCESS_MASM(masm()) | |
| 42 | |
| 43 void VirtualFrame::Enter() { | |
| 44 // Registers live on entry to a JS frame: | |
| 45 // rsp: stack pointer, points to return address from this function. | |
| 46 // rbp: base pointer, points to previous JS, ArgumentsAdaptor, or | |
| 47 // Trampoline frame. | |
| 48 // rsi: context of this function call. | |
| 49 // rdi: pointer to this function object. | |
| 50 Comment cmnt(masm(), "[ Enter JS frame"); | |
| 51 | |
| 52 #ifdef DEBUG | |
| 53 if (FLAG_debug_code) { | |
| 54 // Verify that rdi contains a JS function. The following code | |
| 55 // relies on rax being available for use. | |
| 56 Condition not_smi = NegateCondition(masm()->CheckSmi(rdi)); | |
| 57 __ Check(not_smi, | |
| 58 "VirtualFrame::Enter - rdi is not a function (smi check)."); | |
| 59 __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rax); | |
| 60 __ Check(equal, | |
| 61 "VirtualFrame::Enter - rdi is not a function (map check)."); | |
| 62 } | |
| 63 #endif | |
| 64 | |
| 65 EmitPush(rbp); | |
| 66 | |
| 67 __ movq(rbp, rsp); | |
| 68 | |
| 69 // Store the context in the frame. The context is kept in rsi and a | |
| 70 // copy is stored in the frame. The external reference to rsi | |
| 71 // remains. | |
| 72 EmitPush(rsi); | |
| 73 | |
| 74 // Store the function in the frame. The frame owns the register | |
| 75 // reference now (ie, it can keep it in rdi or spill it later). | |
| 76 Push(rdi); | |
| 77 SyncElementAt(element_count() - 1); | |
| 78 cgen()->allocator()->Unuse(rdi); | |
| 79 } | |
| 80 | |
| 81 | |
| 82 void VirtualFrame::Exit() { | |
| 83 Comment cmnt(masm(), "[ Exit JS frame"); | |
| 84 // Record the location of the JS exit code for patching when setting | |
| 85 // break point. | |
| 86 __ RecordJSReturn(); | |
| 87 | |
| 88 // Avoid using the leave instruction here, because it is too | |
| 89 // short. We need the return sequence to be a least the size of a | |
| 90 // call instruction to support patching the exit code in the | |
| 91 // debugger. See GenerateReturnSequence for the full return sequence. | |
| 92 // TODO(X64): A patched call will be very long now. Make sure we | |
| 93 // have enough room. | |
| 94 __ movq(rsp, rbp); | |
| 95 stack_pointer_ = frame_pointer(); | |
| 96 for (int i = element_count() - 1; i > stack_pointer_; i--) { | |
| 97 FrameElement last = elements_.RemoveLast(); | |
| 98 if (last.is_register()) { | |
| 99 Unuse(last.reg()); | |
| 100 } | |
| 101 } | |
| 102 | |
| 103 EmitPop(rbp); | |
| 104 } | |
| 105 | |
| 106 | |
| 107 void VirtualFrame::AllocateStackSlots() { | |
| 108 int count = local_count(); | |
| 109 if (count > 0) { | |
| 110 Comment cmnt(masm(), "[ Allocate space for locals"); | |
| 111 // The locals are initialized to a constant (the undefined value), but | |
| 112 // we sync them with the actual frame to allocate space for spilling | |
| 113 // them later. First sync everything above the stack pointer so we can | |
| 114 // use pushes to allocate and initialize the locals. | |
| 115 SyncRange(stack_pointer_ + 1, element_count() - 1); | |
| 116 Handle<Object> undefined = FACTORY->undefined_value(); | |
| 117 FrameElement initial_value = | |
| 118 FrameElement::ConstantElement(undefined, FrameElement::SYNCED); | |
| 119 if (count < kLocalVarBound) { | |
| 120 // For fewer locals the unrolled loop is more compact. | |
| 121 | |
| 122 // Hope for one of the first eight registers, where the push operation | |
| 123 // takes only one byte (kScratchRegister needs the REX.W bit). | |
| 124 Result tmp = cgen()->allocator()->Allocate(); | |
| 125 ASSERT(tmp.is_valid()); | |
| 126 __ movq(tmp.reg(), undefined, RelocInfo::EMBEDDED_OBJECT); | |
| 127 for (int i = 0; i < count; i++) { | |
| 128 __ push(tmp.reg()); | |
| 129 } | |
| 130 } else { | |
| 131 // For more locals a loop in generated code is more compact. | |
| 132 Label alloc_locals_loop; | |
| 133 Result cnt = cgen()->allocator()->Allocate(); | |
| 134 ASSERT(cnt.is_valid()); | |
| 135 __ movq(kScratchRegister, undefined, RelocInfo::EMBEDDED_OBJECT); | |
| 136 #ifdef DEBUG | |
| 137 Label loop_size; | |
| 138 __ bind(&loop_size); | |
| 139 #endif | |
| 140 if (is_uint8(count)) { | |
| 141 // Loading imm8 is shorter than loading imm32. | |
| 142 // Loading only partial byte register, and using decb below. | |
| 143 __ movb(cnt.reg(), Immediate(count)); | |
| 144 } else { | |
| 145 __ movl(cnt.reg(), Immediate(count)); | |
| 146 } | |
| 147 __ bind(&alloc_locals_loop); | |
| 148 __ push(kScratchRegister); | |
| 149 if (is_uint8(count)) { | |
| 150 __ decb(cnt.reg()); | |
| 151 } else { | |
| 152 __ decl(cnt.reg()); | |
| 153 } | |
| 154 __ j(not_zero, &alloc_locals_loop); | |
| 155 #ifdef DEBUG | |
| 156 CHECK(masm()->SizeOfCodeGeneratedSince(&loop_size) < kLocalVarBound); | |
| 157 #endif | |
| 158 } | |
| 159 for (int i = 0; i < count; i++) { | |
| 160 elements_.Add(initial_value); | |
| 161 stack_pointer_++; | |
| 162 } | |
| 163 } | |
| 164 } | |
| 165 | |
| 166 | |
| 167 void VirtualFrame::SaveContextRegister() { | |
| 168 ASSERT(elements_[context_index()].is_memory()); | |
| 169 __ movq(Operand(rbp, fp_relative(context_index())), rsi); | |
| 170 } | |
| 171 | |
| 172 | |
| 173 void VirtualFrame::RestoreContextRegister() { | |
| 174 ASSERT(elements_[context_index()].is_memory()); | |
| 175 __ movq(rsi, Operand(rbp, fp_relative(context_index()))); | |
| 176 } | |
| 177 | |
| 178 | |
| 179 void VirtualFrame::PushReceiverSlotAddress() { | |
| 180 Result temp = cgen()->allocator()->Allocate(); | |
| 181 ASSERT(temp.is_valid()); | |
| 182 __ lea(temp.reg(), ParameterAt(-1)); | |
| 183 Push(&temp); | |
| 184 } | |
| 185 | |
| 186 | |
| 187 void VirtualFrame::EmitPop(Register reg) { | |
| 188 ASSERT(stack_pointer_ == element_count() - 1); | |
| 189 stack_pointer_--; | |
| 190 elements_.RemoveLast(); | |
| 191 __ pop(reg); | |
| 192 } | |
| 193 | |
| 194 | |
| 195 void VirtualFrame::EmitPop(const Operand& operand) { | |
| 196 ASSERT(stack_pointer_ == element_count() - 1); | |
| 197 stack_pointer_--; | |
| 198 elements_.RemoveLast(); | |
| 199 __ pop(operand); | |
| 200 } | |
| 201 | |
| 202 | |
| 203 void VirtualFrame::EmitPush(Register reg, TypeInfo info) { | |
