Index: net/third_party/nss/ssl/mpi/mpi.c |
diff --git a/net/third_party/nss/ssl/mpi/mpi.c b/net/third_party/nss/ssl/mpi/mpi.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..8cd6ca6ad592b6ef35f9595a0be2e326e52243b0 |
--- /dev/null |
+++ b/net/third_party/nss/ssl/mpi/mpi.c |
@@ -0,0 +1,4852 @@ |
+/* |
+ * mpi.c |
+ * |
+ * Arbitrary precision integer arithmetic library |
+ * |
+ * ***** BEGIN LICENSE BLOCK ***** |
+ * Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
+ * |
+ * The contents of this file are subject to the Mozilla Public License Version |
+ * 1.1 (the "License"); you may not use this file except in compliance with |
+ * the License. You may obtain a copy of the License at |
+ * http://www.mozilla.org/MPL/ |
+ * |
+ * Software distributed under the License is distributed on an "AS IS" basis, |
+ * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
+ * for the specific language governing rights and limitations under the |
+ * License. |
+ * |
+ * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library. |
+ * |
+ * The Initial Developer of the Original Code is |
+ * Michael J. Fromberger. |
+ * Portions created by the Initial Developer are Copyright (C) 1998 |
+ * the Initial Developer. All Rights Reserved. |
+ * |
+ * Contributor(s): |
+ * Netscape Communications Corporation |
+ * Douglas Stebila <douglas@stebila.ca> of Sun Laboratories. |
+ * |
+ * Alternatively, the contents of this file may be used under the terms of |
+ * either the GNU General Public License Version 2 or later (the "GPL"), or |
+ * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
+ * in which case the provisions of the GPL or the LGPL are applicable instead |
+ * of those above. If you wish to allow use of your version of this file only |
+ * under the terms of either the GPL or the LGPL, and not to allow others to |
+ * use your version of this file under the terms of the MPL, indicate your |
+ * decision by deleting the provisions above and replace them with the notice |
+ * and other provisions required by the GPL or the LGPL. If you do not delete |
+ * the provisions above, a recipient may use your version of this file under |
+ * the terms of any one of the MPL, the GPL or the LGPL. |
+ * |
+ * ***** END LICENSE BLOCK ***** */ |
+/* $Id: mpi.c,v 1.47 2010/05/02 22:36:41 nelson%bolyard.com Exp $ */ |
+ |
+#define MP_API_COMPATIBLE 1 |
+#include "mpi-priv.h" |
+#if defined(OSF1) |
+#include <c_asm.h> |
+#endif |
+ |
+#if MP_LOGTAB |
+/* |
+ A table of the logs of 2 for various bases (the 0 and 1 entries of |
+ this table are meaningless and should not be referenced). |
+ |
+ This table is used to compute output lengths for the mp_toradix() |
+ function. Since a number n in radix r takes up about log_r(n) |
+ digits, we estimate the output size by taking the least integer |
+ greater than log_r(n), where: |
+ |
+ log_r(n) = log_2(n) * log_r(2) |
+ |
+ This table, therefore, is a table of log_r(2) for 2 <= r <= 36, |
+ which are the output bases supported. |
+ */ |
+#include "logtab.h" |
+#endif |
+ |
+/* {{{ Constant strings */ |
+ |
+/* Constant strings returned by mp_strerror() */ |
+static const char *mp_err_string[] = { |
+ "unknown result code", /* say what? */ |
+ "boolean true", /* MP_OKAY, MP_YES */ |
+ "boolean false", /* MP_NO */ |
+ "out of memory", /* MP_MEM */ |
+ "argument out of range", /* MP_RANGE */ |
+ "invalid input parameter", /* MP_BADARG */ |
+ "result is undefined" /* MP_UNDEF */ |
+}; |
+ |
+/* Value to digit maps for radix conversion */ |
+ |
+/* s_dmap_1 - standard digits and letters */ |
+static const char *s_dmap_1 = |
+ "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; |
+ |
+/* }}} */ |
+ |
+unsigned long mp_allocs; |
+unsigned long mp_frees; |
+unsigned long mp_copies; |
+ |
+/* {{{ Default precision manipulation */ |
+ |
+/* Default precision for newly created mp_int's */ |
+static mp_size s_mp_defprec = MP_DEFPREC; |
+ |
+mp_size mp_get_prec(void) |
+{ |
+ return s_mp_defprec; |
+ |
+} /* end mp_get_prec() */ |
+ |
+void mp_set_prec(mp_size prec) |
+{ |
+ if(prec == 0) |
+ s_mp_defprec = MP_DEFPREC; |
+ else |
+ s_mp_defprec = prec; |
+ |
+} /* end mp_set_prec() */ |
+ |
+/* }}} */ |
+ |
+/*------------------------------------------------------------------------*/ |
+/* {{{ mp_init(mp) */ |
+ |
+/* |
+ mp_init(mp) |
+ |
+ Initialize a new zero-valued mp_int. Returns MP_OKAY if successful, |
+ MP_MEM if memory could not be allocated for the structure. |
+ */ |
+ |
+mp_err mp_init(mp_int *mp) |
+{ |
+ return mp_init_size(mp, s_mp_defprec); |
+ |
+} /* end mp_init() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_init_size(mp, prec) */ |
+ |
+/* |
+ mp_init_size(mp, prec) |
+ |
+ Initialize a new zero-valued mp_int with at least the given |
+ precision; returns MP_OKAY if successful, or MP_MEM if memory could |
+ not be allocated for the structure. |
+ */ |
+ |
+mp_err mp_init_size(mp_int *mp, mp_size prec) |
+{ |
+ ARGCHK(mp != NULL && prec > 0, MP_BADARG); |
+ |
+ prec = MP_ROUNDUP(prec, s_mp_defprec); |
+ if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit))) == NULL) |
+ return MP_MEM; |
+ |
+ SIGN(mp) = ZPOS; |
+ USED(mp) = 1; |
+ ALLOC(mp) = prec; |
+ |
+ return MP_OKAY; |
+ |
+} /* end mp_init_size() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_init_copy(mp, from) */ |
+ |
+/* |
+ mp_init_copy(mp, from) |
+ |
+ Initialize mp as an exact copy of from. Returns MP_OKAY if |
+ successful, MP_MEM if memory could not be allocated for the new |
+ structure. |
+ */ |
+ |
+mp_err mp_init_copy(mp_int *mp, const mp_int *from) |
+{ |
+ ARGCHK(mp != NULL && from != NULL, MP_BADARG); |
+ |
+ if(mp == from) |
+ return MP_OKAY; |
+ |
+ if((DIGITS(mp) = s_mp_alloc(ALLOC(from), sizeof(mp_digit))) == NULL) |
+ return MP_MEM; |
+ |
+ s_mp_copy(DIGITS(from), DIGITS(mp), USED(from)); |
+ USED(mp) = USED(from); |
+ ALLOC(mp) = ALLOC(from); |
+ SIGN(mp) = SIGN(from); |
+ |
+ return MP_OKAY; |
+ |
+} /* end mp_init_copy() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_copy(from, to) */ |
+ |
+/* |
+ mp_copy(from, to) |
+ |
+ Copies the mp_int 'from' to the mp_int 'to'. It is presumed that |
+ 'to' has already been initialized (if not, use mp_init_copy() |
+ instead). If 'from' and 'to' are identical, nothing happens. |
+ */ |
+ |
+mp_err mp_copy(const mp_int *from, mp_int *to) |
+{ |
+ ARGCHK(from != NULL && to != NULL, MP_BADARG); |
+ |
+ if(from == to) |
+ return MP_OKAY; |
+ |
+ ++mp_copies; |
+ { /* copy */ |
+ mp_digit *tmp; |
+ |
+ /* |
+ If the allocated buffer in 'to' already has enough space to hold |
+ all the used digits of 'from', we'll re-use it to avoid hitting |
+ the memory allocater more than necessary; otherwise, we'd have |
+ to grow anyway, so we just allocate a hunk and make the copy as |
+ usual |
+ */ |
+ if(ALLOC(to) >= USED(from)) { |
+ s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from)); |
+ s_mp_copy(DIGITS(from), DIGITS(to), USED(from)); |
+ |
+ } else { |
+ if((tmp = s_mp_alloc(ALLOC(from), sizeof(mp_digit))) == NULL) |
+ return MP_MEM; |
+ |
+ s_mp_copy(DIGITS(from), tmp, USED(from)); |
+ |
+ if(DIGITS(to) != NULL) { |
+#if MP_CRYPTO |
+ s_mp_setz(DIGITS(to), ALLOC(to)); |
+#endif |
+ s_mp_free(DIGITS(to)); |
+ } |
+ |
+ DIGITS(to) = tmp; |
+ ALLOC(to) = ALLOC(from); |
+ } |
+ |
+ /* Copy the precision and sign from the original */ |
+ USED(to) = USED(from); |
+ SIGN(to) = SIGN(from); |
+ } /* end copy */ |
+ |
+ return MP_OKAY; |
+ |
+} /* end mp_copy() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_exch(mp1, mp2) */ |
+ |
+/* |
+ mp_exch(mp1, mp2) |
+ |
+ Exchange mp1 and mp2 without allocating any intermediate memory |
+ (well, unless you count the stack space needed for this call and the |
+ locals it creates...). This cannot fail. |
+ */ |
+ |
+void mp_exch(mp_int *mp1, mp_int *mp2) |
+{ |
+#if MP_ARGCHK == 2 |
+ assert(mp1 != NULL && mp2 != NULL); |
+#else |
+ if(mp1 == NULL || mp2 == NULL) |
+ return; |
+#endif |
+ |
+ s_mp_exch(mp1, mp2); |
+ |
+} /* end mp_exch() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_clear(mp) */ |
+ |
+/* |
+ mp_clear(mp) |
+ |
+ Release the storage used by an mp_int, and void its fields so that |
+ if someone calls mp_clear() again for the same int later, we won't |
+ get tollchocked. |
+ */ |
+ |
+void mp_clear(mp_int *mp) |
+{ |
+ if(mp == NULL) |
+ return; |
+ |
+ if(DIGITS(mp) != NULL) { |
+#if MP_CRYPTO |
+ s_mp_setz(DIGITS(mp), ALLOC(mp)); |
+#endif |
+ s_mp_free(DIGITS(mp)); |
+ DIGITS(mp) = NULL; |
+ } |
+ |
+ USED(mp) = 0; |
+ ALLOC(mp) = 0; |
+ |
+} /* end mp_clear() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_zero(mp) */ |
+ |
+/* |
+ mp_zero(mp) |
+ |
+ Set mp to zero. Does not change the allocated size of the structure, |
+ and therefore cannot fail (except on a bad argument, which we ignore) |
+ */ |
+void mp_zero(mp_int *mp) |
+{ |
+ if(mp == NULL) |
+ return; |
+ |
+ s_mp_setz(DIGITS(mp), ALLOC(mp)); |
+ USED(mp) = 1; |
+ SIGN(mp) = ZPOS; |
+ |
+} /* end mp_zero() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_set(mp, d) */ |
+ |
+void mp_set(mp_int *mp, mp_digit d) |
+{ |
+ if(mp == NULL) |
+ return; |
+ |
+ mp_zero(mp); |
+ DIGIT(mp, 0) = d; |
+ |
+} /* end mp_set() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_set_int(mp, z) */ |
+ |
+mp_err mp_set_int(mp_int *mp, long z) |
+{ |
+ int ix; |
+ unsigned long v = labs(z); |
+ mp_err res; |
+ |
+ ARGCHK(mp != NULL, MP_BADARG); |
+ |
+ mp_zero(mp); |
+ if(z == 0) |
+ return MP_OKAY; /* shortcut for zero */ |
+ |
+ if (sizeof v <= sizeof(mp_digit)) { |
+ DIGIT(mp,0) = v; |
+ } else { |
+ for (ix = sizeof(long) - 1; ix >= 0; ix--) { |
+ if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY) |
+ return res; |
+ |
+ res = s_mp_add_d(mp, (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX)); |
+ if (res != MP_OKAY) |
+ return res; |
+ } |
+ } |
+ if(z < 0) |
+ SIGN(mp) = NEG; |
+ |
+ return MP_OKAY; |
+ |
+} /* end mp_set_int() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_set_ulong(mp, z) */ |
+ |
+mp_err mp_set_ulong(mp_int *mp, unsigned long z) |
+{ |
+ int ix; |
+ mp_err res; |
+ |
+ ARGCHK(mp != NULL, MP_BADARG); |
+ |
+ mp_zero(mp); |
+ if(z == 0) |
+ return MP_OKAY; /* shortcut for zero */ |
+ |
+ if (sizeof z <= sizeof(mp_digit)) { |
+ DIGIT(mp,0) = z; |
+ } else { |
+ for (ix = sizeof(long) - 1; ix >= 0; ix--) { |
+ if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY) |
+ return res; |
+ |
+ res = s_mp_add_d(mp, (mp_digit)((z >> (ix * CHAR_BIT)) & UCHAR_MAX)); |
+ if (res != MP_OKAY) |
+ return res; |
+ } |
+ } |
+ return MP_OKAY; |
+} /* end mp_set_ulong() */ |
+ |
+/* }}} */ |
+ |
+/*------------------------------------------------------------------------*/ |
+/* {{{ Digit arithmetic */ |
+ |
+/* {{{ mp_add_d(a, d, b) */ |
+ |
+/* |
+ mp_add_d(a, d, b) |
+ |
+ Compute the sum b = a + d, for a single digit d. Respects the sign of |
+ its primary addend (single digits are unsigned anyway). |
+ */ |
+ |
+mp_err mp_add_d(const mp_int *a, mp_digit d, mp_int *b) |
+{ |
+ mp_int tmp; |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && b != NULL, MP_BADARG); |
+ |
+ if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
+ return res; |
+ |
+ if(SIGN(&tmp) == ZPOS) { |
+ if((res = s_mp_add_d(&tmp, d)) != MP_OKAY) |
+ goto CLEANUP; |
+ } else if(s_mp_cmp_d(&tmp, d) >= 0) { |
+ if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY) |
+ goto CLEANUP; |
+ } else { |
+ mp_neg(&tmp, &tmp); |
+ |
+ DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0); |
+ } |
+ |
+ if(s_mp_cmp_d(&tmp, 0) == 0) |
+ SIGN(&tmp) = ZPOS; |
+ |
+ s_mp_exch(&tmp, b); |
+ |
+CLEANUP: |
+ mp_clear(&tmp); |
+ return res; |
+ |
+} /* end mp_add_d() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_sub_d(a, d, b) */ |
+ |
+/* |
+ mp_sub_d(a, d, b) |
+ |
+ Compute the difference b = a - d, for a single digit d. Respects the |
+ sign of its subtrahend (single digits are unsigned anyway). |
+ */ |
+ |
+mp_err mp_sub_d(const mp_int *a, mp_digit d, mp_int *b) |
+{ |
+ mp_int tmp; |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && b != NULL, MP_BADARG); |
+ |
+ if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
+ return res; |
+ |
+ if(SIGN(&tmp) == NEG) { |
+ if((res = s_mp_add_d(&tmp, d)) != MP_OKAY) |
+ goto CLEANUP; |
+ } else if(s_mp_cmp_d(&tmp, d) >= 0) { |
+ if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY) |
+ goto CLEANUP; |
+ } else { |
+ mp_neg(&tmp, &tmp); |
+ |
+ DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0); |
+ SIGN(&tmp) = NEG; |
+ } |
+ |
+ if(s_mp_cmp_d(&tmp, 0) == 0) |
+ SIGN(&tmp) = ZPOS; |
+ |
+ s_mp_exch(&tmp, b); |
+ |
+CLEANUP: |
+ mp_clear(&tmp); |
+ return res; |
+ |
+} /* end mp_sub_d() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_mul_d(a, d, b) */ |
+ |
+/* |
+ mp_mul_d(a, d, b) |
+ |
+ Compute the product b = a * d, for a single digit d. Respects the sign |
+ of its multiplicand (single digits are unsigned anyway) |
+ */ |
+ |
+mp_err mp_mul_d(const mp_int *a, mp_digit d, mp_int *b) |
+{ |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && b != NULL, MP_BADARG); |
+ |
+ if(d == 0) { |
+ mp_zero(b); |
+ return MP_OKAY; |
+ } |
+ |
+ if((res = mp_copy(a, b)) != MP_OKAY) |
+ return res; |
+ |
+ res = s_mp_mul_d(b, d); |
+ |
+ return res; |
+ |
+} /* end mp_mul_d() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_mul_2(a, c) */ |
+ |
+mp_err mp_mul_2(const mp_int *a, mp_int *c) |
+{ |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && c != NULL, MP_BADARG); |
+ |
+ if((res = mp_copy(a, c)) != MP_OKAY) |
+ return res; |
+ |
+ return s_mp_mul_2(c); |
+ |
+} /* end mp_mul_2() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_div_d(a, d, q, r) */ |
+ |
+/* |
+ mp_div_d(a, d, q, r) |
+ |
+ Compute the quotient q = a / d and remainder r = a mod d, for a |
+ single digit d. Respects the sign of its divisor (single digits are |
