Index: net/third_party/nss/ssl/mpi/mpmontg.c |
diff --git a/net/third_party/nss/ssl/mpi/mpmontg.c b/net/third_party/nss/ssl/mpi/mpmontg.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..088b7eb59b78c116746d6020013062d3aa0f5c79 |
--- /dev/null |
+++ b/net/third_party/nss/ssl/mpi/mpmontg.c |
@@ -0,0 +1,1210 @@ |
+/* ***** BEGIN LICENSE BLOCK ***** |
+ * Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
+ * |
+ * The contents of this file are subject to the Mozilla Public License Version |
+ * 1.1 (the "License"); you may not use this file except in compliance with |
+ * the License. You may obtain a copy of the License at |
+ * http://www.mozilla.org/MPL/ |
+ * |
+ * Software distributed under the License is distributed on an "AS IS" basis, |
+ * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
+ * for the specific language governing rights and limitations under the |
+ * License. |
+ * |
+ * The Original Code is the Netscape security libraries. |
+ * |
+ * The Initial Developer of the Original Code is |
+ * Netscape Communications Corporation. |
+ * Portions created by the Initial Developer are Copyright (C) 2000 |
+ * the Initial Developer. All Rights Reserved. |
+ * |
+ * Contributor(s): |
+ * Sheueling Chang Shantz <sheueling.chang@sun.com>, |
+ * Stephen Fung <stephen.fung@sun.com>, and |
+ * Douglas Stebila <douglas@stebila.ca> of Sun Laboratories. |
+ * |
+ * Alternatively, the contents of this file may be used under the terms of |
+ * either the GNU General Public License Version 2 or later (the "GPL"), or |
+ * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
+ * in which case the provisions of the GPL or the LGPL are applicable instead |
+ * of those above. If you wish to allow use of your version of this file only |
+ * under the terms of either the GPL or the LGPL, and not to allow others to |
+ * use your version of this file under the terms of the MPL, indicate your |
+ * decision by deleting the provisions above and replace them with the notice |
+ * and other provisions required by the GPL or the LGPL. If you do not delete |
+ * the provisions above, a recipient may use your version of this file under |
+ * the terms of any one of the MPL, the GPL or the LGPL. |
+ * |
+ * ***** END LICENSE BLOCK ***** */ |
+/* $Id: mpmontg.c,v 1.22 2010/05/02 22:36:41 nelson%bolyard.com Exp $ */ |
+ |
+/* This file implements moduluar exponentiation using Montgomery's |
+ * method for modular reduction. This file implements the method |
+ * described as "Improvement 1" in the paper "A Cryptogrpahic Library for |
+ * the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr. |
+ * published in "Advances in Cryptology: Proceedings of EUROCRYPT '90" |
+ * "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244, |
+ * published by Springer Verlag. |
+ */ |
+ |
+#define MP_API_COMPATIBLE 1 |
+#define MP_USING_CACHE_SAFE_MOD_EXP 1 |
+#include <string.h> |
+#include "mpi-priv.h" |
+#include "mplogic.h" |
+#include "mpprime.h" |
+#ifdef MP_USING_MONT_MULF |
+#include "montmulf.h" |
+#endif |
+#include <stddef.h> /* ptrdiff_t */ |
+ |
+/* if MP_CHAR_STORE_SLOW is defined, we */ |
+/* need to know endianness of this platform. */ |
+#ifdef MP_CHAR_STORE_SLOW |
+#if !defined(MP_IS_BIG_ENDIAN) && !defined(MP_IS_LITTLE_ENDIAN) |
+#error "You must define MP_IS_BIG_ENDIAN or MP_IS_LITTLE_ENDIAN\n" \ |
+ " if you define MP_CHAR_STORE_SLOW." |
+#endif |
+#endif |
+ |
+#define STATIC |
+ |
+#define MAX_ODD_INTS 32 /* 2 ** (WINDOW_BITS - 1) */ |
+ |
+#if defined(_WIN32_WCE) |
+#define ABORT res = MP_UNDEF; goto CLEANUP |
+#else |
+#define ABORT abort() |
+#endif |
+ |
+/* computes T = REDC(T), 2^b == R */ |
+mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm) |
+{ |
+ mp_err res; |
+ mp_size i; |
+ |
+ i = MP_USED(T) + MP_USED(&mmm->N) + 2; |
+ MP_CHECKOK( s_mp_pad(T, i) ); |
+ for (i = 0; i < MP_USED(&mmm->N); ++i ) { |
+ mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime; |
+ /* T += N * m_i * (MP_RADIX ** i); */ |
+ MP_CHECKOK( s_mp_mul_d_add_offset(&mmm->N, m_i, T, i) ); |
+ } |
+ s_mp_clamp(T); |
+ |
+ /* T /= R */ |
+ s_mp_div_2d(T, mmm->b); |
+ |
+ if ((res = s_mp_cmp(T, &mmm->N)) >= 0) { |
+ /* T = T - N */ |
+ MP_CHECKOK( s_mp_sub(T, &mmm->N) ); |
+#ifdef DEBUG |
+ if ((res = mp_cmp(T, &mmm->N)) >= 0) { |
+ res = MP_UNDEF; |
+ goto CLEANUP; |
+ } |
+#endif |
+ } |
+ res = MP_OKAY; |
+CLEANUP: |
+ return res; |
+} |
+ |
+#if !defined(MP_ASSEMBLY_MUL_MONT) && !defined(MP_MONT_USE_MP_MUL) |
+mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c, |
+ mp_mont_modulus *mmm) |
+{ |
+ mp_digit *pb; |
+ mp_digit m_i; |
+ mp_err res; |
+ mp_size ib; |
+ mp_size useda, usedb; |
+ |
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
+ |
+ if (MP_USED(a) < MP_USED(b)) { |
