| Index: src/mips/simulator-mips.cc
|
| diff --git a/src/mips/simulator-mips.cc b/src/mips/simulator-mips.cc
|
| index 59a537324f1fc555554e04d0b209392e70cd2b1a..50ad7a18871aa9b9407d811d8db45c7391eb5058 100644
|
| --- a/src/mips/simulator-mips.cc
|
| +++ b/src/mips/simulator-mips.cc
|
| @@ -26,6 +26,8 @@
|
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
| #include <stdlib.h>
|
| +#include <math.h>
|
| +#include <limits.h>
|
| #include <cstdarg>
|
| #include "v8.h"
|
|
|
| @@ -37,23 +39,25 @@
|
| #include "mips/constants-mips.h"
|
| #include "mips/simulator-mips.h"
|
|
|
| -namespace v8i = v8::internal;
|
| -
|
| -#if !defined(__mips) || defined(USE_SIMULATOR)
|
|
|
| // Only build the simulator if not compiling for real MIPS hardware.
|
| -namespace assembler {
|
| -namespace mips {
|
| +#if defined(USE_SIMULATOR)
|
|
|
| -using ::v8::internal::Object;
|
| -using ::v8::internal::PrintF;
|
| -using ::v8::internal::OS;
|
| -using ::v8::internal::ReadLine;
|
| -using ::v8::internal::DeleteArray;
|
| +namespace v8 {
|
| +namespace internal {
|
|
|
| // Utils functions
|
| bool HaveSameSign(int32_t a, int32_t b) {
|
| - return ((a ^ b) > 0);
|
| + return ((a ^ b) >= 0);
|
| +}
|
| +
|
| +
|
| +uint32_t get_fcsr_condition_bit(uint32_t cc) {
|
| + if (cc == 0) {
|
| + return 23;
|
| + } else {
|
| + return 24 + cc;
|
| + }
|
| }
|
|
|
|
|
| @@ -63,15 +67,18 @@ bool HaveSameSign(int32_t a, int32_t b) {
|
| // Library does not provide vsscanf.
|
| #define SScanF sscanf // NOLINT
|
|
|
| -// The Debugger class is used by the simulator while debugging simulated MIPS
|
| +// The MipsDebugger class is used by the simulator while debugging simulated
|
| // code.
|
| -class Debugger {
|
| +class MipsDebugger {
|
| public:
|
| - explicit Debugger(Simulator* sim);
|
| - ~Debugger();
|
| + explicit MipsDebugger(Simulator* sim);
|
| + ~MipsDebugger();
|
|
|
| void Stop(Instruction* instr);
|
| void Debug();
|
| + // Print all registers with a nice formatting.
|
| + void PrintAllRegs();
|
| + void PrintAllRegsIncludingFPU();
|
|
|
| private:
|
| // We set the breakpoint code to 0xfffff to easily recognize it.
|
| @@ -81,6 +88,10 @@ class Debugger {
|
| Simulator* sim_;
|
|
|
| int32_t GetRegisterValue(int regnum);
|
| + int32_t GetFPURegisterValueInt(int regnum);
|
| + int64_t GetFPURegisterValueLong(int regnum);
|
| + float GetFPURegisterValueFloat(int regnum);
|
| + double GetFPURegisterValueDouble(int regnum);
|
| bool GetValue(const char* desc, int32_t* value);
|
|
|
| // Set or delete a breakpoint. Returns true if successful.
|
| @@ -91,18 +102,17 @@ class Debugger {
|
| // execution to skip past breakpoints when run from the debugger.
|
| void UndoBreakpoints();
|
| void RedoBreakpoints();
|
| -
|
| - // Print all registers with a nice formatting.
|
| - void PrintAllRegs();
|
| };
|
|
|
| -Debugger::Debugger(Simulator* sim) {
|
| +MipsDebugger::MipsDebugger(Simulator* sim) {
|
| sim_ = sim;
|
| }
|
|
|
| -Debugger::~Debugger() {
|
| +
|
| +MipsDebugger::~MipsDebugger() {
|
| }
|
|
|
| +
|
| #ifdef GENERATED_CODE_COVERAGE
|
| static FILE* coverage_log = NULL;
|
|
|
| @@ -115,7 +125,7 @@ static void InitializeCoverage() {
|
| }
|
|
|
|
|
| -void Debugger::Stop(Instruction* instr) {
|
| +void MipsDebugger::Stop(Instruction* instr) {
|
| UNIMPLEMENTED_MIPS();
|
| char* str = reinterpret_cast<char*>(instr->InstructionBits());
|
| if (strlen(str) > 0) {
|
| @@ -125,9 +135,10 @@ void Debugger::Stop(Instruction* instr) {
|
| }
|
| instr->SetInstructionBits(0x0); // Overwrite with nop.
|
| }
|
| - sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize);
|
| + sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
|
| }
|
|
|
| +
|
| #else // ndef GENERATED_CODE_COVERAGE
|
|
|
| #define UNSUPPORTED() printf("Unsupported instruction.\n");
|
| @@ -135,16 +146,16 @@ void Debugger::Stop(Instruction* instr) {
|
| static void InitializeCoverage() {}
|
|
|
|
|
| -void Debugger::Stop(Instruction* instr) {
|
| +void MipsDebugger::Stop(Instruction* instr) {
|
| const char* str = reinterpret_cast<char*>(instr->InstructionBits());
|
| PrintF("Simulator hit %s\n", str);
|
| - sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize);
|
| + sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
|
| Debug();
|
| }
|
| #endif // GENERATED_CODE_COVERAGE
|
|
|
|
|
| -int32_t Debugger::GetRegisterValue(int regnum) {
|
| +int32_t MipsDebugger::GetRegisterValue(int regnum) {
|
| if (regnum == kNumSimuRegisters) {
|
| return sim_->get_pc();
|
| } else {
|
| @@ -153,11 +164,54 @@ int32_t Debugger::GetRegisterValue(int regnum) {
|
| }
|
|
|
|
|
| -bool Debugger::GetValue(const char* desc, int32_t* value) {
|
| +int32_t MipsDebugger::GetFPURegisterValueInt(int regnum) {
|
| + if (regnum == kNumFPURegisters) {
|
| + return sim_->get_pc();
|
| + } else {
|
| + return sim_->get_fpu_register(regnum);
|
| + }
|
| +}
|
| +
|
| +
|
| +int64_t MipsDebugger::GetFPURegisterValueLong(int regnum) {
|
| + if (regnum == kNumFPURegisters) {
|
| + return sim_->get_pc();
|
| + } else {
|
| + return sim_->get_fpu_register_long(regnum);
|
| + }
|
| +}
|
| +
|
| +
|
| +float MipsDebugger::GetFPURegisterValueFloat(int regnum) {
|
| + if (regnum == kNumFPURegisters) {
|
| + return sim_->get_pc();
|
| + } else {
|
| + return sim_->get_fpu_register_float(regnum);
|
| + }
|
| +}
|
| +
|
| +
|
| +double MipsDebugger::GetFPURegisterValueDouble(int regnum) {
|
| + if (regnum == kNumFPURegisters) {
|
| + return sim_->get_pc();
|
| + } else {
|
| + return sim_->get_fpu_register_double(regnum);
|
| + }
|
| +}
|
| +
|
| +
|
| +bool MipsDebugger::GetValue(const char* desc, int32_t* value) {
|
| int regnum = Registers::Number(desc);
|
| + int fpuregnum = FPURegisters::Number(desc);
|
| +
|
| if (regnum != kInvalidRegister) {
|
| *value = GetRegisterValue(regnum);
|
| return true;
|
| + } else if (fpuregnum != kInvalidFPURegister) {
|
| + *value = GetFPURegisterValueInt(fpuregnum);
|
| + return true;
|
| + } else if (strncmp(desc, "0x", 2) == 0) {
|
| + return SScanF(desc, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
|
| } else {
|
| return SScanF(desc, "%i", value) == 1;
|
| }
|
| @@ -165,7 +219,7 @@ bool Debugger::GetValue(const char* desc, int32_t* value) {
|
| }
|
|
|
|
|
| -bool Debugger::SetBreakpoint(Instruction* breakpc) {
|
| +bool MipsDebugger::SetBreakpoint(Instruction* breakpc) {
|
| // Check if a breakpoint can be set. If not return without any side-effects.