+ unsigned anyway). |
+ */ |
+ |
+mp_err mp_div_d(const mp_int *a, mp_digit d, mp_int *q, mp_digit *r) |
+{ |
+ mp_err res; |
+ mp_int qp; |
+ mp_digit rem; |
+ int pow; |
+ |
+ ARGCHK(a != NULL, MP_BADARG); |
+ |
+ if(d == 0) |
+ return MP_RANGE; |
+ |
+ /* Shortcut for powers of two ... */ |
+ if((pow = s_mp_ispow2d(d)) >= 0) { |
+ mp_digit mask; |
+ |
+ mask = ((mp_digit)1 << pow) - 1; |
+ rem = DIGIT(a, 0) & mask; |
+ |
+ if(q) { |
+ mp_copy(a, q); |
+ s_mp_div_2d(q, pow); |
+ } |
+ |
+ if(r) |
+ *r = rem; |
+ |
+ return MP_OKAY; |
+ } |
+ |
+ if((res = mp_init_copy(&qp, a)) != MP_OKAY) |
+ return res; |
+ |
+ res = s_mp_div_d(&qp, d, &rem); |
+ |
+ if(s_mp_cmp_d(&qp, 0) == 0) |
+ SIGN(q) = ZPOS; |
+ |
+ if(r) |
+ *r = rem; |
+ |
+ if(q) |
+ s_mp_exch(&qp, q); |
+ |
+ mp_clear(&qp); |
+ return res; |
+ |
+} /* end mp_div_d() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_div_2(a, c) */ |
+ |
+/* |
+ mp_div_2(a, c) |
+ |
+ Compute c = a / 2, disregarding the remainder. |
+ */ |
+ |
+mp_err mp_div_2(const mp_int *a, mp_int *c) |
+{ |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && c != NULL, MP_BADARG); |
+ |
+ if((res = mp_copy(a, c)) != MP_OKAY) |
+ return res; |
+ |
+ s_mp_div_2(c); |
+ |
+ return MP_OKAY; |
+ |
+} /* end mp_div_2() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_expt_d(a, d, b) */ |
+ |
+mp_err mp_expt_d(const mp_int *a, mp_digit d, mp_int *c) |
+{ |
+ mp_int s, x; |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && c != NULL, MP_BADARG); |
+ |
+ if((res = mp_init(&s)) != MP_OKAY) |
+ return res; |
+ if((res = mp_init_copy(&x, a)) != MP_OKAY) |
+ goto X; |
+ |
+ DIGIT(&s, 0) = 1; |
+ |
+ while(d != 0) { |
+ if(d & 1) { |
+ if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
+ goto CLEANUP; |
+ } |
+ |
+ d /= 2; |
+ |
+ if((res = s_mp_sqr(&x)) != MP_OKAY) |
+ goto CLEANUP; |
+ } |
+ |
+ s_mp_exch(&s, c); |
+ |
+CLEANUP: |
+ mp_clear(&x); |
+X: |
+ mp_clear(&s); |
+ |
+ return res; |
+ |
+} /* end mp_expt_d() */ |
+ |
+/* }}} */ |
+ |
+/* }}} */ |
+ |
+/*------------------------------------------------------------------------*/ |
+/* {{{ Full arithmetic */ |
+ |
+/* {{{ mp_abs(a, b) */ |
+ |
+/* |
+ mp_abs(a, b) |
+ |
+ Compute b = |a|. 'a' and 'b' may be identical. |
+ */ |
+ |
+mp_err mp_abs(const mp_int *a, mp_int *b) |
+{ |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && b != NULL, MP_BADARG); |
+ |
+ if((res = mp_copy(a, b)) != MP_OKAY) |
+ return res; |
+ |
+ SIGN(b) = ZPOS; |
+ |
+ return MP_OKAY; |
+ |
+} /* end mp_abs() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_neg(a, b) */ |
+ |
+/* |
+ mp_neg(a, b) |
+ |
+ Compute b = -a. 'a' and 'b' may be identical. |
+ */ |
+ |
+mp_err mp_neg(const mp_int *a, mp_int *b) |
+{ |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && b != NULL, MP_BADARG); |
+ |
+ if((res = mp_copy(a, b)) != MP_OKAY) |
+ return res; |
+ |
+ if(s_mp_cmp_d(b, 0) == MP_EQ) |
+ SIGN(b) = ZPOS; |
+ else |
+ SIGN(b) = (SIGN(b) == NEG) ? ZPOS : NEG; |
+ |
+ return MP_OKAY; |
+ |
+} /* end mp_neg() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_add(a, b, c) */ |
+ |
+/* |
+ mp_add(a, b, c) |
+ |
+ Compute c = a + b. All parameters may be identical. |
+ */ |
+ |
+mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c) |
+{ |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
+ |
+ if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */ |
+ MP_CHECKOK( s_mp_add_3arg(a, b, c) ); |
+ } else if(s_mp_cmp(a, b) >= 0) { /* different sign: |a| >= |b| */ |
+ MP_CHECKOK( s_mp_sub_3arg(a, b, c) ); |
+ } else { /* different sign: |a| < |b| */ |
+ MP_CHECKOK( s_mp_sub_3arg(b, a, c) ); |
+ } |
+ |
+ if (s_mp_cmp_d(c, 0) == MP_EQ) |
+ SIGN(c) = ZPOS; |
+ |
+CLEANUP: |
+ return res; |
+ |
+} /* end mp_add() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_sub(a, b, c) */ |
+ |
+/* |
+ mp_sub(a, b, c) |
+ |
+ Compute c = a - b. All parameters may be identical. |
+ */ |
+ |
+mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c) |
+{ |
+ mp_err res; |
+ int magDiff; |
+ |
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
+ |
+ if (a == b) { |
+ mp_zero(c); |
+ return MP_OKAY; |
+ } |
+ |
+ if (MP_SIGN(a) != MP_SIGN(b)) { |
+ MP_CHECKOK( s_mp_add_3arg(a, b, c) ); |
+ } else if (!(magDiff = s_mp_cmp(a, b))) { |
+ mp_zero(c); |
+ res = MP_OKAY; |
+ } else if (magDiff > 0) { |
+ MP_CHECKOK( s_mp_sub_3arg(a, b, c) ); |
+ } else { |
+ MP_CHECKOK( s_mp_sub_3arg(b, a, c) ); |
+ MP_SIGN(c) = !MP_SIGN(a); |
+ } |
+ |
+ if (s_mp_cmp_d(c, 0) == MP_EQ) |
+ MP_SIGN(c) = MP_ZPOS; |
+ |
+CLEANUP: |
+ return res; |
+ |
+} /* end mp_sub() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_mul(a, b, c) */ |
+ |
+/* |
+ mp_mul(a, b, c) |
+ |
+ Compute c = a * b. All parameters may be identical. |
+ */ |
+mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int * c) |
+{ |
+ mp_digit *pb; |
+ mp_int tmp; |
+ mp_err res; |
+ mp_size ib; |
+ mp_size useda, usedb; |
+ |
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
+ |
+ if (a == c) { |
+ if ((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
+ return res; |
+ if (a == b) |
+ b = &tmp; |
+ a = &tmp; |
+ } else if (b == c) { |
+ if ((res = mp_init_copy(&tmp, b)) != MP_OKAY) |
+ return res; |
+ b = &tmp; |
+ } else { |
+ MP_DIGITS(&tmp) = 0; |
+ } |
+ |
+ if (MP_USED(a) < MP_USED(b)) { |
+ const mp_int *xch = b; /* switch a and b, to do fewer outer loops */ |
+ b = a; |
+ a = xch; |
+ } |
+ |
+ MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; |
+ if((res = s_mp_pad(c, USED(a) + USED(b))) != MP_OKAY) |
+ goto CLEANUP; |
+ |
+#ifdef NSS_USE_COMBA |
+ if ((MP_USED(a) == MP_USED(b)) && IS_POWER_OF_2(MP_USED(b))) { |
+ if (MP_USED(a) == 4) { |
+ s_mp_mul_comba_4(a, b, c); |
+ goto CLEANUP; |
+ } |
+ if (MP_USED(a) == 8) { |
+ s_mp_mul_comba_8(a, b, c); |
+ goto CLEANUP; |
+ } |
+ if (MP_USED(a) == 16) { |
+ s_mp_mul_comba_16(a, b, c); |
+ goto CLEANUP; |
+ } |
+ if (MP_USED(a) == 32) { |
+ s_mp_mul_comba_32(a, b, c); |
+ goto CLEANUP; |
+ } |
+ } |
+#endif |
+ |
+ pb = MP_DIGITS(b); |
+ s_mpv_mul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c)); |
+ |
+ /* Outer loop: Digits of b */ |
+ useda = MP_USED(a); |
+ usedb = MP_USED(b); |
+ for (ib = 1; ib < usedb; ib++) { |
+ mp_digit b_i = *pb++; |
+ |
+ /* Inner product: Digits of a */ |
+ if (b_i) |
+ s_mpv_mul_d_add(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib); |
+ else |
+ MP_DIGIT(c, ib + useda) = b_i; |
+ } |
+ |
+ s_mp_clamp(c); |
+ |
+ if(SIGN(a) == SIGN(b) || s_mp_cmp_d(c, 0) == MP_EQ) |
+ SIGN(c) = ZPOS; |
+ else |
+ SIGN(c) = NEG; |
+ |
+CLEANUP: |
+ mp_clear(&tmp); |
+ return res; |
+} /* end mp_mul() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_sqr(a, sqr) */ |
+ |
+#if MP_SQUARE |
+/* |
+ Computes the square of a. This can be done more |
+ efficiently than a general multiplication, because many of the |
+ computation steps are redundant when squaring. The inner product |
+ step is a bit more complicated, but we save a fair number of |
+ iterations of the multiplication loop. |
+ */ |
+ |
+/* sqr = a^2; Caller provides both a and tmp; */ |
+mp_err mp_sqr(const mp_int *a, mp_int *sqr) |
+{ |
+ mp_digit *pa; |
+ mp_digit d; |
+ mp_err res; |
+ mp_size ix; |
+ mp_int tmp; |
+ int count; |
+ |
+ ARGCHK(a != NULL && sqr != NULL, MP_BADARG); |
+ |
+ if (a == sqr) { |
+ if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
+ return res; |
+ a = &tmp; |
+ } else { |
+ DIGITS(&tmp) = 0; |
+ res = MP_OKAY; |
+ } |
+ |
+ ix = 2 * MP_USED(a); |
+ if (ix > MP_ALLOC(sqr)) { |
+ MP_USED(sqr) = 1; |
+ MP_CHECKOK( s_mp_grow(sqr, ix) ); |
+ } |
+ MP_USED(sqr) = ix; |
+ MP_DIGIT(sqr, 0) = 0; |
+ |
+#ifdef NSS_USE_COMBA |
+ if (IS_POWER_OF_2(MP_USED(a))) { |
+ if (MP_USED(a) == 4) { |
+ s_mp_sqr_comba_4(a, sqr); |
+ goto CLEANUP; |
+ } |
+ if (MP_USED(a) == 8) { |
+ s_mp_sqr_comba_8(a, sqr); |
+ goto CLEANUP; |
+ } |
+ if (MP_USED(a) == 16) { |
+ s_mp_sqr_comba_16(a, sqr); |
+ goto CLEANUP; |
+ } |
+ if (MP_USED(a) == 32) { |
+ s_mp_sqr_comba_32(a, sqr); |
+ goto CLEANUP; |
+ } |
+ } |
+#endif |
+ |
+ pa = MP_DIGITS(a); |
+ count = MP_USED(a) - 1; |
+ if (count > 0) { |
+ d = *pa++; |
+ s_mpv_mul_d(pa, count, d, MP_DIGITS(sqr) + 1); |
+ for (ix = 3; --count > 0; ix += 2) { |
+ d = *pa++; |
+ s_mpv_mul_d_add(pa, count, d, MP_DIGITS(sqr) + ix); |
+ } /* for(ix ...) */ |
+ MP_DIGIT(sqr, MP_USED(sqr)-1) = 0; /* above loop stopped short of this. */ |
+ |
+ /* now sqr *= 2 */ |
+ s_mp_mul_2(sqr); |
+ } else { |
+ MP_DIGIT(sqr, 1) = 0; |
+ } |
+ |
+ /* now add the squares of the digits of a to sqr. */ |
+ s_mpv_sqr_add_prop(MP_DIGITS(a), MP_USED(a), MP_DIGITS(sqr)); |
+ |
+ SIGN(sqr) = ZPOS; |
+ s_mp_clamp(sqr); |
+ |
+CLEANUP: |
+ mp_clear(&tmp); |
+ return res; |
+ |
+} /* end mp_sqr() */ |
+#endif |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_div(a, b, q, r) */ |
+ |
+/* |
+ mp_div(a, b, q, r) |
+ |
+ Compute q = a / b and r = a mod b. Input parameters may be re-used |
+ as output parameters. If q or r is NULL, that portion of the |
+ computation will be discarded (although it will still be computed) |
+ */ |
+mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r) |
+{ |
+ mp_err res; |
+ mp_int *pQ, *pR; |
+ mp_int qtmp, rtmp, btmp; |
+ int cmp; |
+ mp_sign signA; |
+ mp_sign signB; |
+ |
+ ARGCHK(a != NULL && b != NULL, MP_BADARG); |
+ |
+ signA = MP_SIGN(a); |
+ signB = MP_SIGN(b); |
+ |
+ if(mp_cmp_z(b) == MP_EQ) |
+ return MP_RANGE; |
+ |
+ DIGITS(&qtmp) = 0; |
+ DIGITS(&rtmp) = 0; |
+ DIGITS(&btmp) = 0; |
+ |
+ /* Set up some temporaries... */ |
+ if (!r || r == a || r == b) { |
+ MP_CHECKOK( mp_init_copy(&rtmp, a) ); |
+ pR = &rtmp; |
+ } else { |
+ MP_CHECKOK( mp_copy(a, r) ); |
+ pR = r; |
+ } |
+ |
+ if (!q || q == a || q == b) { |
+ MP_CHECKOK( mp_init_size(&qtmp, MP_USED(a)) ); |
+ pQ = &qtmp; |
+ } else { |
+ MP_CHECKOK( s_mp_pad(q, MP_USED(a)) ); |
+ pQ = q; |
+ mp_zero(pQ); |
+ } |
+ |
+ /* |
+ If |a| <= |b|, we can compute the solution without division; |
+ otherwise, we actually do the work required. |
+ */ |
+ if ((cmp = s_mp_cmp(a, b)) <= 0) { |
+ if (cmp) { |
+ /* r was set to a above. */ |
+ mp_zero(pQ); |
+ } else { |
+ mp_set(pQ, 1); |
+ mp_zero(pR); |
+ } |
+ } else { |
+ MP_CHECKOK( mp_init_copy(&btmp, b) ); |
+ MP_CHECKOK( s_mp_div(pR, &btmp, pQ) ); |
+ } |
+ |
+ /* Compute the signs for the output */ |
+ MP_SIGN(pR) = signA; /* Sr = Sa */ |
+ /* Sq = ZPOS if Sa == Sb */ /* Sq = NEG if Sa != Sb */ |
+ MP_SIGN(pQ) = (signA == signB) ? ZPOS : NEG; |
+ |
+ if(s_mp_cmp_d(pQ, 0) == MP_EQ) |
+ SIGN(pQ) = ZPOS; |
+ if(s_mp_cmp_d(pR, 0) == MP_EQ) |
+ SIGN(pR) = ZPOS; |
+ |
+ /* Copy output, if it is needed */ |
+ if(q && q != pQ) |
+ s_mp_exch(pQ, q); |
+ |
+ if(r && r != pR) |
+ s_mp_exch(pR, r); |
+ |
+CLEANUP: |
+ mp_clear(&btmp); |
+ mp_clear(&rtmp); |
+ mp_clear(&qtmp); |
+ |
+ return res; |
+ |
+} /* end mp_div() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_div_2d(a, d, q, r) */ |
+ |
+mp_err mp_div_2d(const mp_int *a, mp_digit d, mp_int *q, mp_int *r) |
+{ |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL, MP_BADARG); |
+ |
+ if(q) { |
+ if((res = mp_copy(a, q)) != MP_OKAY) |
+ return res; |
+ } |
+ if(r) { |
+ if((res = mp_copy(a, r)) != MP_OKAY) |
+ return res; |
+ } |
+ if(q) { |
+ s_mp_div_2d(q, d); |
+ } |
+ if(r) { |
+ s_mp_mod_2d(r, d); |
+ } |
+ |
+ return MP_OKAY; |
+ |
+} /* end mp_div_2d() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_expt(a, b, c) */ |
+ |
+/* |
+ mp_expt(a, b, c) |
+ |
+ Compute c = a ** b, that is, raise a to the b power. Uses a |
+ standard iterative square-and-multiply technique. |
+ */ |
+ |
+mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c) |
+{ |
+ mp_int s, x; |
+ mp_err res; |
+ mp_digit d; |
+ int dig, bit; |
+ |
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
+ |
+ if(mp_cmp_z(b) < 0) |
+ return MP_RANGE; |
+ |
+ if((res = mp_init(&s)) != MP_OKAY) |
+ return res; |
+ |
+ mp_set(&s, 1); |
+ |
+ if((res = mp_init_copy(&x, a)) != MP_OKAY) |
+ goto X; |
+ |
+ /* Loop over low-order digits in ascending order */ |
+ for(dig = 0; dig < (USED(b) - 1); dig++) { |
+ d = DIGIT(b, dig); |
+ |
+ /* Loop over bits of each non-maximal digit */ |
+ for(bit = 0; bit < DIGIT_BIT; bit++) { |
+ if(d & 1) { |
+ if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
+ goto CLEANUP; |
+ } |
+ |
+ d >>= 1; |
+ |
+ if((res = s_mp_sqr(&x)) != MP_OKAY) |
+ goto CLEANUP; |
+ } |
+ } |
+ |
+ /* Consider now the last digit... */ |
+ d = DIGIT(b, dig); |
+ |
+ while(d) { |
+ if(d & 1) { |
+ if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
+ goto CLEANUP; |
+ } |
+ |
+ d >>= 1; |
+ |
+ if((res = s_mp_sqr(&x)) != MP_OKAY) |
+ goto CLEANUP; |
+ } |
+ |
+ if(mp_iseven(b)) |
+ SIGN(&s) = SIGN(a); |
+ |
+ res = mp_copy(&s, c); |
+ |
+CLEANUP: |
+ mp_clear(&x); |
+X: |
+ mp_clear(&s); |
+ |
+ return res; |
+ |
+} /* end mp_expt() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_2expt(a, k) */ |
+ |
+/* Compute a = 2^k */ |
+ |
+mp_err mp_2expt(mp_int *a, mp_digit k) |
+{ |
+ ARGCHK(a != NULL, MP_BADARG); |
+ |
+ return s_mp_2expt(a, k); |
+ |
+} /* end mp_2expt() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_mod(a, m, c) */ |
+ |
+/* |
+ mp_mod(a, m, c) |
+ |
+ Compute c = a (mod m). Result will always be 0 <= c < m. |
+ */ |
+ |
+mp_err mp_mod(const mp_int *a, const mp_int *m, mp_int *c) |
+{ |
+ mp_err res; |
+ int mag; |
+ |
+ ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); |
+ |
+ if(SIGN(m) == NEG) |
+ return MP_RANGE; |
+ |
+ /* |
+ If |a| > m, we need to divide to get the remainder and take the |
+ absolute value. |
+ |
+ If |a| < m, we don't need to do any division, just copy and adjust |
+ the sign (if a is negative). |
+ |
+ If |a| == m, we can simply set the result to zero. |
+ |
+ This order is intended to minimize the average path length of the |
+ comparison chain on common workloads -- the most frequent cases are |