| 204 ASSERT(stack_pointer_ == element_count() - 1); | |
| 205 elements_.Add(FrameElement::MemoryElement(info)); | |
| 206 stack_pointer_++; | |
| 207 __ push(reg); | |
| 208 } | |
| 209 | |
| 210 | |
| 211 void VirtualFrame::EmitPush(const Operand& operand, TypeInfo info) { | |
| 212 ASSERT(stack_pointer_ == element_count() - 1); | |
| 213 elements_.Add(FrameElement::MemoryElement(info)); | |
| 214 stack_pointer_++; | |
| 215 __ push(operand); | |
| 216 } | |
| 217 | |
| 218 | |
| 219 void VirtualFrame::EmitPush(Immediate immediate, TypeInfo info) { | |
| 220 ASSERT(stack_pointer_ == element_count() - 1); | |
| 221 elements_.Add(FrameElement::MemoryElement(info)); | |
| 222 stack_pointer_++; | |
| 223 __ push(immediate); | |
| 224 } | |
| 225 | |
| 226 | |
| 227 void VirtualFrame::EmitPush(Smi* smi_value) { | |
| 228 ASSERT(stack_pointer_ == element_count() - 1); | |
| 229 elements_.Add(FrameElement::MemoryElement(TypeInfo::Smi())); | |
| 230 stack_pointer_++; | |
| 231 __ Push(smi_value); | |
| 232 } | |
| 233 | |
| 234 | |
| 235 void VirtualFrame::EmitPush(Handle<Object> value) { | |
| 236 ASSERT(stack_pointer_ == element_count() - 1); | |
| 237 TypeInfo info = TypeInfo::TypeFromValue(value); | |
| 238 elements_.Add(FrameElement::MemoryElement(info)); | |
| 239 stack_pointer_++; | |
| 240 __ Push(value); | |
| 241 } | |
| 242 | |
| 243 | |
| 244 void VirtualFrame::EmitPush(Heap::RootListIndex index, TypeInfo info) { | |
| 245 ASSERT(stack_pointer_ == element_count() - 1); | |
| 246 elements_.Add(FrameElement::MemoryElement(info)); | |
| 247 stack_pointer_++; | |
| 248 __ PushRoot(index); | |
| 249 } | |
| 250 | |
| 251 | |
| 252 void VirtualFrame::Push(Expression* expr) { | |
| 253 ASSERT(expr->IsTrivial()); | |
| 254 | |
| 255 Literal* lit = expr->AsLiteral(); | |
| 256 if (lit != NULL) { | |
| 257 Push(lit->handle()); | |
| 258 return; | |
| 259 } | |
| 260 | |
| 261 VariableProxy* proxy = expr->AsVariableProxy(); | |
| 262 if (proxy != NULL) { | |
| 263 Slot* slot = proxy->var()->AsSlot(); | |
| 264 if (slot->type() == Slot::LOCAL) { | |
| 265 PushLocalAt(slot->index()); | |
| 266 return; | |
| 267 } | |
| 268 if (slot->type() == Slot::PARAMETER) { | |
| 269 PushParameterAt(slot->index()); | |
| 270 return; | |
| 271 } | |
| 272 } | |
| 273 UNREACHABLE(); | |
| 274 } | |
| 275 | |
| 276 | |
| 277 void VirtualFrame::Push(Handle<Object> value) { | |
| 278 if (ConstantPoolOverflowed()) { | |
| 279 Result temp = cgen()->allocator()->Allocate(); | |
| 280 ASSERT(temp.is_valid()); | |
| 281 if (value->IsSmi()) { | |
| 282 __ Move(temp.reg(), Smi::cast(*value)); | |
| 283 } else { | |
| 284 __ movq(temp.reg(), value, RelocInfo::EMBEDDED_OBJECT); | |
| 285 } | |
| 286 Push(&temp); | |
| 287 } else { | |
| 288 FrameElement element = | |
| 289 FrameElement::ConstantElement(value, FrameElement::NOT_SYNCED); | |
| 290 elements_.Add(element); | |
| 291 } | |
| 292 } | |
| 293 | |
| 294 | |
| 295 void VirtualFrame::Drop(int count) { | |
| 296 ASSERT(count >= 0); | |
| 297 ASSERT(height() >= count); | |
| 298 int num_virtual_elements = (element_count() - 1) - stack_pointer_; | |
| 299 | |
| 300 // Emit code to lower the stack pointer if necessary. | |
| 301 if (num_virtual_elements < count) { | |
| 302 int num_dropped = count - num_virtual_elements; | |
| 303 stack_pointer_ -= num_dropped; | |
| 304 __ addq(rsp, Immediate(num_dropped * kPointerSize)); | |
| 305 } | |
| 306 | |
| 307 // Discard elements from the virtual frame and free any registers. | |
| 308 for (int i = 0; i < count; i++) { | |
| 309 FrameElement dropped = elements_.RemoveLast(); | |
| 310 if (dropped.is_register()) { | |
| 311 Unuse(dropped.reg()); | |
| 312 } | |
| 313 } | |
| 314 } | |
| 315 | |
| 316 | |
| 317 int VirtualFrame::InvalidateFrameSlotAt(int index) { | |
| 318 FrameElement original = elements_[index]; | |
| 319 | |
| 320 // Is this element the backing store of any copies? | |
| 321 int new_backing_index = kIllegalIndex; | |
| 322 if (original.is_copied()) { | |
| 323 // Verify it is copied, and find first copy. | |
| 324 for (int i = index + 1; i < element_count(); i++) { | |
| 325 if (elements_[i].is_copy() && elements_[i].index() == index) { | |
| 326 new_backing_index = i; | |
| 327 break; | |
| 328 } | |
| 329 } | |
| 330 } | |
| 331 | |
| 332 if (new_backing_index == kIllegalIndex) { | |
| 333 // No copies found, return kIllegalIndex. | |
| 334 if (original.is_register()) { | |
| 335 Unuse(original.reg()); | |
| 336 } | |
| 337 elements_[index] = FrameElement::InvalidElement(); | |
| 338 return kIllegalIndex; | |
| 339 } | |
| 340 | |
| 341 // This is the backing store of copies. | |
| 342 Register backing_reg; | |
| 343 if (original.is_memory()) { | |
| 344 Result fresh = cgen()->allocator()->Allocate(); | |
| 345 ASSERT(fresh.is_valid()); | |
| 346 Use(fresh.reg(), new_backing_index); | |
| 347 backing_reg = fresh.reg(); | |
| 348 __ movq(backing_reg, Operand(rbp, fp_relative(index))); | |
| 349 } else { | |
| 350 // The original was in a register. | |
| 351 backing_reg = original.reg(); | |
| 352 set_register_location(backing_reg, new_backing_index); | |
| 353 } | |
| 354 // Invalidate the element at index. | |
| 355 elements_[index] = FrameElement::InvalidElement(); | |
| 356 // Set the new backing element. | |
| 357 if (elements_[new_backing_index].is_synced()) { | |
| 358 elements_[new_backing_index] = | |
| 359 FrameElement::RegisterElement(backing_reg, | |
| 360 FrameElement::SYNCED, | |
| 361 original.type_info()); | |
| 362 } else { | |
| 363 elements_[new_backing_index] = | |
| 364 FrameElement::RegisterElement(backing_reg, | |
| 365 FrameElement::NOT_SYNCED, | |
| 366 original.type_info()); | |
| 367 } | |
| 368 // Update the other copies. | |
| 369 for (int i = new_backing_index + 1; i < element_count(); i++) { | |
| 370 if (elements_[i].is_copy() && elements_[i].index() == index) { | |
| 371 elements_[i].set_index(new_backing_index); | |
| 372 elements_[new_backing_index].set_copied(); | |
| 373 } | |
| 374 } | |
| 375 return new_backing_index; | |
| 376 } | |
| 377 | |
| 378 | |
| 379 void VirtualFrame::TakeFrameSlotAt(int index) { | |