|
| if (sim_->break_pc_ != NULL) {
|
| return false;
|
| @@ -180,7 +234,7 @@ bool Debugger::SetBreakpoint(Instruction* breakpc) {
|
| }
|
|
|
|
|
| -bool Debugger::DeleteBreakpoint(Instruction* breakpc) {
|
| +bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) {
|
| if (sim_->break_pc_ != NULL) {
|
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
|
| }
|
| @@ -191,20 +245,21 @@ bool Debugger::DeleteBreakpoint(Instruction* breakpc) {
|
| }
|
|
|
|
|
| -void Debugger::UndoBreakpoints() {
|
| +void MipsDebugger::UndoBreakpoints() {
|
| if (sim_->break_pc_ != NULL) {
|
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
|
| }
|
| }
|
|
|
|
|
| -void Debugger::RedoBreakpoints() {
|
| +void MipsDebugger::RedoBreakpoints() {
|
| if (sim_->break_pc_ != NULL) {
|
| sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
|
| }
|
| }
|
|
|
| -void Debugger::PrintAllRegs() {
|
| +
|
| +void MipsDebugger::PrintAllRegs() {
|
| #define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n)
|
|
|
| PrintF("\n");
|
| @@ -237,10 +292,45 @@ void Debugger::PrintAllRegs() {
|
| // pc
|
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
|
| REG_INFO(31), REG_INFO(34));
|
| +
|
| +#undef REG_INFO
|
| +#undef FPU_REG_INFO
|
| +}
|
| +
|
| +
|
| +void MipsDebugger::PrintAllRegsIncludingFPU() {
|
| +#define FPU_REG_INFO(n) FPURegisters::Name(n), FPURegisters::Name(n+1), \
|
| + GetFPURegisterValueInt(n+1), \
|
| + GetFPURegisterValueInt(n), \
|
| + GetFPURegisterValueDouble(n)
|
| +
|
| + PrintAllRegs();
|
| +
|
| + PrintF("\n\n");
|
| + // f0, f1, f2, ... f31
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(0) );
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(2) );
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(4) );
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(6) );
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(8) );
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(10));
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(12));
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(14));
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(16));
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(18));
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(20));
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(22));
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(24));
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(26));
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(28));
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(30));
|
| +
|
| #undef REG_INFO
|
| +#undef FPU_REG_INFO
|
| }
|
|
|
| -void Debugger::Debug() {
|
| +
|
| +void MipsDebugger::Debug() {
|
| intptr_t last_pc = -1;
|
| bool done = false;
|
|
|
| @@ -253,6 +343,7 @@ void Debugger::Debug() {
|
| char cmd[COMMAND_SIZE + 1];
|
| char arg1[ARG_SIZE + 1];
|
| char arg2[ARG_SIZE + 1];
|
| + char* argv[3] = { cmd, arg1, arg2 };
|
|
|
| // make sure to have a proper terminating character if reaching the limit
|
| cmd[COMMAND_SIZE] = 0;
|
| @@ -280,19 +371,21 @@ void Debugger::Debug() {
|
| } else {
|
| // Use sscanf to parse the individual parts of the command line. At the
|
| // moment no command expects more than two parameters.
|
| - int args = SScanF(line,
|
| + int argc = SScanF(line,
|
| "%" XSTR(COMMAND_SIZE) "s "
|
| "%" XSTR(ARG_SIZE) "s "
|
| "%" XSTR(ARG_SIZE) "s",
|
| cmd, arg1, arg2);
|
| if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
|
| - if (!(reinterpret_cast<Instruction*>(sim_->get_pc())->IsTrap())) {
|
| + Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc());
|
| + if (!(instr->IsTrap()) ||
|
| + instr->InstructionBits() == rtCallRedirInstr) {
|
| sim_->InstructionDecode(
|
| - reinterpret_cast<Instruction*>(sim_->get_pc()));
|
| + reinterpret_cast<Instruction*>(sim_->get_pc()));
|
| } else {
|
| // Allow si to jump over generated breakpoints.
|
| PrintF("/!\\ Jumping over generated breakpoint.\n");
|
| - sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize);
|
| + sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
|
| }
|
| } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
|
| // Execute the one instruction we broke at with breakpoints disabled.
|
| @@ -300,23 +393,65 @@ void Debugger::Debug() {
|
| // Leave the debugger shell.
|
| done = true;
|
| } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
|
| - if (args == 2) {
|
| + if (argc == 2) {
|
| int32_t value;
|
| + float fvalue;
|
| if (strcmp(arg1, "all") == 0) {
|
| PrintAllRegs();
|
| + } else if (strcmp(arg1, "allf") == 0) {
|
| + PrintAllRegsIncludingFPU();
|
| } else {
|
| - if (GetValue(arg1, &value)) {
|
| + int regnum = Registers::Number(arg1);
|
| + int fpuregnum = FPURegisters::Number(arg1);
|
| +
|
| + if (regnum != kInvalidRegister) {
|
| + value = GetRegisterValue(regnum);
|
| PrintF("%s: 0x%08x %d \n", arg1, value, value);
|
| + } else if (fpuregnum != kInvalidFPURegister) {
|
| + if (fpuregnum % 2 == 1) {
|
| + value = GetFPURegisterValueInt(fpuregnum);
|
| + fvalue = GetFPURegisterValueFloat(fpuregnum);
|
| + PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue);
|
| + } else {
|
| + double dfvalue;
|
| + int32_t lvalue1 = GetFPURegisterValueInt(fpuregnum);
|
| + int32_t lvalue2 = GetFPURegisterValueInt(fpuregnum + 1);
|
| + dfvalue = GetFPURegisterValueDouble(fpuregnum);
|
| + PrintF("%3s,%3s: 0x%08x%08x %16.4e\n",
|
| + FPURegisters::Name(fpuregnum+1),
|
| + FPURegisters::Name(fpuregnum),
|
| + lvalue1,
|
| + lvalue2,
|
| + dfvalue);
|
| + }
|
| } else {
|
| PrintF("%s unrecognized\n", arg1);
|
| }
|
| }
|
| } else {
|
| - PrintF("print <register>\n");
|
| + if (argc == 3) {
|
| + if (strcmp(arg2, "single") == 0) {
|
| + int32_t value;
|
| + float fvalue;
|
| + int fpuregnum = FPURegisters::Number(arg1);
|
| +
|
| + if (fpuregnum != kInvalidFPURegister) {
|
| + value = GetFPURegisterValueInt(fpuregnum);
|
| + fvalue = GetFPURegisterValueFloat(fpuregnum);
|
| + PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue);
|
| + } else {
|
| + PrintF("%s unrecognized\n", arg1);
|
| + }
|
| + } else {
|
| + PrintF("print <fpu register> single\n");
|
| + }
|
| + } else {
|
| + PrintF("print <register> or print <fpu register> single\n");
|
| + }
|
| }
|
| } else if ((strcmp(cmd, "po") == 0)
|
| || (strcmp(cmd, "printobject") == 0)) {
|
| - if (args == 2) {
|
| + if (argc == 2) {
|
| int32_t value;
|
| if (GetValue(arg1, &value)) {
|
| Object* obj = reinterpret_cast<Object*>(value);
|
| @@ -333,6 +468,39 @@ void Debugger::Debug() {
|
| } else {
|
| PrintF("printobject <value>\n");
|
| }
|
| + } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
|
| + int32_t* cur = NULL;
|
| + int32_t* end = NULL;
|
| + int next_arg = 1;
|
| +
|
| + if (strcmp(cmd, "stack") == 0) {
|
| + cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
|
| + } else { // "mem"
|
| + int32_t value;
|
| + if (!GetValue(arg1, &value)) {
|
| + PrintF("%s unrecognized\n", arg1);
|
| + continue;
|
| + }
|
| + cur = reinterpret_cast<int32_t*>(value);
|
| + next_arg++;
|
| + }
|
| +
|
| + int32_t words;
|
| + if (argc == next_arg) {
|
| + words = 10;
|
| + } else if (argc == next_arg + 1) {
|
| + if (!GetValue(argv[next_arg], &words)) {
|
| + words = 10;
|
| + }
|
| + }
|
| + end = cur + words;
|
| +
|
| + while (cur < end) {
|
| + PrintF(" 0x%08x: 0x%08x %10d\n",
|
| + reinterpret_cast<intptr_t>(cur), *cur, *cur);
|
| + cur++;
|
| + }
|
| +
|
| } else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0)) {
|
| disasm::NameConverter converter;
|
| disasm::Disassembler dasm(converter);
|
| @@ -342,36 +510,37 @@ void Debugger::Debug() {
|
| byte_* cur = NULL;
|
| byte_* end = NULL;
|
|
|
| - if (args == 1) {
|
| + if (argc == 1) {
|
| cur = reinterpret_cast<byte_*>(sim_->get_pc());
|
| - end = cur + (10 * Instruction::kInstructionSize);
|
| - } else if (args == 2) {
|
| + end = cur + (10 * Instruction::kInstrSize);
|
| + } else if (argc == 2) {
|
| int32_t value;
|
| if (GetValue(arg1, &value)) {
|
| cur = reinterpret_cast<byte_*>(value);
|
| // no length parameter passed, assume 10 instructions
|
| - end = cur + (10 * Instruction::kInstructionSize);
|
| + end = cur + (10 * Instruction::kInstrSize);
|
| }
|
| } else {
|
| int32_t value1;
|
| int32_t value2;
|
| if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
|
| cur = reinterpret_cast<byte_*>(value1);
|
| - end = cur + (value2 * Instruction::kInstructionSize);
|
| + end = cur + (value2 * Instruction::kInstrSize);
|
| }
|
| }
|
|
|
| while (cur < end) {
|
| dasm.InstructionDecode(buffer, cur);
|
| - PrintF(" 0x%08x %s\n", cur, buffer.start());
|
| - cur += Instruction::kInstructionSize;
|
| + PrintF(" 0x%08x %s\n",
|
| + reinterpret_cast<intptr_t>(cur), buffer.start());
|
| + cur += Instruction::kInstrSize;
|
| }
|
| } else if (strcmp(cmd, "gdb") == 0) {
|
| PrintF("relinquishing control to gdb\n");
|
| v8::internal::OS::DebugBreak();
|
| PrintF("regaining control from gdb\n");
|
| } else if (strcmp(cmd, "break") == 0) {
|
| - if (args == 2) {
|
| + if (argc == 2) {
|
| int32_t value;
|
| if (GetValue(arg1, &value)) {
|
| if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
|
| @@ -404,29 +573,30 @@ void Debugger::Debug() {
|
| byte_* cur = NULL;
|
| byte_* end = NULL;
|
|
|
| - if (args == 1) {
|
| + if (argc == 1) {
|
| cur = reinterpret_cast<byte_*>(sim_->get_pc());
|
| - end = cur + (10 * Instruction::kInstructionSize);
|
| - } else if (args == 2) {
|
| + end = cur + (10 * Instruction::kInstrSize);
|
| + } else if (argc == 2) {
|
| int32_t value;
|
| if (GetValue(arg1, &value)) {
|
| cur = reinterpret_cast<byte_*>(value);
|
| // no length parameter passed, assume 10 instructions
|
| - end = cur + (10 * Instruction::kInstructionSize);
|
| + end = cur + (10 * Instruction::kInstrSize);
|
| }
|
| } else {
|
| int32_t value1;
|
| int32_t value2;
|
| if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
|
| cur = reinterpret_cast<byte_*>(value1);
|
| - end = cur + (value2 * Instruction::kInstructionSize);
|
| + end = cur + (value2 * Instruction::kInstrSize);
|
| }
|
| }
|
|
|
| while (cur < end) {
|
| dasm.InstructionDecode(buffer, cur);
|
| - PrintF(" 0x%08x %s\n", cur, buffer.start());
|
| - cur += Instruction::kInstructionSize;
|
| + PrintF(" 0x%08x %s\n",
|
| + reinterpret_cast<intptr_t>(cur), buffer.start());
|
| + cur += Instruction::kInstrSize;
|
| }
|
| } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
|
| PrintF("cont\n");
|
| @@ -438,6 +608,10 @@ void Debugger::Debug() {
|
| PrintF(" use register name 'all' to print all registers\n");
|
| PrintF("printobject <register>\n");
|
| PrintF(" print an object from a register (alias 'po')\n");
|
| + PrintF("stack [<words>]\n");
|
| + PrintF(" dump stack content, default dump 10 words)\n");
|
| + PrintF("mem <address> [<words>]\n");
|
| + PrintF(" dump memory content, default dump 10 words)\n");
|
| PrintF("flags\n");
|
| PrintF(" print flags\n");
|
| PrintF("disasm [<instructions>]\n");
|
| @@ -471,29 +645,120 @@ void Debugger::Debug() {
|
| }
|
|
|
|
|
| -// Create one simulator per thread and keep it in thread local storage.