+ const mp_int *xch = b; /* switch a and b, to do fewer outer loops */ |
+ b = a; |
+ a = xch; |
+ } |
+ |
+ MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; |
+ ib = MP_USED(a) + MP_MAX(MP_USED(b), MP_USED(&mmm->N)) + 2; |
+ if((res = s_mp_pad(c, ib)) != MP_OKAY) |
+ goto CLEANUP; |
+ |
+ useda = MP_USED(a); |
+ pb = MP_DIGITS(b); |
+ s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c)); |
+ s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1)); |
+ m_i = MP_DIGIT(c, 0) * mmm->n0prime; |
+ s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0); |
+ |
+ /* Outer loop: Digits of b */ |
+ usedb = MP_USED(b); |
+ for (ib = 1; ib < usedb; ib++) { |
+ mp_digit b_i = *pb++; |
+ |
+ /* Inner product: Digits of a */ |
+ if (b_i) |
+ s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib); |
+ m_i = MP_DIGIT(c, ib) * mmm->n0prime; |
+ s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib); |
+ } |
+ if (usedb < MP_USED(&mmm->N)) { |
+ for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib ) { |
+ m_i = MP_DIGIT(c, ib) * mmm->n0prime; |
+ s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib); |
+ } |
+ } |
+ s_mp_clamp(c); |
+ s_mp_div_2d(c, mmm->b); |
+ if (s_mp_cmp(c, &mmm->N) >= 0) { |
+ MP_CHECKOK( s_mp_sub(c, &mmm->N) ); |
+ } |
+ res = MP_OKAY; |
+ |
+CLEANUP: |
+ return res; |
+} |
+#endif |
+ |
+STATIC |
+mp_err s_mp_to_mont(const mp_int *x, mp_mont_modulus *mmm, mp_int *xMont) |
+{ |
+ mp_err res; |
+ |
+ /* xMont = x * R mod N where N is modulus */ |
+ MP_CHECKOK( mpl_lsh(x, xMont, mmm->b) ); /* xMont = x << b */ |
+ MP_CHECKOK( mp_div(xMont, &mmm->N, 0, xMont) ); /* mod N */ |
+CLEANUP: |
+ return res; |
+} |
+ |
+#ifdef MP_USING_MONT_MULF |
+ |
+/* the floating point multiply is already cache safe, |
+ * don't turn on cache safe unless we specifically |
+ * force it */ |
+#ifndef MP_FORCE_CACHE_SAFE |
+#undef MP_USING_CACHE_SAFE_MOD_EXP |
+#endif |
+ |
+unsigned int mp_using_mont_mulf = 1; |
+ |
+/* computes montgomery square of the integer in mResult */ |
+#define SQR \ |
+ conv_i32_to_d32_and_d16(dm1, d16Tmp, mResult, nLen); \ |
+ mont_mulf_noconv(mResult, dm1, d16Tmp, \ |
+ dTmp, dn, MP_DIGITS(modulus), nLen, dn0) |
+ |
+/* computes montgomery product of x and the integer in mResult */ |
+#define MUL(x) \ |
+ conv_i32_to_d32(dm1, mResult, nLen); \ |
+ mont_mulf_noconv(mResult, dm1, oddPowers[x], \ |
+ dTmp, dn, MP_DIGITS(modulus), nLen, dn0) |
+ |
+/* Do modular exponentiation using floating point multiply code. */ |
+mp_err mp_exptmod_f(const mp_int * montBase, |
+ const mp_int * exponent, |
+ const mp_int * modulus, |
+ mp_int * result, |
+ mp_mont_modulus *mmm, |
+ int nLen, |
+ mp_size bits_in_exponent, |
+ mp_size window_bits, |
+ mp_size odd_ints) |
+{ |
+ mp_digit *mResult; |
+ double *dBuf = 0, *dm1, *dn, *dSqr, *d16Tmp, *dTmp; |
+ double dn0; |
+ mp_size i; |
+ mp_err res; |
+ int expOff; |
+ int dSize = 0, oddPowSize, dTmpSize; |
+ mp_int accum1; |
+ double *oddPowers[MAX_ODD_INTS]; |
+ |
+ /* function for computing n0prime only works if n0 is odd */ |
+ |
+ MP_DIGITS(&accum1) = 0; |
+ |
+ for (i = 0; i < MAX_ODD_INTS; ++i) |
+ oddPowers[i] = 0; |
+ |
+ MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) ); |
+ |
+ mp_set(&accum1, 1); |
+ MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) ); |
+ MP_CHECKOK( s_mp_pad(&accum1, nLen) ); |
+ |
+ oddPowSize = 2 * nLen + 1; |
+ dTmpSize = 2 * oddPowSize; |
+ dSize = sizeof(double) * (nLen * 4 + 1 + |
+ ((odd_ints + 1) * oddPowSize) + dTmpSize); |
+ dBuf = (double *)malloc(dSize); |
+ dm1 = dBuf; /* array of d32 */ |
+ dn = dBuf + nLen; /* array of d32 */ |
+ dSqr = dn + nLen; /* array of d32 */ |
+ d16Tmp = dSqr + nLen; /* array of d16 */ |
+ dTmp = d16Tmp + oddPowSize; |
+ |
+ for (i = 0; i < odd_ints; ++i) { |
+ oddPowers[i] = dTmp; |
+ dTmp += oddPowSize; |
+ } |
+ mResult = (mp_digit *)(dTmp + dTmpSize); /* size is nLen + 1 */ |
+ |
+ /* Make dn and dn0 */ |
+ conv_i32_to_d32(dn, MP_DIGITS(modulus), nLen); |
+ dn0 = (double)(mmm->n0prime & 0xffff); |
+ |
+ /* Make dSqr */ |
+ conv_i32_to_d32_and_d16(dm1, oddPowers[0], MP_DIGITS(montBase), nLen); |
+ mont_mulf_noconv(mResult, dm1, oddPowers[0], |
+ dTmp, dn, MP_DIGITS(modulus), nLen, dn0); |
+ conv_i32_to_d32(dSqr, mResult, nLen); |
+ |
+ for (i = 1; i < odd_ints; ++i) { |
+ mont_mulf_noconv(mResult, dSqr, oddPowers[i - 1], |
+ dTmp, dn, MP_DIGITS(modulus), nLen, dn0); |
+ conv_i32_to_d16(oddPowers[i], mResult, nLen); |
+ } |
+ |
+ s_mp_copy(MP_DIGITS(&accum1), mResult, nLen); /* from, to, len */ |
+ |
+ for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) { |
+ mp_size smallExp; |
+ MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) ); |
+ smallExp = (mp_size)res; |
+ |
+ if (window_bits == 1) { |
+ if (!smallExp) { |
+ SQR; |
+ } else if (smallExp & 1) { |
+ SQR; MUL(0); |