| 380 ASSERT(index >= 0); | |
| 381 ASSERT(index <= element_count()); | |
| 382 FrameElement original = elements_[index]; | |
| 383 int new_backing_store_index = InvalidateFrameSlotAt(index); | |
| 384 if (new_backing_store_index != kIllegalIndex) { | |
| 385 elements_.Add(CopyElementAt(new_backing_store_index)); | |
| 386 return; | |
| 387 } | |
| 388 | |
| 389 switch (original.type()) { | |
| 390 case FrameElement::MEMORY: { | |
| 391 // Emit code to load the original element's data into a register. | |
| 392 // Push that register as a FrameElement on top of the frame. | |
| 393 Result fresh = cgen()->allocator()->Allocate(); | |
| 394 ASSERT(fresh.is_valid()); | |
| 395 FrameElement new_element = | |
| 396 FrameElement::RegisterElement(fresh.reg(), | |
| 397 FrameElement::NOT_SYNCED, | |
| 398 original.type_info()); | |
| 399 Use(fresh.reg(), element_count()); | |
| 400 elements_.Add(new_element); | |
| 401 __ movq(fresh.reg(), Operand(rbp, fp_relative(index))); | |
| 402 break; | |
| 403 } | |
| 404 case FrameElement::REGISTER: | |
| 405 Use(original.reg(), element_count()); | |
| 406 // Fall through. | |
| 407 case FrameElement::CONSTANT: | |
| 408 case FrameElement::COPY: | |
| 409 original.clear_sync(); | |
| 410 elements_.Add(original); | |
| 411 break; | |
| 412 case FrameElement::INVALID: | |
| 413 UNREACHABLE(); | |
| 414 break; | |
| 415 } | |
| 416 } | |
| 417 | |
| 418 | |
| 419 void VirtualFrame::StoreToFrameSlotAt(int index) { | |
| 420 // Store the value on top of the frame to the virtual frame slot at | |
| 421 // a given index. The value on top of the frame is left in place. | |
| 422 // This is a duplicating operation, so it can create copies. | |
| 423 ASSERT(index >= 0); | |
| 424 ASSERT(index < element_count()); | |
| 425 | |
| 426 int top_index = element_count() - 1; | |
| 427 FrameElement top = elements_[top_index]; | |
| 428 FrameElement original = elements_[index]; | |
| 429 if (top.is_copy() && top.index() == index) return; | |
| 430 ASSERT(top.is_valid()); | |
| 431 | |
| 432 InvalidateFrameSlotAt(index); | |
| 433 | |
| 434 // InvalidateFrameSlotAt can potentially change any frame element, due | |
| 435 // to spilling registers to allocate temporaries in order to preserve | |
| 436 // the copy-on-write semantics of aliased elements. Reload top from | |
| 437 // the frame. | |
| 438 top = elements_[top_index]; | |
| 439 | |
| 440 if (top.is_copy()) { | |
| 441 // There are two cases based on the relative positions of the | |
| 442 // stored-to slot and the backing slot of the top element. | |
| 443 int backing_index = top.index(); | |
| 444 ASSERT(backing_index != index); | |
| 445 if (backing_index < index) { | |
| 446 // 1. The top element is a copy of a slot below the stored-to | |
| 447 // slot. The stored-to slot becomes an unsynced copy of that | |
| 448 // same backing slot. | |
| 449 elements_[index] = CopyElementAt(backing_index); | |
| 450 } else { | |
| 451 // 2. The top element is a copy of a slot above the stored-to | |
| 452 // slot. The stored-to slot becomes the new (unsynced) backing | |
| 453 // slot and both the top element and the element at the former | |
| 454 // backing slot become copies of it. The sync state of the top | |
| 455 // and former backing elements is preserved. | |
| 456 FrameElement backing_element = elements_[backing_index]; | |
| 457 ASSERT(backing_element.is_memory() || backing_element.is_register()); | |
| 458 if (backing_element.is_memory()) { | |
| 459 // Because sets of copies are canonicalized to be backed by | |
| 460 // their lowest frame element, and because memory frame | |
| 461 // elements are backed by the corresponding stack address, we | |
| 462 // have to move the actual value down in the stack. | |
| 463 // | |
| 464 // TODO(209): considering allocating the stored-to slot to the | |
| 465 // temp register. Alternatively, allow copies to appear in | |
| 466 // any order in the frame and lazily move the value down to | |
| 467 // the slot. | |
| 468 __ movq(kScratchRegister, Operand(rbp, fp_relative(backing_index))); | |
| 469 __ movq(Operand(rbp, fp_relative(index)), kScratchRegister); | |
| 470 } else { | |
| 471 set_register_location(backing_element.reg(), index); | |
| 472 if (backing_element.is_synced()) { | |
| 473 // If the element is a register, we will not actually move | |
| 474 // anything on the stack but only update the virtual frame | |
| 475 // element. | |
| 476 backing_element.clear_sync(); | |
| 477 } | |
| 478 } | |
| 479 elements_[index] = backing_element; | |
| 480 | |
| 481 // The old backing element becomes a copy of the new backing | |
| 482 // element. | |
| 483 FrameElement new_element = CopyElementAt(index); | |
| 484 elements_[backing_index] = new_element; | |
| 485 if (backing_element.is_synced()) { | |
| 486 elements_[backing_index].set_sync(); | |
| 487 } | |
| 488 | |
| 489 // All the copies of the old backing element (including the top | |
| 490 // element) become copies of the new backing element. | |
| 491 for (int i = backing_index + 1; i < element_count(); i++) { | |
| 492 if (elements_[i].is_copy() && elements_[i].index() == backing_index) { | |
| 493 elements_[i].set_index(index); | |
| 494 } | |
| 495 } | |
| 496 } | |
| 497 return; | |
| 498 } | |
| 499 | |
| 500 // Move the top element to the stored-to slot and replace it (the | |
| 501 // top element) with a copy. | |
| 502 elements_[index] = top; | |
| 503 if (top.is_memory()) { | |
| 504 // TODO(209): consider allocating the stored-to slot to the temp | |
| 505 // register. Alternatively, allow copies to appear in any order | |
| 506 // in the frame and lazily move the value down to the slot. | |
| 507 FrameElement new_top = CopyElementAt(index); | |
| 508 new_top.set_sync(); | |
| 509 elements_[top_index] = new_top; | |
| 510 | |
| 511 // The sync state of the former top element is correct (synced). | |
| 512 // Emit code to move the value down in the frame. | |
| 513 __ movq(kScratchRegister, Operand(rsp, 0)); | |
| 514 __ movq(Operand(rbp, fp_relative(index)), kScratchRegister); | |
| 515 } else if (top.is_register()) { | |
| 516 set_register_location(top.reg(), index); | |