|
| -static v8::internal::Thread::LocalStorageKey simulator_key;
|
| +static bool ICacheMatch(void* one, void* two) {
|
| + ASSERT((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
|
| + ASSERT((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
|
| + return one == two;
|
| +}
|
| +
|
|
|
| +static uint32_t ICacheHash(void* key) {
|
| + return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
|
| +}
|
|
|
| -bool Simulator::initialized_ = false;
|
| +
|
| +static bool AllOnOnePage(uintptr_t start, int size) {
|
| + intptr_t start_page = (start & ~CachePage::kPageMask);
|
| + intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
|
| + return start_page == end_page;
|
| +}
|
| +
|
| +
|
| +void Simulator::FlushICache(v8::internal::HashMap* i_cache,
|
| + void* start_addr,
|
| + size_t size) {
|
| + intptr_t start = reinterpret_cast<intptr_t>(start_addr);
|
| + int intra_line = (start & CachePage::kLineMask);
|
| + start -= intra_line;
|
| + size += intra_line;
|
| + size = ((size - 1) | CachePage::kLineMask) + 1;
|
| + int offset = (start & CachePage::kPageMask);
|
| + while (!AllOnOnePage(start, size - 1)) {
|
| + int bytes_to_flush = CachePage::kPageSize - offset;
|
| + FlushOnePage(i_cache, start, bytes_to_flush);
|
| + start += bytes_to_flush;
|
| + size -= bytes_to_flush;
|
| + ASSERT_EQ(0, start & CachePage::kPageMask);
|
| + offset = 0;
|
| + }
|
| + if (size != 0) {
|
| + FlushOnePage(i_cache, start, size);
|
| + }
|
| +}
|
| +
|
| +
|
| +CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
|
| + v8::internal::HashMap::Entry* entry = i_cache->Lookup(page,
|
| + ICacheHash(page),
|
| + true);
|
| + if (entry->value == NULL) {
|
| + CachePage* new_page = new CachePage();
|
| + entry->value = new_page;
|
| + }
|
| + return reinterpret_cast<CachePage*>(entry->value);
|
| +}
|
| +
|
| +
|
| +// Flush from start up to and not including start + size.
|
| +void Simulator::FlushOnePage(v8::internal::HashMap* i_cache,
|
| + intptr_t start,
|
| + int size) {
|
| + ASSERT(size <= CachePage::kPageSize);
|
| + ASSERT(AllOnOnePage(start, size - 1));
|
| + ASSERT((start & CachePage::kLineMask) == 0);
|
| + ASSERT((size & CachePage::kLineMask) == 0);
|
| + void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
|
| + int offset = (start & CachePage::kPageMask);
|
| + CachePage* cache_page = GetCachePage(i_cache, page);
|
| + char* valid_bytemap = cache_page->ValidityByte(offset);
|
| + memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
|
| +}
|
| +
|
| +
|
| +void Simulator::CheckICache(v8::internal::HashMap* i_cache,
|
| + Instruction* instr) {
|
| + intptr_t address = reinterpret_cast<intptr_t>(instr);
|
| + void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
|
| + void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
|
| + int offset = (address & CachePage::kPageMask);
|
| + CachePage* cache_page = GetCachePage(i_cache, page);
|
| + char* cache_valid_byte = cache_page->ValidityByte(offset);
|
| + bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
|
| + char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
|
| + if (cache_hit) {
|
| + // Check that the data in memory matches the contents of the I-cache.
|
| + CHECK(memcmp(reinterpret_cast<void*>(instr),
|
| + cache_page->CachedData(offset),
|
| + Instruction::kInstrSize) == 0);
|
| + } else {
|
| + // Cache miss. Load memory into the cache.
|
| + memcpy(cached_line, line, CachePage::kLineLength);
|
| + *cache_valid_byte = CachePage::LINE_VALID;
|
| + }
|
| +}
|
|
|
|
|
| void Simulator::Initialize() {
|
| - if (initialized_) return;
|
| - simulator_key = v8::internal::Thread::CreateThreadLocalKey();
|
| - initialized_ = true;
|
| + if (Isolate::Current()->simulator_initialized()) return;
|
| + Isolate::Current()->set_simulator_initialized(true);
|
| ::v8::internal::ExternalReference::set_redirector(&RedirectExternalReference);
|
| }
|
|
|
|
|
| -Simulator::Simulator() {
|
| +Simulator::Simulator() : isolate_(Isolate::Current()) {
|
| + i_cache_ = isolate_->simulator_i_cache();
|
| + if (i_cache_ == NULL) {
|
| + i_cache_ = new v8::internal::HashMap(&ICacheMatch);
|
| + isolate_->set_simulator_i_cache(i_cache_);
|
| + }
|
| Initialize();
|
| // Setup simulator support first. Some of this information is needed to
|
| // setup the architecture state.
|
| - size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack
|
| - stack_ = reinterpret_cast<char*>(malloc(stack_size));
|
| + stack_size_ = 1 * 1024*1024; // allocate 1MB for stack
|
| + stack_ = reinterpret_cast<char*>(malloc(stack_size_));
|
| pc_modified_ = false;
|
| icount_ = 0;
|
| + break_count_ = 0;
|
| break_pc_ = NULL;
|
| break_instr_ = 0;
|
|
|
| @@ -502,16 +767,23 @@ Simulator::Simulator() {
|
| for (int i = 0; i < kNumSimuRegisters; i++) {
|
| registers_[i] = 0;
|
| }
|
| + for (int i = 0; i < kNumFPURegisters; i++) {
|
| + FPUregisters_[i] = 0;
|
| + }
|
| + FCSR_ = 0;
|
|
|
| // The sp is initialized to point to the bottom (high address) of the
|
| // allocated stack area. To be safe in potential stack underflows we leave
|
| // some buffer below.
|
| - registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64;
|
| + registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size_ - 64;
|
| // The ra and pc are initialized to a known bad value that will cause an
|
| // access violation if the simulator ever tries to execute it.
|
| registers_[pc] = bad_ra;
|
| registers_[ra] = bad_ra;
|
| InitializeCoverage();
|
| + for (int i = 0; i < kNumExceptions; i++) {
|
| + exceptions[i] = 0;
|
| + }
|
| }
|
|
|
|
|
| @@ -524,12 +796,18 @@ Simulator::Simulator() {
|
| // offset from the swi instruction so the simulator knows what to call.
|
| class Redirection {
|
| public:
|
| - Redirection(void* external_function, bool fp_return)
|
| + Redirection(void* external_function, ExternalReference::Type type)
|
| : external_function_(external_function),
|
| swi_instruction_(rtCallRedirInstr),
|
| - fp_return_(fp_return),
|
| - next_(list_) {
|
| - list_ = this;
|
| + type_(type),
|
| + next_(NULL) {
|
| + Isolate* isolate = Isolate::Current();
|
| + next_ = isolate->simulator_redirection();
|
| + Simulator::current(isolate)->
|
| + FlushICache(isolate->simulator_i_cache(),
|
| + reinterpret_cast<void*>(&swi_instruction_),
|
| + Instruction::kInstrSize);
|
| + isolate->set_simulator_redirection(this);
|
| }
|
|
|
| void* address_of_swi_instruction() {
|
| @@ -537,14 +815,16 @@ class Redirection {
|
| }
|
|
|
| void* external_function() { return external_function_; }
|
| - bool fp_return() { return fp_return_; }
|
| + ExternalReference::Type type() { return type_; }
|
|
|
| - static Redirection* Get(void* external_function, bool fp_return) {
|
| - Redirection* current;
|
| - for (current = list_; current != NULL; current = current->next_) {
|
| + static Redirection* Get(void* external_function,
|
| + ExternalReference::Type type) {
|
| + Isolate* isolate = Isolate::Current();
|
| + Redirection* current = isolate->simulator_redirection();
|
| + for (; current != NULL; current = current->next_) {
|
| if (current->external_function_ == external_function) return current;
|
| }
|
| - return new Redirection(external_function, fp_return);
|
| + return new Redirection(external_function, type);
|
| }
|
|
|
| static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
|
| @@ -557,31 +837,33 @@ class Redirection {
|
| private:
|
| void* external_function_;
|
| uint32_t swi_instruction_;
|
| - bool fp_return_;
|
| + ExternalReference::Type type_;
|
| Redirection* next_;
|
| - static Redirection* list_;
|
| };
|
|
|
|
|
| -Redirection* Redirection::list_ = NULL;
|
| -
|
| -
|
| void* Simulator::RedirectExternalReference(void* external_function,
|
| - bool fp_return) {
|
| - Redirection* redirection = Redirection::Get(external_function, fp_return);
|
| + ExternalReference::Type type) {
|
| + Redirection* redirection = Redirection::Get(external_function, type);
|
| return redirection->address_of_swi_instruction();
|
| }
|
|
|
|
|
| // Get the active Simulator for the current thread.