+ } else { |
+ ABORT; |
+ } |
+ } else if (window_bits == 4) { |
+ if (!smallExp) { |
+ SQR; SQR; SQR; SQR; |
+ } else if (smallExp & 1) { |
+ SQR; SQR; SQR; SQR; MUL(smallExp/2); |
+ } else if (smallExp & 2) { |
+ SQR; SQR; SQR; MUL(smallExp/4); SQR; |
+ } else if (smallExp & 4) { |
+ SQR; SQR; MUL(smallExp/8); SQR; SQR; |
+ } else if (smallExp & 8) { |
+ SQR; MUL(smallExp/16); SQR; SQR; SQR; |
+ } else { |
+ ABORT; |
+ } |
+ } else if (window_bits == 5) { |
+ if (!smallExp) { |
+ SQR; SQR; SQR; SQR; SQR; |
+ } else if (smallExp & 1) { |
+ SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2); |
+ } else if (smallExp & 2) { |
+ SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR; |
+ } else if (smallExp & 4) { |
+ SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR; |
+ } else if (smallExp & 8) { |
+ SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR; |
+ } else if (smallExp & 0x10) { |
+ SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR; |
+ } else { |
+ ABORT; |
+ } |
+ } else if (window_bits == 6) { |
+ if (!smallExp) { |
+ SQR; SQR; SQR; SQR; SQR; SQR; |
+ } else if (smallExp & 1) { |
+ SQR; SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2); |
+ } else if (smallExp & 2) { |
+ SQR; SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR; |
+ } else if (smallExp & 4) { |
+ SQR; SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR; |
+ } else if (smallExp & 8) { |
+ SQR; SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR; |
+ } else if (smallExp & 0x10) { |
+ SQR; SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR; |
+ } else if (smallExp & 0x20) { |
+ SQR; MUL(smallExp/64); SQR; SQR; SQR; SQR; SQR; |
+ } else { |
+ ABORT; |
+ } |
+ } else { |
+ ABORT; |
+ } |
+ } |
+ |
+ s_mp_copy(mResult, MP_DIGITS(&accum1), nLen); /* from, to, len */ |
+ |
+ res = s_mp_redc(&accum1, mmm); |
+ mp_exch(&accum1, result); |
+ |
+CLEANUP: |
+ mp_clear(&accum1); |
+ if (dBuf) { |
+ if (dSize) |
+ memset(dBuf, 0, dSize); |
+ free(dBuf); |
+ } |
+ |
+ return res; |
+} |
+#undef SQR |
+#undef MUL |
+#endif |
+ |
+#define SQR(a,b) \ |
+ MP_CHECKOK( mp_sqr(a, b) );\ |
+ MP_CHECKOK( s_mp_redc(b, mmm) ) |
+ |
+#if defined(MP_MONT_USE_MP_MUL) |
+#define MUL(x,a,b) \ |
+ MP_CHECKOK( mp_mul(a, oddPowers + (x), b) ); \ |
+ MP_CHECKOK( s_mp_redc(b, mmm) ) |
+#else |
+#define MUL(x,a,b) \ |
+ MP_CHECKOK( s_mp_mul_mont(a, oddPowers + (x), b, mmm) ) |
+#endif |
+ |
+#define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp |
+ |
+/* Do modular exponentiation using integer multiply code. */ |
+mp_err mp_exptmod_i(const mp_int * montBase, |
+ const mp_int * exponent, |
+ const mp_int * modulus, |
+ mp_int * result, |
+ mp_mont_modulus *mmm, |
+ int nLen, |
+ mp_size bits_in_exponent, |
+ mp_size window_bits, |
+ mp_size odd_ints) |
+{ |
+ mp_int *pa1, *pa2, *ptmp; |
+ mp_size i; |
+ mp_err res; |
+ int expOff; |
+ mp_int accum1, accum2, power2, oddPowers[MAX_ODD_INTS]; |
+ |
+ /* power2 = base ** 2; oddPowers[i] = base ** (2*i + 1); */ |
+ /* oddPowers[i] = base ** (2*i + 1); */ |
+ |
+ MP_DIGITS(&accum1) = 0; |
+ MP_DIGITS(&accum2) = 0; |
+ MP_DIGITS(&power2) = 0; |
+ for (i = 0; i < MAX_ODD_INTS; ++i) { |
+ MP_DIGITS(oddPowers + i) = 0; |
+ } |
+ |
+ MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) ); |
+ MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) ); |
+ |
+ MP_CHECKOK( mp_init_copy(&oddPowers[0], montBase) ); |
+ |
+ mp_init_size(&power2, nLen + 2 * MP_USED(montBase) + 2); |
+ MP_CHECKOK( mp_sqr(montBase, &power2) ); /* power2 = montBase ** 2 */ |
+ MP_CHECKOK( s_mp_redc(&power2, mmm) ); |
+ |
+ for (i = 1; i < odd_ints; ++i) { |
+ mp_init_size(oddPowers + i, nLen + 2 * MP_USED(&power2) + 2); |
+ MP_CHECKOK( mp_mul(oddPowers + (i - 1), &power2, oddPowers + i) ); |
+ MP_CHECKOK( s_mp_redc(oddPowers + i, mmm) ); |
+ } |
+ |
+ /* set accumulator to montgomery residue of 1 */ |
+ mp_set(&accum1, 1); |
+ MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) ); |
+ pa1 = &accum1; |
+ pa2 = &accum2; |
+ |
+ for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) { |
+ mp_size smallExp; |
+ MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) ); |
+ smallExp = (mp_size)res; |
+ |
+ if (window_bits == 1) { |
+ if (!smallExp) { |
+ SQR(pa1,pa2); SWAPPA; |
+ } else if (smallExp & 1) { |
+ SQR(pa1,pa2); MUL(0,pa2,pa1); |
+ } else { |
+ ABORT; |
+ } |
+ } else if (window_bits == 4) { |
+ if (!smallExp) { |
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
+ } else if (smallExp & 1) { |
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
+ MUL(smallExp/2, pa1,pa2); SWAPPA; |
+ } else if (smallExp & 2) { |
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); |
+ MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA; |
+ } else if (smallExp & 4) { |
+ SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/8,pa1,pa2); |
+ SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA; |
+ } else if (smallExp & 8) { |
+ SQR(pa1,pa2); MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2); |
+ SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA; |
+ } else { |
+ ABORT; |
+ } |
+ } else if (window_bits == 5) { |
+ if (!smallExp) { |
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
+ SQR(pa1,pa2); SWAPPA; |
+ } else if (smallExp & 1) { |
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
+ SQR(pa1,pa2); MUL(smallExp/2,pa2,pa1); |
+ } else if (smallExp & 2) { |
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
+ MUL(smallExp/4,pa1,pa2); SQR(pa2,pa1); |
+ } else if (smallExp & 4) { |
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); |
+ MUL(smallExp/8,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
+ } else if (smallExp & 8) { |
+ SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/16,pa1,pa2); |
+ SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
+ } else if (smallExp & 0x10) { |
+ SQR(pa1,pa2); MUL(smallExp/32,pa2,pa1); SQR(pa1,pa2); |
+ SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
+ } else { |
+ ABORT; |
+ } |
+ } else if (window_bits == 6) { |
+ if (!smallExp) { |
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
+ SQR(pa1,pa2); SQR(pa2,pa1); |
+ } else if (smallExp & 1) { |
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
+ SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/2,pa1,pa2); SWAPPA; |
+ } else if (smallExp & 2) { |
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
+ SQR(pa1,pa2); MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA; |
+ } else if (smallExp & 4) { |
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
+ MUL(smallExp/8,pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA; |
+ } else if (smallExp & 8) { |
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); |
+ MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
+ SQR(pa1,pa2); SWAPPA; |
+ } else if (smallExp & 0x10) { |
+ SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/32,pa1,pa2); |
+ SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA; |
+ } else if (smallExp & 0x20) { |
+ SQR(pa1,pa2); MUL(smallExp/64,pa2,pa1); SQR(pa1,pa2); |
+ SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA; |
+ } else { |
+ ABORT; |
+ } |
+ } else { |
+ ABORT; |
+ } |
+ } |
+ |
+ res = s_mp_redc(pa1, mmm); |
+ mp_exch(pa1, result); |
+ |
+CLEANUP: |
+ mp_clear(&accum1); |
+ mp_clear(&accum2); |
+ mp_clear(&power2); |
+ for (i = 0; i < odd_ints; ++i) { |
+ mp_clear(oddPowers + i); |
+ } |
+ return res; |
+} |
+#undef SQR |
+#undef MUL |
+ |
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP |
+unsigned int mp_using_cache_safe_exp = 1; |
+#endif |
+ |
+mp_err mp_set_safe_modexp(int value) |
+{ |
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP |
+ mp_using_cache_safe_exp = value; |
+ return MP_OKAY; |
+#else |
+ if (value == 0) { |
+ return MP_OKAY; |
+ } |
+ return MP_BADARG; |
+#endif |
+} |
+ |
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP |
+#define WEAVE_WORD_SIZE 4 |
+ |
+#ifndef MP_CHAR_STORE_SLOW |
+/* |
+ * mpi_to_weave takes an array of bignums, a matrix in which each bignum |
+ * occupies all the columns of a row, and transposes it into a matrix in |
+ * which each bignum occupies a column of every row. The first row of the |
+ * input matrix becomes the first column of the output matrix. The n'th |
+ * row of input becomes the n'th column of output. The input data is said |
+ * to be "interleaved" or "woven" into the output matrix. |
+ * |
+ * The array of bignums is left in this woven form. Each time a single |
+ * bignum value is needed, it is recreated by fetching the n'th column, |
+ * forming a single row which is the new bignum. |
+ * |
+ * The purpose of this interleaving is make it impossible to determine which |
+ * of the bignums is being used in any one operation by examining the pattern |
+ * of cache misses. |
+ * |
+ * The weaving function does not transpose the entire input matrix in one call. |
+ * It transposes 4 rows of mp_ints into their respective columns of output. |
+ * |
+ * There are two different implementations of the weaving and unweaving code |
+ * in this file. One uses byte loads and stores. The second uses loads and |
+ * stores of mp_weave_word size values. The weaved forms of these two |
+ * implementations differ. Consequently, each one has its own explanation. |
+ * |
+ * Here is the explanation for the byte-at-a-time implementation. |
+ * |
+ * This implementation treats each mp_int bignum as an array of bytes, |
+ * rather than as an array of mp_digits. It stores those bytes as a |
+ * column of bytes in the output matrix. It doesn't care if the machine |