| 517 // The stored-to slot has the (unsynced) register reference and | |
| 518 // the top element becomes a copy. The sync state of the top is | |
| 519 // preserved. | |
| 520 FrameElement new_top = CopyElementAt(index); | |
| 521 if (top.is_synced()) { | |
| 522 new_top.set_sync(); | |
| 523 elements_[index].clear_sync(); | |
| 524 } | |
| 525 elements_[top_index] = new_top; | |
| 526 } else { | |
| 527 // The stored-to slot holds the same value as the top but | |
| 528 // unsynced. (We do not have copies of constants yet.) | |
| 529 ASSERT(top.is_constant()); | |
| 530 elements_[index].clear_sync(); | |
| 531 } | |
| 532 } | |
| 533 | |
| 534 | |
| 535 void VirtualFrame::MakeMergable() { | |
| 536 for (int i = 0; i < element_count(); i++) { | |
| 537 FrameElement element = elements_[i]; | |
| 538 | |
| 539 // In all cases we have to reset the number type information | |
| 540 // to unknown for a mergable frame because of incoming back edges. | |
| 541 if (element.is_constant() || element.is_copy()) { | |
| 542 if (element.is_synced()) { | |
| 543 // Just spill. | |
| 544 elements_[i] = FrameElement::MemoryElement(TypeInfo::Unknown()); | |
| 545 } else { | |
| 546 // Allocate to a register. | |
| 547 FrameElement backing_element; // Invalid if not a copy. | |
| 548 if (element.is_copy()) { | |
| 549 backing_element = elements_[element.index()]; | |
| 550 } | |
| 551 Result fresh = cgen()->allocator()->Allocate(); | |
| 552 ASSERT(fresh.is_valid()); // A register was spilled if all were in use. | |
| 553 elements_[i] = | |
| 554 FrameElement::RegisterElement(fresh.reg(), | |
| 555 FrameElement::NOT_SYNCED, | |
| 556 TypeInfo::Unknown()); | |
| 557 Use(fresh.reg(), i); | |
| 558 | |
| 559 // Emit a move. | |
| 560 if (element.is_constant()) { | |
| 561 __ Move(fresh.reg(), element.handle()); | |
| 562 } else { | |
| 563 ASSERT(element.is_copy()); | |
| 564 // Copies are only backed by register or memory locations. | |
| 565 if (backing_element.is_register()) { | |
| 566 // The backing store may have been spilled by allocating, | |
| 567 // but that's OK. If it was, the value is right where we | |
| 568 // want it. | |
| 569 if (!fresh.reg().is(backing_element.reg())) { | |
| 570 __ movq(fresh.reg(), backing_element.reg()); | |
| 571 } | |
| 572 } else { | |
| 573 ASSERT(backing_element.is_memory()); | |
| 574 __ movq(fresh.reg(), Operand(rbp, fp_relative(element.index()))); | |
| 575 } | |
| 576 } | |
| 577 } | |
| 578 // No need to set the copied flag --- there are no copies. | |
| 579 } else { | |
| 580 // Clear the copy flag of non-constant, non-copy elements. | |
| 581 // They cannot be copied because copies are not allowed. | |
| 582 // The copy flag is not relied on before the end of this loop, | |
| 583 // including when registers are spilled. | |
| 584 elements_[i].clear_copied(); | |
| 585 elements_[i].set_type_info(TypeInfo::Unknown()); | |
| 586 } | |
| 587 } | |
| 588 } | |
| 589 | |
| 590 | |
| 591 void VirtualFrame::MergeTo(VirtualFrame* expected) { | |
| 592 Comment cmnt(masm(), "[ Merge frame"); | |
| 593 // We should always be merging the code generator's current frame to an | |
| 594 // expected frame. | |
| 595 ASSERT(cgen()->frame() == this); | |
| 596 | |
| 597 // Adjust the stack pointer upward (toward the top of the virtual | |
| 598 // frame) if necessary. | |
| 599 if (stack_pointer_ < expected->stack_pointer_) { | |
| 600 int difference = expected->stack_pointer_ - stack_pointer_; | |
| 601 stack_pointer_ = expected->stack_pointer_; | |
| 602 __ subq(rsp, Immediate(difference * kPointerSize)); | |
| 603 } | |
| 604 | |
| 605 MergeMoveRegistersToMemory(expected); | |
| 606 MergeMoveRegistersToRegisters(expected); | |
| 607 MergeMoveMemoryToRegisters(expected); | |
| 608 | |
| 609 // Adjust the stack pointer downward if necessary. | |
| 610 if (stack_pointer_ > expected->stack_pointer_) { | |
| 611 int difference = stack_pointer_ - expected->stack_pointer_; | |
| 612 stack_pointer_ = expected->stack_pointer_; | |
| 613 __ addq(rsp, Immediate(difference * kPointerSize)); | |
| 614 } | |
| 615 | |
| 616 // At this point, the frames should be identical. | |
| 617 ASSERT(Equals(expected)); | |
| 618 } | |
| 619 | |
| 620 | |
| 621 void VirtualFrame::MergeMoveRegistersToMemory(VirtualFrame* expected) { | |
| 622 ASSERT(stack_pointer_ >= expected->stack_pointer_); | |
| 623 | |
| 624 // Move registers, constants, and copies to memory. Perform moves | |
| 625 // from the top downward in the frame in order to leave the backing | |
| 626 // stores of copies in registers. | |
| 627 for (int i = element_count() - 1; i >= 0; i--) { | |
| 628 FrameElement target = expected->elements_[i]; | |
| 629 if (target.is_register()) continue; // Handle registers later. | |
| 630 if (target.is_memory()) { | |
| 631 FrameElement source = elements_[i]; | |
| 632 switch (source.type()) { | |
| 633 case FrameElement::INVALID: | |
| 634 // Not a legal merge move. | |
| 635 UNREACHABLE(); | |
| 636 break; | |
| 637 | |
| 638 case FrameElement::MEMORY: | |
| 639 // Already in place. | |
| 640 break; | |
| 641 | |
| 642 case FrameElement::REGISTER: | |
| 643 Unuse(source.reg()); | |
| 644 if (!source.is_synced()) { | |
| 645 __ movq(Operand(rbp, fp_relative(i)), source.reg()); | |
| 646 } | |
| 647 break; | |
| 648 | |
| 649 case FrameElement::CONSTANT: | |
| 650 if (!source.is_synced()) { | |
| 651 __ Move(Operand(rbp, fp_relative(i)), source.handle()); | |
| 652 } | |
| 653 break; | |
| 654 | |
| 655 case FrameElement::COPY: | |
| 656 if (!source.is_synced()) { | |
| 657 int backing_index = source.index(); | |
| 658 FrameElement backing_element = elements_[backing_index]; | |
| 659 if (backing_element.is_memory()) { | |
| 660 __ movq(kScratchRegister, | |
| 661 Operand(rbp, fp_relative(backing_index))); | |
| 662 __ movq(Operand(rbp, fp_relative(i)), kScratchRegister); | |
| 663 } else { | |
| 664 ASSERT(backing_element.is_register()); | |
| 665 __ movq(Operand(rbp, fp_relative(i)), backing_element.reg()); | |
| 666 } | |
| 667 } | |
| 668 break; | |
| 669 } | |
| 670 } | |
| 671 elements_[i] = target; | |
| 672 } | |
| 673 } | |
| 674 | |
| 675 | |