|
| -Simulator* Simulator::current() {
|
| - Initialize();
|
| - Simulator* sim = reinterpret_cast<Simulator*>(
|
| - v8::internal::Thread::GetThreadLocal(simulator_key));
|
| +Simulator* Simulator::current(Isolate* isolate) {
|
| + v8::internal::Isolate::PerIsolateThreadData* isolate_data =
|
| + Isolate::CurrentPerIsolateThreadData();
|
| + if (isolate_data == NULL) {
|
| + Isolate::EnterDefaultIsolate();
|
| + isolate_data = Isolate::CurrentPerIsolateThreadData();
|
| + }
|
| + ASSERT(isolate_data != NULL);
|
| +
|
| + Simulator* sim = isolate_data->simulator();
|
| if (sim == NULL) {
|
| - // TODO(146): delete the simulator object when a thread goes away.
|
| + // TODO(146): delete the simulator object when a thread/isolate goes away.
|
| sim = new Simulator();
|
| - v8::internal::Thread::SetThreadLocal(simulator_key, sim);
|
| + isolate_data->set_simulator(sim);
|
| }
|
| return sim;
|
| }
|
| @@ -599,14 +881,22 @@ void Simulator::set_register(int reg, int32_t value) {
|
| registers_[reg] = (reg == 0) ? 0 : value;
|
| }
|
|
|
| +
|
| void Simulator::set_fpu_register(int fpureg, int32_t value) {
|
| ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
|
| FPUregisters_[fpureg] = value;
|
| }
|
|
|
| +
|
| +void Simulator::set_fpu_register_float(int fpureg, float value) {
|
| + ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
|
| + *BitCast<float*>(&FPUregisters_[fpureg]) = value;
|
| +}
|
| +
|
| +
|
| void Simulator::set_fpu_register_double(int fpureg, double value) {
|
| ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
|
| - *v8i::BitCast<double*>(&FPUregisters_[fpureg]) = value;
|
| + *BitCast<double*>(&FPUregisters_[fpureg]) = value;
|
| }
|
|
|
|
|
| @@ -620,22 +910,75 @@ int32_t Simulator::get_register(int reg) const {
|
| return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0);
|
| }
|
|
|
| +
|
| int32_t Simulator::get_fpu_register(int fpureg) const {
|
| ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
|
| return FPUregisters_[fpureg];
|
| }
|
|
|
| +
|
| +int64_t Simulator::get_fpu_register_long(int fpureg) const {
|
| + ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
|
| + return *BitCast<int64_t*>(
|
| + const_cast<int32_t*>(&FPUregisters_[fpureg]));
|
| +}
|
| +
|
| +
|
| +float Simulator::get_fpu_register_float(int fpureg) const {
|
| + ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
|
| + return *BitCast<float*>(
|
| + const_cast<int32_t*>(&FPUregisters_[fpureg]));
|
| +}
|
| +
|
| +
|
| double Simulator::get_fpu_register_double(int fpureg) const {
|
| ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
|
| - return *v8i::BitCast<double*>(const_cast<int32_t*>(&FPUregisters_[fpureg]));
|
| + return *BitCast<double*>(const_cast<int32_t*>(&FPUregisters_[fpureg]));
|
| +}
|
| +
|
| +
|
| +// Helper functions for setting and testing the FCSR register's bits.
|
| +void Simulator::set_fcsr_bit(uint32_t cc, bool value) {
|
| + if (value) {
|
| + FCSR_ |= (1 << cc);
|
| + } else {
|
| + FCSR_ &= ~(1 << cc);
|
| + }
|
| +}
|
| +
|
| +
|
| +bool Simulator::test_fcsr_bit(uint32_t cc) {
|
| + return FCSR_ & (1 << cc);
|
| }
|
|
|
| +
|
| +// Sets the rounding error codes in FCSR based on the result of the rounding.
|
| +// Returns true if the operation was invalid.
|
| +bool Simulator::set_fcsr_round_error(double original, double rounded) {
|
| + if (!isfinite(original) ||
|
| + rounded > LONG_MAX ||
|
| + rounded < LONG_MIN) {
|
| + set_fcsr_bit(6, true); // Invalid operation.
|
| + return true;
|
| + } else if (original != static_cast<double>(rounded)) {
|
| + set_fcsr_bit(2, true); // Inexact.
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +
|
| // Raw access to the PC register.
|
| void Simulator::set_pc(int32_t value) {
|
| pc_modified_ = true;
|
| registers_[pc] = value;
|
| }
|
|
|
| +
|
| +bool Simulator::has_bad_pc() const {
|
| + return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc));
|
| +}
|
| +
|
| +
|
| // Raw access to the PC register without the special adjustment when reading.
|
| int32_t Simulator::get_pc() const {
|
| return registers_[pc];
|
| @@ -651,24 +994,38 @@ int32_t Simulator::get_pc() const {
|
| // get the correct MIPS-like behaviour on unaligned accesses.
|
|
|
| int Simulator::ReadW(int32_t addr, Instruction* instr) {
|
| - if ((addr & v8i::kPointerAlignmentMask) == 0) {
|
| + if (addr >=0 && addr < 0x400) {
|
| + // this has to be a NULL-dereference
|
| + MipsDebugger dbg(this);
|
| + dbg.Debug();
|
| + }
|
| + if ((addr & kPointerAlignmentMask) == 0) {
|
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
|
| return *ptr;
|
| }
|
| - PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, instr);
|
| - OS::Abort();
|
| + PrintF("Unaligned read at 0x%08x, pc=%p\n", addr,
|
| + reinterpret_cast<void*>(instr));
|
| + MipsDebugger dbg(this);
|
| + dbg.Debug();
|
| return 0;
|
| }
|
|
|
|
|
| void Simulator::WriteW(int32_t addr, int value, Instruction* instr) {
|
| - if ((addr & v8i::kPointerAlignmentMask) == 0) {
|
| + if (addr >= 0 && addr < 0x400) {
|
| + // this has to be a NULL-dereference
|
| + MipsDebugger dbg(this);
|
| + dbg.Debug();
|
| + }
|
| + if ((addr & kPointerAlignmentMask) == 0) {
|
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
|
| *ptr = value;
|
| return;
|
| }
|
| - PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr);
|
| - OS::Abort();
|
| + PrintF("Unaligned write at 0x%08x, pc=%p\n", addr,
|
| + reinterpret_cast<void*>(instr));
|
| + MipsDebugger dbg(this);
|
| + dbg.Debug();
|
| }
|
|
|
|
|
| @@ -677,7 +1034,8 @@ double Simulator::ReadD(int32_t addr, Instruction* instr) {
|
| double* ptr = reinterpret_cast<double*>(addr);
|
| return *ptr;
|
| }
|
| - PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, instr);
|
| + PrintF("Unaligned (double) read at 0x%08x, pc=%p\n", addr,
|
| + reinterpret_cast<void*>(instr));
|
| OS::Abort();
|
| return 0;
|
| }
|
| @@ -689,7 +1047,8 @@ void Simulator::WriteD(int32_t addr, double value, Instruction* instr) {
|
| *ptr = value;
|
| return;
|
| }
|
| - PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr);
|
| + PrintF("Unaligned (double) write at 0x%08x, pc=%p\n", addr,
|
| + reinterpret_cast<void*>(instr));
|
| OS::Abort();
|
| }
|
|
|
| @@ -699,7 +1058,8 @@ uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) {
|
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
|
| return *ptr;
|
| }
|
| - PrintF("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, instr);
|
| + PrintF("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr,
|
| + reinterpret_cast<void*>(instr));
|
| OS::Abort();
|
| return 0;
|
| }
|
| @@ -710,7 +1070,8 @@ int16_t Simulator::ReadH(int32_t addr, Instruction* instr) {
|
| int16_t* ptr = reinterpret_cast<int16_t*>(addr);
|
| return *ptr;
|
| }
|
| - PrintF("Unaligned signed halfword read at 0x%08x, pc=%p\n", addr, instr);
|
| + PrintF("Unaligned signed halfword read at 0x%08x, pc=%p\n", addr,
|
| + reinterpret_cast<void*>(instr));
|
| OS::Abort();
|
| return 0;
|
| }
|
| @@ -722,7 +1083,8 @@ void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) {
|
| *ptr = value;
|
| return;
|
| }
|
| - PrintF("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, instr);
|
| + PrintF("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr,
|
| + reinterpret_cast<void*>(instr));
|
| OS::Abort();
|
| }
|
|
|
| @@ -733,7 +1095,8 @@ void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) {
|
| *ptr = value;
|
| return;
|
| }
|
| - PrintF("Unaligned halfword write at 0x%08x, pc=%p\n", addr, instr);
|
| + PrintF("Unaligned halfword write at 0x%08x, pc=%p\n", addr,
|
| + reinterpret_cast<void*>(instr));
|
| OS::Abort();
|
| }
|
|
|
| @@ -746,7 +1109,7 @@ uint32_t Simulator::ReadBU(int32_t addr) {
|
|
|
| int32_t Simulator::ReadB(int32_t addr) {
|
| int8_t* ptr = reinterpret_cast<int8_t*>(addr);
|
| - return ((*ptr << 24) >> 24) & 0xff;
|
| + return *ptr;
|
| }
|
|
|
|
|
| @@ -773,7 +1136,7 @@ uintptr_t Simulator::StackLimit() const {
|
| // Unsupported instructions use Format to print an error and stop execution.