+ that |a| != m, so we do those first. |
+ */ |
+ if((mag = s_mp_cmp(a, m)) > 0) { |
+ if((res = mp_div(a, m, NULL, c)) != MP_OKAY) |
+ return res; |
+ |
+ if(SIGN(c) == NEG) { |
+ if((res = mp_add(c, m, c)) != MP_OKAY) |
+ return res; |
+ } |
+ |
+ } else if(mag < 0) { |
+ if((res = mp_copy(a, c)) != MP_OKAY) |
+ return res; |
+ |
+ if(mp_cmp_z(a) < 0) { |
+ if((res = mp_add(c, m, c)) != MP_OKAY) |
+ return res; |
+ |
+ } |
+ |
+ } else { |
+ mp_zero(c); |
+ |
+ } |
+ |
+ return MP_OKAY; |
+ |
+} /* end mp_mod() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_mod_d(a, d, c) */ |
+ |
+/* |
+ mp_mod_d(a, d, c) |
+ |
+ Compute c = a (mod d). Result will always be 0 <= c < d |
+ */ |
+mp_err mp_mod_d(const mp_int *a, mp_digit d, mp_digit *c) |
+{ |
+ mp_err res; |
+ mp_digit rem; |
+ |
+ ARGCHK(a != NULL && c != NULL, MP_BADARG); |
+ |
+ if(s_mp_cmp_d(a, d) > 0) { |
+ if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY) |
+ return res; |
+ |
+ } else { |
+ if(SIGN(a) == NEG) |
+ rem = d - DIGIT(a, 0); |
+ else |
+ rem = DIGIT(a, 0); |
+ } |
+ |
+ if(c) |
+ *c = rem; |
+ |
+ return MP_OKAY; |
+ |
+} /* end mp_mod_d() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_sqrt(a, b) */ |
+ |
+/* |
+ mp_sqrt(a, b) |
+ |
+ Compute the integer square root of a, and store the result in b. |
+ Uses an integer-arithmetic version of Newton's iterative linear |
+ approximation technique to determine this value; the result has the |
+ following two properties: |
+ |
+ b^2 <= a |
+ (b+1)^2 >= a |
+ |
+ It is a range error to pass a negative value. |
+ */ |
+mp_err mp_sqrt(const mp_int *a, mp_int *b) |
+{ |
+ mp_int x, t; |
+ mp_err res; |
+ mp_size used; |
+ |
+ ARGCHK(a != NULL && b != NULL, MP_BADARG); |
+ |
+ /* Cannot take square root of a negative value */ |
+ if(SIGN(a) == NEG) |
+ return MP_RANGE; |
+ |
+ /* Special cases for zero and one, trivial */ |
+ if(mp_cmp_d(a, 1) <= 0) |
+ return mp_copy(a, b); |
+ |
+ /* Initialize the temporaries we'll use below */ |
+ if((res = mp_init_size(&t, USED(a))) != MP_OKAY) |
+ return res; |
+ |
+ /* Compute an initial guess for the iteration as a itself */ |
+ if((res = mp_init_copy(&x, a)) != MP_OKAY) |
+ goto X; |
+ |
+ used = MP_USED(&x); |
+ if (used > 1) { |
+ s_mp_rshd(&x, used / 2); |
+ } |
+ |
+ for(;;) { |
+ /* t = (x * x) - a */ |
+ mp_copy(&x, &t); /* can't fail, t is big enough for original x */ |
+ if((res = mp_sqr(&t, &t)) != MP_OKAY || |
+ (res = mp_sub(&t, a, &t)) != MP_OKAY) |
+ goto CLEANUP; |
+ |
+ /* t = t / 2x */ |
+ s_mp_mul_2(&x); |
+ if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY) |
+ goto CLEANUP; |
+ s_mp_div_2(&x); |
+ |
+ /* Terminate the loop, if the quotient is zero */ |
+ if(mp_cmp_z(&t) == MP_EQ) |
+ break; |
+ |
+ /* x = x - t */ |
+ if((res = mp_sub(&x, &t, &x)) != MP_OKAY) |
+ goto CLEANUP; |
+ |
+ } |
+ |
+ /* Copy result to output parameter */ |
+ mp_sub_d(&x, 1, &x); |
+ s_mp_exch(&x, b); |
+ |
+ CLEANUP: |
+ mp_clear(&x); |
+ X: |
+ mp_clear(&t); |
+ |
+ return res; |
+ |
+} /* end mp_sqrt() */ |
+ |
+/* }}} */ |
+ |
+/* }}} */ |
+ |
+/*------------------------------------------------------------------------*/ |
+/* {{{ Modular arithmetic */ |
+ |
+#if MP_MODARITH |
+/* {{{ mp_addmod(a, b, m, c) */ |
+ |
+/* |
+ mp_addmod(a, b, m, c) |
+ |
+ Compute c = (a + b) mod m |
+ */ |
+ |
+mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
+{ |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
+ |
+ if((res = mp_add(a, b, c)) != MP_OKAY) |
+ return res; |
+ if((res = mp_mod(c, m, c)) != MP_OKAY) |
+ return res; |
+ |
+ return MP_OKAY; |
+ |
+} |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_submod(a, b, m, c) */ |
+ |
+/* |
+ mp_submod(a, b, m, c) |
+ |
+ Compute c = (a - b) mod m |
+ */ |
+ |
+mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
+{ |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
+ |
+ if((res = mp_sub(a, b, c)) != MP_OKAY) |
+ return res; |
+ if((res = mp_mod(c, m, c)) != MP_OKAY) |
+ return res; |
+ |
+ return MP_OKAY; |
+ |
+} |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_mulmod(a, b, m, c) */ |
+ |
+/* |
+ mp_mulmod(a, b, m, c) |
+ |
+ Compute c = (a * b) mod m |
+ */ |
+ |
+mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
+{ |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
+ |
+ if((res = mp_mul(a, b, c)) != MP_OKAY) |
+ return res; |
+ if((res = mp_mod(c, m, c)) != MP_OKAY) |
+ return res; |
+ |
+ return MP_OKAY; |
+ |
+} |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_sqrmod(a, m, c) */ |
+ |
+#if MP_SQUARE |
+mp_err mp_sqrmod(const mp_int *a, const mp_int *m, mp_int *c) |
+{ |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); |
+ |
+ if((res = mp_sqr(a, c)) != MP_OKAY) |
+ return res; |
+ if((res = mp_mod(c, m, c)) != MP_OKAY) |
+ return res; |
+ |
+ return MP_OKAY; |
+ |
+} /* end mp_sqrmod() */ |
+#endif |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_exptmod(a, b, m, c) */ |
+ |
+/* |
+ s_mp_exptmod(a, b, m, c) |
+ |
+ Compute c = (a ** b) mod m. Uses a standard square-and-multiply |
+ method with modular reductions at each step. (This is basically the |
+ same code as mp_expt(), except for the addition of the reductions) |
+ |
+ The modular reductions are done using Barrett's algorithm (see |
+ s_mp_reduce() below for details) |
+ */ |
+ |
+mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
+{ |
+ mp_int s, x, mu; |
+ mp_err res; |
+ mp_digit d; |
+ int dig, bit; |
+ |
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
+ |
+ if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0) |
+ return MP_RANGE; |
+ |
+ if((res = mp_init(&s)) != MP_OKAY) |
+ return res; |
+ if((res = mp_init_copy(&x, a)) != MP_OKAY || |
+ (res = mp_mod(&x, m, &x)) != MP_OKAY) |
+ goto X; |
+ if((res = mp_init(&mu)) != MP_OKAY) |
+ goto MU; |
+ |
+ mp_set(&s, 1); |
+ |
+ /* mu = b^2k / m */ |
+ s_mp_add_d(&mu, 1); |
+ s_mp_lshd(&mu, 2 * USED(m)); |
+ if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY) |
+ goto CLEANUP; |
+ |
+ /* Loop over digits of b in ascending order, except highest order */ |
+ for(dig = 0; dig < (USED(b) - 1); dig++) { |
+ d = DIGIT(b, dig); |
+ |
+ /* Loop over the bits of the lower-order digits */ |
+ for(bit = 0; bit < DIGIT_BIT; bit++) { |
+ if(d & 1) { |
+ if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
+ goto CLEANUP; |
+ if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) |
+ goto CLEANUP; |
+ } |
+ |
+ d >>= 1; |
+ |
+ if((res = s_mp_sqr(&x)) != MP_OKAY) |
+ goto CLEANUP; |
+ if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) |
+ goto CLEANUP; |
+ } |
+ } |
+ |
+ /* Now do the last digit... */ |
+ d = DIGIT(b, dig); |
+ |
+ while(d) { |
+ if(d & 1) { |
+ if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
+ goto CLEANUP; |
+ if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) |
+ goto CLEANUP; |
+ } |
+ |
+ d >>= 1; |
+ |
+ if((res = s_mp_sqr(&x)) != MP_OKAY) |
+ goto CLEANUP; |
+ if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) |
+ goto CLEANUP; |
+ } |
+ |
+ s_mp_exch(&s, c); |
+ |
+ CLEANUP: |
+ mp_clear(&mu); |
+ MU: |
+ mp_clear(&x); |
+ X: |
+ mp_clear(&s); |
+ |
+ return res; |
+ |
+} /* end s_mp_exptmod() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_exptmod_d(a, d, m, c) */ |
+ |
+mp_err mp_exptmod_d(const mp_int *a, mp_digit d, const mp_int *m, mp_int *c) |
+{ |
+ mp_int s, x; |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && c != NULL, MP_BADARG); |
+ |
+ if((res = mp_init(&s)) != MP_OKAY) |
+ return res; |
+ if((res = mp_init_copy(&x, a)) != MP_OKAY) |
+ goto X; |
+ |
+ mp_set(&s, 1); |
+ |
+ while(d != 0) { |
+ if(d & 1) { |
+ if((res = s_mp_mul(&s, &x)) != MP_OKAY || |
+ (res = mp_mod(&s, m, &s)) != MP_OKAY) |
+ goto CLEANUP; |
+ } |
+ |
+ d /= 2; |
+ |
+ if((res = s_mp_sqr(&x)) != MP_OKAY || |
+ (res = mp_mod(&x, m, &x)) != MP_OKAY) |
+ goto CLEANUP; |
+ } |
+ |
+ s_mp_exch(&s, c); |
+ |
+CLEANUP: |
+ mp_clear(&x); |
+X: |
+ mp_clear(&s); |
+ |
+ return res; |
+ |
+} /* end mp_exptmod_d() */ |
+ |
+/* }}} */ |
+#endif /* if MP_MODARITH */ |
+ |
+/* }}} */ |
+ |
+/*------------------------------------------------------------------------*/ |
+/* {{{ Comparison functions */ |
+ |
+/* {{{ mp_cmp_z(a) */ |
+ |
+/* |
+ mp_cmp_z(a) |
+ |
+ Compare a <=> 0. Returns <0 if a<0, 0 if a=0, >0 if a>0. |
+ */ |
+ |
+int mp_cmp_z(const mp_int *a) |
+{ |
+ if(SIGN(a) == NEG) |
+ return MP_LT; |
+ else if(USED(a) == 1 && DIGIT(a, 0) == 0) |
+ return MP_EQ; |
+ else |
+ return MP_GT; |
+ |
+} /* end mp_cmp_z() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_cmp_d(a, d) */ |
+ |
+/* |
+ mp_cmp_d(a, d) |
+ |
+ Compare a <=> d. Returns <0 if a<d, 0 if a=d, >0 if a>d |
+ */ |
+ |
+int mp_cmp_d(const mp_int *a, mp_digit d) |
+{ |
+ ARGCHK(a != NULL, MP_EQ); |
+ |
+ if(SIGN(a) == NEG) |
+ return MP_LT; |
+ |
+ return s_mp_cmp_d(a, d); |
+ |
+} /* end mp_cmp_d() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_cmp(a, b) */ |
+ |
+int mp_cmp(const mp_int *a, const mp_int *b) |
+{ |
+ ARGCHK(a != NULL && b != NULL, MP_EQ); |
+ |
+ if(SIGN(a) == SIGN(b)) { |
+ int mag; |
+ |
+ if((mag = s_mp_cmp(a, b)) == MP_EQ) |
+ return MP_EQ; |
+ |
+ if(SIGN(a) == ZPOS) |
+ return mag; |
+ else |
+ return -mag; |
+ |
+ } else if(SIGN(a) == ZPOS) { |
+ return MP_GT; |
+ } else { |
+ return MP_LT; |
+ } |
+ |
+} /* end mp_cmp() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_cmp_mag(a, b) */ |
+ |
+/* |
+ mp_cmp_mag(a, b) |
+ |
+ Compares |a| <=> |b|, and returns an appropriate comparison result |
+ */ |
+ |
+int mp_cmp_mag(mp_int *a, mp_int *b) |
+{ |
+ ARGCHK(a != NULL && b != NULL, MP_EQ); |
+ |
+ return s_mp_cmp(a, b); |
+ |
+} /* end mp_cmp_mag() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_cmp_int(a, z) */ |
+ |
+/* |
+ This just converts z to an mp_int, and uses the existing comparison |
+ routines. This is sort of inefficient, but it's not clear to me how |
+ frequently this wil get used anyway. For small positive constants, |
+ you can always use mp_cmp_d(), and for zero, there is mp_cmp_z(). |
+ */ |
+int mp_cmp_int(const mp_int *a, long z) |
+{ |
+ mp_int tmp; |
+ int out; |
+ |
+ ARGCHK(a != NULL, MP_EQ); |
+ |
+ mp_init(&tmp); mp_set_int(&tmp, z); |
+ out = mp_cmp(a, &tmp); |
+ mp_clear(&tmp); |
+ |
+ return out; |
+ |
+} /* end mp_cmp_int() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_isodd(a) */ |
+ |
+/* |
+ mp_isodd(a) |
+ |
+ Returns a true (non-zero) value if a is odd, false (zero) otherwise. |
+ */ |
+int mp_isodd(const mp_int *a) |
+{ |
+ ARGCHK(a != NULL, 0); |
+ |
+ return (int)(DIGIT(a, 0) & 1); |
+ |
+} /* end mp_isodd() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_iseven(a) */ |
+ |
+int mp_iseven(const mp_int *a) |
+{ |
+ return !mp_isodd(a); |
+ |
+} /* end mp_iseven() */ |
+ |
+/* }}} */ |
+ |
+/* }}} */ |
+ |
+/*------------------------------------------------------------------------*/ |
+/* {{{ Number theoretic functions */ |
+ |
+#if MP_NUMTH |
+/* {{{ mp_gcd(a, b, c) */ |
+ |
+/* |
+ Like the old mp_gcd() function, except computes the GCD using the |
+ binary algorithm due to Josef Stein in 1961 (via Knuth). |
+ */ |
+mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c) |
+{ |
+ mp_err res; |
+ mp_int u, v, t; |
+ mp_size k = 0; |
+ |
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
+ |
+ if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ) |
+ return MP_RANGE; |
+ if(mp_cmp_z(a) == MP_EQ) { |
+ return mp_copy(b, c); |
+ } else if(mp_cmp_z(b) == MP_EQ) { |
+ return mp_copy(a, c); |
+ } |
+ |
+ if((res = mp_init(&t)) != MP_OKAY) |
+ return res; |
+ if((res = mp_init_copy(&u, a)) != MP_OKAY) |
+ goto U; |
+ if((res = mp_init_copy(&v, b)) != MP_OKAY) |
+ goto V; |
+ |
+ SIGN(&u) = ZPOS; |
+ SIGN(&v) = ZPOS; |
+ |
+ /* Divide out common factors of 2 until at least 1 of a, b is even */ |
+ while(mp_iseven(&u) && mp_iseven(&v)) { |
+ s_mp_div_2(&u); |
+ s_mp_div_2(&v); |
+ ++k; |
+ } |
+ |
+ /* Initialize t */ |
+ if(mp_isodd(&u)) { |
+ if((res = mp_copy(&v, &t)) != MP_OKAY) |
+ goto CLEANUP; |
+ |
+ /* t = -v */ |
+ if(SIGN(&v) == ZPOS) |
+ SIGN(&t) = NEG; |
+ else |
+ SIGN(&t) = ZPOS; |
+ |
+ } else { |
+ if((res = mp_copy(&u, &t)) != MP_OKAY) |
+ goto CLEANUP; |
+ |
+ } |
+ |
+ for(;;) { |
+ while(mp_iseven(&t)) { |
+ s_mp_div_2(&t); |
+ } |
+ |
+ if(mp_cmp_z(&t) == MP_GT) { |
+ if((res = mp_copy(&t, &u)) != MP_OKAY) |
+ goto CLEANUP; |
+ |
+ } else { |
+ if((res = mp_copy(&t, &v)) != MP_OKAY) |
+ goto CLEANUP; |
+ |
+ /* v = -t */ |
+ if(SIGN(&t) == ZPOS) |
+ SIGN(&v) = NEG; |
+ else |
+ SIGN(&v) = ZPOS; |
+ } |
+ |
+ if((res = mp_sub(&u, &v, &t)) != MP_OKAY) |
+ goto CLEANUP; |
+ |
+ if(s_mp_cmp_d(&t, 0) == MP_EQ) |
+ break; |
+ } |
+ |
+ s_mp_2expt(&v, k); /* v = 2^k */ |
+ res = mp_mul(&u, &v, c); /* c = u * v */ |
+ |
+ CLEANUP: |
+ mp_clear(&v); |
+ V: |
+ mp_clear(&u); |
+ U: |
+ mp_clear(&t); |
+ |
+ return res; |
+ |
+} /* end mp_gcd() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_lcm(a, b, c) */ |
+ |
+/* We compute the least common multiple using the rule: |
+ |
+ ab = [a, b](a, b) |
+ |
+ ... by computing the product, and dividing out the gcd. |
+ */ |
+ |
+mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c) |
+{ |
+ mp_int gcd, prod; |
+ mp_err res; |
+ |
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
+ |
+ /* Set up temporaries */ |
+ if((res = mp_init(&gcd)) != MP_OKAY) |
+ return res; |
+ if((res = mp_init(&prod)) != MP_OKAY) |
+ goto GCD; |
+ |
+ if((res = mp_mul(a, b, &prod)) != MP_OKAY) |
+ goto CLEANUP; |
+ if((res = mp_gcd(a, b, &gcd)) != MP_OKAY) |
+ goto CLEANUP; |
+ |
+ res = mp_div(&prod, &gcd, c, NULL); |
+ |
+ CLEANUP: |
+ mp_clear(&prod); |
+ GCD: |
+ mp_clear(&gcd); |
+ |
+ return res; |
+ |
+} /* end mp_lcm() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_xgcd(a, b, g, x, y) */ |
+ |
+/* |
+ mp_xgcd(a, b, g, x, y) |
+ |