| 676 void VirtualFrame::MergeMoveRegistersToRegisters(VirtualFrame* expected) { | |
| 677 // We have already done X-to-memory moves. | |
| 678 ASSERT(stack_pointer_ >= expected->stack_pointer_); | |
| 679 | |
| 680 for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { | |
| 681 // Move the right value into register i if it is currently in a register. | |
| 682 int index = expected->register_location(i); | |
| 683 int use_index = register_location(i); | |
| 684 // Skip if register i is unused in the target or else if source is | |
| 685 // not a register (this is not a register-to-register move). | |
| 686 if (index == kIllegalIndex || !elements_[index].is_register()) continue; | |
| 687 | |
| 688 Register target = RegisterAllocator::ToRegister(i); | |
| 689 Register source = elements_[index].reg(); | |
| 690 if (index != use_index) { | |
| 691 if (use_index == kIllegalIndex) { // Target is currently unused. | |
| 692 // Copy contents of source from source to target. | |
| 693 // Set frame element register to target. | |
| 694 Use(target, index); | |
| 695 Unuse(source); | |
| 696 __ movq(target, source); | |
| 697 } else { | |
| 698 // Exchange contents of registers source and target. | |
| 699 // Nothing except the register backing use_index has changed. | |
| 700 elements_[use_index].set_reg(source); | |
| 701 set_register_location(target, index); | |
| 702 set_register_location(source, use_index); | |
| 703 __ xchg(source, target); | |
| 704 } | |
| 705 } | |
| 706 | |
| 707 if (!elements_[index].is_synced() && | |
| 708 expected->elements_[index].is_synced()) { | |
| 709 __ movq(Operand(rbp, fp_relative(index)), target); | |
| 710 } | |
| 711 elements_[index] = expected->elements_[index]; | |
| 712 } | |
| 713 } | |
| 714 | |
| 715 | |
| 716 void VirtualFrame::MergeMoveMemoryToRegisters(VirtualFrame* expected) { | |
| 717 // Move memory, constants, and copies to registers. This is the | |
| 718 // final step and since it is not done from the bottom up, but in | |
| 719 // register code order, we have special code to ensure that the backing | |
| 720 // elements of copies are in their correct locations when we | |
| 721 // encounter the copies. | |
| 722 for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { | |
| 723 int index = expected->register_location(i); | |
| 724 if (index != kIllegalIndex) { | |
| 725 FrameElement source = elements_[index]; | |
| 726 FrameElement target = expected->elements_[index]; | |
| 727 Register target_reg = RegisterAllocator::ToRegister(i); | |
| 728 ASSERT(target.reg().is(target_reg)); | |
| 729 switch (source.type()) { | |
| 730 case FrameElement::INVALID: // Fall through. | |
| 731 UNREACHABLE(); | |
| 732 break; | |
| 733 case FrameElement::REGISTER: | |
| 734 ASSERT(source.Equals(target)); | |
| 735 // Go to next iteration. Skips Use(target_reg) and syncing | |
| 736 // below. It is safe to skip syncing because a target | |
| 737 // register frame element would only be synced if all source | |
| 738 // elements were. | |
| 739 continue; | |
| 740 break; | |
| 741 case FrameElement::MEMORY: | |
| 742 ASSERT(index <= stack_pointer_); | |
| 743 __ movq(target_reg, Operand(rbp, fp_relative(index))); | |
| 744 break; | |
| 745 | |
| 746 case FrameElement::CONSTANT: | |
| 747 __ Move(target_reg, source.handle()); | |
| 748 break; | |
| 749 | |
| 750 case FrameElement::COPY: { | |
| 751 int backing_index = source.index(); | |
| 752 FrameElement backing = elements_[backing_index]; | |
| 753 ASSERT(backing.is_memory() || backing.is_register()); | |
| 754 if (backing.is_memory()) { | |
| 755 ASSERT(backing_index <= stack_pointer_); | |
| 756 // Code optimization if backing store should also move | |
| 757 // to a register: move backing store to its register first. | |
| 758 if (expected->elements_[backing_index].is_register()) { | |
| 759 FrameElement new_backing = expected->elements_[backing_index]; | |
| 760 Register new_backing_reg = new_backing.reg(); | |
| 761 ASSERT(!is_used(new_backing_reg)); | |
| 762 elements_[backing_index] = new_backing; | |
| 763 Use(new_backing_reg, backing_index); | |
| 764 __ movq(new_backing_reg, | |
| 765 Operand(rbp, fp_relative(backing_index))); | |
| 766 __ movq(target_reg, new_backing_reg); | |
| 767 } else { | |
| 768 __ movq(target_reg, Operand(rbp, fp_relative(backing_index))); | |
| 769 } | |
| 770 } else { | |
| 771 __ movq(target_reg, backing.reg()); | |
| 772 } | |
| 773 } | |
| 774 } | |
| 775 // Ensure the proper sync state. | |
| 776 if (target.is_synced() && !source.is_synced()) { | |
| 777 __ movq(Operand(rbp, fp_relative(index)), target_reg); | |
| 778 } | |
| 779 Use(target_reg, index); | |
| 780 elements_[index] = target; | |
| 781 } | |
| 782 } | |
| 783 } | |
| 784 | |
| 785 | |
| 786 Result VirtualFrame::Pop() { | |
| 787 FrameElement element = elements_.RemoveLast(); | |
| 788 int index = element_count(); | |
| 789 ASSERT(element.is_valid()); | |
| 790 | |
| 791 // Get number type information of the result. | |
| 792 TypeInfo info; | |
| 793 if (!element.is_copy()) { | |
| 794 info = element.type_info(); | |
| 795 } else { | |
| 796 info = elements_[element.index()].type_info(); | |
| 797 } | |
| 798 | |
| 799 bool pop_needed = (stack_pointer_ == index); | |
| 800 if (pop_needed) { | |
| 801 stack_pointer_--; | |
| 802 if (element.is_memory()) { | |
| 803 Result temp = cgen()->allocator()->Allocate(); | |
| 804 ASSERT(temp.is_valid()); | |
| 805 __ pop(temp.reg()); | |
| 806 temp.set_type_info(info); | |
| 807 return temp; | |
| 808 } | |
| 809 | |
| 810 __ addq(rsp, Immediate(kPointerSize)); | |
| 811 } | |
| 812 ASSERT(!element.is_memory()); | |
| 813 | |
| 814 // The top element is a register, constant, or a copy. Unuse | |
| 815 // registers and follow copies to their backing store. | |
| 816 if (element.is_register()) { | |
| 817 Unuse(element.reg()); | |
| 818 } else if (element.is_copy()) { | |
| 819 ASSERT(element.index() < index); | |
| 820 index = element.index(); | |
| 821 element = elements_[index]; | |
| 822 } | |
| 823 ASSERT(!element.is_copy()); | |
| 824 | |
| 825 // The element is memory, a register, or a constant. | |
| 826 if (element.is_memory()) { | |
