| OLD | NEW |
| (Empty) |
| 1 // Copyright 2009 the V8 project authors. All rights reserved. | |
| 2 // Redistribution and use in source and binary forms, with or without | |
| 3 // modification, are permitted provided that the following conditions are | |
| 4 // met: | |
| 5 // | |
| 6 // * Redistributions of source code must retain the above copyright | |
| 7 // notice, this list of conditions and the following disclaimer. | |
| 8 // * Redistributions in binary form must reproduce the above | |
| 9 // copyright notice, this list of conditions and the following | |
| 10 // disclaimer in the documentation and/or other materials provided | |
| 11 // with the distribution. | |
| 12 // * Neither the name of Google Inc. nor the names of its | |
| 13 // contributors may be used to endorse or promote products derived | |
| 14 // from this software without specific prior written permission. | |
| 15 // | |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 27 | |
| 28 #ifndef V8_ARM_VIRTUAL_FRAME_ARM_H_ | |
| 29 #define V8_ARM_VIRTUAL_FRAME_ARM_H_ | |
| 30 | |
| 31 #include "register-allocator.h" | |
| 32 | |
| 33 namespace v8 { | |
| 34 namespace internal { | |
| 35 | |
| 36 // This dummy class is only used to create invalid virtual frames. | |
| 37 extern class InvalidVirtualFrameInitializer {}* kInvalidVirtualFrameInitializer; | |
| 38 | |
| 39 | |
| 40 // ------------------------------------------------------------------------- | |
| 41 // Virtual frames | |
| 42 // | |
| 43 // The virtual frame is an abstraction of the physical stack frame. It | |
| 44 // encapsulates the parameters, frame-allocated locals, and the expression | |
| 45 // stack. It supports push/pop operations on the expression stack, as well | |
| 46 // as random access to the expression stack elements, locals, and | |
| 47 // parameters. | |
| 48 | |
| 49 class VirtualFrame : public ZoneObject { | |
| 50 public: | |
| 51 class RegisterAllocationScope; | |
| 52 // A utility class to introduce a scope where the virtual frame is | |
| 53 // expected to remain spilled. The constructor spills the code | |
| 54 // generator's current frame, and keeps it spilled. | |
| 55 class SpilledScope BASE_EMBEDDED { | |
| 56 public: | |
| 57 explicit SpilledScope(VirtualFrame* frame) | |
| 58 : old_is_spilled_( | |
| 59 Isolate::Current()->is_virtual_frame_in_spilled_scope()) { | |
| 60 if (frame != NULL) { | |
| 61 if (!old_is_spilled_) { | |
| 62 frame->SpillAll(); | |
| 63 } else { | |
| 64 frame->AssertIsSpilled(); | |
| 65 } | |
| 66 } | |
| 67 Isolate::Current()->set_is_virtual_frame_in_spilled_scope(true); | |
| 68 } | |
| 69 ~SpilledScope() { | |
| 70 Isolate::Current()->set_is_virtual_frame_in_spilled_scope( | |
| 71 old_is_spilled_); | |
| 72 } | |
| 73 static bool is_spilled() { | |
| 74 return Isolate::Current()->is_virtual_frame_in_spilled_scope(); | |
| 75 } | |
| 76 | |
| 77 private: | |
| 78 int old_is_spilled_; | |
| 79 | |
| 80 SpilledScope() { } | |
| 81 | |
| 82 friend class RegisterAllocationScope; | |
| 83 }; | |
| 84 | |
| 85 class RegisterAllocationScope BASE_EMBEDDED { | |
| 86 public: | |
| 87 // A utility class to introduce a scope where the virtual frame | |
| 88 // is not spilled, ie. where register allocation occurs. Eventually | |
| 89 // when RegisterAllocationScope is ubiquitous it can be removed | |
| 90 // along with the (by then unused) SpilledScope class. | |
| 91 inline explicit RegisterAllocationScope(CodeGenerator* cgen); | |
| 92 inline ~RegisterAllocationScope(); | |
| 93 | |
| 94 private: | |
| 95 CodeGenerator* cgen_; | |
| 96 bool old_is_spilled_; | |