+ * uses big-endian or little-endian byte ordering within mp_digits. |
+ * The first byte of the mp_digit array becomes the first byte in the output |
+ * column, regardless of whether that byte is the MSB or LSB of the mp_digit. |
+ * |
+ * "bignums" is an array of mp_ints. |
+ * It points to four rows, four mp_ints, a subset of a larger array of mp_ints. |
+ * |
+ * "weaved" is the weaved output matrix. |
+ * The first byte of bignums[0] is stored in weaved[0]. |
+ * |
+ * "nBignums" is the total number of bignums in the array of which "bignums" |
+ * is a part. |
+ * |
+ * "nDigits" is the size in mp_digits of each mp_int in the "bignums" array. |
+ * mp_ints that use less than nDigits digits are logically padded with zeros |
+ * while being stored in the weaved array. |
+ */ |
+mp_err mpi_to_weave(const mp_int *bignums, |
+ unsigned char *weaved, |
+ mp_size nDigits, /* in each mp_int of input */ |
+ mp_size nBignums) /* in the entire source array */ |
+{ |
+ mp_size i; |
+ unsigned char * endDest = weaved + (nDigits * nBignums * sizeof(mp_digit)); |
+ |
+ for (i=0; i < WEAVE_WORD_SIZE; i++) { |
+ mp_size used = MP_USED(&bignums[i]); |
+ unsigned char *pSrc = (unsigned char *)MP_DIGITS(&bignums[i]); |
+ unsigned char *endSrc = pSrc + (used * sizeof(mp_digit)); |
+ unsigned char *pDest = weaved + i; |
+ |
+ ARGCHK(MP_SIGN(&bignums[i]) == MP_ZPOS, MP_BADARG); |
+ ARGCHK(used <= nDigits, MP_BADARG); |
+ |
+ for (; pSrc < endSrc; pSrc++) { |
+ *pDest = *pSrc; |
+ pDest += nBignums; |
+ } |
+ while (pDest < endDest) { |
+ *pDest = 0; |
+ pDest += nBignums; |
+ } |
+ } |
+ |
+ return MP_OKAY; |
+} |
+ |
+/* Reverse the operation above for one mp_int. |
+ * Reconstruct one mp_int from its column in the weaved array. |
+ * "pSrc" points to the offset into the weave array of the bignum we |
+ * are going to reconstruct. |
+ */ |
+mp_err weave_to_mpi(mp_int *a, /* output, result */ |
+ const unsigned char *pSrc, /* input, byte matrix */ |
+ mp_size nDigits, /* per mp_int output */ |
+ mp_size nBignums) /* bignums in weaved matrix */ |
+{ |
+ unsigned char *pDest = (unsigned char *)MP_DIGITS(a); |
+ unsigned char *endDest = pDest + (nDigits * sizeof(mp_digit)); |
+ |
+ MP_SIGN(a) = MP_ZPOS; |
+ MP_USED(a) = nDigits; |
+ |
+ for (; pDest < endDest; pSrc += nBignums, pDest++) { |
+ *pDest = *pSrc; |
+ } |
+ s_mp_clamp(a); |
+ return MP_OKAY; |
+} |
+ |
+#else |
+ |
+/* Need a primitive that we know is 32 bits long... */ |
+/* this is true on all modern processors we know of today*/ |
+typedef unsigned int mp_weave_word; |
+ |
+/* |
+ * on some platforms character stores into memory is very expensive since they |
+ * generate a read/modify/write operation on the bus. On those platforms |
+ * we need to do integer writes to the bus. Because of some unrolled code, |
+ * in this current code the size of mp_weave_word must be four. The code that |
+ * makes this assumption explicity is called out. (on some platforms a write |
+ * of 4 bytes still requires a single read-modify-write operation. |
+ * |
+ * This function is takes the identical parameters as the function above, |
+ * however it lays out the final array differently. Where the previous function |
+ * treats the mpi_int as an byte array, this function treats it as an array of |
+ * mp_digits where each digit is stored in big endian order. |
+ * |
+ * since we need to interleave on a byte by byte basis, we need to collect |
+ * several mpi structures together into a single uint32 before we write. We |
+ * also need to make sure the uint32 is arranged so that the first value of |
+ * the first array winds up in b[0]. This means construction of that uint32 |
+ * is endian specific (even though the layout of the mp_digits in the array |
+ * is always big endian). |
+ * |
+ * The final data is stored as follows : |
+ * |
+ * Our same logical array p array, m is sizeof(mp_digit), |
+ * N is still count and n is now b_size. If we define p[i].digit[j]0 as the |
+ * most significant byte of the word p[i].digit[j], p[i].digit[j]1 as |
+ * the next most significant byte of p[i].digit[j], ... and p[i].digit[j]m-1 |
+ * is the least significant byte. |
+ * Our array would look like: |
+ * p[0].digit[0]0 p[1].digit[0]0 ... p[N-2].digit[0]0 p[N-1].digit[0]0 |
+ * p[0].digit[0]1 p[1].digit[0]1 ... p[N-2].digit[0]1 p[N-1].digit[0]1 |
+ * . . |
+ * p[0].digit[0]m-1 p[1].digit[0]m-1 ... p[N-2].digit[0]m-1 p[N-1].digit[0]m-1 |
+ * p[0].digit[1]0 p[1].digit[1]0 ... p[N-2].digit[1]0 p[N-1].digit[1]0 |
+ * . . |
+ * . . |
+ * p[0].digit[n-1]m-2 p[1].digit[n-1]m-2 ... p[N-2].digit[n-1]m-2 p[N-1].digit[n-1]m-2 |
+ * p[0].digit[n-1]m-1 p[1].digit[n-1]m-1 ... p[N-2].digit[n-1]m-1 p[N-1].digit[n-1]m-1 |
+ * |
+ */ |
+mp_err mpi_to_weave(const mp_int *a, unsigned char *b, |
+ mp_size b_size, mp_size count) |