| 827 // Memory elements could only be the backing store of a copy. | |
| 828 // Allocate the original to a register. | |
| 829 ASSERT(index <= stack_pointer_); | |
| 830 Result temp = cgen()->allocator()->Allocate(); | |
| 831 ASSERT(temp.is_valid()); | |
| 832 Use(temp.reg(), index); | |
| 833 FrameElement new_element = | |
| 834 FrameElement::RegisterElement(temp.reg(), | |
| 835 FrameElement::SYNCED, | |
| 836 element.type_info()); | |
| 837 // Preserve the copy flag on the element. | |
| 838 if (element.is_copied()) new_element.set_copied(); | |
| 839 elements_[index] = new_element; | |
| 840 __ movq(temp.reg(), Operand(rbp, fp_relative(index))); | |
| 841 return Result(temp.reg(), info); | |
| 842 } else if (element.is_register()) { | |
| 843 return Result(element.reg(), info); | |
| 844 } else { | |
| 845 ASSERT(element.is_constant()); | |
| 846 return Result(element.handle()); | |
| 847 } | |
| 848 } | |
| 849 | |
| 850 | |
| 851 Result VirtualFrame::RawCallStub(CodeStub* stub) { | |
| 852 ASSERT(cgen()->HasValidEntryRegisters()); | |
| 853 __ CallStub(stub); | |
| 854 Result result = cgen()->allocator()->Allocate(rax); | |
| 855 ASSERT(result.is_valid()); | |
| 856 return result; | |
| 857 } | |
| 858 | |
| 859 | |
| 860 Result VirtualFrame::CallStub(CodeStub* stub, Result* arg) { | |
| 861 PrepareForCall(0, 0); | |
| 862 arg->ToRegister(rax); | |
| 863 arg->Unuse(); | |
| 864 return RawCallStub(stub); | |
| 865 } | |
| 866 | |
| 867 | |
| 868 Result VirtualFrame::CallStub(CodeStub* stub, Result* arg0, Result* arg1) { | |
| 869 PrepareForCall(0, 0); | |
| 870 | |
| 871 if (arg0->is_register() && arg0->reg().is(rax)) { | |
| 872 if (arg1->is_register() && arg1->reg().is(rdx)) { | |
| 873 // Wrong registers. | |
| 874 __ xchg(rax, rdx); | |
| 875 } else { | |
| 876 // Register rdx is free for arg0, which frees rax for arg1. | |
| 877 arg0->ToRegister(rdx); | |
| 878 arg1->ToRegister(rax); | |
| 879 } | |
| 880 } else { | |
| 881 // Register rax is free for arg1, which guarantees rdx is free for | |
| 882 // arg0. | |
| 883 arg1->ToRegister(rax); | |
| 884 arg0->ToRegister(rdx); | |
| 885 } | |
| 886 | |
| 887 arg0->Unuse(); | |
| 888 arg1->Unuse(); | |
| 889 return RawCallStub(stub); | |
| 890 } | |
| 891 | |
| 892 | |
| 893 Result VirtualFrame::CallJSFunction(int arg_count) { | |
| 894 Result function = Pop(); | |
| 895 | |
| 896 // InvokeFunction requires function in rdi. Move it in there. | |
| 897 function.ToRegister(rdi); | |
| 898 function.Unuse(); | |
| 899 | |
| 900 // +1 for receiver. | |
| 901 PrepareForCall(arg_count + 1, arg_count + 1); | |
| 902 ASSERT(cgen()->HasValidEntryRegisters()); | |
| 903 ParameterCount count(arg_count); | |
| 904 __ InvokeFunction(rdi, count, CALL_FUNCTION); | |
| 905 RestoreContextRegister(); | |
| 906 Result result = cgen()->allocator()->Allocate(rax); | |
| 907 ASSERT(result.is_valid()); | |
| 908 return result; | |
| 909 } | |
| 910 | |
| 911 | |
| 912 void VirtualFrame::SyncElementBelowStackPointer(int index) { | |
| 913 // Emit code to write elements below the stack pointer to their | |
| 914 // (already allocated) stack address. | |
| 915 ASSERT(index <= stack_pointer_); | |
| 916 FrameElement element = elements_[index]; | |
| 917 ASSERT(!element.is_synced()); | |
| 918 switch (element.type()) { | |
| 919 case FrameElement::INVALID: | |
| 920 break; | |
| 921 | |
| 922 case FrameElement::MEMORY: | |
| 923 // This function should not be called with synced elements. | |
| 924 // (memory elements are always synced). | |
| 925 UNREACHABLE(); | |
| 926 break; | |
| 927 | |
| 928 case FrameElement::REGISTER: | |
| 929 __ movq(Operand(rbp, fp_relative(index)), element.reg()); | |
| 930 break; | |
| 931 | |
| 932 case FrameElement::CONSTANT: | |
| 933 __ Move(Operand(rbp, fp_relative(index)), element.handle()); | |
| 934 break; | |
| 935 | |
| 936 case FrameElement::COPY: { | |
| 937 int backing_index = element.index(); | |
| 938 FrameElement backing_element = elements_[backing_index]; | |
| 939 if (backing_element.is_memory()) { | |
| 940 __ movq(kScratchRegister, Operand(rbp, fp_relative(backing_index))); | |
| 941 __ movq(Operand(rbp, fp_relative(index)), kScratchRegister); | |
| 942 } else { | |
| 943 ASSERT(backing_element.is_register()); | |
| 944 __ movq(Operand(rbp, fp_relative(index)), backing_element.reg()); | |
| 945 } | |
| 946 break; | |
| 947 } | |
| 948 } | |
| 949 elements_[index].set_sync(); | |
| 950 } | |
| 951 | |
| 952 | |
| 953 void VirtualFrame::SyncElementByPushing(int index) { | |
| 954 // Sync an element of the frame that is just above the stack pointer | |
| 955 // by pushing it. | |
| 956 ASSERT(index == stack_pointer_ + 1); | |
| 957 stack_pointer_++; | |
| 958 FrameElement element = elements_[index]; | |
| 959 | |
| 960 switch (element.type()) { | |
| 961 case FrameElement::INVALID: | |
| 962 __ Push(Smi::FromInt(0)); | |
| 963 break; | |
| 964 | |
| 965 case FrameElement::MEMORY: | |
| 966 // No memory elements exist above the stack pointer. | |
| 967 UNREACHABLE(); | |
| 968 break; | |
| 969 | |
| 970 case FrameElement::REGISTER: | |
| 971 __ push(element.reg()); | |
| 972 break; | |
| 973 | |
| 974 case FrameElement::CONSTANT: | |
| 975 __ Move(kScratchRegister, element.handle()); | |
| 976 __ push(kScratchRegister); | |
| 977 break; | |
| 978 | |
| 979 case FrameElement::COPY: { | |
| 980 int backing_index = element.index(); | |
| 981 FrameElement backing = elements_[backing_index]; | |
| 982 ASSERT(backing.is_memory() || backing.is_register()); | |
| 983 if (backing.is_memory()) { | |
| 984 __ push(Operand(rbp, fp_relative(backing_index))); | |
| 985 } else { | |
| 986 __ push(backing.reg()); | |
| 987 } | |
| 988 break; | |
| 989 } | |
| 990 } | |
| 991 elements_[index].set_sync(); | |
| 992 } | |
| 993 | |
| 994 | |
| 995 // Clear the dirty bits for the range of elements in | |
| 996 // [min(stack_pointer_ + 1,begin), end]. | |
| 997 void VirtualFrame::SyncRange(int begin, int end) { | |
| 998 ASSERT(begin >= 0); | |
| 999 ASSERT(end < element_count()); | |
| 1000 // Sync elements below the range if they have not been materialized | |
| 1001 // on the stack. | |