| 97 | |
| 98 RegisterAllocationScope() { } | |
| 99 }; | |
| 100 | |
| 101 // An illegal index into the virtual frame. | |
| 102 static const int kIllegalIndex = -1; | |
| 103 | |
| 104 // Construct an initial virtual frame on entry to a JS function. | |
| 105 inline VirtualFrame(); | |
| 106 | |
| 107 // Construct an invalid virtual frame, used by JumpTargets. | |
| 108 inline VirtualFrame(InvalidVirtualFrameInitializer* dummy); | |
| 109 | |
| 110 // Construct a virtual frame as a clone of an existing one. | |
| 111 explicit inline VirtualFrame(VirtualFrame* original); | |
| 112 | |
| 113 inline CodeGenerator* cgen() const; | |
| 114 inline MacroAssembler* masm(); | |
| 115 | |
| 116 // The number of elements on the virtual frame. | |
| 117 int element_count() const { return element_count_; } | |
| 118 | |
| 119 // The height of the virtual expression stack. | |
| 120 inline int height() const; | |
| 121 | |
| 122 bool is_used(int num) { | |
| 123 switch (num) { | |
| 124 case 0: { // r0. | |
| 125 return kR0InUse[top_of_stack_state_]; | |
| 126 } | |
| 127 case 1: { // r1. | |
| 128 return kR1InUse[top_of_stack_state_]; | |
| 129 } | |
| 130 case 2: | |
| 131 case 3: | |
| 132 case 4: | |
| 133 case 5: | |
| 134 case 6: { // r2 to r6. | |
| 135 ASSERT(num - kFirstAllocatedRegister < kNumberOfAllocatedRegisters); | |
| 136 ASSERT(num >= kFirstAllocatedRegister); | |
| 137 if ((register_allocation_map_ & | |
| 138 (1 << (num - kFirstAllocatedRegister))) == 0) { | |
| 139 return false; | |
| 140 } else { | |
| 141 return true; | |
| 142 } | |
| 143 } | |
| 144 default: { | |
| 145 ASSERT(num < kFirstAllocatedRegister || | |
| 146 num >= kFirstAllocatedRegister + kNumberOfAllocatedRegisters); | |
| 147 return false; | |
| 148 } | |
| 149 } | |
| 150 } | |
| 151 | |
| 152 // Add extra in-memory elements to the top of the frame to match an actual | |
| 153 // frame (eg, the frame after an exception handler is pushed). No code is | |
| 154 // emitted. | |
| 155 void Adjust(int count); | |
| 156 | |
| 157 // Forget elements from the top of the frame to match an actual frame (eg, | |
| 158 // the frame after a runtime call). No code is emitted except to bring the | |
| 159 // frame to a spilled state. | |
| 160 void Forget(int count); | |
| 161 | |
| 162 // Spill all values from the frame to memory. | |
| 163 void SpillAll(); | |
| 164 | |
| 165 void AssertIsSpilled() const { | |
| 166 ASSERT(top_of_stack_state_ == NO_TOS_REGISTERS); | |
| 167 ASSERT(register_allocation_map_ == 0); | |
| 168 } | |
| 169 | |
| 170 void AssertIsNotSpilled() { | |
| 171 ASSERT(!SpilledScope::is_spilled()); | |
| 172 } | |
| 173 | |
| 174 // Spill all occurrences of a specific register from the frame. | |
| 175 void Spill(Register reg) { | |
| 176 UNIMPLEMENTED(); | |
| 177 } | |
| 178 | |
| 179 // Spill all occurrences of an arbitrary register if possible. Return the | |
| 180 // register spilled or no_reg if it was not possible to free any register | |
| 181 // (ie, they all have frame-external references). Unimplemented. | |
| 182 Register SpillAnyRegister(); | |
| 183 | |
| 184 // Make this virtual frame have a state identical to an expected virtual | |
| 185 // frame. As a side effect, code may be emitted to make this frame match | |
| 186 // the expected one. | |
| 187 void MergeTo(VirtualFrame* expected, Condition cond = al); | |
| 188 void MergeTo(const VirtualFrame* expected, Condition cond = al); | |
| 189 | |
| 190 // Checks whether this frame can be branched to by the other frame. | |
| 191 bool IsCompatibleWith(const VirtualFrame* other) const { | |