|
| void Simulator::Format(Instruction* instr, const char* format) {
|
| PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n",
|
| - instr, format);
|
| + reinterpret_cast<intptr_t>(instr), format);
|
| UNIMPLEMENTED_MIPS();
|
| }
|
|
|
| @@ -782,75 +1145,140 @@ void Simulator::Format(Instruction* instr, const char* format) {
|
| // Note: To be able to return two values from some calls the code in runtime.cc
|
| // uses the ObjectPair which is essentially two 32-bit values stuffed into a
|
| // 64-bit value. With the code below we assume that all runtime calls return
|
| -// 64 bits of result. If they don't, the r1 result register contains a bogus
|
| +// 64 bits of result. If they don't, the v1 result register contains a bogus
|
| // value, which is fine because it is caller-saved.
|
| typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0,
|
| int32_t arg1,
|
| int32_t arg2,
|
| - int32_t arg3);
|
| -typedef double (*SimulatorRuntimeFPCall)(double fparg0,
|
| - double fparg1);
|
| -
|
| + int32_t arg3,
|
| + int32_t arg4,
|
| + int32_t arg5);
|
| +typedef double (*SimulatorRuntimeFPCall)(int32_t arg0,
|
| + int32_t arg1,
|
| + int32_t arg2,
|
| + int32_t arg3);
|
|
|
| // Software interrupt instructions are used by the simulator to call into the
|
| -// C-based V8 runtime.
|
| +// C-based V8 runtime. They are also used for debugging with simulator.
|
| void Simulator::SoftwareInterrupt(Instruction* instr) {
|
| + // There are several instructions that could get us here,
|
| + // the break_ instruction, or several variants of traps. All
|
| + // Are "SPECIAL" class opcode, and are distinuished by function.
|
| + int32_t func = instr->FunctionFieldRaw();
|
| + int32_t code = (func == BREAK) ? instr->Bits(25, 6) : -1;
|
| +
|
| // We first check if we met a call_rt_redirected.
|
| if (instr->InstructionBits() == rtCallRedirInstr) {
|
| + // Check if stack is aligned. Error if not aligned is reported below to
|
| + // include information on the function called.
|
| + bool stack_aligned =
|
| + (get_register(sp)
|
| + & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0;
|
| Redirection* redirection = Redirection::FromSwiInstruction(instr);
|
| int32_t arg0 = get_register(a0);
|
| int32_t arg1 = get_register(a1);
|
| int32_t arg2 = get_register(a2);
|
| int32_t arg3 = get_register(a3);
|
| - // fp args are (not always) in f12 and f14.
|
| - // See MIPS conventions for more details.
|
| - double fparg0 = get_fpu_register_double(f12);
|
| - double fparg1 = get_fpu_register_double(f14);
|
| + int32_t arg4 = 0;
|
| + int32_t arg5 = 0;
|
| +
|
| + // Need to check if sp is valid before assigning arg4, arg5.
|
| + // This is a fix for cctest test-api/CatchStackOverflow which causes
|
| + // the stack to overflow. For some reason arm doesn't need this
|
| + // stack check here.
|
| + int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
|
| + int32_t* stack = reinterpret_cast<int32_t*>(stack_);
|
| + if (stack_pointer >= stack && stack_pointer < stack + stack_size_) {
|
| + arg4 = stack_pointer[0];
|
| + arg5 = stack_pointer[1];
|
| + }
|
| // This is dodgy but it works because the C entry stubs are never moved.
|
| // See comment in codegen-arm.cc and bug 1242173.
|
| int32_t saved_ra = get_register(ra);
|
| - if (redirection->fp_return()) {
|
| - intptr_t external =
|
| - reinterpret_cast<intptr_t>(redirection->external_function());
|
| +
|
| + intptr_t external =
|
| + reinterpret_cast<int32_t>(redirection->external_function());
|
| +
|
| + // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware
|
| + // FPU, or gcc soft-float routines. Hardware FPU is simulated in this
|
| + // simulator. Soft-float has additional abstraction of ExternalReference,
|
| + // to support serialization. Finally, when simulated on x86 host, the
|
| + // x86 softfloat routines are used, and this Redirection infrastructure
|
| + // lets simulated-mips make calls into x86 C code.
|
| + // When doing that, the 'double' return type must be handled differently
|
| + // than the usual int64_t return. The data is returned in different
|
| + // registers and cannot be cast from one type to the other. However, the
|
| + // calling arguments are passed the same way in both cases.
|
| + if (redirection->type() == ExternalReference::FP_RETURN_CALL) {
|
| SimulatorRuntimeFPCall target =
|
| reinterpret_cast<SimulatorRuntimeFPCall>(external);
|
| - if (::v8::internal::FLAG_trace_sim) {
|
| - PrintF("Call to host function at %p with args %f, %f\n",
|
| - FUNCTION_ADDR(target), fparg0, fparg1);
|
| + if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
| + PrintF("Call to host function at %p with args %08x:%08x %08x:%08x",
|
| + FUNCTION_ADDR(target), arg0, arg1, arg2, arg3);
|
| + if (!stack_aligned) {
|
| + PrintF(" with unaligned stack %08x\n", get_register(sp));
|
| + }
|
| + PrintF("\n");
|
| }
|
| - double result = target(fparg0, fparg1);
|
| - set_fpu_register_double(f0, result);
|
| + double result = target(arg0, arg1, arg2, arg3);
|
| + // fp result -> registers v0 and v1.
|
| + int32_t gpreg_pair[2];
|
| + memcpy(&gpreg_pair[0], &result, 2 * sizeof(int32_t));
|
| + set_register(v0, gpreg_pair[0]);
|
| + set_register(v1, gpreg_pair[1]);
|
| + } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
|
| + PrintF("Mips does not yet support ExternalReference::DIRECT_API_CALL\n");
|
| + ASSERT(redirection->type() != ExternalReference::DIRECT_API_CALL);
|
| + } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
|
| + PrintF("Mips does not support ExternalReference::DIRECT_GETTER_CALL\n");
|
| + ASSERT(redirection->type() != ExternalReference::DIRECT_GETTER_CALL);
|
| } else {
|
| - intptr_t external =
|
| - reinterpret_cast<int32_t>(redirection->external_function());
|
| + // Builtin call.
|
| + ASSERT(redirection->type() == ExternalReference::BUILTIN_CALL);
|
| SimulatorRuntimeCall target =
|
| reinterpret_cast<SimulatorRuntimeCall>(external);
|
| - if (::v8::internal::FLAG_trace_sim) {
|
| + if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
| PrintF(
|
| - "Call to host function at %p with args %08x, %08x, %08x, %08x\n",
|
| + "Call to host function at %p: %08x, %08x, %08x, %08x, %08x, %08x",
|
| FUNCTION_ADDR(target),
|
| arg0,
|
| arg1,
|
| arg2,
|
| - arg3);
|
| - }
|
| - int64_t result = target(arg0, arg1, arg2, arg3);
|
| - int32_t lo_res = static_cast<int32_t>(result);
|
| - int32_t hi_res = static_cast<int32_t>(result >> 32);
|
| - if (::v8::internal::FLAG_trace_sim) {
|
| - PrintF("Returned %08x\n", lo_res);
|
| + arg3,
|
| + arg4,
|
| + arg5);
|
| + if (!stack_aligned) {
|
| + PrintF(" with unaligned stack %08x\n", get_register(sp));
|
| + }
|
| + PrintF("\n");
|
| }
|
| - set_register(v0, lo_res);
|
| - set_register(v1, hi_res);
|
| +
|
| + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
|
| + set_register(v0, static_cast<int32_t>(result));
|
| + set_register(v1, static_cast<int32_t>(result >> 32));
|
| + }
|
| + if (::v8::internal::FLAG_trace_sim) {
|
| + PrintF("Returned %08x : %08x\n", get_register(v1), get_register(v0));
|
| }
|
| set_register(ra, saved_ra);
|
| set_pc(get_register(ra));
|
| +
|
| + } else if (func == BREAK && code >= 0 && code < 16) {
|
| + // First 16 break_ codes interpreted as debug markers.
|
| + MipsDebugger dbg(this);
|
| + ++break_count_;
|
| + PrintF("\n---- break %d marker: %3d (instr count: %8d) ----------"
|
| + "----------------------------------",
|
| + code, break_count_, icount_);
|
| + dbg.PrintAllRegs(); // Print registers and continue running.
|
| } else {
|
| - Debugger dbg(this);
|
| + // All remaining break_ codes, and all traps are handled here.
|
| + MipsDebugger dbg(this);
|
| dbg.Debug();
|
| }
|
| }
|
|
|
| +
|
| void Simulator::SignalExceptions() {
|
| for (int i = 1; i < kNumExceptions; i++) {
|
| if (exceptions[i] != 0) {
|
| @@ -859,51 +1287,52 @@ void Simulator::SignalExceptions() {
|
| }
|
| }
|
|
|
| -// Handle execution based on instruction types.
