Index: net/third_party/nss/ssl/mpi/mpprime.c |
diff --git a/net/third_party/nss/ssl/mpi/mpprime.c b/net/third_party/nss/ssl/mpi/mpprime.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..ae8e4961896a185822272cd403785376744fb894 |
--- /dev/null |
+++ b/net/third_party/nss/ssl/mpi/mpprime.c |
@@ -0,0 +1,617 @@ |
+/* |
+ * mpprime.c |
+ * |
+ * Utilities for finding and working with prime and pseudo-prime |
+ * integers |
+ * |
+ * ***** BEGIN LICENSE BLOCK ***** |
+ * Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
+ * |
+ * The contents of this file are subject to the Mozilla Public License Version |
+ * 1.1 (the "License"); you may not use this file except in compliance with |
+ * the License. You may obtain a copy of the License at |
+ * http://www.mozilla.org/MPL/ |
+ * |
+ * Software distributed under the License is distributed on an "AS IS" basis, |
+ * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
+ * for the specific language governing rights and limitations under the |
+ * License. |
+ * |
+ * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library. |
+ * |
+ * The Initial Developer of the Original Code is |
+ * Michael J. Fromberger. |
+ * Portions created by the Initial Developer are Copyright (C) 1997 |
+ * the Initial Developer. All Rights Reserved. |
+ * |
+ * Contributor(s): |
+ * Netscape Communications Corporation |
+ * |
+ * Alternatively, the contents of this file may be used under the terms of |
+ * either the GNU General Public License Version 2 or later (the "GPL"), or |
+ * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
+ * in which case the provisions of the GPL or the LGPL are applicable instead |
+ * of those above. If you wish to allow use of your version of this file only |
+ * under the terms of either the GPL or the LGPL, and not to allow others to |
+ * use your version of this file under the terms of the MPL, indicate your |
+ * decision by deleting the provisions above and replace them with the notice |
+ * and other provisions required by the GPL or the LGPL. If you do not delete |
+ * the provisions above, a recipient may use your version of this file under |
+ * the terms of any one of the MPL, the GPL or the LGPL. |
+ * |
+ * ***** END LICENSE BLOCK ***** */ |
+ |
+#include "mpi-priv.h" |
+#include "mpprime.h" |
+#include "mplogic.h" |
+#include <stdlib.h> |
+#include <string.h> |
+ |
+#define SMALL_TABLE 0 /* determines size of hard-wired prime table */ |
+ |
+#define RANDOM() rand() |
+ |
+#include "primes.c" /* pull in the prime digit table */ |
+ |
+/* |
+ Test if any of a given vector of digits divides a. If not, MP_NO |
+ is returned; otherwise, MP_YES is returned and 'which' is set to |
+ the index of the integer in the vector which divided a. |
+ */ |
+mp_err s_mpp_divp(mp_int *a, const mp_digit *vec, int size, int *which); |
+ |
+/* {{{ mpp_divis(a, b) */ |
+ |
+/* |
+ mpp_divis(a, b) |
+ |
+ Returns MP_YES if a is divisible by b, or MP_NO if it is not. |
+ */ |
+ |
+mp_err mpp_divis(mp_int *a, mp_int *b) |
+{ |
+ mp_err res; |
+ mp_int rem; |
+ |
+ if((res = mp_init(&rem)) != MP_OKAY) |
+ return res; |
+ |
+ if((res = mp_mod(a, b, &rem)) != MP_OKAY) |
+ goto CLEANUP; |
+ |
+ if(mp_cmp_z(&rem) == 0) |
+ res = MP_YES; |
+ else |
+ res = MP_NO; |