+{ |
+ mp_size i; |
+ mp_digit *digitsa0; |
+ mp_digit *digitsa1; |
+ mp_digit *digitsa2; |
+ mp_digit *digitsa3; |
+ mp_size useda0; |
+ mp_size useda1; |
+ mp_size useda2; |
+ mp_size useda3; |
+ mp_weave_word *weaved = (mp_weave_word *)b; |
+ |
+ count = count/sizeof(mp_weave_word); |
+ |
+ /* this code pretty much depends on this ! */ |
+#if MP_ARGCHK == 2 |
+ assert(WEAVE_WORD_SIZE == 4); |
+ assert(sizeof(mp_weave_word) == 4); |
+#endif |
+ |
+ digitsa0 = MP_DIGITS(&a[0]); |
+ digitsa1 = MP_DIGITS(&a[1]); |
+ digitsa2 = MP_DIGITS(&a[2]); |
+ digitsa3 = MP_DIGITS(&a[3]); |
+ useda0 = MP_USED(&a[0]); |
+ useda1 = MP_USED(&a[1]); |
+ useda2 = MP_USED(&a[2]); |
+ useda3 = MP_USED(&a[3]); |
+ |
+ ARGCHK(MP_SIGN(&a[0]) == MP_ZPOS, MP_BADARG); |
+ ARGCHK(MP_SIGN(&a[1]) == MP_ZPOS, MP_BADARG); |
+ ARGCHK(MP_SIGN(&a[2]) == MP_ZPOS, MP_BADARG); |
+ ARGCHK(MP_SIGN(&a[3]) == MP_ZPOS, MP_BADARG); |
+ ARGCHK(useda0 <= b_size, MP_BADARG); |
+ ARGCHK(useda1 <= b_size, MP_BADARG); |
+ ARGCHK(useda2 <= b_size, MP_BADARG); |
+ ARGCHK(useda3 <= b_size, MP_BADARG); |
+ |
+#define SAFE_FETCH(digit, used, word) ((word) < (used) ? (digit[word]) : 0) |
+ |
+ for (i=0; i < b_size; i++) { |
+ mp_digit d0 = SAFE_FETCH(digitsa0,useda0,i); |
+ mp_digit d1 = SAFE_FETCH(digitsa1,useda1,i); |
+ mp_digit d2 = SAFE_FETCH(digitsa2,useda2,i); |
+ mp_digit d3 = SAFE_FETCH(digitsa3,useda3,i); |
+ register mp_weave_word acc; |
+ |
+/* |
+ * ONE_STEP takes the MSB of each of our current digits and places that |
+ * byte in the appropriate position for writing to the weaved array. |
+ * On little endian: |
+ * b3 b2 b1 b0 |
+ * On big endian: |
+ * b0 b1 b2 b3 |
+ * When the data is written it would always wind up: |
+ * b[0] = b0 |
+ * b[1] = b1 |
+ * b[2] = b2 |
+ * b[3] = b3 |
+ * |
+ * Once we've written the MSB, we shift the whole digit up left one |
+ * byte, putting the Next Most Significant Byte in the MSB position, |
+ * so we we repeat the next one step that byte will be written. |
+ * NOTE: This code assumes sizeof(mp_weave_word) and MP_WEAVE_WORD_SIZE |
+ * is 4. |
+ */ |
+#ifdef MP_IS_LITTLE_ENDIAN |
+#define MPI_WEAVE_ONE_STEP \ |
+ acc = (d0 >> (MP_DIGIT_BIT-8)) & 0x000000ff; d0 <<= 8; /*b0*/ \ |
+ acc |= (d1 >> (MP_DIGIT_BIT-16)) & 0x0000ff00; d1 <<= 8; /*b1*/ \ |
+ acc |= (d2 >> (MP_DIGIT_BIT-24)) & 0x00ff0000; d2 <<= 8; /*b2*/ \ |
+ acc |= (d3 >> (MP_DIGIT_BIT-32)) & 0xff000000; d3 <<= 8; /*b3*/ \ |
+ *weaved = acc; weaved += count; |
+#else |
+#define MPI_WEAVE_ONE_STEP \ |
+ acc = (d0 >> (MP_DIGIT_BIT-32)) & 0xff000000; d0 <<= 8; /*b0*/ \ |
+ acc |= (d1 >> (MP_DIGIT_BIT-24)) & 0x00ff0000; d1 <<= 8; /*b1*/ \ |
+ acc |= (d2 >> (MP_DIGIT_BIT-16)) & 0x0000ff00; d2 <<= 8; /*b2*/ \ |
+ acc |= (d3 >> (MP_DIGIT_BIT-8)) & 0x000000ff; d3 <<= 8; /*b3*/ \ |
+ *weaved = acc; weaved += count; |
+#endif |
+ switch (sizeof(mp_digit)) { |
+ case 32: |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ case 16: |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ case 8: |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ case 4: |
+ MPI_WEAVE_ONE_STEP |
+ MPI_WEAVE_ONE_STEP |
+ case 2: |
+ MPI_WEAVE_ONE_STEP |
+ case 1: |
+ MPI_WEAVE_ONE_STEP |
+ break; |
+ } |
+ } |
+ |
+ return MP_OKAY; |
+} |
+ |
+/* reverse the operation above for one entry. |
+ * b points to the offset into the weave array of the power we are |
+ * calculating */ |
+mp_err weave_to_mpi(mp_int *a, const unsigned char *b, |
+ mp_size b_size, mp_size count) |
+{ |
+ mp_digit *pb = MP_DIGITS(a); |
+ mp_digit *end = &pb[b_size]; |
+ |
+ MP_SIGN(a) = MP_ZPOS; |
+ MP_USED(a) = b_size; |
+ |
+ for (; pb < end; pb++) { |
+ register mp_digit digit; |
+ |
+ digit = *b << 8; b += count; |
+#define MPI_UNWEAVE_ONE_STEP digit |= *b; b += count; digit = digit << 8; |
+ switch (sizeof(mp_digit)) { |
+ case 32: |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ case 16: |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ case 8: |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ case 4: |
+ MPI_UNWEAVE_ONE_STEP |
+ MPI_UNWEAVE_ONE_STEP |
+ case 2: |
+ break; |
+ } |
+ digit |= *b; b += count; |
+ |
+ *pb = digit; |
+ } |
+ s_mp_clamp(a); |
+ return MP_OKAY; |
+} |
+#endif |
+ |
+ |
+#define SQR(a,b) \ |
+ MP_CHECKOK( mp_sqr(a, b) );\ |
+ MP_CHECKOK( s_mp_redc(b, mmm) ) |
+ |
+#if defined(MP_MONT_USE_MP_MUL) |
+#define MUL_NOWEAVE(x,a,b) \ |
+ MP_CHECKOK( mp_mul(a, x, b) ); \ |
+ MP_CHECKOK( s_mp_redc(b, mmm) ) |
+#else |
+#define MUL_NOWEAVE(x,a,b) \ |
+ MP_CHECKOK( s_mp_mul_mont(a, x, b, mmm) ) |
+#endif |
+ |
+#define MUL(x,a,b) \ |
+ MP_CHECKOK( weave_to_mpi(&tmp, powers + (x), nLen, num_powers) ); \ |
+ MUL_NOWEAVE(&tmp,a,b) |
+ |
+#define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp |
+#define MP_ALIGN(x,y) ((((ptrdiff_t)(x))+((y)-1))&(((ptrdiff_t)0)-(y))) |