|
| -void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| - // Instruction fields
|
| - Opcode op = instr->OpcodeFieldRaw();
|
| - int32_t rs_reg = instr->RsField();
|
| - int32_t rs = get_register(rs_reg);
|
| - uint32_t rs_u = static_cast<uint32_t>(rs);
|
| - int32_t rt_reg = instr->RtField();
|
| - int32_t rt = get_register(rt_reg);
|
| - uint32_t rt_u = static_cast<uint32_t>(rt);
|
| - int32_t rd_reg = instr->RdField();
|
| - uint32_t sa = instr->SaField();
|
| -
|
| - int32_t fs_reg= instr->FsField();
|
|
|
| - // ALU output
|
| - // It should not be used as is. Instructions using it should always initialize
|
| - // it first.
|
| - int32_t alu_out = 0x12345678;
|
| - // Output or temporary for floating point.
|
| - double fp_out = 0.0;
|
| +// Handle execution based on instruction types.
|
|
|
| - // For break and trap instructions.
|
| - bool do_interrupt = false;
|
| +void Simulator::ConfigureTypeRegister(Instruction* instr,
|
| + int32_t& alu_out,
|
| + int64_t& i64hilo,
|
| + uint64_t& u64hilo,
|
| + int32_t& next_pc,
|
| + bool& do_interrupt) {
|
| + // Every local variable declared here needs to be const.
|
| + // This is to make sure that changed values are sent back to
|
| + // DecodeTypeRegister correctly.
|
| +
|
| + // Instruction fields.
|
| + const Opcode op = instr->OpcodeFieldRaw();
|
| + const int32_t rs_reg = instr->RsValue();
|
| + const int32_t rs = get_register(rs_reg);
|
| + const uint32_t rs_u = static_cast<uint32_t>(rs);
|
| + const int32_t rt_reg = instr->RtValue();
|
| + const int32_t rt = get_register(rt_reg);
|
| + const uint32_t rt_u = static_cast<uint32_t>(rt);
|
| + const int32_t rd_reg = instr->RdValue();
|
| + const uint32_t sa = instr->SaValue();
|
| +
|
| + const int32_t fs_reg = instr->FsValue();
|
|
|
| - // For jr and jalr
|
| - // Get current pc.
|
| - int32_t current_pc = get_pc();
|
| - // Next pc
|
| - int32_t next_pc = 0;
|
|
|
| // ---------- Configuration
|
| switch (op) {
|
| case COP1: // Coprocessor instructions
|
| switch (instr->RsFieldRaw()) {
|
| - case BC1: // branch on coprocessor condition
|
| + case BC1: // Handled in DecodeTypeImmed, should never come here.
|
| UNREACHABLE();
|
| break;
|
| + case CFC1:
|
| + // At the moment only FCSR is supported.
|
| + ASSERT(fs_reg == kFCSRRegister);
|
| + alu_out = FCSR_;
|
| + break;
|
| case MFC1:
|
| alu_out = get_fpu_register(fs_reg);
|
| break;
|
| case MFHC1:
|
| - fp_out = get_fpu_register_double(fs_reg);
|
| - alu_out = *v8i::BitCast<int32_t*>(&fp_out);
|
| + UNIMPLEMENTED_MIPS();
|
| break;
|
| + case CTC1:
|
| case MTC1:
|
| case MTHC1:
|
| // Do the store in the execution step.
|
| @@ -923,13 +1352,22 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| switch (instr->FunctionFieldRaw()) {
|
| case JR:
|
| case JALR:
|
| - next_pc = get_register(instr->RsField());
|
| + next_pc = get_register(instr->RsValue());
|
| break;
|
| case SLL:
|
| alu_out = rt << sa;
|
| break;
|
| case SRL:
|
| - alu_out = rt_u >> sa;
|
| + if (rs_reg == 0) {
|
| + // Regular logical right shift of a word by a fixed number of
|
| + // bits instruction. RS field is always equal to 0.
|
| + alu_out = rt_u >> sa;
|
| + } else {
|
| + // Logical right-rotate of a word by a fixed number of bits. This
|
| + // is special case of SRL instruction, added in MIPS32 Release 2.
|
| + // RS field is equal to 00001
|
| + alu_out = (rt_u >> sa) | (rt_u << (32 - sa));
|
| + }
|
| break;
|
| case SRA:
|
| alu_out = rt >> sa;
|
| @@ -938,7 +1376,16 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| alu_out = rt << rs;
|
| break;
|
| case SRLV:
|
| - alu_out = rt_u >> rs;
|
| + if (sa == 0) {
|
| + // Regular logical right-shift of a word by a variable number of
|
| + // bits instruction. SA field is always equal to 0.
|
| + alu_out = rt_u >> rs;
|
| + } else {
|
| + // Logical right-rotate of a word by a variable number of bits.
|
| + // This is special case od SRLV instruction, added in MIPS32
|
| + // Release 2. SA field is equal to 00001
|
| + alu_out = (rt_u >> rs_u) | (rt_u << (32 - rs_u));
|
| + }
|
| break;
|
| case SRAV:
|
| alu_out = rt >> rs;
|
| @@ -950,10 +1397,10 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| alu_out = get_register(LO);
|
| break;
|
| case MULT:
|
| - UNIMPLEMENTED_MIPS();
|
| + i64hilo = static_cast<int64_t>(rs) * static_cast<int64_t>(rt);
|
| break;
|
| case MULTU:
|
| - UNIMPLEMENTED_MIPS();
|
| + u64hilo = static_cast<uint64_t>(rs_u) * static_cast<uint64_t>(rt_u);
|
| break;
|
| case DIV:
|
| case DIVU:
|
| @@ -1005,6 +1452,7 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| break;
|
| // Break and trap instructions
|
| case BREAK:
|
| +
|
| do_interrupt = true;
|
| break;
|
| case TGE:
|
| @@ -1025,6 +1473,11 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| case TNE:
|
| do_interrupt = rs != rt;
|
| break;
|
| + case MOVN:
|
| + case MOVZ:
|
| + case MOVCI:
|
| + // No action taken on decode.
|
| + break;
|
| default:
|
| UNREACHABLE();
|
| };
|
| @@ -1034,13 +1487,83 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| case MUL:
|
| alu_out = rs_u * rt_u; // Only the lower 32 bits are kept.
|
| break;
|
| + case CLZ:
|
| + alu_out = __builtin_clz(rs_u);
|
| + break;
|
| default:
|
| UNREACHABLE();
|
| - }
|
| + };
|
| + break;
|
| + case SPECIAL3:
|
| + switch (instr->FunctionFieldRaw()) {
|
| + case INS: { // Mips32r2 instruction.
|
| + // Interpret Rd field as 5-bit msb of insert.
|
| + uint16_t msb = rd_reg;
|
| + // Interpret sa field as 5-bit lsb of insert.
|
| + uint16_t lsb = sa;
|
| + uint16_t size = msb - lsb + 1;
|
| + uint32_t mask = (1 << size) - 1;
|
| + alu_out = (rt_u & ~(mask << lsb)) | ((rs_u & mask) << lsb);
|
| + break;
|
| + }
|
| + case EXT: { // Mips32r2 instruction.
|
| + // Interpret Rd field as 5-bit msb of extract.
|
| + uint16_t msb = rd_reg;
|
| + // Interpret sa field as 5-bit lsb of extract.
|
| + uint16_t lsb = sa;
|
| + uint16_t size = msb + 1;
|
| + uint32_t mask = (1 << size) - 1;
|
| + alu_out = (rs_u & (mask << lsb)) >> lsb;
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + };
|
| break;
|
| default:
|
| UNREACHABLE();
|
| };
|
| +}
|
| +
|
| +
|
| +void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| + // Instruction fields.
|
| + const Opcode op = instr->OpcodeFieldRaw();
|
| + const int32_t rs_reg = instr->RsValue();
|
| + const int32_t rs = get_register(rs_reg);
|
| + const uint32_t rs_u = static_cast<uint32_t>(rs);
|
| + const int32_t rt_reg = instr->RtValue();
|
| + const int32_t rt = get_register(rt_reg);
|
| + const uint32_t rt_u = static_cast<uint32_t>(rt);
|
| + const int32_t rd_reg = instr->RdValue();
|
| +
|
| + const int32_t fs_reg = instr->FsValue();
|
| + const int32_t ft_reg = instr->FtValue();
|
| + const int32_t fd_reg = instr->FdValue();
|
| + int64_t i64hilo = 0;
|
| + uint64_t u64hilo = 0;
|
| +
|
| + // ALU output
|
| + // It should not be used as is. Instructions using it should always
|
| + // initialize it first.
|
| + int32_t alu_out = 0x12345678;
|
| +
|
| + // For break and trap instructions.
|
| + bool do_interrupt = false;
|
| +
|
| + // For jr and jalr
|
| + // Get current pc.
|
| + int32_t current_pc = get_pc();
|
| + // Next pc
|
| + int32_t next_pc = 0;
|
| +
|
| + // Setup the variables if needed before executing the instruction.
|
| + ConfigureTypeRegister(instr,
|
| + alu_out,
|
| + i64hilo,
|
| + u64hilo,
|
| + next_pc,
|
| + do_interrupt);
|
|
|
| // ---------- Raise exceptions triggered.