| 192 return (tos_known_smi_map_ & (~other->tos_known_smi_map_)) == 0; | |
| 193 } | |
| 194 | |
| 195 inline void ForgetTypeInfo() { | |
| 196 tos_known_smi_map_ = 0; | |
| 197 } | |
| 198 | |
| 199 // Detach a frame from its code generator, perhaps temporarily. This | |
| 200 // tells the register allocator that it is free to use frame-internal | |
| 201 // registers. Used when the code generator's frame is switched from this | |
| 202 // one to NULL by an unconditional jump. | |
| 203 void DetachFromCodeGenerator() { | |
| 204 } | |
| 205 | |
| 206 // (Re)attach a frame to its code generator. This informs the register | |
| 207 // allocator that the frame-internal register references are active again. | |
| 208 // Used when a code generator's frame is switched from NULL to this one by | |
| 209 // binding a label. | |
| 210 void AttachToCodeGenerator() { | |
| 211 } | |
| 212 | |
| 213 // Emit code for the physical JS entry and exit frame sequences. After | |
| 214 // calling Enter, the virtual frame is ready for use; and after calling | |
| 215 // Exit it should not be used. Note that Enter does not allocate space in | |
| 216 // the physical frame for storing frame-allocated locals. | |
| 217 void Enter(); | |
| 218 void Exit(); | |
| 219 | |
| 220 // Prepare for returning from the frame by elements in the virtual frame. This | |
| 221 // avoids generating unnecessary merge code when jumping to the | |
| 222 // shared return site. No spill code emitted. Value to return should be in r0. | |
| 223 inline void PrepareForReturn(); | |
| 224 | |
| 225 // Number of local variables after when we use a loop for allocating. | |
| 226 static const int kLocalVarBound = 5; | |
| 227 | |
| 228 // Allocate and initialize the frame-allocated locals. | |
| 229 void AllocateStackSlots(); | |
| 230 | |
| 231 // The current top of the expression stack as an assembly operand. | |
| 232 MemOperand Top() { | |
| 233 AssertIsSpilled(); | |
| 234 return MemOperand(sp, 0); | |
| 235 } | |
| 236 | |
| 237 // An element of the expression stack as an assembly operand. | |
| 238 MemOperand ElementAt(int index) { | |
| 239 int adjusted_index = index - kVirtualElements[top_of_stack_state_]; | |
| 240 ASSERT(adjusted_index >= 0); | |
| 241 return MemOperand(sp, adjusted_index * kPointerSize); | |
| 242 } | |
| 243 | |
| 244 bool KnownSmiAt(int index) { | |
| 245 if (index >= kTOSKnownSmiMapSize) return false; | |
| 246 return (tos_known_smi_map_ & (1 << index)) != 0; | |
| 247 } | |
| 248 | |
| 249 // A frame-allocated local as an assembly operand. | |
| 250 inline MemOperand LocalAt(int index); | |
| 251 | |
| 252 // Push the address of the receiver slot on the frame. | |
| 253 void PushReceiverSlotAddress(); | |
| 254 | |
| 255 // The function frame slot. | |
| 256 MemOperand Function() { return MemOperand(fp, kFunctionOffset); } | |
| 257 | |
| 258 // The context frame slot. | |
| 259 MemOperand Context() { return MemOperand(fp, kContextOffset); } | |
| 260 | |
| 261 // A parameter as an assembly operand. | |
| 262 inline MemOperand ParameterAt(int index); | |
| 263 | |
| 264 // The receiver frame slot. | |
| 265 inline MemOperand Receiver(); | |
| 266 | |
| 267 // Push a try-catch or try-finally handler on top of the virtual frame. | |
| 268 void PushTryHandler(HandlerType type); | |
| 269 | |
| 270 // Call stub given the number of arguments it expects on (and | |
| 271 // removes from) the stack. | |
| 272 inline void CallStub(CodeStub* stub, int arg_count); | |
| 273 | |
| 274 // Call JS function from top of the stack with arguments | |
| 275 // taken from the stack. | |
