Index: base/crypto/rsa_private_key.cc |
=================================================================== |
--- base/crypto/rsa_private_key.cc (revision 81350) |
+++ base/crypto/rsa_private_key.cc (working copy) |
@@ -1,390 +0,0 @@ |
-// Copyright (c) 2011 The Chromium Authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "base/crypto/rsa_private_key.h" |
- |
-#include <algorithm> |
-#include <list> |
- |
-#include "base/logging.h" |
-#include "base/memory/scoped_ptr.h" |
-#include "base/string_util.h" |
- |
-// This file manually encodes and decodes RSA private keys using PrivateKeyInfo |
-// from PKCS #8 and RSAPrivateKey from PKCS #1. These structures are: |
-// |
-// PrivateKeyInfo ::= SEQUENCE { |
-// version Version, |
-// privateKeyAlgorithm PrivateKeyAlgorithmIdentifier, |
-// privateKey PrivateKey, |
-// attributes [0] IMPLICIT Attributes OPTIONAL |
-// } |
-// |
-// RSAPrivateKey ::= SEQUENCE { |
-// version Version, |
-// modulus INTEGER, |
-// publicExponent INTEGER, |
-// privateExponent INTEGER, |
-// prime1 INTEGER, |
-// prime2 INTEGER, |
-// exponent1 INTEGER, |
-// exponent2 INTEGER, |
-// coefficient INTEGER |
-// } |
- |
-namespace { |
-// Helper for error handling during key import. |
-#define READ_ASSERT(truth) \ |
- if (!(truth)) { \ |
- NOTREACHED(); \ |
- return false; \ |
- } |
-} // namespace |
- |
-namespace base { |
- |
-const uint8 PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = { |
- 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01, |
- 0x05, 0x00 |
-}; |
- |
-PrivateKeyInfoCodec::PrivateKeyInfoCodec(bool big_endian) |
- : big_endian_(big_endian) {} |
- |
-PrivateKeyInfoCodec::~PrivateKeyInfoCodec() {} |
- |
-bool PrivateKeyInfoCodec::Export(std::vector<uint8>* output) { |
- std::list<uint8> content; |
- |
- // Version (always zero) |
- uint8 version = 0; |
- |
- PrependInteger(coefficient_, &content); |
- PrependInteger(exponent2_, &content); |
- PrependInteger(exponent1_, &content); |
- PrependInteger(prime2_, &content); |
- PrependInteger(prime1_, &content); |
- PrependInteger(private_exponent_, &content); |
- PrependInteger(public_exponent_, &content); |
- PrependInteger(modulus_, &content); |
- PrependInteger(&version, 1, &content); |
- PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
- PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content); |
- |
- // RSA algorithm OID |
- for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) |
- content.push_front(kRsaAlgorithmIdentifier[i - 1]); |
- |
- PrependInteger(&version, 1, &content); |
- PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
- |
- // Copy everying into the output. |
- output->reserve(content.size()); |
- for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i) |
- output->push_back(*i); |
- |
- return true; |
-} |
- |
-bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8>* output) { |
- // Create a sequence with the modulus (n) and public exponent (e). |
- std::vector<uint8> bit_string; |
- if (!ExportPublicKey(&bit_string)) |
- return false; |
- |
- // Add the sequence as the contents of a bit string. |
- std::list<uint8> content; |
- PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()), |
- &content); |
- |
- // Add the RSA algorithm OID. |
- for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) |
- content.push_front(kRsaAlgorithmIdentifier[i - 1]); |
- |
- // Finally, wrap everything in a sequence. |
- PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
- |
- // Copy everything into the output. |
- output->reserve(content.size()); |
- for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i) |
- output->push_back(*i); |
- |
- return true; |
-} |
- |
-bool PrivateKeyInfoCodec::ExportPublicKey(std::vector<uint8>* output) { |
- // Create a sequence with the modulus (n) and public exponent (e). |
- std::list<uint8> content; |
- PrependInteger(&public_exponent_[0], |