+ Compute g = (a, b) and values x and y satisfying Bezout's identity |
+ (that is, ax + by = g). This uses the binary extended GCD algorithm |
+ based on the Stein algorithm used for mp_gcd() |
+ See algorithm 14.61 in Handbook of Applied Cryptogrpahy. |
+ */ |
+ |
+mp_err mp_xgcd(const mp_int *a, const mp_int *b, mp_int *g, mp_int *x, mp_int *y) |
+{ |
+ mp_int gx, xc, yc, u, v, A, B, C, D; |
+ mp_int *clean[9]; |
+ mp_err res; |
+ int last = -1; |
+ |
+ if(mp_cmp_z(b) == 0) |
+ return MP_RANGE; |
+ |
+ /* Initialize all these variables we need */ |
+ MP_CHECKOK( mp_init(&u) ); |
+ clean[++last] = &u; |
+ MP_CHECKOK( mp_init(&v) ); |
+ clean[++last] = &v; |
+ MP_CHECKOK( mp_init(&gx) ); |
+ clean[++last] = &gx; |
+ MP_CHECKOK( mp_init(&A) ); |
+ clean[++last] = &A; |
+ MP_CHECKOK( mp_init(&B) ); |
+ clean[++last] = &B; |
+ MP_CHECKOK( mp_init(&C) ); |
+ clean[++last] = &C; |
+ MP_CHECKOK( mp_init(&D) ); |
+ clean[++last] = &D; |
+ MP_CHECKOK( mp_init_copy(&xc, a) ); |
+ clean[++last] = &xc; |
+ mp_abs(&xc, &xc); |
+ MP_CHECKOK( mp_init_copy(&yc, b) ); |
+ clean[++last] = &yc; |
+ mp_abs(&yc, &yc); |
+ |
+ mp_set(&gx, 1); |
+ |
+ /* Divide by two until at least one of them is odd */ |
+ while(mp_iseven(&xc) && mp_iseven(&yc)) { |
+ mp_size nx = mp_trailing_zeros(&xc); |
+ mp_size ny = mp_trailing_zeros(&yc); |
+ mp_size n = MP_MIN(nx, ny); |
+ s_mp_div_2d(&xc,n); |
+ s_mp_div_2d(&yc,n); |
+ MP_CHECKOK( s_mp_mul_2d(&gx,n) ); |
+ } |
+ |
+ mp_copy(&xc, &u); |
+ mp_copy(&yc, &v); |
+ mp_set(&A, 1); mp_set(&D, 1); |
+ |
+ /* Loop through binary GCD algorithm */ |
+ do { |
+ while(mp_iseven(&u)) { |
+ s_mp_div_2(&u); |
+ |
+ if(mp_iseven(&A) && mp_iseven(&B)) { |
+ s_mp_div_2(&A); s_mp_div_2(&B); |
+ } else { |
+ MP_CHECKOK( mp_add(&A, &yc, &A) ); |
+ s_mp_div_2(&A); |
+ MP_CHECKOK( mp_sub(&B, &xc, &B) ); |
+ s_mp_div_2(&B); |
+ } |
+ } |
+ |
+ while(mp_iseven(&v)) { |
+ s_mp_div_2(&v); |
+ |
+ if(mp_iseven(&C) && mp_iseven(&D)) { |
+ s_mp_div_2(&C); s_mp_div_2(&D); |
+ } else { |
+ MP_CHECKOK( mp_add(&C, &yc, &C) ); |
+ s_mp_div_2(&C); |
+ MP_CHECKOK( mp_sub(&D, &xc, &D) ); |
+ s_mp_div_2(&D); |
+ } |
+ } |
+ |
+ if(mp_cmp(&u, &v) >= 0) { |
+ MP_CHECKOK( mp_sub(&u, &v, &u) ); |
+ MP_CHECKOK( mp_sub(&A, &C, &A) ); |
+ MP_CHECKOK( mp_sub(&B, &D, &B) ); |
+ } else { |
+ MP_CHECKOK( mp_sub(&v, &u, &v) ); |
+ MP_CHECKOK( mp_sub(&C, &A, &C) ); |
+ MP_CHECKOK( mp_sub(&D, &B, &D) ); |
+ } |
+ } while (mp_cmp_z(&u) != 0); |
+ |
+ /* copy results to output */ |
+ if(x) |
+ MP_CHECKOK( mp_copy(&C, x) ); |
+ |
+ if(y) |
+ MP_CHECKOK( mp_copy(&D, y) ); |
+ |
+ if(g) |
+ MP_CHECKOK( mp_mul(&gx, &v, g) ); |
+ |
+ CLEANUP: |
+ while(last >= 0) |
+ mp_clear(clean[last--]); |
+ |
+ return res; |
+ |
+} /* end mp_xgcd() */ |
+ |
+/* }}} */ |
+ |
+mp_size mp_trailing_zeros(const mp_int *mp) |
+{ |
+ mp_digit d; |
+ mp_size n = 0; |
+ int ix; |
+ |
+ if (!mp || !MP_DIGITS(mp) || !mp_cmp_z(mp)) |
+ return n; |
+ |
+ for (ix = 0; !(d = MP_DIGIT(mp,ix)) && (ix < MP_USED(mp)); ++ix) |
+ n += MP_DIGIT_BIT; |
+ if (!d) |
+ return 0; /* shouldn't happen, but ... */ |
+#if !defined(MP_USE_UINT_DIGIT) |
+ if (!(d & 0xffffffffU)) { |
+ d >>= 32; |
+ n += 32; |
+ } |
+#endif |
+ if (!(d & 0xffffU)) { |
+ d >>= 16; |
+ n += 16; |
+ } |
+ if (!(d & 0xffU)) { |
+ d >>= 8; |
+ n += 8; |
+ } |
+ if (!(d & 0xfU)) { |
+ d >>= 4; |
+ n += 4; |
+ } |
+ if (!(d & 0x3U)) { |
+ d >>= 2; |
+ n += 2; |
+ } |
+ if (!(d & 0x1U)) { |
+ d >>= 1; |
+ n += 1; |
+ } |
+#if MP_ARGCHK == 2 |
+ assert(0 != (d & 1)); |
+#endif |
+ return n; |
+} |
+ |
+/* Given a and prime p, computes c and k such that a*c == 2**k (mod p). |
+** Returns k (positive) or error (negative). |
+** This technique from the paper "Fast Modular Reciprocals" (unpublished) |
+** by Richard Schroeppel (a.k.a. Captain Nemo). |
+*/ |
+mp_err s_mp_almost_inverse(const mp_int *a, const mp_int *p, mp_int *c) |
+{ |
+ mp_err res; |
+ mp_err k = 0; |
+ mp_int d, f, g; |
+ |
+ ARGCHK(a && p && c, MP_BADARG); |
+ |
+ MP_DIGITS(&d) = 0; |
+ MP_DIGITS(&f) = 0; |
+ MP_DIGITS(&g) = 0; |
+ MP_CHECKOK( mp_init(&d) ); |
+ MP_CHECKOK( mp_init_copy(&f, a) ); /* f = a */ |
+ MP_CHECKOK( mp_init_copy(&g, p) ); /* g = p */ |
+ |
+ mp_set(c, 1); |
+ mp_zero(&d); |
+ |
+ if (mp_cmp_z(&f) == 0) { |
+ res = MP_UNDEF; |
+ } else |
+ for (;;) { |
+ int diff_sign; |
+ while (mp_iseven(&f)) { |
+ mp_size n = mp_trailing_zeros(&f); |
+ if (!n) { |
+ res = MP_UNDEF; |
+ goto CLEANUP; |
+ } |
+ s_mp_div_2d(&f, n); |
+ MP_CHECKOK( s_mp_mul_2d(&d, n) ); |
+ k += n; |
+ } |
+ if (mp_cmp_d(&f, 1) == MP_EQ) { /* f == 1 */ |
+ res = k; |
+ break; |
+ } |
+ diff_sign = mp_cmp(&f, &g); |
+ if (diff_sign < 0) { /* f < g */ |
+ s_mp_exch(&f, &g); |
+ s_mp_exch(c, &d); |
+ } else if (diff_sign == 0) { /* f == g */ |
+ res = MP_UNDEF; /* a and p are not relatively prime */ |
+ break; |
+ } |
+ if ((MP_DIGIT(&f,0) % 4) == (MP_DIGIT(&g,0) % 4)) { |
+ MP_CHECKOK( mp_sub(&f, &g, &f) ); /* f = f - g */ |
+ MP_CHECKOK( mp_sub(c, &d, c) ); /* c = c - d */ |
+ } else { |
+ MP_CHECKOK( mp_add(&f, &g, &f) ); /* f = f + g */ |
+ MP_CHECKOK( mp_add(c, &d, c) ); /* c = c + d */ |
+ } |
+ } |
+ if (res >= 0) { |
+ while (MP_SIGN(c) != MP_ZPOS) { |
+ MP_CHECKOK( mp_add(c, p, c) ); |
+ } |
+ res = k; |
+ } |
+ |
+CLEANUP: |
+ mp_clear(&d); |
+ mp_clear(&f); |
+ mp_clear(&g); |
+ return res; |
+} |
+ |
+/* Compute T = (P ** -1) mod MP_RADIX. Also works for 16-bit mp_digits. |
+** This technique from the paper "Fast Modular Reciprocals" (unpublished) |
+** by Richard Schroeppel (a.k.a. Captain Nemo). |
+*/ |
+mp_digit s_mp_invmod_radix(mp_digit P) |
+{ |
+ mp_digit T = P; |
+ T *= 2 - (P * T); |
+ T *= 2 - (P * T); |
+ T *= 2 - (P * T); |
+ T *= 2 - (P * T); |
+#if !defined(MP_USE_UINT_DIGIT) |
+ T *= 2 - (P * T); |
+ T *= 2 - (P * T); |
+#endif |
+ return T; |
+} |
+ |
+/* Given c, k, and prime p, where a*c == 2**k (mod p), |
+** Compute x = (a ** -1) mod p. This is similar to Montgomery reduction. |
+** This technique from the paper "Fast Modular Reciprocals" (unpublished) |
+** by Richard Schroeppel (a.k.a. Captain Nemo). |
+*/ |
+mp_err s_mp_fixup_reciprocal(const mp_int *c, const mp_int *p, int k, mp_int *x) |
+{ |
+ int k_orig = k; |
+ mp_digit r; |
+ mp_size ix; |
+ mp_err res; |
+ |
+ if (mp_cmp_z(c) < 0) { /* c < 0 */ |
+ MP_CHECKOK( mp_add(c, p, x) ); /* x = c + p */ |
+ } else { |
+ MP_CHECKOK( mp_copy(c, x) ); /* x = c */ |
+ } |
+ |
+ /* make sure x is large enough */ |
+ ix = MP_HOWMANY(k, MP_DIGIT_BIT) + MP_USED(p) + 1; |
+ ix = MP_MAX(ix, MP_USED(x)); |
+ MP_CHECKOK( s_mp_pad(x, ix) ); |
+ |
+ r = 0 - s_mp_invmod_radix(MP_DIGIT(p,0)); |
+ |
+ for (ix = 0; k > 0; ix++) { |
+ int j = MP_MIN(k, MP_DIGIT_BIT); |
+ mp_digit v = r * MP_DIGIT(x, ix); |
+ if (j < MP_DIGIT_BIT) { |
+ v &= ((mp_digit)1 << j) - 1; /* v = v mod (2 ** j) */ |
+ } |
+ s_mp_mul_d_add_offset(p, v, x, ix); /* x += p * v * (RADIX ** ix) */ |
+ k -= j; |
+ } |
+ s_mp_clamp(x); |
+ s_mp_div_2d(x, k_orig); |
+ res = MP_OKAY; |
+ |
+CLEANUP: |
+ return res; |
+} |
+ |
+/* compute mod inverse using Schroeppel's method, only if m is odd */ |
+mp_err s_mp_invmod_odd_m(const mp_int *a, const mp_int *m, mp_int *c) |
+{ |
+ int k; |
+ mp_err res; |
+ mp_int x; |
+ |
+ ARGCHK(a && m && c, MP_BADARG); |
+ |
+ if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) |
+ return MP_RANGE; |
+ if (mp_iseven(m)) |
+ return MP_UNDEF; |
+ |
+ MP_DIGITS(&x) = 0; |
+ |
+ if (a == c) { |
+ if ((res = mp_init_copy(&x, a)) != MP_OKAY) |
+ return res; |
+ if (a == m) |
+ m = &x; |
+ a = &x; |
+ } else if (m == c) { |
+ if ((res = mp_init_copy(&x, m)) != MP_OKAY) |
+ return res; |
+ m = &x; |
+ } else { |
+ MP_DIGITS(&x) = 0; |
+ } |
+ |
+ MP_CHECKOK( s_mp_almost_inverse(a, m, c) ); |
+ k = res; |
+ MP_CHECKOK( s_mp_fixup_reciprocal(c, m, k, c) ); |
+CLEANUP: |
+ mp_clear(&x); |
+ return res; |
+} |
+ |
+/* Known good algorithm for computing modular inverse. But slow. */ |
+mp_err mp_invmod_xgcd(const mp_int *a, const mp_int *m, mp_int *c) |
+{ |
+ mp_int g, x; |
+ mp_err res; |
+ |
+ ARGCHK(a && m && c, MP_BADARG); |
+ |
+ if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) |
+ return MP_RANGE; |
+ |
+ MP_DIGITS(&g) = 0; |
+ MP_DIGITS(&x) = 0; |
+ MP_CHECKOK( mp_init(&x) ); |
+ MP_CHECKOK( mp_init(&g) ); |
+ |
+ MP_CHECKOK( mp_xgcd(a, m, &g, &x, NULL) ); |
+ |
+ if (mp_cmp_d(&g, 1) != MP_EQ) { |
+ res = MP_UNDEF; |
+ goto CLEANUP; |
+ } |
+ |
+ res = mp_mod(&x, m, c); |
+ SIGN(c) = SIGN(a); |
+ |
+CLEANUP: |
+ mp_clear(&x); |
+ mp_clear(&g); |
+ |
+ return res; |
+} |
+ |
+/* modular inverse where modulus is 2**k. */ |
+/* c = a**-1 mod 2**k */ |
+mp_err s_mp_invmod_2d(const mp_int *a, mp_size k, mp_int *c) |
+{ |
+ mp_err res; |
+ mp_size ix = k + 4; |
+ mp_int t0, t1, val, tmp, two2k; |
+ |
+ static const mp_digit d2 = 2; |
+ static const mp_int two = { MP_ZPOS, 1, 1, (mp_digit *)&d2 }; |
+ |
+ if (mp_iseven(a)) |
+ return MP_UNDEF; |
+ if (k <= MP_DIGIT_BIT) { |
+ mp_digit i = s_mp_invmod_radix(MP_DIGIT(a,0)); |
+ if (k < MP_DIGIT_BIT) |
+ i &= ((mp_digit)1 << k) - (mp_digit)1; |
+ mp_set(c, i); |
+ return MP_OKAY; |
+ } |
+ MP_DIGITS(&t0) = 0; |
+ MP_DIGITS(&t1) = 0; |
+ MP_DIGITS(&val) = 0; |
+ MP_DIGITS(&tmp) = 0; |
+ MP_DIGITS(&two2k) = 0; |
+ MP_CHECKOK( mp_init_copy(&val, a) ); |
+ s_mp_mod_2d(&val, k); |
+ MP_CHECKOK( mp_init_copy(&t0, &val) ); |
+ MP_CHECKOK( mp_init_copy(&t1, &t0) ); |
+ MP_CHECKOK( mp_init(&tmp) ); |
+ MP_CHECKOK( mp_init(&two2k) ); |
+ MP_CHECKOK( s_mp_2expt(&two2k, k) ); |
+ do { |
+ MP_CHECKOK( mp_mul(&val, &t1, &tmp) ); |
+ MP_CHECKOK( mp_sub(&two, &tmp, &tmp) ); |
+ MP_CHECKOK( mp_mul(&t1, &tmp, &t1) ); |
+ s_mp_mod_2d(&t1, k); |
+ while (MP_SIGN(&t1) != MP_ZPOS) { |
+ MP_CHECKOK( mp_add(&t1, &two2k, &t1) ); |
+ } |
+ if (mp_cmp(&t1, &t0) == MP_EQ) |
+ break; |
+ MP_CHECKOK( mp_copy(&t1, &t0) ); |
+ } while (--ix > 0); |
+ if (!ix) { |
+ res = MP_UNDEF; |
+ } else { |
+ mp_exch(c, &t1); |
+ } |
+ |
+CLEANUP: |
+ mp_clear(&t0); |
+ mp_clear(&t1); |
+ mp_clear(&val); |
+ mp_clear(&tmp); |
+ mp_clear(&two2k); |
+ return res; |
+} |
+ |
+mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c) |
+{ |
+ mp_err res; |
+ mp_size k; |
+ mp_int oddFactor, evenFactor; /* factors of the modulus */ |
+ mp_int oddPart, evenPart; /* parts to combine via CRT. */ |
+ mp_int C2, tmp1, tmp2; |
+ |
+ /*static const mp_digit d1 = 1; */ |
+ /*static const mp_int one = { MP_ZPOS, 1, 1, (mp_digit *)&d1 }; */ |
+ |
+ if ((res = s_mp_ispow2(m)) >= 0) { |
+ k = res; |
+ return s_mp_invmod_2d(a, k, c); |
+ } |
+ MP_DIGITS(&oddFactor) = 0; |
+ MP_DIGITS(&evenFactor) = 0; |
+ MP_DIGITS(&oddPart) = 0; |
+ MP_DIGITS(&evenPart) = 0; |
+ MP_DIGITS(&C2) = 0; |
+ MP_DIGITS(&tmp1) = 0; |
+ MP_DIGITS(&tmp2) = 0; |
+ |
+ MP_CHECKOK( mp_init_copy(&oddFactor, m) ); /* oddFactor = m */ |
+ MP_CHECKOK( mp_init(&evenFactor) ); |
+ MP_CHECKOK( mp_init(&oddPart) ); |
+ MP_CHECKOK( mp_init(&evenPart) ); |
+ MP_CHECKOK( mp_init(&C2) ); |
+ MP_CHECKOK( mp_init(&tmp1) ); |
+ MP_CHECKOK( mp_init(&tmp2) ); |
+ |
+ k = mp_trailing_zeros(m); |
+ s_mp_div_2d(&oddFactor, k); |
+ MP_CHECKOK( s_mp_2expt(&evenFactor, k) ); |
+ |
+ /* compute a**-1 mod oddFactor. */ |
+ MP_CHECKOK( s_mp_invmod_odd_m(a, &oddFactor, &oddPart) ); |
+ /* compute a**-1 mod evenFactor, where evenFactor == 2**k. */ |
+ MP_CHECKOK( s_mp_invmod_2d( a, k, &evenPart) ); |
+ |
+ /* Use Chinese Remainer theorem to compute a**-1 mod m. */ |
+ /* let m1 = oddFactor, v1 = oddPart, |
+ * let m2 = evenFactor, v2 = evenPart. |
+ */ |
+ |
+ /* Compute C2 = m1**-1 mod m2. */ |
+ MP_CHECKOK( s_mp_invmod_2d(&oddFactor, k, &C2) ); |
+ |
+ /* compute u = (v2 - v1)*C2 mod m2 */ |
+ MP_CHECKOK( mp_sub(&evenPart, &oddPart, &tmp1) ); |
+ MP_CHECKOK( mp_mul(&tmp1, &C2, &tmp2) ); |
+ s_mp_mod_2d(&tmp2, k); |
+ while (MP_SIGN(&tmp2) != MP_ZPOS) { |
+ MP_CHECKOK( mp_add(&tmp2, &evenFactor, &tmp2) ); |
+ } |
+ |
+ /* compute answer = v1 + u*m1 */ |
+ MP_CHECKOK( mp_mul(&tmp2, &oddFactor, c) ); |
+ MP_CHECKOK( mp_add(&oddPart, c, c) ); |
+ /* not sure this is necessary, but it's low cost if not. */ |
+ MP_CHECKOK( mp_mod(c, m, c) ); |
+ |
+CLEANUP: |
+ mp_clear(&oddFactor); |
+ mp_clear(&evenFactor); |
+ mp_clear(&oddPart); |
+ mp_clear(&evenPart); |
+ mp_clear(&C2); |
+ mp_clear(&tmp1); |
+ mp_clear(&tmp2); |
+ return res; |
+} |
+ |
+ |
+/* {{{ mp_invmod(a, m, c) */ |
+ |
+/* |
+ mp_invmod(a, m, c) |
+ |
+ Compute c = a^-1 (mod m), if there is an inverse for a (mod m). |
+ This is equivalent to the question of whether (a, m) = 1. If not, |
+ MP_UNDEF is returned, and there is no inverse. |
+ */ |
+ |
+mp_err mp_invmod(const mp_int *a, const mp_int *m, mp_int *c) |
+{ |
+ |
+ ARGCHK(a && m && c, MP_BADARG); |
+ |
+ if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) |
+ return MP_RANGE; |
+ |
+ if (mp_isodd(m)) { |
+ return s_mp_invmod_odd_m(a, m, c); |
+ } |
+ if (mp_iseven(a)) |
+ return MP_UNDEF; /* not invertable */ |
+ |
+ return s_mp_invmod_even_m(a, m, c); |
+ |
+} /* end mp_invmod() */ |
+ |
+/* }}} */ |
+#endif /* if MP_NUMTH */ |
+ |
+/* }}} */ |
+ |
+/*------------------------------------------------------------------------*/ |
+/* {{{ mp_print(mp, ofp) */ |
+ |
+#if MP_IOFUNC |
+/* |
+ mp_print(mp, ofp) |
+ |
+ Print a textual representation of the given mp_int on the output |
+ stream 'ofp'. Output is generated using the internal radix. |
+ */ |
+ |
+void mp_print(mp_int *mp, FILE *ofp) |
+{ |
+ int ix; |
+ |
+ if(mp == NULL || ofp == NULL) |
+ return; |
+ |
+ fputc((SIGN(mp) == NEG) ? '-' : '+', ofp); |
+ |
+ for(ix = USED(mp) - 1; ix >= 0; ix--) { |
+ fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix)); |
+ } |
+ |
+} /* end mp_print() */ |
+ |
+#endif /* if MP_IOFUNC */ |
+ |
+/* }}} */ |
+ |
+/*------------------------------------------------------------------------*/ |
+/* {{{ More I/O Functions */ |
+ |
+/* {{{ mp_read_raw(mp, str, len) */ |
+ |