| 276 void CallJSFunction(int arg_count); | |
| 277 | |
| 278 // Call runtime given the number of arguments expected on (and | |
| 279 // removed from) the stack. | |
| 280 void CallRuntime(const Runtime::Function* f, int arg_count); | |
| 281 void CallRuntime(Runtime::FunctionId id, int arg_count); | |
| 282 | |
| 283 #ifdef ENABLE_DEBUGGER_SUPPORT | |
| 284 void DebugBreak(); | |
| 285 #endif | |
| 286 | |
| 287 // Invoke builtin given the number of arguments it expects on (and | |
| 288 // removes from) the stack. | |
| 289 void InvokeBuiltin(Builtins::JavaScript id, | |
| 290 InvokeJSFlags flag, | |
| 291 int arg_count); | |
| 292 | |
| 293 // Call load IC. Receiver is on the stack and is consumed. Result is returned | |
| 294 // in r0. | |
| 295 void CallLoadIC(Handle<String> name, RelocInfo::Mode mode); | |
| 296 | |
| 297 // Call store IC. If the load is contextual, value is found on top of the | |
| 298 // frame. If not, value and receiver are on the frame. Both are consumed. | |
| 299 // Result is returned in r0. | |
| 300 void CallStoreIC(Handle<String> name, bool is_contextual, | |
| 301 StrictModeFlag strict_mode); | |
| 302 | |
| 303 // Call keyed load IC. Key and receiver are on the stack. Both are consumed. | |
| 304 // Result is returned in r0. | |
| 305 void CallKeyedLoadIC(); | |
| 306 | |
| 307 // Call keyed store IC. Value, key and receiver are on the stack. All three | |
| 308 // are consumed. Result is returned in r0. | |
| 309 void CallKeyedStoreIC(StrictModeFlag strict_mode); | |
| 310 | |
| 311 // Call into an IC stub given the number of arguments it removes | |
| 312 // from the stack. Register arguments to the IC stub are implicit, | |
| 313 // and depend on the type of IC stub. | |
| 314 void CallCodeObject(Handle<Code> ic, | |
| 315 RelocInfo::Mode rmode, | |
| 316 int dropped_args); | |
| 317 | |
| 318 // Drop a number of elements from the top of the expression stack. May | |
| 319 // emit code to affect the physical frame. Does not clobber any registers | |
| 320 // excepting possibly the stack pointer. | |
| 321 void Drop(int count); | |
| 322 | |
| 323 // Drop one element. | |
| 324 void Drop() { Drop(1); } | |
| 325 | |
| 326 // Pop an element from the top of the expression stack. Discards | |
| 327 // the result. | |
| 328 void Pop(); | |
| 329 | |
| 330 // Pop an element from the top of the expression stack. The register | |
| 331 // will be one normally used for the top of stack register allocation | |
| 332 // so you can't hold on to it if you push on the stack. | |
| 333 Register PopToRegister(Register but_not_to_this_one = no_reg); | |
| 334 | |
| 335 // Look at the top of the stack. The register returned is aliased and | |
| 336 // must be copied to a scratch register before modification. | |
| 337 Register Peek(); | |
| 338 | |
| 339 // Look at the value beneath the top of the stack. The register returned is | |
| 340 // aliased and must be copied to a scratch register before modification. | |
| 341 Register Peek2(); | |
| 342 | |
| 343 // Duplicate the top of stack. | |
| 344 void Dup(); | |
| 345 | |
| 346 // Duplicate the two elements on top of stack. | |
| 347 void Dup2(); | |
| 348 | |
| 349 // Flushes all registers, but it puts a copy of the top-of-stack in r0. | |
| 350 void SpillAllButCopyTOSToR0(); | |
| 351 | |
| 352 // Flushes all registers, but it puts a copy of the top-of-stack in r1. | |
| 353 void SpillAllButCopyTOSToR1(); | |
| 354 | |
| 355 // Flushes all registers, but it puts a copy of the top-of-stack in r1 | |
| 356 // and the next value on the stack in r0. | |
| 357 void SpillAllButCopyTOSToR1R0(); | |