- static_cast<int>(public_exponent_.size()), |
- &content); |
- PrependInteger(&modulus_[0], static_cast<int>(modulus_.size()), &content); |
- PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
- |
- // Copy everything into the output. |
- output->reserve(content.size()); |
- for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i) |
- output->push_back(*i); |
- |
- return true; |
-} |
- |
-bool PrivateKeyInfoCodec::Import(const std::vector<uint8>& input) { |
- if (input.empty()) { |
- return false; |
- } |
- |
- // Parse the private key info up to the public key values, ignoring |
- // the subsequent private key values. |
- uint8* src = const_cast<uint8*>(&input.front()); |
- uint8* end = src + input.size(); |
- if (!ReadSequence(&src, end) || |
- !ReadVersion(&src, end) || |
- !ReadAlgorithmIdentifier(&src, end) || |
- !ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) || |
- !ReadSequence(&src, end) || |
- !ReadVersion(&src, end) || |
- !ReadInteger(&src, end, &modulus_)) |
- return false; |
- |
- int mod_size = modulus_.size(); |
- READ_ASSERT(mod_size % 2 == 0); |
- int primes_size = mod_size / 2; |
- |
- if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) || |
- !ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) || |
- !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) || |
- !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) || |
- !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) || |
- !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) || |
- !ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_)) |
- return false; |
- |
- READ_ASSERT(src == end); |
- |
- |
- return true; |
-} |
- |
-void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8>& in, |
- std::list<uint8>* out) { |
- uint8* ptr = const_cast<uint8*>(&in.front()); |
- PrependIntegerImpl(ptr, in.size(), out, big_endian_); |
-} |
- |
-// Helper to prepend an ASN.1 integer. |
-void PrivateKeyInfoCodec::PrependInteger(uint8* val, |
- int num_bytes, |
- std::list<uint8>* data) { |
- PrependIntegerImpl(val, num_bytes, data, big_endian_); |
-} |
- |
-void PrivateKeyInfoCodec::PrependIntegerImpl(uint8* val, |
- int num_bytes, |
- std::list<uint8>* data, |
- bool big_endian) { |
- // Reverse input if little-endian. |
- std::vector<uint8> tmp; |
- if (!big_endian) { |
- tmp.assign(val, val + num_bytes); |
- reverse(tmp.begin(), tmp.end()); |
- val = &tmp.front(); |
- } |
- |
- // ASN.1 integers are unpadded byte arrays, so skip any null padding bytes |
- // from the most-significant end of the integer. |
- int start = 0; |
- while (start < (num_bytes - 1) && val[start] == 0x00) { |
- start++; |
- num_bytes--; |
- } |
- PrependBytes(val, start, num_bytes, data); |
- |
- // ASN.1 integers are signed. To encode a positive integer whose sign bit |
- // (the most significant bit) would otherwise be set and make the number |
- // negative, ASN.1 requires a leading null byte to force the integer to be |
- // positive. |
- uint8 front = data->front(); |
- if ((front & 0x80) != 0) { |
- data->push_front(0x00); |
- num_bytes++; |
- } |
- |
- PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data); |
-} |
- |
-bool PrivateKeyInfoCodec::ReadInteger(uint8** pos, |
- uint8* end, |
- std::vector<uint8>* out) { |
- return ReadIntegerImpl(pos, end, out, big_endian_); |
-} |
- |
-bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize(uint8** pos, |
- uint8* end, |
- size_t expected_size, |
- std::vector<uint8>* out) { |
- std::vector<uint8> temp; |
- if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian |
- return false; |
- |
- int pad = expected_size - temp.size(); |
- int index = 0; |
- if (out->size() == expected_size + 1) { |
- READ_ASSERT(out->front() == 0x00); |
- pad++; |
- index++; |
- } else { |
- READ_ASSERT(out->size() <= expected_size); |
- } |
- |
- while (pad) { |
- out->push_back(0x00); |
- pad--; |
- } |