| 1002 int start = Min(begin, stack_pointer_ + 1); | |
| 1003 int end_or_stack_pointer = Min(stack_pointer_, end); | |
| 1004 // Emit normal push instructions for elements above stack pointer | |
| 1005 // and use mov instructions if we are below stack pointer. | |
| 1006 int i = start; | |
| 1007 | |
| 1008 while (i <= end_or_stack_pointer) { | |
| 1009 if (!elements_[i].is_synced()) SyncElementBelowStackPointer(i); | |
| 1010 i++; | |
| 1011 } | |
| 1012 while (i <= end) { | |
| 1013 SyncElementByPushing(i); | |
| 1014 i++; | |
| 1015 } | |
| 1016 } | |
| 1017 | |
| 1018 | |
| 1019 //------------------------------------------------------------------------------ | |
| 1020 // Virtual frame stub and IC calling functions. | |
| 1021 | |
| 1022 Result VirtualFrame::CallRuntime(const Runtime::Function* f, int arg_count) { | |
| 1023 PrepareForCall(arg_count, arg_count); | |
| 1024 ASSERT(cgen()->HasValidEntryRegisters()); | |
| 1025 __ CallRuntime(f, arg_count); | |
| 1026 Result result = cgen()->allocator()->Allocate(rax); | |
| 1027 ASSERT(result.is_valid()); | |
| 1028 return result; | |
| 1029 } | |
| 1030 | |
| 1031 | |
| 1032 Result VirtualFrame::CallRuntime(Runtime::FunctionId id, int arg_count) { | |
| 1033 PrepareForCall(arg_count, arg_count); | |
| 1034 ASSERT(cgen()->HasValidEntryRegisters()); | |
| 1035 __ CallRuntime(id, arg_count); | |
| 1036 Result result = cgen()->allocator()->Allocate(rax); | |
| 1037 ASSERT(result.is_valid()); | |
| 1038 return result; | |
| 1039 } | |
| 1040 | |
| 1041 | |
| 1042 #ifdef ENABLE_DEBUGGER_SUPPORT | |
| 1043 void VirtualFrame::DebugBreak() { | |
| 1044 PrepareForCall(0, 0); | |
| 1045 ASSERT(cgen()->HasValidEntryRegisters()); | |
| 1046 __ DebugBreak(); | |
| 1047 Result result = cgen()->allocator()->Allocate(rax); | |
| 1048 ASSERT(result.is_valid()); | |
| 1049 } | |
| 1050 #endif | |
| 1051 | |
| 1052 | |
| 1053 Result VirtualFrame::InvokeBuiltin(Builtins::JavaScript id, | |
| 1054 InvokeFlag flag, | |
| 1055 int arg_count) { | |
| 1056 PrepareForCall(arg_count, arg_count); | |
| 1057 ASSERT(cgen()->HasValidEntryRegisters()); | |
| 1058 __ InvokeBuiltin(id, flag); | |
| 1059 Result result = cgen()->allocator()->Allocate(rax); | |
| 1060 ASSERT(result.is_valid()); | |
| 1061 return result; | |
| 1062 } | |
| 1063 | |
| 1064 | |
| 1065 Result VirtualFrame::RawCallCodeObject(Handle<Code> code, | |
| 1066 RelocInfo::Mode rmode) { | |
| 1067 ASSERT(cgen()->HasValidEntryRegisters()); | |
| 1068 __ Call(code, rmode); | |
| 1069 Result result = cgen()->allocator()->Allocate(rax); | |
| 1070 ASSERT(result.is_valid()); | |
| 1071 return result; | |
| 1072 } | |
| 1073 | |
| 1074 | |
| 1075 // This function assumes that the only results that could be in a_reg or b_reg | |
| 1076 // are a and b. Other results can be live, but must not be in a_reg or b_reg. | |
| 1077 void VirtualFrame::MoveResultsToRegisters(Result* a, | |
| 1078 Result* b, | |
| 1079 Register a_reg, | |
| 1080 Register b_reg) { | |
| 1081 ASSERT(!a_reg.is(b_reg)); | |
| 1082 // Assert that cgen()->allocator()->count(a_reg) is accounted for by a and b. | |
| 1083 ASSERT(cgen()->allocator()->count(a_reg) <= 2); | |
| 1084 ASSERT(cgen()->allocator()->count(a_reg) != 2 || a->reg().is(a_reg)); | |
| 1085 ASSERT(cgen()->allocator()->count(a_reg) != 2 || b->reg().is(a_reg)); | |
| 1086 ASSERT(cgen()->allocator()->count(a_reg) != 1 || | |
| 1087 (a->is_register() && a->reg().is(a_reg)) || | |
| 1088 (b->is_register() && b->reg().is(a_reg))); | |
| 1089 // Assert that cgen()->allocator()->count(b_reg) is accounted for by a and b. | |
| 1090 ASSERT(cgen()->allocator()->count(b_reg) <= 2); | |
| 1091 ASSERT(cgen()->allocator()->count(b_reg) != 2 || a->reg().is(b_reg)); | |
| 1092 ASSERT(cgen()->allocator()->count(b_reg) != 2 || b->reg().is(b_reg)); | |
| 1093 ASSERT(cgen()->allocator()->count(b_reg) != 1 || | |
| 1094 (a->is_register() && a->reg().is(b_reg)) || | |
| 1095 (b->is_register() && b->reg().is(b_reg))); | |
| 1096 | |
| 1097 if (a->is_register() && a->reg().is(a_reg)) { | |
| 1098 b->ToRegister(b_reg); | |
| 1099 } else if (!cgen()->allocator()->is_used(a_reg)) { | |
| 1100 a->ToRegister(a_reg); | |
| 1101 b->ToRegister(b_reg); | |
| 1102 } else if (cgen()->allocator()->is_used(b_reg)) { | |
| 1103 // a must be in b_reg, b in a_reg. | |
| 1104 __ xchg(a_reg, b_reg); | |
| 1105 // Results a and b will be invalidated, so it is ok if they are switched. | |
| 1106 } else { | |
| 1107 b->ToRegister(b_reg); | |
| 1108 a->ToRegister(a_reg); | |
| 1109 } | |
| 1110 a->Unuse(); | |
| 1111 b->Unuse(); | |
| 1112 } | |
| 1113 | |
| 1114 | |
| 1115 Result VirtualFrame::CallLoadIC(RelocInfo::Mode mode) { | |
| 1116 // Name and receiver are on the top of the frame. Both are dropped. | |
| 1117 // The IC expects name in rcx and receiver in rax. | |
| 1118 Handle<Code> ic(Isolate::Current()->builtins()->builtin( | |
| 1119 Builtins::kLoadIC_Initialize)); | |
| 1120 Result name = Pop(); | |
| 1121 Result receiver = Pop(); | |
| 1122 PrepareForCall(0, 0); | |
| 1123 MoveResultsToRegisters(&name, &receiver, rcx, rax); | |
| 1124 | |
| 1125 return RawCallCodeObject(ic, mode); | |
| 1126 } | |
| 1127 | |
| 1128 | |
| 1129 Result VirtualFrame::CallKeyedLoadIC(RelocInfo::Mode mode) { | |
| 1130 // Key and receiver are on top of the frame. Put them in rax and rdx. | |
| 1131 Result key = Pop(); | |
| 1132 Result receiver = Pop(); | |
| 1133 PrepareForCall(0, 0); | |
| 1134 MoveResultsToRegisters(&key, &receiver, rax, rdx); | |
| 1135 | |
| 1136 Handle<Code> ic(Isolate::Current()->builtins()->builtin( | |
| 1137 Builtins::kKeyedLoadIC_Initialize)); | |
| 1138 return RawCallCodeObject(ic, mode); | |
| 1139 } | |
| 1140 | |
| 1141 | |
| 1142 Result VirtualFrame::CallStoreIC(Handle<String> name, | |
| 1143 bool is_contextual, | |
| 1144 StrictModeFlag strict_mode) { | |
| 1145 // Value and (if not contextual) receiver are on top of the frame. | |
| 1146 // The IC expects name in rcx, value in rax, and receiver in rdx. | |
| 1147 Handle<Code> ic(Isolate::Current()->builtins()->builtin( | |
| 1148 (strict_mode == kStrictMode) ? Builtins::kStoreIC_Initialize_Strict | |