| 358 | |
| 359 // Pop and save an element from the top of the expression stack and | |
| 360 // emit a corresponding pop instruction. | |
| 361 void EmitPop(Register reg); | |
| 362 | |
| 363 // Takes the top two elements and puts them in r0 (top element) and r1 | |
| 364 // (second element). | |
| 365 void PopToR1R0(); | |
| 366 | |
| 367 // Takes the top element and puts it in r1. | |
| 368 void PopToR1(); | |
| 369 | |
| 370 // Takes the top element and puts it in r0. | |
| 371 void PopToR0(); | |
| 372 | |
| 373 // Push an element on top of the expression stack and emit a | |
| 374 // corresponding push instruction. | |
| 375 void EmitPush(Register reg, TypeInfo type_info = TypeInfo::Unknown()); | |
| 376 void EmitPush(Operand operand, TypeInfo type_info = TypeInfo::Unknown()); | |
| 377 void EmitPush(MemOperand operand, TypeInfo type_info = TypeInfo::Unknown()); | |
| 378 void EmitPushRoot(Heap::RootListIndex index); | |
| 379 | |
| 380 // Overwrite the nth thing on the stack. If the nth position is in a | |
| 381 // register then this turns into a mov, otherwise an str. Afterwards | |
| 382 // you can still use the register even if it is a register that can be | |
| 383 // used for TOS (r0 or r1). | |
| 384 void SetElementAt(Register reg, int this_far_down); | |
| 385 | |
| 386 // Get a register which is free and which must be immediately used to | |
| 387 // push on the top of the stack. | |
| 388 Register GetTOSRegister(); | |
| 389 | |
| 390 // Push multiple registers on the stack and the virtual frame | |
| 391 // Register are selected by setting bit in src_regs and | |
| 392 // are pushed in decreasing order: r15 .. r0. | |
| 393 void EmitPushMultiple(int count, int src_regs); | |
| 394 | |
| 395 static Register scratch0() { return r7; } | |
| 396 static Register scratch1() { return r9; } | |
| 397 | |
| 398 private: | |
| 399 static const int kLocal0Offset = JavaScriptFrameConstants::kLocal0Offset; | |
| 400 static const int kFunctionOffset = JavaScriptFrameConstants::kFunctionOffset; | |
| 401 static const int kContextOffset = StandardFrameConstants::kContextOffset; | |
| 402 | |
| 403 static const int kHandlerSize = StackHandlerConstants::kSize / kPointerSize; | |
| 404 static const int kPreallocatedElements = 5 + 8; // 8 expression stack slots. | |
| 405 | |
| 406 // 5 states for the top of stack, which can be in memory or in r0 and r1. | |
| 407 enum TopOfStack { | |
| 408 NO_TOS_REGISTERS, | |
| 409 R0_TOS, | |
| 410 R1_TOS, | |
| 411 R1_R0_TOS, | |
| 412 R0_R1_TOS, | |
| 413 TOS_STATES | |
| 414 }; | |
| 415 | |
| 416 static const int kMaxTOSRegisters = 2; | |
| 417 | |
| 418 static const bool kR0InUse[TOS_STATES]; | |
| 419 static const bool kR1InUse[TOS_STATES]; | |
| 420 static const int kVirtualElements[TOS_STATES]; | |
| 421 static const TopOfStack kStateAfterPop[TOS_STATES]; | |
| 422 static const TopOfStack kStateAfterPush[TOS_STATES]; | |
| 423 static const Register kTopRegister[TOS_STATES]; | |
| 424 static const Register kBottomRegister[TOS_STATES]; | |
| 425 | |
| 426 // We allocate up to 5 locals in registers. | |
| 427 static const int kNumberOfAllocatedRegisters = 5; | |
| 428 // r2 to r6 are allocated to locals. | |
| 429 static const int kFirstAllocatedRegister = 2; | |
| 430 | |
| 431 static const Register kAllocatedRegisters[kNumberOfAllocatedRegisters]; | |
| 432 | |
| 433 static Register AllocatedRegister(int r) { | |
| 434 ASSERT(r >= 0 && r < kNumberOfAllocatedRegisters); | |
| 435 return kAllocatedRegisters[r]; | |
| 436 } | |
| 437 | |
| 438 // The number of elements on the stack frame. | |