+/* |
+ mp_read_raw(mp, str, len) |
+ |
+ Read in a raw value (base 256) into the given mp_int |
+ */ |
+ |
+mp_err mp_read_raw(mp_int *mp, char *str, int len) |
+{ |
+ int ix; |
+ mp_err res; |
+ unsigned char *ustr = (unsigned char *)str; |
+ |
+ ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); |
+ |
+ mp_zero(mp); |
+ |
+ /* Get sign from first byte */ |
+ if(ustr[0]) |
+ SIGN(mp) = NEG; |
+ else |
+ SIGN(mp) = ZPOS; |
+ |
+ /* Read the rest of the digits */ |
+ for(ix = 1; ix < len; ix++) { |
+ if((res = mp_mul_d(mp, 256, mp)) != MP_OKAY) |
+ return res; |
+ if((res = mp_add_d(mp, ustr[ix], mp)) != MP_OKAY) |
+ return res; |
+ } |
+ |
+ return MP_OKAY; |
+ |
+} /* end mp_read_raw() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_raw_size(mp) */ |
+ |
+int mp_raw_size(mp_int *mp) |
+{ |
+ ARGCHK(mp != NULL, 0); |
+ |
+ return (USED(mp) * sizeof(mp_digit)) + 1; |
+ |
+} /* end mp_raw_size() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_toraw(mp, str) */ |
+ |
+mp_err mp_toraw(mp_int *mp, char *str) |
+{ |
+ int ix, jx, pos = 1; |
+ |
+ ARGCHK(mp != NULL && str != NULL, MP_BADARG); |
+ |
+ str[0] = (char)SIGN(mp); |
+ |
+ /* Iterate over each digit... */ |
+ for(ix = USED(mp) - 1; ix >= 0; ix--) { |
+ mp_digit d = DIGIT(mp, ix); |
+ |
+ /* Unpack digit bytes, high order first */ |
+ for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
+ str[pos++] = (char)(d >> (jx * CHAR_BIT)); |
+ } |
+ } |
+ |
+ return MP_OKAY; |
+ |
+} /* end mp_toraw() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_read_radix(mp, str, radix) */ |
+ |
+/* |
+ mp_read_radix(mp, str, radix) |
+ |
+ Read an integer from the given string, and set mp to the resulting |
+ value. The input is presumed to be in base 10. Leading non-digit |
+ characters are ignored, and the function reads until a non-digit |
+ character or the end of the string. |
+ */ |
+ |
+mp_err mp_read_radix(mp_int *mp, const char *str, int radix) |
+{ |
+ int ix = 0, val = 0; |
+ mp_err res; |
+ mp_sign sig = ZPOS; |
+ |
+ ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, |
+ MP_BADARG); |
+ |
+ mp_zero(mp); |
+ |
+ /* Skip leading non-digit characters until a digit or '-' or '+' */ |
+ while(str[ix] && |
+ (s_mp_tovalue(str[ix], radix) < 0) && |
+ str[ix] != '-' && |
+ str[ix] != '+') { |
+ ++ix; |
+ } |
+ |
+ if(str[ix] == '-') { |
+ sig = NEG; |
+ ++ix; |
+ } else if(str[ix] == '+') { |
+ sig = ZPOS; /* this is the default anyway... */ |
+ ++ix; |
+ } |
+ |
+ while((val = s_mp_tovalue(str[ix], radix)) >= 0) { |
+ if((res = s_mp_mul_d(mp, radix)) != MP_OKAY) |
+ return res; |
+ if((res = s_mp_add_d(mp, val)) != MP_OKAY) |
+ return res; |
+ ++ix; |
+ } |
+ |
+ if(s_mp_cmp_d(mp, 0) == MP_EQ) |
+ SIGN(mp) = ZPOS; |
+ else |
+ SIGN(mp) = sig; |
+ |
+ return MP_OKAY; |
+ |
+} /* end mp_read_radix() */ |
+ |
+mp_err mp_read_variable_radix(mp_int *a, const char * str, int default_radix) |
+{ |
+ int radix = default_radix; |
+ int cx; |
+ mp_sign sig = ZPOS; |
+ mp_err res; |
+ |
+ /* Skip leading non-digit characters until a digit or '-' or '+' */ |
+ while ((cx = *str) != 0 && |
+ (s_mp_tovalue(cx, radix) < 0) && |
+ cx != '-' && |
+ cx != '+') { |
+ ++str; |
+ } |
+ |
+ if (cx == '-') { |
+ sig = NEG; |
+ ++str; |
+ } else if (cx == '+') { |
+ sig = ZPOS; /* this is the default anyway... */ |
+ ++str; |
+ } |
+ |
+ if (str[0] == '0') { |
+ if ((str[1] | 0x20) == 'x') { |
+ radix = 16; |
+ str += 2; |
+ } else { |
+ radix = 8; |
+ str++; |
+ } |
+ } |
+ res = mp_read_radix(a, str, radix); |
+ if (res == MP_OKAY) { |
+ MP_SIGN(a) = (s_mp_cmp_d(a, 0) == MP_EQ) ? ZPOS : sig; |
+ } |
+ return res; |
+} |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_radix_size(mp, radix) */ |
+ |
+int mp_radix_size(mp_int *mp, int radix) |
+{ |
+ int bits; |
+ |
+ if(!mp || radix < 2 || radix > MAX_RADIX) |
+ return 0; |
+ |
+ bits = USED(mp) * DIGIT_BIT - 1; |
+ |
+ return s_mp_outlen(bits, radix); |
+ |
+} /* end mp_radix_size() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_toradix(mp, str, radix) */ |
+ |
+mp_err mp_toradix(mp_int *mp, char *str, int radix) |
+{ |
+ int ix, pos = 0; |
+ |
+ ARGCHK(mp != NULL && str != NULL, MP_BADARG); |
+ ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE); |
+ |
+ if(mp_cmp_z(mp) == MP_EQ) { |
+ str[0] = '0'; |
+ str[1] = '\0'; |
+ } else { |
+ mp_err res; |
+ mp_int tmp; |
+ mp_sign sgn; |
+ mp_digit rem, rdx = (mp_digit)radix; |
+ char ch; |
+ |
+ if((res = mp_init_copy(&tmp, mp)) != MP_OKAY) |
+ return res; |
+ |
+ /* Save sign for later, and take absolute value */ |
+ sgn = SIGN(&tmp); SIGN(&tmp) = ZPOS; |
+ |
+ /* Generate output digits in reverse order */ |
+ while(mp_cmp_z(&tmp) != 0) { |
+ if((res = mp_div_d(&tmp, rdx, &tmp, &rem)) != MP_OKAY) { |
+ mp_clear(&tmp); |
+ return res; |
+ } |
+ |
+ /* Generate digits, use capital letters */ |
+ ch = s_mp_todigit(rem, radix, 0); |
+ |
+ str[pos++] = ch; |
+ } |
+ |
+ /* Add - sign if original value was negative */ |
+ if(sgn == NEG) |
+ str[pos++] = '-'; |
+ |
+ /* Add trailing NUL to end the string */ |
+ str[pos--] = '\0'; |
+ |
+ /* Reverse the digits and sign indicator */ |
+ ix = 0; |
+ while(ix < pos) { |
+ char tmp = str[ix]; |
+ |
+ str[ix] = str[pos]; |
+ str[pos] = tmp; |
+ ++ix; |
+ --pos; |
+ } |
+ |
+ mp_clear(&tmp); |
+ } |
+ |
+ return MP_OKAY; |
+ |
+} /* end mp_toradix() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_tovalue(ch, r) */ |
+ |
+int mp_tovalue(char ch, int r) |
+{ |
+ return s_mp_tovalue(ch, r); |
+ |
+} /* end mp_tovalue() */ |
+ |
+/* }}} */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_strerror(ec) */ |
+ |
+/* |
+ mp_strerror(ec) |
+ |
+ Return a string describing the meaning of error code 'ec'. The |
+ string returned is allocated in static memory, so the caller should |
+ not attempt to modify or free the memory associated with this |
+ string. |
+ */ |
+const char *mp_strerror(mp_err ec) |
+{ |
+ int aec = (ec < 0) ? -ec : ec; |
+ |
+ /* Code values are negative, so the senses of these comparisons |
+ are accurate */ |
+ if(ec < MP_LAST_CODE || ec > MP_OKAY) { |
+ return mp_err_string[0]; /* unknown error code */ |
+ } else { |
+ return mp_err_string[aec + 1]; |
+ } |
+ |
+} /* end mp_strerror() */ |
+ |
+/* }}} */ |
+ |
+/*========================================================================*/ |
+/*------------------------------------------------------------------------*/ |
+/* Static function definitions (internal use only) */ |
+ |
+/* {{{ Memory management */ |
+ |
+/* {{{ s_mp_grow(mp, min) */ |
+ |
+/* Make sure there are at least 'min' digits allocated to mp */ |
+mp_err s_mp_grow(mp_int *mp, mp_size min) |
+{ |
+ if(min > ALLOC(mp)) { |
+ mp_digit *tmp; |
+ |
+ /* Set min to next nearest default precision block size */ |
+ min = MP_ROUNDUP(min, s_mp_defprec); |
+ |
+ if((tmp = s_mp_alloc(min, sizeof(mp_digit))) == NULL) |
+ return MP_MEM; |
+ |
+ s_mp_copy(DIGITS(mp), tmp, USED(mp)); |
+ |
+#if MP_CRYPTO |
+ s_mp_setz(DIGITS(mp), ALLOC(mp)); |
+#endif |
+ s_mp_free(DIGITS(mp)); |
+ DIGITS(mp) = tmp; |
+ ALLOC(mp) = min; |
+ } |
+ |
+ return MP_OKAY; |
+ |
+} /* end s_mp_grow() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_pad(mp, min) */ |
+ |
+/* Make sure the used size of mp is at least 'min', growing if needed */ |
+mp_err s_mp_pad(mp_int *mp, mp_size min) |
+{ |
+ if(min > USED(mp)) { |
+ mp_err res; |
+ |
+ /* Make sure there is room to increase precision */ |
+ if (min > ALLOC(mp)) { |
+ if ((res = s_mp_grow(mp, min)) != MP_OKAY) |
+ return res; |
+ } else { |
+ s_mp_setz(DIGITS(mp) + USED(mp), min - USED(mp)); |
+ } |
+ |
+ /* Increase precision; should already be 0-filled */ |
+ USED(mp) = min; |
+ } |
+ |
+ return MP_OKAY; |
+ |
+} /* end s_mp_pad() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_setz(dp, count) */ |
+ |
+#if MP_MACRO == 0 |
+/* Set 'count' digits pointed to by dp to be zeroes */ |
+void s_mp_setz(mp_digit *dp, mp_size count) |
+{ |
+#if MP_MEMSET == 0 |
+ int ix; |
+ |
+ for(ix = 0; ix < count; ix++) |
+ dp[ix] = 0; |
+#else |
+ memset(dp, 0, count * sizeof(mp_digit)); |
+#endif |
+ |
+} /* end s_mp_setz() */ |
+#endif |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_copy(sp, dp, count) */ |
+ |
+#if MP_MACRO == 0 |
+/* Copy 'count' digits from sp to dp */ |
+void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count) |
+{ |
+#if MP_MEMCPY == 0 |
+ int ix; |
+ |
+ for(ix = 0; ix < count; ix++) |
+ dp[ix] = sp[ix]; |
+#else |
+ memcpy(dp, sp, count * sizeof(mp_digit)); |
+#endif |
+ |
+} /* end s_mp_copy() */ |
+#endif |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_alloc(nb, ni) */ |
+ |
+#if MP_MACRO == 0 |
+/* Allocate ni records of nb bytes each, and return a pointer to that */ |
+void *s_mp_alloc(size_t nb, size_t ni) |
+{ |
+ ++mp_allocs; |
+ return calloc(nb, ni); |
+ |
+} /* end s_mp_alloc() */ |
+#endif |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_free(ptr) */ |
+ |
+#if MP_MACRO == 0 |
+/* Free the memory pointed to by ptr */ |
+void s_mp_free(void *ptr) |
+{ |
+ if(ptr) { |
+ ++mp_frees; |
+ free(ptr); |
+ } |
+} /* end s_mp_free() */ |
+#endif |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_clamp(mp) */ |
+ |
+#if MP_MACRO == 0 |
+/* Remove leading zeroes from the given value */ |
+void s_mp_clamp(mp_int *mp) |
+{ |
+ mp_size used = MP_USED(mp); |
+ while (used > 1 && DIGIT(mp, used - 1) == 0) |
+ --used; |
+ MP_USED(mp) = used; |
+} /* end s_mp_clamp() */ |
+#endif |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_exch(a, b) */ |
+ |
+/* Exchange the data for a and b; (b, a) = (a, b) */ |
+void s_mp_exch(mp_int *a, mp_int *b) |
+{ |
+ mp_int tmp; |
+ |
+ tmp = *a; |
+ *a = *b; |
+ *b = tmp; |
+ |
+} /* end s_mp_exch() */ |
+ |
+/* }}} */ |
+ |
+/* }}} */ |
+ |
+/* {{{ Arithmetic helpers */ |
+ |
+/* {{{ s_mp_lshd(mp, p) */ |
+ |
+/* |
+ Shift mp leftward by p digits, growing if needed, and zero-filling |
+ the in-shifted digits at the right end. This is a convenient |
+ alternative to multiplication by powers of the radix |
+ The value of USED(mp) must already have been set to the value for |
+ the shifted result. |
+ */ |
+ |
+mp_err s_mp_lshd(mp_int *mp, mp_size p) |
+{ |
+ mp_err res; |
+ mp_size pos; |
+ int ix; |
+ |
+ if(p == 0) |
+ return MP_OKAY; |
+ |
+ if (MP_USED(mp) == 1 && MP_DIGIT(mp, 0) == 0) |
+ return MP_OKAY; |
+ |
+ if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY) |
+ return res; |
+ |
+ pos = USED(mp) - 1; |
+ |
+ /* Shift all the significant figures over as needed */ |
+ for(ix = pos - p; ix >= 0; ix--) |
+ DIGIT(mp, ix + p) = DIGIT(mp, ix); |
+ |
+ /* Fill the bottom digits with zeroes */ |
+ for(ix = 0; ix < p; ix++) |
+ DIGIT(mp, ix) = 0; |
+ |
+ return MP_OKAY; |
+ |
+} /* end s_mp_lshd() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_mul_2d(mp, d) */ |
+ |
+/* |
+ Multiply the integer by 2^d, where d is a number of bits. This |
+ amounts to a bitwise shift of the value. |
+ */ |
+mp_err s_mp_mul_2d(mp_int *mp, mp_digit d) |
+{ |
+ mp_err res; |
+ mp_digit dshift, bshift; |
+ mp_digit mask; |
+ |
+ ARGCHK(mp != NULL, MP_BADARG); |
+ |
+ dshift = d / MP_DIGIT_BIT; |
+ bshift = d % MP_DIGIT_BIT; |
+ /* bits to be shifted out of the top word */ |
+ mask = ((mp_digit)~0 << (MP_DIGIT_BIT - bshift)); |
+ mask &= MP_DIGIT(mp, MP_USED(mp) - 1); |
+ |
+ if (MP_OKAY != (res = s_mp_pad(mp, MP_USED(mp) + dshift + (mask != 0) ))) |
+ return res; |
+ |
+ if (dshift && MP_OKAY != (res = s_mp_lshd(mp, dshift))) |
+ return res; |
+ |
+ if (bshift) { |
+ mp_digit *pa = MP_DIGITS(mp); |
+ mp_digit *alim = pa + MP_USED(mp); |
+ mp_digit prev = 0; |
+ |
+ for (pa += dshift; pa < alim; ) { |
+ mp_digit x = *pa; |
+ *pa++ = (x << bshift) | prev; |
+ prev = x >> (DIGIT_BIT - bshift); |
+ } |
+ } |
+ |
+ s_mp_clamp(mp); |
+ return MP_OKAY; |
+} /* end s_mp_mul_2d() */ |
+ |
+/* {{{ s_mp_rshd(mp, p) */ |
+ |
+/* |
+ Shift mp rightward by p digits. Maintains the invariant that |
+ digits above the precision are all zero. Digits shifted off the |
+ end are lost. Cannot fail. |
+ */ |
+ |
+void s_mp_rshd(mp_int *mp, mp_size p) |
+{ |
+ mp_size ix; |
+ mp_digit *src, *dst; |
+ |
+ if(p == 0) |
+ return; |
+ |
+ /* Shortcut when all digits are to be shifted off */ |
+ if(p >= USED(mp)) { |
+ s_mp_setz(DIGITS(mp), ALLOC(mp)); |
+ USED(mp) = 1; |
+ SIGN(mp) = ZPOS; |
+ return; |
+ } |
+ |
+ /* Shift all the significant figures over as needed */ |
+ dst = MP_DIGITS(mp); |
+ src = dst + p; |
+ for (ix = USED(mp) - p; ix > 0; ix--) |
+ *dst++ = *src++; |
+ |
+ MP_USED(mp) -= p; |
+ /* Fill the top digits with zeroes */ |
+ while (p-- > 0) |
+ *dst++ = 0; |
+ |
+#if 0 |
+ /* Strip off any leading zeroes */ |
+ s_mp_clamp(mp); |
+#endif |
+ |
+} /* end s_mp_rshd() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_div_2(mp) */ |
+ |
+/* Divide by two -- take advantage of radix properties to do it fast */ |
+void s_mp_div_2(mp_int *mp) |
+{ |
+ s_mp_div_2d(mp, 1); |
+ |
+} /* end s_mp_div_2() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_mul_2(mp) */ |
+ |
+mp_err s_mp_mul_2(mp_int *mp) |
+{ |
+ mp_digit *pd; |
+ int ix, used; |
+ mp_digit kin = 0; |
+ |
+ /* Shift digits leftward by 1 bit */ |
+ used = MP_USED(mp); |
+ pd = MP_DIGITS(mp); |
+ for (ix = 0; ix < used; ix++) { |
+ mp_digit d = *pd; |
+ *pd++ = (d << 1) | kin; |
+ kin = (d >> (DIGIT_BIT - 1)); |
+ } |
+ |
+ /* Deal with rollover from last digit */ |
+ if (kin) { |
+ if (ix >= ALLOC(mp)) { |
+ mp_err res; |
+ if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY) |
+ return res; |
+ } |
+ |
+ DIGIT(mp, ix) = kin; |
+ USED(mp) += 1; |
+ } |
+ |
+ return MP_OKAY; |
+ |
+} /* end s_mp_mul_2() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_mod_2d(mp, d) */ |
+ |
+/* |
+ Remainder the integer by 2^d, where d is a number of bits. This |
+ amounts to a bitwise AND of the value, and does not require the full |
+ division code |