+ |
+CLEANUP: |
+ mp_clear(&rem); |
+ return res; |
+ |
+} /* end mpp_divis() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mpp_divis_d(a, d) */ |
+ |
+/* |
+ mpp_divis_d(a, d) |
+ |
+ Return MP_YES if a is divisible by d, or MP_NO if it is not. |
+ */ |
+ |
+mp_err mpp_divis_d(mp_int *a, mp_digit d) |
+{ |
+ mp_err res; |
+ mp_digit rem; |
+ |
+ ARGCHK(a != NULL, MP_BADARG); |
+ |
+ if(d == 0) |
+ return MP_NO; |
+ |
+ if((res = mp_mod_d(a, d, &rem)) != MP_OKAY) |
+ return res; |
+ |
+ if(rem == 0) |
+ return MP_YES; |
+ else |
+ return MP_NO; |
+ |
+} /* end mpp_divis_d() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mpp_random(a) */ |
+ |
+/* |
+ mpp_random(a) |
+ |
+ Assigns a random value to a. This value is generated using the |
+ standard C library's rand() function, so it should not be used for |
+ cryptographic purposes, but it should be fine for primality testing, |
+ since all we really care about there is good statistical properties. |
+ |
+ As many digits as a currently has are filled with random digits. |
+ */ |
+ |
+mp_err mpp_random(mp_int *a) |
+ |
+{ |
+ mp_digit next = 0; |
+ unsigned int ix, jx; |
+ |
+ ARGCHK(a != NULL, MP_BADARG); |
+ |
+ for(ix = 0; ix < USED(a); ix++) { |
+ for(jx = 0; jx < sizeof(mp_digit); jx++) { |
+ next = (next << CHAR_BIT) | (RANDOM() & UCHAR_MAX); |
+ } |
+ DIGIT(a, ix) = next; |
+ } |
+ |
+ return MP_OKAY; |
+ |
+} /* end mpp_random() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mpp_random_size(a, prec) */ |
+ |
+mp_err mpp_random_size(mp_int *a, mp_size prec) |
+{ |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && prec > 0, MP_BADARG); |
+ |
+ if((res = s_mp_pad(a, prec)) != MP_OKAY) |
+ return res; |
+ |
+ return mpp_random(a); |
+ |
+} /* end mpp_random_size() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mpp_divis_vector(a, vec, size, which) */ |
+ |
+/* |
+ mpp_divis_vector(a, vec, size, which) |
+ |
+ Determines if a is divisible by any of the 'size' digits in vec. |
+ Returns MP_YES and sets 'which' to the index of the offending digit, |
+ if it is; returns MP_NO if it is not. |
+ */ |
+ |
+mp_err mpp_divis_vector(mp_int *a, const mp_digit *vec, int size, int *which) |
+{ |
+ ARGCHK(a != NULL && vec != NULL && size > 0, MP_BADARG); |
+ |
+ return s_mpp_divp(a, vec, size, which); |
+ |
+} /* end mpp_divis_vector() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mpp_divis_primes(a, np) */ |
+ |
+/* |
+ mpp_divis_primes(a, np) |
+ |
+ Test whether a is divisible by any of the first 'np' primes. If it |
+ is, returns MP_YES and sets *np to the value of the digit that did |
+ it. If not, returns MP_NO. |
+ */ |
+mp_err mpp_divis_primes(mp_int *a, mp_digit *np) |
+{ |
+ int size, which; |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && np != NULL, MP_BADARG); |
+ |
+ size = (int)*np; |
+ if(size > prime_tab_size) |
+ size = prime_tab_size; |
+ |
+ res = mpp_divis_vector(a, prime_tab, size, &which); |
+ if(res == MP_YES) |
+ *np = prime_tab[which]; |
+ |
+ return res; |
+ |
+} /* end mpp_divis_primes() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mpp_fermat(a, w) */ |
+ |
+/* |
+ Using w as a witness, try pseudo-primality testing based on Fermat's |
+ little theorem. If a is prime, and (w, a) = 1, then w^a == w (mod |