|
| SignalExceptions();
|
| @@ -1052,25 +1575,42 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| case BC1: // branch on coprocessor condition
|
| UNREACHABLE();
|
| break;
|
| + case CFC1:
|
| + set_register(rt_reg, alu_out);
|
| case MFC1:
|
| - case MFHC1:
|
| set_register(rt_reg, alu_out);
|
| break;
|
| + case MFHC1:
|
| + UNIMPLEMENTED_MIPS();
|
| + break;
|
| + case CTC1:
|
| + // At the moment only FCSR is supported.
|
| + ASSERT(fs_reg == kFCSRRegister);
|
| + FCSR_ = registers_[rt_reg];
|
| + break;
|
| case MTC1:
|
| - // We don't need to set the higher bits to 0, because MIPS ISA says
|
| - // they are in an unpredictable state after executing MTC1.
|
| FPUregisters_[fs_reg] = registers_[rt_reg];
|
| - FPUregisters_[fs_reg+1] = Unpredictable;
|
| break;
|
| case MTHC1:
|
| - // Here we need to keep the lower bits unchanged.
|
| - FPUregisters_[fs_reg+1] = registers_[rt_reg];
|
| + UNIMPLEMENTED_MIPS();
|
| break;
|
| case S:
|
| + float f;
|
| switch (instr->FunctionFieldRaw()) {
|
| case CVT_D_S:
|
| + f = get_fpu_register_float(fs_reg);
|
| + set_fpu_register_double(fd_reg, static_cast<double>(f));
|
| + break;
|
| case CVT_W_S:
|
| case CVT_L_S:
|
| + case TRUNC_W_S:
|
| + case TRUNC_L_S:
|
| + case ROUND_W_S:
|
| + case ROUND_L_S:
|
| + case FLOOR_W_S:
|
| + case FLOOR_L_S:
|
| + case CEIL_W_S:
|
| + case CEIL_L_S:
|
| case CVT_PS_S:
|
| UNIMPLEMENTED_MIPS();
|
| break;
|
| @@ -1079,10 +1619,133 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| }
|
| break;
|
| case D:
|
| + double ft, fs;
|
| + uint32_t cc, fcsr_cc;
|
| + int64_t i64;
|
| + fs = get_fpu_register_double(fs_reg);
|
| + ft = get_fpu_register_double(ft_reg);
|
| + cc = instr->FCccValue();
|
| + fcsr_cc = get_fcsr_condition_bit(cc);
|
| switch (instr->FunctionFieldRaw()) {
|
| - case CVT_S_D:
|
| - case CVT_W_D:
|
| - case CVT_L_D:
|
| + case ADD_D:
|
| + set_fpu_register_double(fd_reg, fs + ft);
|
| + break;
|
| + case SUB_D:
|
| + set_fpu_register_double(fd_reg, fs - ft);
|
| + break;
|
| + case MUL_D:
|
| + set_fpu_register_double(fd_reg, fs * ft);
|
| + break;
|
| + case DIV_D:
|
| + set_fpu_register_double(fd_reg, fs / ft);
|
| + break;
|
| + case ABS_D:
|
| + set_fpu_register_double(fd_reg, fs < 0 ? -fs : fs);
|
| + break;
|
| + case MOV_D:
|
| + set_fpu_register_double(fd_reg, fs);
|
| + break;
|
| + case NEG_D:
|
| + set_fpu_register_double(fd_reg, -fs);
|
| + break;
|
| + case SQRT_D:
|
| + set_fpu_register_double(fd_reg, sqrt(fs));
|
| + break;
|
| + case C_UN_D:
|
| + set_fcsr_bit(fcsr_cc, isnan(fs) || isnan(ft));
|
| + break;
|
| + case C_EQ_D:
|
| + set_fcsr_bit(fcsr_cc, (fs == ft));
|
| + break;
|
| + case C_UEQ_D:
|
| + set_fcsr_bit(fcsr_cc, (fs == ft) || (isnan(fs) || isnan(ft)));
|
| + break;
|
| + case C_OLT_D:
|
| + set_fcsr_bit(fcsr_cc, (fs < ft));
|
| + break;
|
| + case C_ULT_D:
|
| + set_fcsr_bit(fcsr_cc, (fs < ft) || (isnan(fs) || isnan(ft)));
|
| + break;
|
| + case C_OLE_D:
|
| + set_fcsr_bit(fcsr_cc, (fs <= ft));
|
| + break;
|
| + case C_ULE_D:
|
| + set_fcsr_bit(fcsr_cc, (fs <= ft) || (isnan(fs) || isnan(ft)));
|
| + break;
|
| + case CVT_W_D: // Convert double to word.
|
| + // Rounding modes are not yet supported.
|
| + ASSERT((FCSR_ & 3) == 0);
|
| + // In rounding mode 0 it should behave like ROUND.
|
| + case ROUND_W_D: // Round double to word.
|
| + {
|
| + double rounded = fs > 0 ? floor(fs + 0.5) : ceil(fs - 0.5);
|
| + int32_t result = static_cast<int32_t>(rounded);
|
| + set_fpu_register(fd_reg, result);
|
| + if (set_fcsr_round_error(fs, rounded)) {
|
| + set_fpu_register(fd_reg, kFPUInvalidResult);
|
| + }
|
| + }
|
| + break;
|
| + case TRUNC_W_D: // Truncate double to word (round towards 0).
|
| + {
|
| + int32_t result = static_cast<int32_t>(fs);
|
| + set_fpu_register(fd_reg, result);
|
| + if (set_fcsr_round_error(fs, static_cast<double>(result))) {
|
| + set_fpu_register(fd_reg, kFPUInvalidResult);
|
| + }
|
| + }
|
| + break;
|
| + case FLOOR_W_D: // Round double to word towards negative infinity.
|
| + {
|
| + double rounded = floor(fs);
|
| + int32_t result = static_cast<int32_t>(rounded);
|
| + set_fpu_register(fd_reg, result);
|
| + if (set_fcsr_round_error(fs, rounded)) {
|
| + set_fpu_register(fd_reg, kFPUInvalidResult);
|
| + }
|
| + }
|
| + break;
|
| + case CEIL_W_D: // Round double to word towards positive infinity.
|
| + {
|
| + double rounded = ceil(fs);
|
| + int32_t result = static_cast<int32_t>(rounded);
|
| + set_fpu_register(fd_reg, result);
|
| + if (set_fcsr_round_error(fs, rounded)) {
|
| + set_fpu_register(fd_reg, kFPUInvalidResult);
|
| + }
|
| + }
|
| + break;
|
| + case CVT_S_D: // Convert double to float (single).
|
| + set_fpu_register_float(fd_reg, static_cast<float>(fs));
|
| + break;
|
| + case CVT_L_D: // Mips32r2: Truncate double to 64-bit long-word.
|
| + i64 = static_cast<int64_t>(fs);
|
| + set_fpu_register(fd_reg, i64 & 0xffffffff);
|
| + set_fpu_register(fd_reg + 1, i64 >> 32);
|
| + break;
|
| + case TRUNC_L_D: // Mips32r2 instruction.
|
| + i64 = static_cast<int64_t>(fs);
|
| + set_fpu_register(fd_reg, i64 & 0xffffffff);
|
| + set_fpu_register(fd_reg + 1, i64 >> 32);
|
| + break;
|
| + case ROUND_L_D: { // Mips32r2 instruction.
|
| + double rounded = fs > 0 ? floor(fs + 0.5) : ceil(fs - 0.5);
|
| + i64 = static_cast<int64_t>(rounded);
|
| + set_fpu_register(fd_reg, i64 & 0xffffffff);
|
| + set_fpu_register(fd_reg + 1, i64 >> 32);
|
| + break;
|
| + }
|
| + case FLOOR_L_D: // Mips32r2 instruction.
|
| + i64 = static_cast<int64_t>(floor(fs));
|
| + set_fpu_register(fd_reg, i64 & 0xffffffff);
|
| + set_fpu_register(fd_reg + 1, i64 >> 32);
|
| + break;
|
| + case CEIL_L_D: // Mips32r2 instruction.
|
| + i64 = static_cast<int64_t>(ceil(fs));
|
| + set_fpu_register(fd_reg, i64 & 0xffffffff);
|
| + set_fpu_register(fd_reg + 1, i64 >> 32);
|
| + break;
|
| + case C_F_D:
|
| UNIMPLEMENTED_MIPS();
|
| break;
|
| default:
|
| @@ -1091,11 +1754,13 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| break;
|
| case W:
|
| switch (instr->FunctionFieldRaw()) {
|
| - case CVT_S_W:
|
| - UNIMPLEMENTED_MIPS();
|
| + case CVT_S_W: // Convert word to float (single).
|
| + alu_out = get_fpu_register(fs_reg);
|
| + set_fpu_register_float(fd_reg, static_cast<float>(alu_out));
|
| break;
|
| case CVT_D_W: // Convert word to double.
|
| - set_fpu_register(rd_reg, static_cast<double>(rs));
|
| + alu_out = get_fpu_register(fs_reg);
|
| + set_fpu_register_double(fd_reg, static_cast<double>(alu_out));
|
| break;
|
| default:
|
| UNREACHABLE();
|
| @@ -1103,8 +1768,14 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| break;
|
| case L:
|
| switch (instr->FunctionFieldRaw()) {
|
| + case CVT_D_L: // Mips32r2 instruction.
|
| + // Watch the signs here, we want 2 32-bit vals
|
| + // to make a sign-64.