+ */ |
+void s_mp_mod_2d(mp_int *mp, mp_digit d) |
+{ |
+ mp_size ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT); |
+ mp_size ix; |
+ mp_digit dmask; |
+ |
+ if(ndig >= USED(mp)) |
+ return; |
+ |
+ /* Flush all the bits above 2^d in its digit */ |
+ dmask = ((mp_digit)1 << nbit) - 1; |
+ DIGIT(mp, ndig) &= dmask; |
+ |
+ /* Flush all digits above the one with 2^d in it */ |
+ for(ix = ndig + 1; ix < USED(mp); ix++) |
+ DIGIT(mp, ix) = 0; |
+ |
+ s_mp_clamp(mp); |
+ |
+} /* end s_mp_mod_2d() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_div_2d(mp, d) */ |
+ |
+/* |
+ Divide the integer by 2^d, where d is a number of bits. This |
+ amounts to a bitwise shift of the value, and does not require the |
+ full division code (used in Barrett reduction, see below) |
+ */ |
+void s_mp_div_2d(mp_int *mp, mp_digit d) |
+{ |
+ int ix; |
+ mp_digit save, next, mask; |
+ |
+ s_mp_rshd(mp, d / DIGIT_BIT); |
+ d %= DIGIT_BIT; |
+ if (d) { |
+ mask = ((mp_digit)1 << d) - 1; |
+ save = 0; |
+ for(ix = USED(mp) - 1; ix >= 0; ix--) { |
+ next = DIGIT(mp, ix) & mask; |
+ DIGIT(mp, ix) = (DIGIT(mp, ix) >> d) | (save << (DIGIT_BIT - d)); |
+ save = next; |
+ } |
+ } |
+ s_mp_clamp(mp); |
+ |
+} /* end s_mp_div_2d() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_norm(a, b, *d) */ |
+ |
+/* |
+ s_mp_norm(a, b, *d) |
+ |
+ Normalize a and b for division, where b is the divisor. In order |
+ that we might make good guesses for quotient digits, we want the |
+ leading digit of b to be at least half the radix, which we |
+ accomplish by multiplying a and b by a power of 2. The exponent |
+ (shift count) is placed in *pd, so that the remainder can be shifted |
+ back at the end of the division process. |
+ */ |
+ |
+mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd) |
+{ |
+ mp_digit d; |
+ mp_digit mask; |
+ mp_digit b_msd; |
+ mp_err res = MP_OKAY; |
+ |
+ d = 0; |
+ mask = DIGIT_MAX & ~(DIGIT_MAX >> 1); /* mask is msb of digit */ |
+ b_msd = DIGIT(b, USED(b) - 1); |
+ while (!(b_msd & mask)) { |
+ b_msd <<= 1; |
+ ++d; |
+ } |
+ |
+ if (d) { |
+ MP_CHECKOK( s_mp_mul_2d(a, d) ); |
+ MP_CHECKOK( s_mp_mul_2d(b, d) ); |
+ } |
+ |
+ *pd = d; |
+CLEANUP: |
+ return res; |
+ |
+} /* end s_mp_norm() */ |
+ |
+/* }}} */ |
+ |
+/* }}} */ |
+ |
+/* {{{ Primitive digit arithmetic */ |
+ |
+/* {{{ s_mp_add_d(mp, d) */ |
+ |
+/* Add d to |mp| in place */ |
+mp_err s_mp_add_d(mp_int *mp, mp_digit d) /* unsigned digit addition */ |
+{ |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
+ mp_word w, k = 0; |
+ mp_size ix = 1; |
+ |
+ w = (mp_word)DIGIT(mp, 0) + d; |
+ DIGIT(mp, 0) = ACCUM(w); |
+ k = CARRYOUT(w); |
+ |
+ while(ix < USED(mp) && k) { |
+ w = (mp_word)DIGIT(mp, ix) + k; |
+ DIGIT(mp, ix) = ACCUM(w); |
+ k = CARRYOUT(w); |
+ ++ix; |
+ } |
+ |
+ if(k != 0) { |
+ mp_err res; |
+ |
+ if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY) |
+ return res; |
+ |
+ DIGIT(mp, ix) = (mp_digit)k; |
+ } |
+ |
+ return MP_OKAY; |
+#else |
+ mp_digit * pmp = MP_DIGITS(mp); |
+ mp_digit sum, mp_i, carry = 0; |
+ mp_err res = MP_OKAY; |
+ int used = (int)MP_USED(mp); |
+ |
+ mp_i = *pmp; |
+ *pmp++ = sum = d + mp_i; |
+ carry = (sum < d); |
+ while (carry && --used > 0) { |
+ mp_i = *pmp; |
+ *pmp++ = sum = carry + mp_i; |
+ carry = !sum; |
+ } |
+ if (carry && !used) { |
+ /* mp is growing */ |
+ used = MP_USED(mp); |
+ MP_CHECKOK( s_mp_pad(mp, used + 1) ); |
+ MP_DIGIT(mp, used) = carry; |
+ } |
+CLEANUP: |
+ return res; |
+#endif |
+} /* end s_mp_add_d() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_sub_d(mp, d) */ |
+ |
+/* Subtract d from |mp| in place, assumes |mp| > d */ |
+mp_err s_mp_sub_d(mp_int *mp, mp_digit d) /* unsigned digit subtract */ |
+{ |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
+ mp_word w, b = 0; |
+ mp_size ix = 1; |
+ |
+ /* Compute initial subtraction */ |
+ w = (RADIX + (mp_word)DIGIT(mp, 0)) - d; |
+ b = CARRYOUT(w) ? 0 : 1; |
+ DIGIT(mp, 0) = ACCUM(w); |
+ |
+ /* Propagate borrows leftward */ |
+ while(b && ix < USED(mp)) { |
+ w = (RADIX + (mp_word)DIGIT(mp, ix)) - b; |
+ b = CARRYOUT(w) ? 0 : 1; |
+ DIGIT(mp, ix) = ACCUM(w); |
+ ++ix; |
+ } |
+ |
+ /* Remove leading zeroes */ |
+ s_mp_clamp(mp); |
+ |
+ /* If we have a borrow out, it's a violation of the input invariant */ |
+ if(b) |
+ return MP_RANGE; |
+ else |
+ return MP_OKAY; |
+#else |
+ mp_digit *pmp = MP_DIGITS(mp); |
+ mp_digit mp_i, diff, borrow; |
+ mp_size used = MP_USED(mp); |
+ |
+ mp_i = *pmp; |
+ *pmp++ = diff = mp_i - d; |
+ borrow = (diff > mp_i); |
+ while (borrow && --used) { |
+ mp_i = *pmp; |
+ *pmp++ = diff = mp_i - borrow; |
+ borrow = (diff > mp_i); |
+ } |
+ s_mp_clamp(mp); |
+ return (borrow && !used) ? MP_RANGE : MP_OKAY; |
+#endif |
+} /* end s_mp_sub_d() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_mul_d(a, d) */ |
+ |
+/* Compute a = a * d, single digit multiplication */ |
+mp_err s_mp_mul_d(mp_int *a, mp_digit d) |
+{ |
+ mp_err res; |
+ mp_size used; |
+ int pow; |
+ |
+ if (!d) { |
+ mp_zero(a); |
+ return MP_OKAY; |
+ } |
+ if (d == 1) |
+ return MP_OKAY; |
+ if (0 <= (pow = s_mp_ispow2d(d))) { |
+ return s_mp_mul_2d(a, (mp_digit)pow); |
+ } |
+ |
+ used = MP_USED(a); |
+ MP_CHECKOK( s_mp_pad(a, used + 1) ); |
+ |
+ s_mpv_mul_d(MP_DIGITS(a), used, d, MP_DIGITS(a)); |
+ |
+ s_mp_clamp(a); |
+ |
+CLEANUP: |
+ return res; |
+ |
+} /* end s_mp_mul_d() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_div_d(mp, d, r) */ |
+ |
+/* |
+ s_mp_div_d(mp, d, r) |
+ |
+ Compute the quotient mp = mp / d and remainder r = mp mod d, for a |
+ single digit d. If r is null, the remainder will be discarded. |
+ */ |
+ |
+mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r) |
+{ |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) |
+ mp_word w = 0, q; |
+#else |
+ mp_digit w, q; |
+#endif |
+ int ix; |
+ mp_err res; |
+ mp_int quot; |
+ mp_int rem; |
+ |
+ if(d == 0) |
+ return MP_RANGE; |
+ if (d == 1) { |
+ if (r) |
+ *r = 0; |
+ return MP_OKAY; |
+ } |
+ /* could check for power of 2 here, but mp_div_d does that. */ |
+ if (MP_USED(mp) == 1) { |
+ mp_digit n = MP_DIGIT(mp,0); |
+ mp_digit rem; |
+ |
+ q = n / d; |
+ rem = n % d; |
+ MP_DIGIT(mp,0) = q; |
+ if (r) |
+ *r = rem; |
+ return MP_OKAY; |
+ } |
+ |
+ MP_DIGITS(&rem) = 0; |
+ MP_DIGITS(") = 0; |
+ /* Make room for the quotient */ |
+ MP_CHECKOK( mp_init_size(", USED(mp)) ); |
+ |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) |
+ for(ix = USED(mp) - 1; ix >= 0; ix--) { |
+ w = (w << DIGIT_BIT) | DIGIT(mp, ix); |
+ |
+ if(w >= d) { |
+ q = w / d; |
+ w = w % d; |
+ } else { |
+ q = 0; |
+ } |
+ |
+ s_mp_lshd(", 1); |
+ DIGIT(", 0) = (mp_digit)q; |
+ } |
+#else |
+ { |
+ mp_digit p; |
+#if !defined(MP_ASSEMBLY_DIV_2DX1D) |
+ mp_digit norm; |
+#endif |
+ |
+ MP_CHECKOK( mp_init_copy(&rem, mp) ); |
+ |
+#if !defined(MP_ASSEMBLY_DIV_2DX1D) |
+ MP_DIGIT(", 0) = d; |
+ MP_CHECKOK( s_mp_norm(&rem, ", &norm) ); |
+ if (norm) |
+ d <<= norm; |
+ MP_DIGIT(", 0) = 0; |
+#endif |
+ |
+ p = 0; |
+ for (ix = USED(&rem) - 1; ix >= 0; ix--) { |
+ w = DIGIT(&rem, ix); |
+ |
+ if (p) { |
+ MP_CHECKOK( s_mpv_div_2dx1d(p, w, d, &q, &w) ); |
+ } else if (w >= d) { |
+ q = w / d; |
+ w = w % d; |
+ } else { |
+ q = 0; |
+ } |
+ |
+ MP_CHECKOK( s_mp_lshd(", 1) ); |
+ DIGIT(", 0) = q; |
+ p = w; |
+ } |
+#if !defined(MP_ASSEMBLY_DIV_2DX1D) |
+ if (norm) |
+ w >>= norm; |
+#endif |
+ } |
+#endif |
+ |
+ /* Deliver the remainder, if desired */ |
+ if(r) |
+ *r = (mp_digit)w; |
+ |
+ s_mp_clamp("); |
+ mp_exch(", mp); |
+CLEANUP: |
+ mp_clear("); |
+ mp_clear(&rem); |
+ |
+ return res; |
+} /* end s_mp_div_d() */ |
+ |
+/* }}} */ |
+ |
+ |
+/* }}} */ |
+ |
+/* {{{ Primitive full arithmetic */ |
+ |
+/* {{{ s_mp_add(a, b) */ |
+ |
+/* Compute a = |a| + |b| */ |
+mp_err s_mp_add(mp_int *a, const mp_int *b) /* magnitude addition */ |
+{ |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
+ mp_word w = 0; |
+#else |
+ mp_digit d, sum, carry = 0; |
+#endif |
+ mp_digit *pa, *pb; |
+ mp_size ix; |
+ mp_size used; |
+ mp_err res; |
+ |
+ /* Make sure a has enough precision for the output value */ |
+ if((USED(b) > USED(a)) && (res = s_mp_pad(a, USED(b))) != MP_OKAY) |
+ return res; |
+ |
+ /* |
+ Add up all digits up to the precision of b. If b had initially |
+ the same precision as a, or greater, we took care of it by the |
+ padding step above, so there is no problem. If b had initially |
+ less precision, we'll have to make sure the carry out is duly |
+ propagated upward among the higher-order digits of the sum. |
+ */ |
+ pa = MP_DIGITS(a); |
+ pb = MP_DIGITS(b); |
+ used = MP_USED(b); |
+ for(ix = 0; ix < used; ix++) { |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
+ w = w + *pa + *pb++; |
+ *pa++ = ACCUM(w); |
+ w = CARRYOUT(w); |
+#else |
+ d = *pa; |
+ sum = d + *pb++; |
+ d = (sum < d); /* detect overflow */ |
+ *pa++ = sum += carry; |
+ carry = d + (sum < carry); /* detect overflow */ |
+#endif |
+ } |
+ |
+ /* If we run out of 'b' digits before we're actually done, make |
+ sure the carries get propagated upward... |
+ */ |
+ used = MP_USED(a); |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
+ while (w && ix < used) { |
+ w = w + *pa; |
+ *pa++ = ACCUM(w); |
+ w = CARRYOUT(w); |
+ ++ix; |
+ } |
+#else |
+ while (carry && ix < used) { |
+ sum = carry + *pa; |
+ *pa++ = sum; |
+ carry = !sum; |
+ ++ix; |
+ } |
+#endif |
+ |
+ /* If there's an overall carry out, increase precision and include |
+ it. We could have done this initially, but why touch the memory |
+ allocator unless we're sure we have to? |
+ */ |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
+ if (w) { |
+ if((res = s_mp_pad(a, used + 1)) != MP_OKAY) |
+ return res; |
+ |
+ DIGIT(a, ix) = (mp_digit)w; |
+ } |
+#else |
+ if (carry) { |
+ if((res = s_mp_pad(a, used + 1)) != MP_OKAY) |
+ return res; |
+ |
+ DIGIT(a, used) = carry; |
+ } |
+#endif |
+ |
+ return MP_OKAY; |
+} /* end s_mp_add() */ |
+ |
+/* }}} */ |
+ |
+/* Compute c = |a| + |b| */ /* magnitude addition */ |
+mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c) |
+{ |
+ mp_digit *pa, *pb, *pc; |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
+ mp_word w = 0; |
+#else |
+ mp_digit sum, carry = 0, d; |
+#endif |
+ mp_size ix; |
+ mp_size used; |
+ mp_err res; |
+ |
+ MP_SIGN(c) = MP_SIGN(a); |
+ if (MP_USED(a) < MP_USED(b)) { |
+ const mp_int *xch = a; |
+ a = b; |
+ b = xch; |
+ } |
+ |
+ /* Make sure a has enough precision for the output value */ |
+ if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a)))) |
+ return res; |
+ |
+ /* |
+ Add up all digits up to the precision of b. If b had initially |
+ the same precision as a, or greater, we took care of it by the |
+ exchange step above, so there is no problem. If b had initially |
+ less precision, we'll have to make sure the carry out is duly |
+ propagated upward among the higher-order digits of the sum. |
+ */ |
+ pa = MP_DIGITS(a); |
+ pb = MP_DIGITS(b); |
+ pc = MP_DIGITS(c); |
+ used = MP_USED(b); |
+ for (ix = 0; ix < used; ix++) { |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
+ w = w + *pa++ + *pb++; |
+ *pc++ = ACCUM(w); |
+ w = CARRYOUT(w); |
+#else |
+ d = *pa++; |
+ sum = d + *pb++; |
+ d = (sum < d); /* detect overflow */ |
+ *pc++ = sum += carry; |
+ carry = d + (sum < carry); /* detect overflow */ |
+#endif |
+ } |
+ |
+ /* If we run out of 'b' digits before we're actually done, make |
+ sure the carries get propagated upward... |
+ */ |
+ for (used = MP_USED(a); ix < used; ++ix) { |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
+ w = w + *pa++; |
+ *pc++ = ACCUM(w); |
+ w = CARRYOUT(w); |
+#else |
+ *pc++ = sum = carry + *pa++; |
+ carry = (sum < carry); |
+#endif |
+ } |
+ |
+ /* If there's an overall carry out, increase precision and include |
+ it. We could have done this initially, but why touch the memory |
+ allocator unless we're sure we have to? |
+ */ |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
+ if (w) { |
+ if((res = s_mp_pad(c, used + 1)) != MP_OKAY) |
+ return res; |
+ |
+ DIGIT(c, used) = (mp_digit)w; |
+ ++used; |
+ } |
+#else |
+ if (carry) { |
+ if((res = s_mp_pad(c, used + 1)) != MP_OKAY) |
+ return res; |
+ |
+ DIGIT(c, used) = carry; |
+ ++used; |
+ } |
+#endif |
+ MP_USED(c) = used; |
+ return MP_OKAY; |
+} |
+/* {{{ s_mp_add_offset(a, b, offset) */ |
+ |
+/* Compute a = |a| + ( |b| * (RADIX ** offset) ) */ |
+mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset) |
+{ |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
+ mp_word w, k = 0; |
+#else |
+ mp_digit d, sum, carry = 0; |
+#endif |
+ mp_size ib; |
+ mp_size ia; |
+ mp_size lim; |
+ mp_err res; |
+ |
+ /* Make sure a has enough precision for the output value */ |
+ lim = MP_USED(b) + offset; |
+ if((lim > USED(a)) && (res = s_mp_pad(a, lim)) != MP_OKAY) |
+ return res; |
+ |
+ /* |
+ Add up all digits up to the precision of b. If b had initially |
+ the same precision as a, or greater, we took care of it by the |
+ padding step above, so there is no problem. If b had initially |
+ less precision, we'll have to make sure the carry out is duly |
+ propagated upward among the higher-order digits of the sum. |
+ */ |
+ lim = USED(b); |
+ for(ib = 0, ia = offset; ib < lim; ib++, ia++) { |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
+ w = (mp_word)DIGIT(a, ia) + DIGIT(b, ib) + k; |
+ DIGIT(a, ia) = ACCUM(w); |
+ k = CARRYOUT(w); |
+#else |
+ d = MP_DIGIT(a, ia); |
+ sum = d + MP_DIGIT(b, ib); |
+ d = (sum < d); |
+ MP_DIGIT(a,ia) = sum += carry; |
+ carry = d + (sum < carry); |
+#endif |
+ } |
+ |
+ /* If we run out of 'b' digits before we're actually done, make |
+ sure the carries get propagated upward... |
+ */ |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
+ for (lim = MP_USED(a); k && (ia < lim); ++ia) { |
+ w = (mp_word)DIGIT(a, ia) + k; |
+ DIGIT(a, ia) = ACCUM(w); |