+ a). So, we compute z = w^a (mod a) and compare z to w; if they are |
+ equal, the test passes and we return MP_YES. Otherwise, we return |
+ MP_NO. |
+ */ |
+mp_err mpp_fermat(mp_int *a, mp_digit w) |
+{ |
+ mp_int base, test; |
+ mp_err res; |
+ |
+ if((res = mp_init(&base)) != MP_OKAY) |
+ return res; |
+ |
+ mp_set(&base, w); |
+ |
+ if((res = mp_init(&test)) != MP_OKAY) |
+ goto TEST; |
+ |
+ /* Compute test = base^a (mod a) */ |
+ if((res = mp_exptmod(&base, a, a, &test)) != MP_OKAY) |
+ goto CLEANUP; |
+ |
+ |
+ if(mp_cmp(&base, &test) == 0) |
+ res = MP_YES; |
+ else |
+ res = MP_NO; |
+ |
+ CLEANUP: |
+ mp_clear(&test); |
+ TEST: |
+ mp_clear(&base); |
+ |
+ return res; |
+ |
+} /* end mpp_fermat() */ |
+ |
+/* }}} */ |
+ |
+/* |
+ Perform the fermat test on each of the primes in a list until |
+ a) one of them shows a is not prime, or |
+ b) the list is exhausted. |
+ Returns: MP_YES if it passes tests. |
+ MP_NO if fermat test reveals it is composite |
+ Some MP error code if some other error occurs. |
+ */ |
+mp_err mpp_fermat_list(mp_int *a, const mp_digit *primes, mp_size nPrimes) |
+{ |
+ mp_err rv = MP_YES; |
+ |
+ while (nPrimes-- > 0 && rv == MP_YES) { |
+ rv = mpp_fermat(a, *primes++); |
+ } |
+ return rv; |
+} |
+ |
+/* {{{ mpp_pprime(a, nt) */ |
+ |
+/* |
+ mpp_pprime(a, nt) |
+ |
+ Performs nt iteration of the Miller-Rabin probabilistic primality |
+ test on a. Returns MP_YES if the tests pass, MP_NO if one fails. |
+ If MP_NO is returned, the number is definitely composite. If MP_YES |
+ is returned, it is probably prime (but that is not guaranteed). |
+ */ |
+ |
+mp_err mpp_pprime(mp_int *a, int nt) |
+{ |
+ mp_err res; |
+ mp_int x, amo, m, z; /* "amo" = "a minus one" */ |
+ int iter; |
+ unsigned int jx; |
+ mp_size b; |
+ |
+ ARGCHK(a != NULL, MP_BADARG); |
+ |
+ MP_DIGITS(&x) = 0; |
+ MP_DIGITS(&amo) = 0; |
+ MP_DIGITS(&m) = 0; |
+ MP_DIGITS(&z) = 0; |
+ |
+ /* Initialize temporaries... */ |
+ MP_CHECKOK( mp_init(&amo)); |
+ /* Compute amo = a - 1 for what follows... */ |
+ MP_CHECKOK( mp_sub_d(a, 1, &amo) ); |
+ |
+ b = mp_trailing_zeros(&amo); |
+ if (!b) { /* a was even ? */ |
+ res = MP_NO; |
+ goto CLEANUP; |
+ } |
+ |
+ MP_CHECKOK( mp_init_size(&x, MP_USED(a)) ); |
+ MP_CHECKOK( mp_init(&z) ); |
+ MP_CHECKOK( mp_init(&m) ); |
+ MP_CHECKOK( mp_div_2d(&amo, b, &m, 0) ); |
+ |
+ /* Do the test nt times... */ |
+ for(iter = 0; iter < nt; iter++) { |
+ |
+ /* Choose a random value for 1 < x < a */ |
+ s_mp_pad(&x, USED(a)); |
+ mpp_random(&x); |
+ MP_CHECKOK( mp_mod(&x, a, &x) ); |
+ if(mp_cmp_d(&x, 1) <= 0) { |
+ iter--; /* don't count this iteration */ |
+ continue; /* choose a new x */ |
+ } |
+ |
+ /* Compute z = (x ** m) mod a */ |
+ MP_CHECKOK( mp_exptmod(&x, &m, a, &z) ); |
+ |
+ if(mp_cmp_d(&z, 1) == 0 || mp_cmp(&z, &amo) == 0) { |
+ res = MP_YES; |
+ continue; |
+ } |
+ |
+ res = MP_NO; /* just in case the following for loop never executes. */ |
+ for (jx = 1; jx < b; jx++) { |
+ /* z = z^2 (mod a) */ |
+ MP_CHECKOK( mp_sqrmod(&z, a, &z) ); |
+ res = MP_NO; /* previous line set res to MP_YES */ |
+ |
+ if(mp_cmp_d(&z, 1) == 0) { |
+ break; |
+ } |
+ if(mp_cmp(&z, &amo) == 0) { |
+ res = MP_YES; |
+ break; |
+ } |
+ } /* end testing loop */ |
+ |