+ |
+/* Do modular exponentiation using integer multiply code. */ |
+mp_err mp_exptmod_safe_i(const mp_int * montBase, |
+ const mp_int * exponent, |
+ const mp_int * modulus, |
+ mp_int * result, |
+ mp_mont_modulus *mmm, |
+ int nLen, |
+ mp_size bits_in_exponent, |
+ mp_size window_bits, |
+ mp_size num_powers) |
+{ |
+ mp_int *pa1, *pa2, *ptmp; |
+ mp_size i; |
+ mp_size first_window; |
+ mp_err res; |
+ int expOff; |
+ mp_int accum1, accum2, accum[WEAVE_WORD_SIZE]; |
+ mp_int tmp; |
+ unsigned char *powersArray; |
+ unsigned char *powers; |
+ |
+ MP_DIGITS(&accum1) = 0; |
+ MP_DIGITS(&accum2) = 0; |
+ MP_DIGITS(&accum[0]) = 0; |
+ MP_DIGITS(&accum[1]) = 0; |
+ MP_DIGITS(&accum[2]) = 0; |
+ MP_DIGITS(&accum[3]) = 0; |
+ MP_DIGITS(&tmp) = 0; |
+ |
+ powersArray = (unsigned char *)malloc(num_powers*(nLen*sizeof(mp_digit)+1)); |
+ if (powersArray == NULL) { |
+ res = MP_MEM; |
+ goto CLEANUP; |
+ } |
+ |
+ /* powers[i] = base ** (i); */ |
+ powers = (unsigned char *)MP_ALIGN(powersArray,num_powers); |
+ |
+ /* grab the first window value. This allows us to preload accumulator1 |
+ * and save a conversion, some squares and a multiple*/ |
+ MP_CHECKOK( mpl_get_bits(exponent, |
+ bits_in_exponent-window_bits, window_bits) ); |
+ first_window = (mp_size)res; |
+ |
+ MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) ); |
+ MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) ); |
+ MP_CHECKOK( mp_init_size(&tmp, 3 * nLen + 2) ); |
+ |
+ /* build the first WEAVE_WORD powers inline */ |
+ /* if WEAVE_WORD_SIZE is not 4, this code will have to change */ |
+ if (num_powers > 2) { |
+ MP_CHECKOK( mp_init_size(&accum[0], 3 * nLen + 2) ); |
+ MP_CHECKOK( mp_init_size(&accum[1], 3 * nLen + 2) ); |
+ MP_CHECKOK( mp_init_size(&accum[2], 3 * nLen + 2) ); |
+ MP_CHECKOK( mp_init_size(&accum[3], 3 * nLen + 2) ); |
+ mp_set(&accum[0], 1); |
+ MP_CHECKOK( s_mp_to_mont(&accum[0], mmm, &accum[0]) ); |
+ MP_CHECKOK( mp_copy(montBase, &accum[1]) ); |
+ SQR(montBase, &accum[2]); |
+ MUL_NOWEAVE(montBase, &accum[2], &accum[3]); |
+ MP_CHECKOK( mpi_to_weave(accum, powers, nLen, num_powers) ); |
+ if (first_window < 4) { |
+ MP_CHECKOK( mp_copy(&accum[first_window], &accum1) ); |
+ first_window = num_powers; |
+ } |
+ } else { |
+ if (first_window == 0) { |
+ mp_set(&accum1, 1); |
+ MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) ); |
+ } else { |
+ /* assert first_window == 1? */ |
+ MP_CHECKOK( mp_copy(montBase, &accum1) ); |
+ } |
+ } |
+ |
+ /* |
+ * calculate all the powers in the powers array. |
+ * this adds 2**(k-1)-2 square operations over just calculating the |
+ * odd powers where k is the window size in the two other mp_modexpt |
+ * implementations in this file. We will get some of that |
+ * back by not needing the first 'k' squares and one multiply for the |
+ * first window */ |
+ for (i = WEAVE_WORD_SIZE; i < num_powers; i++) { |
+ int acc_index = i & (WEAVE_WORD_SIZE-1); /* i % WEAVE_WORD_SIZE */ |
+ if ( i & 1 ) { |
+ MUL_NOWEAVE(montBase, &accum[acc_index-1] , &accum[acc_index]); |
+ /* we've filled the array do our 'per array' processing */ |
+ if (acc_index == (WEAVE_WORD_SIZE-1)) { |
+ MP_CHECKOK( mpi_to_weave(accum, powers + i - (WEAVE_WORD_SIZE-1), |
+ nLen, num_powers) ); |
+ |
+ if (first_window <= i) { |
+ MP_CHECKOK( mp_copy(&accum[first_window & (WEAVE_WORD_SIZE-1)], |
+ &accum1) ); |
+ first_window = num_powers; |
+ } |
+ } |
+ } else { |
+ /* up to 8 we can find 2^i-1 in the accum array, but at 8 we our source |
+ * and target are the same so we need to copy.. After that, the |
+ * value is overwritten, so we need to fetch it from the stored |
+ * weave array */ |
+ if (i > 2* WEAVE_WORD_SIZE) { |
+ MP_CHECKOK(weave_to_mpi(&accum2, powers+i/2, nLen, num_powers)); |
+ SQR(&accum2, &accum[acc_index]); |
+ } else { |
+ int half_power_index = (i/2) & (WEAVE_WORD_SIZE-1); |
+ if (half_power_index == acc_index) { |
+ /* copy is cheaper than weave_to_mpi */ |
+ MP_CHECKOK(mp_copy(&accum[half_power_index], &accum2)); |
+ SQR(&accum2,&accum[acc_index]); |
+ } else { |
+ SQR(&accum[half_power_index],&accum[acc_index]); |
+ } |
+ } |
+ } |
+ } |
+ /* if the accum1 isn't set, Then there is something wrong with our logic |
+ * above and is an internal programming error. |
+ */ |
+#if MP_ARGCHK == 2 |
+ assert(MP_USED(&accum1) != 0); |
+#endif |
+ |
+ /* set accumulator to montgomery residue of 1 */ |
+ pa1 = &accum1; |
+ pa2 = &accum2; |
+ |
+ for (expOff = bits_in_exponent - window_bits*2; expOff >= 0; expOff -= window_bits) { |
+ mp_size smallExp; |
+ MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) ); |
+ smallExp = (mp_size)res; |
+ |
+ /* handle unroll the loops */ |
+ switch (window_bits) { |
+ case 1: |
+ if (!smallExp) { |
+ SQR(pa1,pa2); SWAPPA; |
+ } else if (smallExp & 1) { |