+ k = CARRYOUT(w); |
+ } |
+#else |
+ for (lim = MP_USED(a); carry && (ia < lim); ++ia) { |
+ d = MP_DIGIT(a, ia); |
+ MP_DIGIT(a,ia) = sum = d + carry; |
+ carry = (sum < d); |
+ } |
+#endif |
+ |
+ /* If there's an overall carry out, increase precision and include |
+ it. We could have done this initially, but why touch the memory |
+ allocator unless we're sure we have to? |
+ */ |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
+ if(k) { |
+ if((res = s_mp_pad(a, USED(a) + 1)) != MP_OKAY) |
+ return res; |
+ |
+ DIGIT(a, ia) = (mp_digit)k; |
+ } |
+#else |
+ if (carry) { |
+ if((res = s_mp_pad(a, lim + 1)) != MP_OKAY) |
+ return res; |
+ |
+ DIGIT(a, lim) = carry; |
+ } |
+#endif |
+ s_mp_clamp(a); |
+ |
+ return MP_OKAY; |
+ |
+} /* end s_mp_add_offset() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_sub(a, b) */ |
+ |
+/* Compute a = |a| - |b|, assumes |a| >= |b| */ |
+mp_err s_mp_sub(mp_int *a, const mp_int *b) /* magnitude subtract */ |
+{ |
+ mp_digit *pa, *pb, *limit; |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
+ mp_sword w = 0; |
+#else |
+ mp_digit d, diff, borrow = 0; |
+#endif |
+ |
+ /* |
+ Subtract and propagate borrow. Up to the precision of b, this |
+ accounts for the digits of b; after that, we just make sure the |
+ carries get to the right place. This saves having to pad b out to |
+ the precision of a just to make the loops work right... |
+ */ |
+ pa = MP_DIGITS(a); |
+ pb = MP_DIGITS(b); |
+ limit = pb + MP_USED(b); |
+ while (pb < limit) { |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
+ w = w + *pa - *pb++; |
+ *pa++ = ACCUM(w); |
+ w >>= MP_DIGIT_BIT; |
+#else |
+ d = *pa; |
+ diff = d - *pb++; |
+ d = (diff > d); /* detect borrow */ |
+ if (borrow && --diff == MP_DIGIT_MAX) |
+ ++d; |
+ *pa++ = diff; |
+ borrow = d; |
+#endif |
+ } |
+ limit = MP_DIGITS(a) + MP_USED(a); |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
+ while (w && pa < limit) { |
+ w = w + *pa; |
+ *pa++ = ACCUM(w); |
+ w >>= MP_DIGIT_BIT; |
+ } |
+#else |
+ while (borrow && pa < limit) { |
+ d = *pa; |
+ *pa++ = diff = d - borrow; |
+ borrow = (diff > d); |
+ } |
+#endif |
+ |
+ /* Clobber any leading zeroes we created */ |
+ s_mp_clamp(a); |
+ |
+ /* |
+ If there was a borrow out, then |b| > |a| in violation |
+ of our input invariant. We've already done the work, |
+ but we'll at least complain about it... |
+ */ |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
+ return w ? MP_RANGE : MP_OKAY; |
+#else |
+ return borrow ? MP_RANGE : MP_OKAY; |
+#endif |
+} /* end s_mp_sub() */ |
+ |
+/* }}} */ |
+ |
+/* Compute c = |a| - |b|, assumes |a| >= |b| */ /* magnitude subtract */ |
+mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c) |
+{ |
+ mp_digit *pa, *pb, *pc; |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
+ mp_sword w = 0; |
+#else |
+ mp_digit d, diff, borrow = 0; |
+#endif |
+ int ix, limit; |
+ mp_err res; |
+ |
+ MP_SIGN(c) = MP_SIGN(a); |
+ |
+ /* Make sure a has enough precision for the output value */ |
+ if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a)))) |
+ return res; |
+ |
+ /* |
+ Subtract and propagate borrow. Up to the precision of b, this |
+ accounts for the digits of b; after that, we just make sure the |
+ carries get to the right place. This saves having to pad b out to |
+ the precision of a just to make the loops work right... |
+ */ |
+ pa = MP_DIGITS(a); |
+ pb = MP_DIGITS(b); |
+ pc = MP_DIGITS(c); |
+ limit = MP_USED(b); |
+ for (ix = 0; ix < limit; ++ix) { |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
+ w = w + *pa++ - *pb++; |
+ *pc++ = ACCUM(w); |
+ w >>= MP_DIGIT_BIT; |
+#else |
+ d = *pa++; |
+ diff = d - *pb++; |
+ d = (diff > d); |
+ if (borrow && --diff == MP_DIGIT_MAX) |
+ ++d; |
+ *pc++ = diff; |
+ borrow = d; |
+#endif |
+ } |
+ for (limit = MP_USED(a); ix < limit; ++ix) { |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
+ w = w + *pa++; |
+ *pc++ = ACCUM(w); |
+ w >>= MP_DIGIT_BIT; |
+#else |
+ d = *pa++; |
+ *pc++ = diff = d - borrow; |
+ borrow = (diff > d); |
+#endif |
+ } |
+ |
+ /* Clobber any leading zeroes we created */ |
+ MP_USED(c) = ix; |
+ s_mp_clamp(c); |
+ |
+ /* |
+ If there was a borrow out, then |b| > |a| in violation |
+ of our input invariant. We've already done the work, |
+ but we'll at least complain about it... |
+ */ |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
+ return w ? MP_RANGE : MP_OKAY; |
+#else |
+ return borrow ? MP_RANGE : MP_OKAY; |
+#endif |
+} |
+/* {{{ s_mp_mul(a, b) */ |
+ |
+/* Compute a = |a| * |b| */ |
+mp_err s_mp_mul(mp_int *a, const mp_int *b) |
+{ |
+ return mp_mul(a, b, a); |
+} /* end s_mp_mul() */ |
+ |
+/* }}} */ |
+ |
+#if defined(MP_USE_UINT_DIGIT) && defined(MP_USE_LONG_LONG_MULTIPLY) |
+/* This trick works on Sparc V8 CPUs with the Workshop compilers. */ |
+#define MP_MUL_DxD(a, b, Phi, Plo) \ |
+ { unsigned long long product = (unsigned long long)a * b; \ |
+ Plo = (mp_digit)product; \ |
+ Phi = (mp_digit)(product >> MP_DIGIT_BIT); } |
+#elif defined(OSF1) |
+#define MP_MUL_DxD(a, b, Phi, Plo) \ |
+ { Plo = asm ("mulq %a0, %a1, %v0", a, b);\ |
+ Phi = asm ("umulh %a0, %a1, %v0", a, b); } |
+#else |
+#define MP_MUL_DxD(a, b, Phi, Plo) \ |
+ { mp_digit a0b1, a1b0; \ |
+ Plo = (a & MP_HALF_DIGIT_MAX) * (b & MP_HALF_DIGIT_MAX); \ |
+ Phi = (a >> MP_HALF_DIGIT_BIT) * (b >> MP_HALF_DIGIT_BIT); \ |
+ a0b1 = (a & MP_HALF_DIGIT_MAX) * (b >> MP_HALF_DIGIT_BIT); \ |
+ a1b0 = (a >> MP_HALF_DIGIT_BIT) * (b & MP_HALF_DIGIT_MAX); \ |
+ a1b0 += a0b1; \ |
+ Phi += a1b0 >> MP_HALF_DIGIT_BIT; \ |
+ if (a1b0 < a0b1) \ |
+ Phi += MP_HALF_RADIX; \ |
+ a1b0 <<= MP_HALF_DIGIT_BIT; \ |
+ Plo += a1b0; \ |
+ if (Plo < a1b0) \ |
+ ++Phi; \ |
+ } |
+#endif |
+ |
+#if !defined(MP_ASSEMBLY_MULTIPLY) |
+/* c = a * b */ |
+void s_mpv_mul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c) |
+{ |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) |
+ mp_digit d = 0; |
+ |
+ /* Inner product: Digits of a */ |
+ while (a_len--) { |
+ mp_word w = ((mp_word)b * *a++) + d; |
+ *c++ = ACCUM(w); |
+ d = CARRYOUT(w); |
+ } |
+ *c = d; |
+#else |
+ mp_digit carry = 0; |
+ while (a_len--) { |
+ mp_digit a_i = *a++; |
+ mp_digit a0b0, a1b1; |
+ |
+ MP_MUL_DxD(a_i, b, a1b1, a0b0); |
+ |
+ a0b0 += carry; |
+ if (a0b0 < carry) |
+ ++a1b1; |
+ *c++ = a0b0; |
+ carry = a1b1; |
+ } |
+ *c = carry; |
+#endif |
+} |
+ |
+/* c += a * b */ |
+void s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, |
+ mp_digit *c) |
+{ |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) |
+ mp_digit d = 0; |
+ |
+ /* Inner product: Digits of a */ |
+ while (a_len--) { |
+ mp_word w = ((mp_word)b * *a++) + *c + d; |
+ *c++ = ACCUM(w); |
+ d = CARRYOUT(w); |
+ } |
+ *c = d; |
+#else |
+ mp_digit carry = 0; |
+ while (a_len--) { |
+ mp_digit a_i = *a++; |
+ mp_digit a0b0, a1b1; |
+ |
+ MP_MUL_DxD(a_i, b, a1b1, a0b0); |
+ |
+ a0b0 += carry; |
+ if (a0b0 < carry) |
+ ++a1b1; |
+ a0b0 += a_i = *c; |
+ if (a0b0 < a_i) |
+ ++a1b1; |
+ *c++ = a0b0; |
+ carry = a1b1; |
+ } |
+ *c = carry; |
+#endif |
+} |
+ |
+/* Presently, this is only used by the Montgomery arithmetic code. */ |
+/* c += a * b */ |
+void s_mpv_mul_d_add_prop(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c) |
+{ |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) |
+ mp_digit d = 0; |
+ |
+ /* Inner product: Digits of a */ |
+ while (a_len--) { |
+ mp_word w = ((mp_word)b * *a++) + *c + d; |
+ *c++ = ACCUM(w); |
+ d = CARRYOUT(w); |
+ } |
+ |
+ while (d) { |
+ mp_word w = (mp_word)*c + d; |
+ *c++ = ACCUM(w); |
+ d = CARRYOUT(w); |
+ } |
+#else |
+ mp_digit carry = 0; |
+ while (a_len--) { |
+ mp_digit a_i = *a++; |
+ mp_digit a0b0, a1b1; |
+ |
+ MP_MUL_DxD(a_i, b, a1b1, a0b0); |
+ |
+ a0b0 += carry; |
+ if (a0b0 < carry) |
+ ++a1b1; |
+ |
+ a0b0 += a_i = *c; |
+ if (a0b0 < a_i) |
+ ++a1b1; |
+ |
+ *c++ = a0b0; |
+ carry = a1b1; |
+ } |
+ while (carry) { |
+ mp_digit c_i = *c; |
+ carry += c_i; |
+ *c++ = carry; |
+ carry = carry < c_i; |
+ } |
+#endif |
+} |
+#endif |
+ |
+#if defined(MP_USE_UINT_DIGIT) && defined(MP_USE_LONG_LONG_MULTIPLY) |
+/* This trick works on Sparc V8 CPUs with the Workshop compilers. */ |
+#define MP_SQR_D(a, Phi, Plo) \ |
+ { unsigned long long square = (unsigned long long)a * a; \ |
+ Plo = (mp_digit)square; \ |
+ Phi = (mp_digit)(square >> MP_DIGIT_BIT); } |
+#elif defined(OSF1) |
+#define MP_SQR_D(a, Phi, Plo) \ |
+ { Plo = asm ("mulq %a0, %a0, %v0", a);\ |
+ Phi = asm ("umulh %a0, %a0, %v0", a); } |
+#else |
+#define MP_SQR_D(a, Phi, Plo) \ |
+ { mp_digit Pmid; \ |
+ Plo = (a & MP_HALF_DIGIT_MAX) * (a & MP_HALF_DIGIT_MAX); \ |
+ Phi = (a >> MP_HALF_DIGIT_BIT) * (a >> MP_HALF_DIGIT_BIT); \ |
+ Pmid = (a & MP_HALF_DIGIT_MAX) * (a >> MP_HALF_DIGIT_BIT); \ |
+ Phi += Pmid >> (MP_HALF_DIGIT_BIT - 1); \ |
+ Pmid <<= (MP_HALF_DIGIT_BIT + 1); \ |
+ Plo += Pmid; \ |
+ if (Plo < Pmid) \ |
+ ++Phi; \ |
+ } |
+#endif |
+ |
+#if !defined(MP_ASSEMBLY_SQUARE) |
+/* Add the squares of the digits of a to the digits of b. */ |
+void s_mpv_sqr_add_prop(const mp_digit *pa, mp_size a_len, mp_digit *ps) |
+{ |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) |
+ mp_word w; |
+ mp_digit d; |
+ mp_size ix; |
+ |
+ w = 0; |
+#define ADD_SQUARE(n) \ |
+ d = pa[n]; \ |
+ w += (d * (mp_word)d) + ps[2*n]; \ |
+ ps[2*n] = ACCUM(w); \ |
+ w = (w >> DIGIT_BIT) + ps[2*n+1]; \ |
+ ps[2*n+1] = ACCUM(w); \ |
+ w = (w >> DIGIT_BIT) |
+ |
+ for (ix = a_len; ix >= 4; ix -= 4) { |
+ ADD_SQUARE(0); |
+ ADD_SQUARE(1); |
+ ADD_SQUARE(2); |
+ ADD_SQUARE(3); |
+ pa += 4; |
+ ps += 8; |
+ } |
+ if (ix) { |
+ ps += 2*ix; |
+ pa += ix; |
+ switch (ix) { |
+ case 3: ADD_SQUARE(-3); /* FALLTHRU */ |
+ case 2: ADD_SQUARE(-2); /* FALLTHRU */ |
+ case 1: ADD_SQUARE(-1); /* FALLTHRU */ |
+ case 0: break; |
+ } |
+ } |
+ while (w) { |
+ w += *ps; |
+ *ps++ = ACCUM(w); |
+ w = (w >> DIGIT_BIT); |
+ } |
+#else |
+ mp_digit carry = 0; |
+ while (a_len--) { |
+ mp_digit a_i = *pa++; |
+ mp_digit a0a0, a1a1; |
+ |
+ MP_SQR_D(a_i, a1a1, a0a0); |
+ |
+ /* here a1a1 and a0a0 constitute a_i ** 2 */ |
+ a0a0 += carry; |
+ if (a0a0 < carry) |
+ ++a1a1; |
+ |
+ /* now add to ps */ |
+ a0a0 += a_i = *ps; |
+ if (a0a0 < a_i) |
+ ++a1a1; |
+ *ps++ = a0a0; |
+ a1a1 += a_i = *ps; |
+ carry = (a1a1 < a_i); |
+ *ps++ = a1a1; |
+ } |
+ while (carry) { |
+ mp_digit s_i = *ps; |
+ carry += s_i; |
+ *ps++ = carry; |
+ carry = carry < s_i; |
+ } |
+#endif |
+} |
+#endif |
+ |
+#if (defined(MP_NO_MP_WORD) || defined(MP_NO_DIV_WORD)) \ |
+&& !defined(MP_ASSEMBLY_DIV_2DX1D) |
+/* |
+** Divide 64-bit (Nhi,Nlo) by 32-bit divisor, which must be normalized |
+** so its high bit is 1. This code is from NSPR. |
+*/ |
+mp_err s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, mp_digit divisor, |
+ mp_digit *qp, mp_digit *rp) |
+{ |
+ mp_digit d1, d0, q1, q0; |
+ mp_digit r1, r0, m; |
+ |
+ d1 = divisor >> MP_HALF_DIGIT_BIT; |
+ d0 = divisor & MP_HALF_DIGIT_MAX; |
+ r1 = Nhi % d1; |
+ q1 = Nhi / d1; |
+ m = q1 * d0; |
+ r1 = (r1 << MP_HALF_DIGIT_BIT) | (Nlo >> MP_HALF_DIGIT_BIT); |
+ if (r1 < m) { |
+ q1--, r1 += divisor; |
+ if (r1 >= divisor && r1 < m) { |
+ q1--, r1 += divisor; |
+ } |
+ } |
+ r1 -= m; |
+ r0 = r1 % d1; |
+ q0 = r1 / d1; |
+ m = q0 * d0; |
+ r0 = (r0 << MP_HALF_DIGIT_BIT) | (Nlo & MP_HALF_DIGIT_MAX); |
+ if (r0 < m) { |
+ q0--, r0 += divisor; |
+ if (r0 >= divisor && r0 < m) { |
+ q0--, r0 += divisor; |
+ } |
+ } |
+ if (qp) |
+ *qp = (q1 << MP_HALF_DIGIT_BIT) | q0; |
+ if (rp) |
+ *rp = r0 - m; |
+ return MP_OKAY; |
+} |
+#endif |
+ |
+#if MP_SQUARE |
+/* {{{ s_mp_sqr(a) */ |
+ |
+mp_err s_mp_sqr(mp_int *a) |
+{ |
+ mp_err res; |
+ mp_int tmp; |
+ |
+ if((res = mp_init_size(&tmp, 2 * USED(a))) != MP_OKAY) |
+ return res; |
+ res = mp_sqr(a, &tmp); |
+ if (res == MP_OKAY) { |
+ s_mp_exch(&tmp, a); |
+ } |
+ mp_clear(&tmp); |
+ return res; |
+} |
+ |
+/* }}} */ |
+#endif |
+ |
+/* {{{ s_mp_div(a, b) */ |
+ |
+/* |
+ s_mp_div(a, b) |
+ |
+ Compute a = a / b and b = a mod b. Assumes b > a. |
+ */ |
+ |
+mp_err s_mp_div(mp_int *rem, /* i: dividend, o: remainder */ |
+ mp_int *div, /* i: divisor */ |
+ mp_int *quot) /* i: 0; o: quotient */ |
+{ |
+ mp_int part, t; |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) |
+ mp_word q_msd; |
+#else |
+ mp_digit q_msd; |
+#endif |
+ mp_err res; |
+ mp_digit d; |
+ mp_digit div_msd; |
+ int ix; |
+ |
+ if(mp_cmp_z(div) == 0) |
+ return MP_RANGE; |
+ |
+ /* Shortcut if divisor is power of two */ |
+ if((ix = s_mp_ispow2(div)) >= 0) { |
+ MP_CHECKOK( mp_copy(rem, quot) ); |
+ s_mp_div_2d(quot, (mp_digit)ix); |
+ s_mp_mod_2d(rem, (mp_digit)ix); |
+ |
+ return MP_OKAY; |
+ } |
+ |
+ DIGITS(&t) = 0; |
+ MP_SIGN(rem) = ZPOS; |
+ MP_SIGN(div) = ZPOS; |
+ |
+ /* A working temporary for division */ |
+ MP_CHECKOK( mp_init_size(&t, MP_ALLOC(rem))); |
+ |
+ /* Normalize to optimize guessing */ |
+ MP_CHECKOK( s_mp_norm(rem, div, &d) ); |
+ |
+ part = *rem; |
+ |
+ /* Perform the division itself...woo! */ |
+ MP_USED(quot) = MP_ALLOC(quot); |
+ |
+ /* Find a partial substring of rem which is at least div */ |
+ /* If we didn't find one, we're finished dividing */ |
+ while (MP_USED(rem) > MP_USED(div) || s_mp_cmp(rem, div) >= 0) { |
+ int i; |
+ int unusedRem; |
+ |
+ unusedRem = MP_USED(rem) - MP_USED(div); |
+ MP_DIGITS(&part) = MP_DIGITS(rem) + unusedRem; |
+ MP_ALLOC(&part) = MP_ALLOC(rem) - unusedRem; |
+ MP_USED(&part) = MP_USED(div); |
+ if (s_mp_cmp(&part, div) < 0) { |
+ -- unusedRem; |
+#if MP_ARGCHK == 2 |
+ assert(unusedRem >= 0); |
+#endif |
+ -- MP_DIGITS(&part); |
+ ++ MP_USED(&part); |
+ ++ MP_ALLOC(&part); |
+ } |
+ |
+ /* Compute a guess for the next quotient digit */ |
+ q_msd = MP_DIGIT(&part, MP_USED(&part) - 1); |
+ div_msd = MP_DIGIT(div, MP_USED(div) - 1); |
+ if (q_msd >= div_msd) { |
+ q_msd = 1; |
+ } else if (MP_USED(&part) > 1) { |
+#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) |