+ /* If the test passes, we will continue iterating, but a failed |
+ test means the candidate is definitely NOT prime, so we will |
+ immediately break out of this loop |
+ */ |
+ if(res == MP_NO) |
+ break; |
+ |
+ } /* end iterations loop */ |
+ |
+CLEANUP: |
+ mp_clear(&m); |
+ mp_clear(&z); |
+ mp_clear(&x); |
+ mp_clear(&amo); |
+ return res; |
+ |
+} /* end mpp_pprime() */ |
+ |
+/* }}} */ |
+ |
+/* Produce table of composites from list of primes and trial value. |
+** trial must be odd. List of primes must not include 2. |
+** sieve should have dimension >= MAXPRIME/2, where MAXPRIME is largest |
+** prime in list of primes. After this function is finished, |
+** if sieve[i] is non-zero, then (trial + 2*i) is composite. |
+** Each prime used in the sieve costs one division of trial, and eliminates |
+** one or more values from the search space. (3 eliminates 1/3 of the values |
+** alone!) Each value left in the search space costs 1 or more modular |
+** exponentations. So, these divisions are a bargain! |
+*/ |
+mp_err mpp_sieve(mp_int *trial, const mp_digit *primes, mp_size nPrimes, |
+ unsigned char *sieve, mp_size nSieve) |
+{ |
+ mp_err res; |
+ mp_digit rem; |
+ mp_size ix; |
+ unsigned long offset; |
+ |
+ memset(sieve, 0, nSieve); |
+ |
+ for(ix = 0; ix < nPrimes; ix++) { |
+ mp_digit prime = primes[ix]; |
+ mp_size i; |
+ if((res = mp_mod_d(trial, prime, &rem)) != MP_OKAY) |
+ return res; |
+ |
+ if (rem == 0) { |
+ offset = 0; |
+ } else { |
+ offset = prime - (rem / 2); |
+ } |
+ for (i = offset; i < nSieve ; i += prime) { |
+ sieve[i] = 1; |
+ } |
+ } |
+ |
+ return MP_OKAY; |
+} |
+ |
+#define SIEVE_SIZE 32*1024 |
+ |
+mp_err mpp_make_prime(mp_int *start, mp_size nBits, mp_size strong, |
+ unsigned long * nTries) |
+{ |
+ mp_digit np; |
+ mp_err res; |
+ int i = 0; |
+ mp_int trial; |
+ mp_int q; |
+ mp_size num_tests; |
+ unsigned char *sieve; |
+ |
+ ARGCHK(start != 0, MP_BADARG); |
+ ARGCHK(nBits > 16, MP_RANGE); |
+ |
+ sieve = malloc(SIEVE_SIZE); |
+ ARGCHK(sieve != NULL, MP_MEM); |
+ |
+ MP_DIGITS(&trial) = 0; |
+ MP_DIGITS(&q) = 0; |
+ MP_CHECKOK( mp_init(&trial) ); |
+ MP_CHECKOK( mp_init(&q) ); |
+ /* values taken from table 4.4, HandBook of Applied Cryptography */ |
+ if (nBits >= 1300) { |
+ num_tests = 2; |
+ } else if (nBits >= 850) { |
+ num_tests = 3; |
+ } else if (nBits >= 650) { |
+ num_tests = 4; |
+ } else if (nBits >= 550) { |
+ num_tests = 5; |
+ } else if (nBits >= 450) { |
+ num_tests = 6; |
+ } else if (nBits >= 400) { |
+ num_tests = 7; |
+ } else if (nBits >= 350) { |
+ num_tests = 8; |
+ } else if (nBits >= 300) { |
+ num_tests = 9; |
+ } else if (nBits >= 250) { |
+ num_tests = 12; |
+ } else if (nBits >= 200) { |
+ num_tests = 15; |
+ } else if (nBits >= 150) { |
+ num_tests = 18; |
+ } else if (nBits >= 100) { |
+ num_tests = 27; |
+ } else |
+ num_tests = 50; |
+ |
+ if (strong) |
+ --nBits; |
+ MP_CHECKOK( mpl_set_bit(start, nBits - 1, 1) ); |
+ MP_CHECKOK( mpl_set_bit(start, 0, 1) ); |
+ for (i = mpl_significant_bits(start) - 1; i >= nBits; --i) { |
+ MP_CHECKOK( mpl_set_bit(start, i, 0) ); |
+ } |
+ /* start sieveing with prime value of 3. */ |
+ MP_CHECKOK(mpp_sieve(start, prime_tab + 1, prime_tab_size - 1, |
+ sieve, SIEVE_SIZE) ); |
+ |
+#ifdef DEBUG_SIEVE |