+ SQR(pa1,pa2); MUL_NOWEAVE(montBase,pa2,pa1); |
+ } else { |
+ ABORT; |
+ } |
+ break; |
+ case 6: |
+ SQR(pa1,pa2); SQR(pa2,pa1); |
+ /* fall through */ |
+ case 4: |
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
+ MUL(smallExp, pa1,pa2); SWAPPA; |
+ break; |
+ case 5: |
+ SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
+ SQR(pa1,pa2); MUL(smallExp,pa2,pa1); |
+ break; |
+ default: |
+ ABORT; /* could do a loop? */ |
+ } |
+ } |
+ |
+ res = s_mp_redc(pa1, mmm); |
+ mp_exch(pa1, result); |
+ |
+CLEANUP: |
+ mp_clear(&accum1); |
+ mp_clear(&accum2); |
+ mp_clear(&accum[0]); |
+ mp_clear(&accum[1]); |
+ mp_clear(&accum[2]); |
+ mp_clear(&accum[3]); |
+ mp_clear(&tmp); |
+ /* PORT_Memset(powers,0,num_powers*nLen*sizeof(mp_digit)); */ |
+ free(powersArray); |
+ return res; |
+} |
+#undef SQR |
+#undef MUL |
+#endif |
+ |
+mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent, |
+ const mp_int *modulus, mp_int *result) |
+{ |
+ const mp_int *base; |
+ mp_size bits_in_exponent, i, window_bits, odd_ints; |
+ mp_err res; |
+ int nLen; |
+ mp_int montBase, goodBase; |
+ mp_mont_modulus mmm; |
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP |
+ static unsigned int max_window_bits; |
+#endif |
+ |
+ /* function for computing n0prime only works if n0 is odd */ |
+ if (!mp_isodd(modulus)) |
+ return s_mp_exptmod(inBase, exponent, modulus, result); |
+ |
+ MP_DIGITS(&montBase) = 0; |
+ MP_DIGITS(&goodBase) = 0; |
+ |
+ if (mp_cmp(inBase, modulus) < 0) { |
+ base = inBase; |
+ } else { |
+ MP_CHECKOK( mp_init(&goodBase) ); |
+ base = &goodBase; |
+ MP_CHECKOK( mp_mod(inBase, modulus, &goodBase) ); |
+ } |
+ |
+ nLen = MP_USED(modulus); |
+ MP_CHECKOK( mp_init_size(&montBase, 2 * nLen + 2) ); |
+ |
+ mmm.N = *modulus; /* a copy of the mp_int struct */ |
+ i = mpl_significant_bits(modulus); |
+ i += MP_DIGIT_BIT - 1; |
+ mmm.b = i - i % MP_DIGIT_BIT; |
+ |
+ /* compute n0', given n0, n0' = -(n0 ** -1) mod MP_RADIX |
+ ** where n0 = least significant mp_digit of N, the modulus. |
+ */ |
+ mmm.n0prime = 0 - s_mp_invmod_radix( MP_DIGIT(modulus, 0) ); |
+ |
+ MP_CHECKOK( s_mp_to_mont(base, &mmm, &montBase) ); |
+ |
+ bits_in_exponent = mpl_significant_bits(exponent); |
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP |
+ if (mp_using_cache_safe_exp) { |
+ if (bits_in_exponent > 780) |
+ window_bits = 6; |
+ else if (bits_in_exponent > 256) |
+ window_bits = 5; |
+ else if (bits_in_exponent > 20) |
+ window_bits = 4; |
+ /* RSA public key exponents are typically under 20 bits (common values |
+ * are: 3, 17, 65537) and a 4-bit window is inefficient |
+ */ |
+ else |
+ window_bits = 1; |
+ } else |
+#endif |
+ if (bits_in_exponent > 480) |
+ window_bits = 6; |
+ else if (bits_in_exponent > 160) |
+ window_bits = 5; |
+ else if (bits_in_exponent > 20) |
+ window_bits = 4; |
+ /* RSA public key exponents are typically under 20 bits (common values |
+ * are: 3, 17, 65537) and a 4-bit window is inefficient |
+ */ |
+ else |
+ window_bits = 1; |
+ |
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP |
+ /* |
+ * clamp the window size based on |
+ * the cache line size. |
+ */ |
+ if (!max_window_bits) { |
+ unsigned long cache_size = s_mpi_getProcessorLineSize(); |
+ /* processor has no cache, use 'fast' code always */ |
+ if (cache_size == 0) { |
+ mp_using_cache_safe_exp = 0; |
+ } |
+ if ((cache_size == 0) || (cache_size >= 64)) { |
+ max_window_bits = 6; |
+ } else if (cache_size >= 32) { |
+ max_window_bits = 5; |
+ } else if (cache_size >= 16) { |
+ max_window_bits = 4; |
+ } else max_window_bits = 1; /* should this be an assert? */ |
+ } |
+ |
+ /* clamp the window size down before we caclulate bits_in_exponent */ |
+ if (mp_using_cache_safe_exp) { |
+ if (window_bits > max_window_bits) { |
+ window_bits = max_window_bits; |
+ } |
+ } |
+#endif |
+ |
+ odd_ints = 1 << (window_bits - 1); |
+ i = bits_in_exponent % window_bits; |
+ if (i != 0) { |
+ bits_in_exponent += window_bits - i; |
+ } |
+ |
+#ifdef MP_USING_MONT_MULF |
+ if (mp_using_mont_mulf) { |
+ MP_CHECKOK( s_mp_pad(&montBase, nLen) ); |
+ res = mp_exptmod_f(&montBase, exponent, modulus, result, &mmm, nLen, |
+ bits_in_exponent, window_bits, odd_ints); |
+ } else |
+#endif |
+#ifdef MP_USING_CACHE_SAFE_MOD_EXP |
+ if (mp_using_cache_safe_exp) { |
+ res = mp_exptmod_safe_i(&montBase, exponent, modulus, result, &mmm, nLen, |
+ bits_in_exponent, window_bits, 1 << window_bits); |
+ } else |
+#endif |
+ res = mp_exptmod_i(&montBase, exponent, modulus, result, &mmm, nLen, |
+ bits_in_exponent, window_bits, odd_ints); |
+ |
+CLEANUP: |
+ mp_clear(&montBase); |
+ mp_clear(&goodBase); |
+ /* Don't mp_clear mmm.N because it is merely a copy of modulus. |
+ ** Just zap it. |
+ */ |
+ memset(&mmm, 0, sizeof mmm); |
+ return res; |
+} |