| 1149 : Builtins::kStoreIC_Initialize)); | |
| 1150 Result value = Pop(); | |
| 1151 RelocInfo::Mode mode; | |
| 1152 if (is_contextual) { | |
| 1153 PrepareForCall(0, 0); | |
| 1154 value.ToRegister(rax); | |
| 1155 __ movq(rdx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); | |
| 1156 value.Unuse(); | |
| 1157 mode = RelocInfo::CODE_TARGET_CONTEXT; | |
| 1158 } else { | |
| 1159 Result receiver = Pop(); | |
| 1160 PrepareForCall(0, 0); | |
| 1161 MoveResultsToRegisters(&value, &receiver, rax, rdx); | |
| 1162 mode = RelocInfo::CODE_TARGET; | |
| 1163 } | |
| 1164 __ Move(rcx, name); | |
| 1165 return RawCallCodeObject(ic, mode); | |
| 1166 } | |
| 1167 | |
| 1168 | |
| 1169 Result VirtualFrame::CallKeyedStoreIC(StrictModeFlag strict_mode) { | |
| 1170 // Value, key, and receiver are on the top of the frame. The IC | |
| 1171 // expects value in rax, key in rcx, and receiver in rdx. | |
| 1172 Result value = Pop(); | |
| 1173 Result key = Pop(); | |
| 1174 Result receiver = Pop(); | |
| 1175 PrepareForCall(0, 0); | |
| 1176 if (!cgen()->allocator()->is_used(rax) || | |
| 1177 (value.is_register() && value.reg().is(rax))) { | |
| 1178 if (!cgen()->allocator()->is_used(rax)) { | |
| 1179 value.ToRegister(rax); | |
| 1180 } | |
| 1181 MoveResultsToRegisters(&key, &receiver, rcx, rdx); | |
| 1182 value.Unuse(); | |
| 1183 } else if (!cgen()->allocator()->is_used(rcx) || | |
| 1184 (key.is_register() && key.reg().is(rcx))) { | |
| 1185 if (!cgen()->allocator()->is_used(rcx)) { | |
| 1186 key.ToRegister(rcx); | |
| 1187 } | |
| 1188 MoveResultsToRegisters(&value, &receiver, rax, rdx); | |
| 1189 key.Unuse(); | |
| 1190 } else if (!cgen()->allocator()->is_used(rdx) || | |
| 1191 (receiver.is_register() && receiver.reg().is(rdx))) { | |
| 1192 if (!cgen()->allocator()->is_used(rdx)) { | |
| 1193 receiver.ToRegister(rdx); | |
| 1194 } | |
| 1195 MoveResultsToRegisters(&key, &value, rcx, rax); | |
| 1196 receiver.Unuse(); | |
| 1197 } else { | |
| 1198 // All three registers are used, and no value is in the correct place. | |
| 1199 // We have one of the two circular permutations of rax, rcx, rdx. | |
| 1200 ASSERT(value.is_register()); | |
| 1201 if (value.reg().is(rcx)) { | |
| 1202 __ xchg(rax, rdx); | |
| 1203 __ xchg(rax, rcx); | |
| 1204 } else { | |
| 1205 __ xchg(rax, rcx); | |
| 1206 __ xchg(rax, rdx); | |
| 1207 } | |
| 1208 value.Unuse(); | |
| 1209 key.Unuse(); | |
| 1210 receiver.Unuse(); | |
| 1211 } | |
| 1212 | |
| 1213 Handle<Code> ic(Isolate::Current()->builtins()->builtin( | |
| 1214 (strict_mode == kStrictMode) ? Builtins::kKeyedStoreIC_Initialize_Strict | |
| 1215 : Builtins::kKeyedStoreIC_Initialize)); | |
| 1216 return RawCallCodeObject(ic, RelocInfo::CODE_TARGET); | |
| 1217 } | |
| 1218 | |
| 1219 | |
| 1220 Result VirtualFrame::CallCallIC(RelocInfo::Mode mode, | |
| 1221 int arg_count, | |
| 1222 int loop_nesting) { | |
| 1223 // Function name, arguments, and receiver are found on top of the frame | |
| 1224 // and dropped by the call. The IC expects the name in rcx and the rest | |
| 1225 // on the stack, and drops them all. | |
| 1226 InLoopFlag in_loop = loop_nesting > 0 ? IN_LOOP : NOT_IN_LOOP; | |
| 1227 Handle<Code> ic = | |
| 1228 ISOLATE->stub_cache()->ComputeCallInitialize(arg_count, in_loop); | |
| 1229 Result name = Pop(); | |
| 1230 // Spill args, receiver, and function. The call will drop args and | |
| 1231 // receiver. | |
| 1232 PrepareForCall(arg_count + 1, arg_count + 1); | |
| 1233 name.ToRegister(rcx); | |
| 1234 name.Unuse(); | |
| 1235 return RawCallCodeObject(ic, mode); | |
| 1236 } | |
| 1237 | |
| 1238 | |
| 1239 Result VirtualFrame::CallKeyedCallIC(RelocInfo::Mode mode, | |
| 1240 int arg_count, | |
| 1241 int loop_nesting) { | |
| 1242 // Function name, arguments, and receiver are found on top of the frame | |
| 1243 // and dropped by the call. The IC expects the name in rcx and the rest | |
| 1244 // on the stack, and drops them all. | |
| 1245 InLoopFlag in_loop = loop_nesting > 0 ? IN_LOOP : NOT_IN_LOOP; | |
| 1246 Handle<Code> ic = | |
| 1247 ISOLATE->stub_cache()->ComputeKeyedCallInitialize(arg_count, in_loop); | |
| 1248 Result name = Pop(); | |
| 1249 // Spill args, receiver, and function. The call will drop args and | |
| 1250 // receiver. | |
| 1251 PrepareForCall(arg_count + 1, arg_count + 1); | |
| 1252 name.ToRegister(rcx); | |
| 1253 name.Unuse(); | |
| 1254 return RawCallCodeObject(ic, mode); | |
| 1255 } | |
| 1256 | |
| 1257 | |
| 1258 Result VirtualFrame::CallConstructor(int arg_count) { | |
| 1259 // Arguments, receiver, and function are on top of the frame. The | |
| 1260 // IC expects arg count in rax, function in rdi, and the arguments | |
| 1261 // and receiver on the stack. | |
| 1262 Handle<Code> ic(Isolate::Current()->builtins()->builtin( | |
| 1263 Builtins::kJSConstructCall)); | |
| 1264 // Duplicate the function before preparing the frame. | |
| 1265 PushElementAt(arg_count); | |
| 1266 Result function = Pop(); | |
| 1267 PrepareForCall(arg_count + 1, arg_count + 1); // Spill function and args. | |
| 1268 function.ToRegister(rdi); | |
| 1269 | |
| 1270 // Constructors are called with the number of arguments in register | |
| 1271 // rax for now. Another option would be to have separate construct | |
| 1272 // call trampolines per different arguments counts encountered. | |
| 1273 Result num_args = cgen()->allocator()->Allocate(rax); | |
| 1274 ASSERT(num_args.is_valid()); | |
| 1275 __ Set(num_args.reg(), arg_count); | |
| 1276 | |
| 1277 function.Unuse(); | |
| 1278 num_args.Unuse(); | |
| 1279 return RawCallCodeObject(ic, RelocInfo::CONSTRUCT_CALL); | |
| 1280 } | |
| 1281 | |
| 1282 | |
| 1283 void VirtualFrame::PushTryHandler(HandlerType type) { | |
| 1284 ASSERT(cgen()->HasValidEntryRegisters()); | |
| 1285 // Grow the expression stack by handler size less one (the return | |
| 1286 // address is already pushed by a call instruction). | |
| 1287 Adjust(kHandlerSize - 1); | |
| 1288 __ PushTryHandler(IN_JAVASCRIPT, type); | |
| 1289 } | |
| 1290 | |
| 1291 | |
| 1292 #undef __ | |
| 1293 | |
| 1294 } } // namespace v8::internal | |
| 1295 | |
| 1296 #endif // V8_TARGET_ARCH_X64 | |
| OLD | NEW |