+ res = 0; |
+ for (i = 0; i < SIEVE_SIZE; ++i) { |
+ if (!sieve[i]) |
+ ++res; |
+ } |
+ fprintf(stderr,"sieve found %d potential primes.\n", res); |
+#define FPUTC(x,y) fputc(x,y) |
+#else |
+#define FPUTC(x,y) |
+#endif |
+ |
+ res = MP_NO; |
+ for(i = 0; i < SIEVE_SIZE; ++i) { |
+ if (sieve[i]) /* this number is composite */ |
+ continue; |
+ MP_CHECKOK( mp_add_d(start, 2 * i, &trial) ); |
+ FPUTC('.', stderr); |
+ /* run a Fermat test */ |
+ res = mpp_fermat(&trial, 2); |
+ if (res != MP_OKAY) { |
+ if (res == MP_NO) |
+ continue; /* was composite */ |
+ goto CLEANUP; |
+ } |
+ |
+ FPUTC('+', stderr); |
+ /* If that passed, run some Miller-Rabin tests */ |
+ res = mpp_pprime(&trial, num_tests); |
+ if (res != MP_OKAY) { |
+ if (res == MP_NO) |
+ continue; /* was composite */ |
+ goto CLEANUP; |
+ } |
+ FPUTC('!', stderr); |
+ |
+ if (!strong) |
+ break; /* success !! */ |
+ |
+ /* At this point, we have strong evidence that our candidate |
+ is itself prime. If we want a strong prime, we need now |
+ to test q = 2p + 1 for primality... |
+ */ |
+ MP_CHECKOK( mp_mul_2(&trial, &q) ); |
+ MP_CHECKOK( mp_add_d(&q, 1, &q) ); |
+ |
+ /* Test q for small prime divisors ... */ |
+ np = prime_tab_size; |
+ res = mpp_divis_primes(&q, &np); |
+ if (res == MP_YES) { /* is composite */ |
+ mp_clear(&q); |
+ continue; |
+ } |
+ if (res != MP_NO) |
+ goto CLEANUP; |
+ |
+ /* And test with Fermat, as with its parent ... */ |
+ res = mpp_fermat(&q, 2); |
+ if (res != MP_YES) { |
+ mp_clear(&q); |
+ if (res == MP_NO) |
+ continue; /* was composite */ |
+ goto CLEANUP; |
+ } |
+ |
+ /* And test with Miller-Rabin, as with its parent ... */ |
+ res = mpp_pprime(&q, num_tests); |
+ if (res != MP_YES) { |
+ mp_clear(&q); |
+ if (res == MP_NO) |
+ continue; /* was composite */ |
+ goto CLEANUP; |
+ } |
+ |
+ /* If it passed, we've got a winner */ |
+ mp_exch(&q, &trial); |
+ mp_clear(&q); |
+ break; |
+ |
+ } /* end of loop through sieved values */ |
+ if (res == MP_YES) |
+ mp_exch(&trial, start); |
+CLEANUP: |
+ mp_clear(&trial); |
+ mp_clear(&q); |
+ if (nTries) |
+ *nTries += i; |
+ if (sieve != NULL) { |
+ memset(sieve, 0, SIEVE_SIZE); |
+ free (sieve); |
+ } |
+ return res; |
+} |
+ |
+/*========================================================================*/ |
+/*------------------------------------------------------------------------*/ |
+/* Static functions visible only to the library internally */ |
+ |
+/* {{{ s_mpp_divp(a, vec, size, which) */ |
+ |
+/* |
+ Test for divisibility by members of a vector of digits. Returns |
+ MP_NO if a is not divisible by any of them; returns MP_YES and sets |
+ 'which' to the index of the offender, if it is. Will stop on the |
+ first digit against which a is divisible. |
+ */ |
+ |
+mp_err s_mpp_divp(mp_int *a, const mp_digit *vec, int size, int *which) |
+{ |
+ mp_err res; |
+ mp_digit rem; |
+ |
+ int ix; |
+ |
+ for(ix = 0; ix < size; ix++) { |
+ if((res = mp_mod_d(a, vec[ix], &rem)) != MP_OKAY) |
+ return res; |
+ |
+ if(rem == 0) { |
+ if(which) |
+ *which = ix; |
+ return MP_YES; |
+ } |
+ } |
+ |
+ return MP_NO; |
+ |
+} /* end s_mpp_divp() */ |
+ |
+/* }}} */ |
+ |
+/*------------------------------------------------------------------------*/ |
+/* HERE THERE BE DRAGONS */ |