+ q_msd = (q_msd << MP_DIGIT_BIT) | MP_DIGIT(&part, MP_USED(&part) - 2); |
+ q_msd /= div_msd; |
+ if (q_msd == RADIX) |
+ --q_msd; |
+#else |
+ mp_digit r; |
+ MP_CHECKOK( s_mpv_div_2dx1d(q_msd, MP_DIGIT(&part, MP_USED(&part) - 2), |
+ div_msd, &q_msd, &r) ); |
+#endif |
+ } else { |
+ q_msd = 0; |
+ } |
+#if MP_ARGCHK == 2 |
+ assert(q_msd > 0); /* This case should never occur any more. */ |
+#endif |
+ if (q_msd <= 0) |
+ break; |
+ |
+ /* See what that multiplies out to */ |
+ mp_copy(div, &t); |
+ MP_CHECKOK( s_mp_mul_d(&t, (mp_digit)q_msd) ); |
+ |
+ /* |
+ If it's too big, back it off. We should not have to do this |
+ more than once, or, in rare cases, twice. Knuth describes a |
+ method by which this could be reduced to a maximum of once, but |
+ I didn't implement that here. |
+ * When using s_mpv_div_2dx1d, we may have to do this 3 times. |
+ */ |
+ for (i = 4; s_mp_cmp(&t, &part) > 0 && i > 0; --i) { |
+ --q_msd; |
+ s_mp_sub(&t, div); /* t -= div */ |
+ } |
+ if (i < 0) { |
+ res = MP_RANGE; |
+ goto CLEANUP; |
+ } |
+ |
+ /* At this point, q_msd should be the right next digit */ |
+ MP_CHECKOK( s_mp_sub(&part, &t) ); /* part -= t */ |
+ s_mp_clamp(rem); |
+ |
+ /* |
+ Include the digit in the quotient. We allocated enough memory |
+ for any quotient we could ever possibly get, so we should not |
+ have to check for failures here |
+ */ |
+ MP_DIGIT(quot, unusedRem) = (mp_digit)q_msd; |
+ } |
+ |
+ /* Denormalize remainder */ |
+ if (d) { |
+ s_mp_div_2d(rem, d); |
+ } |
+ |
+ s_mp_clamp(quot); |
+ |
+CLEANUP: |
+ mp_clear(&t); |
+ |
+ return res; |
+ |
+} /* end s_mp_div() */ |
+ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_2expt(a, k) */ |
+ |
+mp_err s_mp_2expt(mp_int *a, mp_digit k) |
+{ |
+ mp_err res; |
+ mp_size dig, bit; |
+ |
+ dig = k / DIGIT_BIT; |
+ bit = k % DIGIT_BIT; |
+ |
+ mp_zero(a); |
+ if((res = s_mp_pad(a, dig + 1)) != MP_OKAY) |
+ return res; |
+ |
+ DIGIT(a, dig) |= ((mp_digit)1 << bit); |
+ |
+ return MP_OKAY; |
+ |
+} /* end s_mp_2expt() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_reduce(x, m, mu) */ |
+ |
+/* |
+ Compute Barrett reduction, x (mod m), given a precomputed value for |
+ mu = b^2k / m, where b = RADIX and k = #digits(m). This should be |
+ faster than straight division, when many reductions by the same |
+ value of m are required (such as in modular exponentiation). This |
+ can nearly halve the time required to do modular exponentiation, |
+ as compared to using the full integer divide to reduce. |
+ |
+ This algorithm was derived from the _Handbook of Applied |
+ Cryptography_ by Menezes, Oorschot and VanStone, Ch. 14, |
+ pp. 603-604. |
+ */ |
+ |
+mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu) |
+{ |
+ mp_int q; |
+ mp_err res; |
+ |
+ if((res = mp_init_copy(&q, x)) != MP_OKAY) |
+ return res; |
+ |
+ s_mp_rshd(&q, USED(m) - 1); /* q1 = x / b^(k-1) */ |
+ s_mp_mul(&q, mu); /* q2 = q1 * mu */ |
+ s_mp_rshd(&q, USED(m) + 1); /* q3 = q2 / b^(k+1) */ |
+ |
+ /* x = x mod b^(k+1), quick (no division) */ |
+ s_mp_mod_2d(x, DIGIT_BIT * (USED(m) + 1)); |
+ |
+ /* q = q * m mod b^(k+1), quick (no division) */ |
+ s_mp_mul(&q, m); |
+ s_mp_mod_2d(&q, DIGIT_BIT * (USED(m) + 1)); |
+ |
+ /* x = x - q */ |
+ if((res = mp_sub(x, &q, x)) != MP_OKAY) |
+ goto CLEANUP; |
+ |
+ /* If x < 0, add b^(k+1) to it */ |
+ if(mp_cmp_z(x) < 0) { |
+ mp_set(&q, 1); |
+ if((res = s_mp_lshd(&q, USED(m) + 1)) != MP_OKAY) |
+ goto CLEANUP; |
+ if((res = mp_add(x, &q, x)) != MP_OKAY) |
+ goto CLEANUP; |
+ } |
+ |
+ /* Back off if it's too big */ |
+ while(mp_cmp(x, m) >= 0) { |
+ if((res = s_mp_sub(x, m)) != MP_OKAY) |
+ break; |
+ } |
+ |
+ CLEANUP: |
+ mp_clear(&q); |
+ |
+ return res; |
+ |
+} /* end s_mp_reduce() */ |
+ |
+/* }}} */ |
+ |
+/* }}} */ |
+ |
+/* {{{ Primitive comparisons */ |
+ |
+/* {{{ s_mp_cmp(a, b) */ |
+ |
+/* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b */ |
+int s_mp_cmp(const mp_int *a, const mp_int *b) |
+{ |
+ mp_size used_a = MP_USED(a); |
+ { |
+ mp_size used_b = MP_USED(b); |
+ |
+ if (used_a > used_b) |
+ goto IS_GT; |
+ if (used_a < used_b) |
+ goto IS_LT; |
+ } |
+ { |
+ mp_digit *pa, *pb; |
+ mp_digit da = 0, db = 0; |
+ |
+#define CMP_AB(n) if ((da = pa[n]) != (db = pb[n])) goto done |
+ |
+ pa = MP_DIGITS(a) + used_a; |
+ pb = MP_DIGITS(b) + used_a; |
+ while (used_a >= 4) { |
+ pa -= 4; |
+ pb -= 4; |
+ used_a -= 4; |
+ CMP_AB(3); |
+ CMP_AB(2); |
+ CMP_AB(1); |
+ CMP_AB(0); |
+ } |
+ while (used_a-- > 0 && ((da = *--pa) == (db = *--pb))) |
+ /* do nothing */; |
+done: |
+ if (da > db) |
+ goto IS_GT; |
+ if (da < db) |
+ goto IS_LT; |
+ } |
+ return MP_EQ; |
+IS_LT: |
+ return MP_LT; |
+IS_GT: |
+ return MP_GT; |
+} /* end s_mp_cmp() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_cmp_d(a, d) */ |
+ |
+/* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d */ |
+int s_mp_cmp_d(const mp_int *a, mp_digit d) |
+{ |
+ if(USED(a) > 1) |
+ return MP_GT; |
+ |
+ if(DIGIT(a, 0) < d) |
+ return MP_LT; |
+ else if(DIGIT(a, 0) > d) |
+ return MP_GT; |
+ else |
+ return MP_EQ; |
+ |
+} /* end s_mp_cmp_d() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_ispow2(v) */ |
+ |
+/* |
+ Returns -1 if the value is not a power of two; otherwise, it returns |
+ k such that v = 2^k, i.e. lg(v). |
+ */ |
+int s_mp_ispow2(const mp_int *v) |
+{ |
+ mp_digit d; |
+ int extra = 0, ix; |
+ |
+ ix = MP_USED(v) - 1; |
+ d = MP_DIGIT(v, ix); /* most significant digit of v */ |
+ |
+ extra = s_mp_ispow2d(d); |
+ if (extra < 0 || ix == 0) |
+ return extra; |
+ |
+ while (--ix >= 0) { |
+ if (DIGIT(v, ix) != 0) |
+ return -1; /* not a power of two */ |
+ extra += MP_DIGIT_BIT; |
+ } |
+ |
+ return extra; |
+ |
+} /* end s_mp_ispow2() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_ispow2d(d) */ |
+ |
+int s_mp_ispow2d(mp_digit d) |
+{ |
+ if ((d != 0) && ((d & (d-1)) == 0)) { /* d is a power of 2 */ |
+ int pow = 0; |
+#if defined (MP_USE_UINT_DIGIT) |
+ if (d & 0xffff0000U) |
+ pow += 16; |
+ if (d & 0xff00ff00U) |
+ pow += 8; |
+ if (d & 0xf0f0f0f0U) |
+ pow += 4; |
+ if (d & 0xccccccccU) |
+ pow += 2; |
+ if (d & 0xaaaaaaaaU) |
+ pow += 1; |
+#elif defined(MP_USE_LONG_LONG_DIGIT) |
+ if (d & 0xffffffff00000000ULL) |
+ pow += 32; |
+ if (d & 0xffff0000ffff0000ULL) |
+ pow += 16; |
+ if (d & 0xff00ff00ff00ff00ULL) |
+ pow += 8; |
+ if (d & 0xf0f0f0f0f0f0f0f0ULL) |
+ pow += 4; |
+ if (d & 0xccccccccccccccccULL) |
+ pow += 2; |
+ if (d & 0xaaaaaaaaaaaaaaaaULL) |
+ pow += 1; |
+#elif defined(MP_USE_LONG_DIGIT) |
+ if (d & 0xffffffff00000000UL) |
+ pow += 32; |
+ if (d & 0xffff0000ffff0000UL) |
+ pow += 16; |
+ if (d & 0xff00ff00ff00ff00UL) |
+ pow += 8; |
+ if (d & 0xf0f0f0f0f0f0f0f0UL) |
+ pow += 4; |
+ if (d & 0xccccccccccccccccUL) |
+ pow += 2; |
+ if (d & 0xaaaaaaaaaaaaaaaaUL) |
+ pow += 1; |
+#else |
+#error "unknown type for mp_digit" |
+#endif |
+ return pow; |
+ } |
+ return -1; |
+ |
+} /* end s_mp_ispow2d() */ |
+ |
+/* }}} */ |
+ |
+/* }}} */ |
+ |
+/* {{{ Primitive I/O helpers */ |
+ |
+/* {{{ s_mp_tovalue(ch, r) */ |
+ |
+/* |
+ Convert the given character to its digit value, in the given radix. |
+ If the given character is not understood in the given radix, -1 is |
+ returned. Otherwise the digit's numeric value is returned. |
+ |
+ The results will be odd if you use a radix < 2 or > 62, you are |
+ expected to know what you're up to. |
+ */ |
+int s_mp_tovalue(char ch, int r) |
+{ |
+ int val, xch; |
+ |
+ if(r > 36) |
+ xch = ch; |
+ else |
+ xch = toupper(ch); |
+ |
+ if(isdigit(xch)) |
+ val = xch - '0'; |
+ else if(isupper(xch)) |
+ val = xch - 'A' + 10; |
+ else if(islower(xch)) |
+ val = xch - 'a' + 36; |
+ else if(xch == '+') |
+ val = 62; |
+ else if(xch == '/') |
+ val = 63; |
+ else |
+ return -1; |
+ |
+ if(val < 0 || val >= r) |
+ return -1; |
+ |
+ return val; |
+ |
+} /* end s_mp_tovalue() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_todigit(val, r, low) */ |
+ |
+/* |
+ Convert val to a radix-r digit, if possible. If val is out of range |
+ for r, returns zero. Otherwise, returns an ASCII character denoting |
+ the value in the given radix. |
+ |
+ The results may be odd if you use a radix < 2 or > 64, you are |
+ expected to know what you're doing. |
+ */ |
+ |
+char s_mp_todigit(mp_digit val, int r, int low) |
+{ |
+ char ch; |
+ |
+ if(val >= r) |
+ return 0; |
+ |
+ ch = s_dmap_1[val]; |
+ |
+ if(r <= 36 && low) |
+ ch = tolower(ch); |
+ |
+ return ch; |
+ |
+} /* end s_mp_todigit() */ |
+ |
+/* }}} */ |
+ |
+/* {{{ s_mp_outlen(bits, radix) */ |
+ |
+/* |
+ Return an estimate for how long a string is needed to hold a radix |
+ r representation of a number with 'bits' significant bits, plus an |
+ extra for a zero terminator (assuming C style strings here) |
+ */ |
+int s_mp_outlen(int bits, int r) |
+{ |
+ return (int)((double)bits * LOG_V_2(r) + 1.5) + 1; |
+ |
+} /* end s_mp_outlen() */ |
+ |
+/* }}} */ |
+ |
+/* }}} */ |
+ |
+/* {{{ mp_read_unsigned_octets(mp, str, len) */ |
+/* mp_read_unsigned_octets(mp, str, len) |
+ Read in a raw value (base 256) into the given mp_int |
+ No sign bit, number is positive. Leading zeros ignored. |
+ */ |
+ |
+mp_err |
+mp_read_unsigned_octets(mp_int *mp, const unsigned char *str, mp_size len) |
+{ |
+ int count; |
+ mp_err res; |
+ mp_digit d; |
+ |
+ ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); |
+ |
+ mp_zero(mp); |
+ |
+ count = len % sizeof(mp_digit); |
+ if (count) { |
+ for (d = 0; count-- > 0; --len) { |
+ d = (d << 8) | *str++; |
+ } |
+ MP_DIGIT(mp, 0) = d; |
+ } |
+ |
+ /* Read the rest of the digits */ |
+ for(; len > 0; len -= sizeof(mp_digit)) { |
+ for (d = 0, count = sizeof(mp_digit); count > 0; --count) { |
+ d = (d << 8) | *str++; |
+ } |
+ if (MP_EQ == mp_cmp_z(mp)) { |
+ if (!d) |
+ continue; |
+ } else { |
+ if((res = s_mp_lshd(mp, 1)) != MP_OKAY) |
+ return res; |
+ } |
+ MP_DIGIT(mp, 0) = d; |
+ } |
+ return MP_OKAY; |
+} /* end mp_read_unsigned_octets() */ |
+/* }}} */ |
+ |
+/* {{{ mp_unsigned_octet_size(mp) */ |
+int |
+mp_unsigned_octet_size(const mp_int *mp) |
+{ |
+ int bytes; |
+ int ix; |
+ mp_digit d = 0; |
+ |
+ ARGCHK(mp != NULL, MP_BADARG); |
+ ARGCHK(MP_ZPOS == SIGN(mp), MP_BADARG); |
+ |
+ bytes = (USED(mp) * sizeof(mp_digit)); |
+ |
+ /* subtract leading zeros. */ |
+ /* Iterate over each digit... */ |
+ for(ix = USED(mp) - 1; ix >= 0; ix--) { |
+ d = DIGIT(mp, ix); |
+ if (d) |
+ break; |
+ bytes -= sizeof(d); |
+ } |
+ if (!bytes) |
+ return 1; |
+ |
+ /* Have MSD, check digit bytes, high order first */ |
+ for(ix = sizeof(mp_digit) - 1; ix >= 0; ix--) { |
+ unsigned char x = (unsigned char)(d >> (ix * CHAR_BIT)); |
+ if (x) |
+ break; |
+ --bytes; |
+ } |
+ return bytes; |
+} /* end mp_unsigned_octet_size() */ |
+/* }}} */ |
+ |
+/* {{{ mp_to_unsigned_octets(mp, str) */ |
+/* output a buffer of big endian octets no longer than specified. */ |
+mp_err |
+mp_to_unsigned_octets(const mp_int *mp, unsigned char *str, mp_size maxlen) |
+{ |
+ int ix, pos = 0; |
+ int bytes; |
+ |
+ ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); |
+ |
+ bytes = mp_unsigned_octet_size(mp); |
+ ARGCHK(bytes <= maxlen, MP_BADARG); |
+ |
+ /* Iterate over each digit... */ |
+ for(ix = USED(mp) - 1; ix >= 0; ix--) { |
+ mp_digit d = DIGIT(mp, ix); |
+ int jx; |
+ |
+ /* Unpack digit bytes, high order first */ |
+ for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
+ unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); |
+ if (!pos && !x) /* suppress leading zeros */ |
+ continue; |
+ str[pos++] = x; |
+ } |
+ } |
+ if (!pos) |
+ str[pos++] = 0; |
+ return pos; |
+} /* end mp_to_unsigned_octets() */ |
+/* }}} */ |
+ |
+/* {{{ mp_to_signed_octets(mp, str) */ |
+/* output a buffer of big endian octets no longer than specified. */ |
+mp_err |
+mp_to_signed_octets(const mp_int *mp, unsigned char *str, mp_size maxlen) |
+{ |
+ int ix, pos = 0; |
+ int bytes; |
+ |
+ ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); |
+ |
+ bytes = mp_unsigned_octet_size(mp); |
+ ARGCHK(bytes <= maxlen, MP_BADARG); |
+ |
+ /* Iterate over each digit... */ |
+ for(ix = USED(mp) - 1; ix >= 0; ix--) { |
+ mp_digit d = DIGIT(mp, ix); |
+ int jx; |
+ |
+ /* Unpack digit bytes, high order first */ |
+ for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
+ unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); |
+ if (!pos) { |
+ if (!x) /* suppress leading zeros */ |
+ continue; |
+ if (x & 0x80) { /* add one leading zero to make output positive. */ |
+ ARGCHK(bytes + 1 <= maxlen, MP_BADARG); |
+ if (bytes + 1 > maxlen) |
+ return MP_BADARG; |
+ str[pos++] = 0; |
+ } |
+ } |
+ str[pos++] = x; |
+ } |
+ } |
+ if (!pos) |
+ str[pos++] = 0; |
+ return pos; |
+} /* end mp_to_signed_octets() */ |
+/* }}} */ |
+ |
+/* {{{ mp_to_fixlen_octets(mp, str) */ |
+/* output a buffer of big endian octets exactly as long as requested. */ |
+mp_err |
+mp_to_fixlen_octets(const mp_int *mp, unsigned char *str, mp_size length) |
+{ |
+ int ix, pos = 0; |
+ int bytes; |
+ |
+ ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); |
+ |
+ bytes = mp_unsigned_octet_size(mp); |
+ ARGCHK(bytes <= length, MP_BADARG); |
+ |
+ /* place any needed leading zeros */ |
+ for (;length > bytes; --length) { |
+ *str++ = 0; |
+ } |
+ |
+ /* Iterate over each digit... */ |
+ for(ix = USED(mp) - 1; ix >= 0; ix--) { |
+ mp_digit d = DIGIT(mp, ix); |
+ int jx; |
+ |
+ /* Unpack digit bytes, high order first */ |
+ for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
+ unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); |
+ if (!pos && !x) /* suppress leading zeros */ |
+ continue; |
+ str[pos++] = x; |
+ } |
+ } |
+ if (!pos) |
+ str[pos++] = 0; |
+ return MP_OKAY; |
+} /* end mp_to_fixlen_octets() */ |
+/* }}} */ |
+ |
+ |
+/*------------------------------------------------------------------------*/ |
+/* HERE THERE BE DRAGONS */ |
+ |