| 439 int element_count_; | |
| 440 TopOfStack top_of_stack_state_:3; | |
| 441 int register_allocation_map_:kNumberOfAllocatedRegisters; | |
| 442 static const int kTOSKnownSmiMapSize = 4; | |
| 443 unsigned tos_known_smi_map_:kTOSKnownSmiMapSize; | |
| 444 | |
| 445 // The index of the element that is at the processor's stack pointer | |
| 446 // (the sp register). For now since everything is in memory it is given | |
| 447 // by the number of elements on the not-very-virtual stack frame. | |
| 448 int stack_pointer() { return element_count_ - 1; } | |
| 449 | |
| 450 // The number of frame-allocated locals and parameters respectively. | |
| 451 inline int parameter_count() const; | |
| 452 inline int local_count() const; | |
| 453 | |
| 454 // The index of the element that is at the processor's frame pointer | |
| 455 // (the fp register). The parameters, receiver, function, and context | |
| 456 // are below the frame pointer. | |
| 457 inline int frame_pointer() const; | |
| 458 | |
| 459 // The index of the first parameter. The receiver lies below the first | |
| 460 // parameter. | |
| 461 int param0_index() { return 1; } | |
| 462 | |
| 463 // The index of the context slot in the frame. It is immediately | |
| 464 // below the frame pointer. | |
| 465 inline int context_index(); | |
| 466 | |
| 467 // The index of the function slot in the frame. It is below the frame | |
| 468 // pointer and context slot. | |
| 469 inline int function_index(); | |
| 470 | |
| 471 // The index of the first local. Between the frame pointer and the | |
| 472 // locals lies the return address. | |
| 473 inline int local0_index() const; | |
| 474 | |
| 475 // The index of the base of the expression stack. | |
| 476 inline int expression_base_index() const; | |
| 477 | |
| 478 // Convert a frame index into a frame pointer relative offset into the | |
| 479 // actual stack. | |
| 480 inline int fp_relative(int index); | |
| 481 | |
| 482 // Spill all elements in registers. Spill the top spilled_args elements | |
| 483 // on the frame. Sync all other frame elements. | |
| 484 // Then drop dropped_args elements from the virtual frame, to match | |
| 485 // the effect of an upcoming call that will drop them from the stack. | |
| 486 void PrepareForCall(int spilled_args, int dropped_args); | |
| 487 | |
| 488 // If all top-of-stack registers are in use then the lowest one is pushed | |
| 489 // onto the physical stack and made free. | |
| 490 void EnsureOneFreeTOSRegister(); | |
| 491 | |
| 492 // Emit instructions to get the top of stack state from where we are to where | |
| 493 // we want to be. | |
| 494 void MergeTOSTo(TopOfStack expected_state, Condition cond = al); | |
| 495 | |
| 496 inline bool Equals(const VirtualFrame* other); | |
| 497 | |
| 498 inline void LowerHeight(int count) { | |
| 499 element_count_ -= count; | |
| 500 if (count >= kTOSKnownSmiMapSize) { | |
| 501 tos_known_smi_map_ = 0; | |
| 502 } else { | |
| 503 tos_known_smi_map_ >>= count; | |
| 504 } | |
| 505 } | |
| 506 | |
| 507 inline void RaiseHeight(int count, unsigned known_smi_map = 0) { | |
| 508 ASSERT(count >= 32 || known_smi_map < (1u << count)); | |
| 509 element_count_ += count; | |
| 510 if (count >= kTOSKnownSmiMapSize) { | |
| 511 tos_known_smi_map_ = known_smi_map; | |
| 512 } else { | |
| 513 tos_known_smi_map_ = ((tos_known_smi_map_ << count) | known_smi_map); | |
| 514 } | |
| 515 } | |
| 516 | |
| 517 friend class JumpTarget; | |
| 518 }; | |
| 519 | |
| 520 | |
| 521 } } // namespace v8::internal | |
| 522 | |
| 523 #endif // V8_ARM_VIRTUAL_FRAME_ARM_H_ | |
| OLD | NEW |