- out->insert(out->end(), temp.begin(), temp.end()); |
- |
- // Reverse output if little-endian. |
- if (!big_endian_) |
- reverse(out->begin(), out->end()); |
- return true; |
-} |
- |
-bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8** pos, |
- uint8* end, |
- std::vector<uint8>* out, |
- bool big_endian) { |
- uint32 length = 0; |
- if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length) |
- return false; |
- |
- // The first byte can be zero to force positiveness. We can ignore this. |
- if (**pos == 0x00) { |
- ++(*pos); |
- --length; |
- } |
- |
- if (length) |
- out->insert(out->end(), *pos, (*pos) + length); |
- |
- (*pos) += length; |
- |
- // Reverse output if little-endian. |
- if (!big_endian) |
- reverse(out->begin(), out->end()); |
- return true; |
-} |
- |
-void PrivateKeyInfoCodec::PrependBytes(uint8* val, |
- int start, |
- int num_bytes, |
- std::list<uint8>* data) { |
- while (num_bytes > 0) { |
- --num_bytes; |
- data->push_front(val[start + num_bytes]); |
- } |
-} |
- |
-void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8>* data) { |
- // The high bit is used to indicate whether additional octets are needed to |
- // represent the length. |
- if (size < 0x80) { |
- data->push_front(static_cast<uint8>(size)); |
- } else { |
- uint8 num_bytes = 0; |
- while (size > 0) { |
- data->push_front(static_cast<uint8>(size & 0xFF)); |
- size >>= 8; |
- num_bytes++; |
- } |
- CHECK_LE(num_bytes, 4); |
- data->push_front(0x80 | num_bytes); |
- } |
-} |
- |
-void PrivateKeyInfoCodec::PrependTypeHeaderAndLength(uint8 type, |
- uint32 length, |
- std::list<uint8>* output) { |
- PrependLength(length, output); |
- output->push_front(type); |
-} |
- |
-void PrivateKeyInfoCodec::PrependBitString(uint8* val, |
- int num_bytes, |
- std::list<uint8>* output) { |
- // Start with the data. |
- PrependBytes(val, 0, num_bytes, output); |
- // Zero unused bits. |
- output->push_front(0); |
- // Add the length. |
- PrependLength(num_bytes + 1, output); |
- // Finally, add the bit string tag. |
- output->push_front((uint8) kBitStringTag); |
-} |
- |
-bool PrivateKeyInfoCodec::ReadLength(uint8** pos, uint8* end, uint32* result) { |
- READ_ASSERT(*pos < end); |
- int length = 0; |
- |
- // If the MSB is not set, the length is just the byte itself. |
- if (!(**pos & 0x80)) { |
- length = **pos; |
- (*pos)++; |
- } else { |
- // Otherwise, the lower 7 indicate the length of the length. |
- int length_of_length = **pos & 0x7F; |
- READ_ASSERT(length_of_length <= 4); |
- (*pos)++; |
- READ_ASSERT(*pos + length_of_length < end); |
- |
- length = 0; |
- for (int i = 0; i < length_of_length; ++i) { |
- length <<= 8; |
- length |= **pos; |
- (*pos)++; |
- } |
- } |
- |
- READ_ASSERT(*pos + length <= end); |
- if (result) *result = length; |
- return true; |
-} |
- |
-bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8** pos, |
- uint8* end, |
- uint8 expected_tag, |
- uint32* length) { |
- READ_ASSERT(*pos < end); |
- READ_ASSERT(**pos == expected_tag); |
- (*pos)++; |
- |
- return ReadLength(pos, end, length); |
-} |
- |
-bool PrivateKeyInfoCodec::ReadSequence(uint8** pos, uint8* end) { |
- return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL); |
-} |
- |
-bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8** pos, uint8* end) { |
- READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end); |
- READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier, |
- sizeof(kRsaAlgorithmIdentifier)) == 0); |
- (*pos) += sizeof(kRsaAlgorithmIdentifier); |
- return true; |
-} |
- |
-bool PrivateKeyInfoCodec::ReadVersion(uint8** pos, uint8* end) { |
- uint32 length = 0; |
- if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length)) |
- return false; |
- |
- // The version should be zero. |
- for (uint32 i = 0; i < length; ++i) { |
- READ_ASSERT(**pos == 0x00); |
- (*pos)++; |
- } |
- |
- return true; |
-} |
- |
-} // namespace base |