|
| + i64 = (uint32_t) get_fpu_register(fs_reg);
|
| + i64 |= ((int64_t) get_fpu_register(fs_reg + 1) << 32);
|
| + set_fpu_register_double(fd_reg, static_cast<double>(i64));
|
| + break;
|
| case CVT_S_L:
|
| - case CVT_D_L:
|
| UNIMPLEMENTED_MIPS();
|
| break;
|
| default:
|
| @@ -1121,7 +1792,7 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| switch (instr->FunctionFieldRaw()) {
|
| case JR: {
|
| Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(
|
| - current_pc+Instruction::kInstructionSize);
|
| + current_pc+Instruction::kInstrSize);
|
| BranchDelayInstructionDecode(branch_delay_instr);
|
| set_pc(next_pc);
|
| pc_modified_ = true;
|
| @@ -1129,16 +1800,21 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| }
|
| case JALR: {
|
| Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(
|
| - current_pc+Instruction::kInstructionSize);
|
| + current_pc+Instruction::kInstrSize);
|
| BranchDelayInstructionDecode(branch_delay_instr);
|
| - set_register(31, current_pc + 2* Instruction::kInstructionSize);
|
| + set_register(31, current_pc + 2* Instruction::kInstrSize);
|
| set_pc(next_pc);
|
| pc_modified_ = true;
|
| break;
|
| }
|
| // Instructions using HI and LO registers.
|
| case MULT:
|
| + set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff));
|
| + set_register(HI, static_cast<int32_t>(i64hilo >> 32));
|
| + break;
|
| case MULTU:
|
| + set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff));
|
| + set_register(HI, static_cast<int32_t>(u64hilo >> 32));
|
| break;
|
| case DIV:
|
| // Divide by zero was checked in the configuration step.
|
| @@ -1149,7 +1825,7 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| set_register(LO, rs_u / rt_u);
|
| set_register(HI, rs_u % rt_u);
|
| break;
|
| - // Break and trap instructions
|
| + // Break and trap instructions.
|
| case BREAK:
|
| case TGE:
|
| case TGEU:
|
| @@ -1161,6 +1837,23 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| SoftwareInterrupt(instr);
|
| }
|
| break;
|
| + // Conditional moves.
|
| + case MOVN:
|
| + if (rt) set_register(rd_reg, rs);
|
| + break;
|
| + case MOVCI: {
|
| + uint32_t cc = instr->FCccValue();
|
| + uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
|
| + if (instr->Bit(16)) { // Read Tf bit
|
| + if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs);
|
| + } else {
|
| + if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs);
|
| + }
|
| + break;
|
| + }
|
| + case MOVZ:
|
| + if (!rt) set_register(rd_reg, rs);
|
| + break;
|
| default: // For other special opcodes we do the default operation.
|
| set_register(rd_reg, alu_out);
|
| };
|
| @@ -1173,9 +1866,23 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| set_register(LO, Unpredictable);
|
| set_register(HI, Unpredictable);
|
| break;
|
| + default: // For other special2 opcodes we do the default operation.
|
| + set_register(rd_reg, alu_out);
|
| + }
|
| + break;
|
| + case SPECIAL3:
|
| + switch (instr->FunctionFieldRaw()) {
|
| + case INS:
|
| + // Ins instr leaves result in Rt, rather than Rd.
|
| + set_register(rt_reg, alu_out);
|
| + break;
|
| + case EXT:
|
| + // Ext instr leaves result in Rt, rather than Rd.
|
| + set_register(rt_reg, alu_out);
|
| + break;
|
| default:
|
| UNREACHABLE();
|
| - }
|
| + };
|
| break;
|
| // Unimplemented opcodes raised an error in the configuration step before,
|
| // so we can use the default here to set the destination register in common
|
| @@ -1185,22 +1892,22 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
|
| };
|
| }
|
|
|
| +
|
| // Type 2: instructions using a 16 bytes immediate. (eg: addi, beq)
|
| void Simulator::DecodeTypeImmediate(Instruction* instr) {
|
| - // Instruction fields
|
| + // Instruction fields.
|
| Opcode op = instr->OpcodeFieldRaw();
|
| - int32_t rs = get_register(instr->RsField());
|
| + int32_t rs = get_register(instr->RsValue());
|
| uint32_t rs_u = static_cast<uint32_t>(rs);
|
| - int32_t rt_reg = instr->RtField(); // destination register
|
| + int32_t rt_reg = instr->RtValue(); // destination register
|
| int32_t rt = get_register(rt_reg);
|
| - int16_t imm16 = instr->Imm16Field();
|
| + int16_t imm16 = instr->Imm16Value();
|
|
|
| - int32_t ft_reg = instr->FtField(); // destination register
|
| - int32_t ft = get_register(ft_reg);
|
| + int32_t ft_reg = instr->FtValue(); // destination register
|
|
|
| - // zero extended immediate
|
| + // Zero extended immediate.
|
| uint32_t oe_imm16 = 0xffff & imm16;
|
| - // sign extended immediate
|
| + // Sign extended immediate.
|
| int32_t se_imm16 = imm16;
|
|
|
| // Get current pc.
|
| @@ -1208,25 +1915,38 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
|
| // Next pc.
|
| int32_t next_pc = bad_ra;
|
|
|
| - // Used for conditional branch instructions
|
| + // Used for conditional branch instructions.
|
| bool do_branch = false;
|
| bool execute_branch_delay_instruction = false;
|
|
|
| - // Used for arithmetic instructions
|
| + // Used for arithmetic instructions.
|
| int32_t alu_out = 0;
|
| - // Floating point
|
| + // Floating point.
|
| double fp_out = 0.0;
|
| + uint32_t cc, cc_value, fcsr_cc;
|
|
|
| - // Used for memory instructions
|
| + // Used for memory instructions.
|
| int32_t addr = 0x0;
|
| + // Value to be written in memory
|
| + uint32_t mem_value = 0x0;
|
|
|
| // ---------- Configuration (and execution for REGIMM)
|
| switch (op) {
|
| - // ------------- COP1. Coprocessor instructions
|
| + // ------------- COP1. Coprocessor instructions.
|
| case COP1:
|
| switch (instr->RsFieldRaw()) {
|
| - case BC1: // branch on coprocessor condition
|
| - UNIMPLEMENTED_MIPS();
|
| + case BC1: // Branch on coprocessor condition.
|
| + cc = instr->FBccValue();
|
| + fcsr_cc = get_fcsr_condition_bit(cc);
|
| + cc_value = test_fcsr_bit(fcsr_cc);
|
| + do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value;
|
| + execute_branch_delay_instruction = true;
|
| + // Set next_pc
|
| + if (do_branch) {
|
| + next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
|
| + } else {
|
| + next_pc = current_pc + kBranchReturnOffset;
|
| + }
|
| break;
|
| default:
|
| UNREACHABLE();
|
| @@ -1259,7 +1979,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
|
| execute_branch_delay_instruction = true;
|
| // Set next_pc
|
| if (do_branch) {
|
| - next_pc = current_pc + (imm16 << 2) + Instruction::kInstructionSize;
|
| + next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
|
| if (instr->IsLinkingInstruction()) {
|
| set_register(31, current_pc + kBranchReturnOffset);
|
| }
|
| @@ -1323,6 +2043,21 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
|
| addr = rs + se_imm16;
|
| alu_out = ReadB(addr);
|
| break;
|
| + case LH:
|
| + addr = rs + se_imm16;
|
| + alu_out = ReadH(addr, instr);
|
| + break;
|
| + case LWL: {
|
| + // al_offset is an offset of the effective address within an aligned word
|
| + uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
|
| + uint8_t byte_shift = kPointerAlignmentMask - al_offset;
|
| + uint32_t mask = (1 << byte_shift * 8) - 1;
|
| + addr = rs + se_imm16 - al_offset;
|
| + alu_out = ReadW(addr, instr);
|
| + alu_out <<= byte_shift * 8;
|
| + alu_out |= rt & mask;
|
| + break;
|
| + }
|
| case LW:
|
| addr = rs + se_imm16;
|
| alu_out = ReadW(addr, instr);
|
| @@ -1331,12 +2066,47 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
|
| addr = rs + se_imm16;
|
| alu_out = ReadBU(addr);
|
| break;
|
| + case LHU:
|
| + addr = rs + se_imm16;
|
| + alu_out = ReadHU(addr, instr);
|
| + break;
|
| + case LWR: {
|
| + // al_offset is an offset of the effective address within an aligned word
|
| + uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
|
| + uint8_t byte_shift = kPointerAlignmentMask - al_offset;
|
| + uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0;
|
| + addr = rs + se_imm16 - al_offset;
|
| + alu_out = ReadW(addr, instr);
|
| + alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8;
|
| + alu_out |= rt & mask;
|
| + break;
|
| + }
|
| case SB:
|
| addr = rs + se_imm16;
|
| break;
|
| + case SH:
|
| + addr = rs + se_imm16;
|
| + break;
|
| + case SWL: {
|
| + uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
|
| + uint8_t byte_shift = kPointerAlignmentMask - al_offset;
|
| + uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0;
|
| + addr = rs + se_imm16 - al_offset;
|
| + mem_value = ReadW(addr, instr) & mask;
|
| + mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8;
|
| + break;
|
| + }
|
| case SW:
|
| addr = rs + se_imm16;
|
| break;
|
| + case SWR: {
|
| + uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
|
| + uint32_t mask = (1 << al_offset * 8) - 1;
|
| + addr = rs + se_imm16 - al_offset;
|
| + mem_value = ReadW(addr, instr);
|
| + mem_value = (rt << al_offset * 8) | (mem_value & mask);
|
| + break;
|
| + }
|
| case LWC1:
|
| addr = rs + se_imm16;
|
| alu_out = ReadW(addr, instr);
|
| @@ -1367,12 +2137,12 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
|
| execute_branch_delay_instruction = true;
|
| // Set next_pc
|
| if (do_branch) {
|
| - next_pc = current_pc + (imm16 << 2) + Instruction::kInstructionSize;
|
| + next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
|
| if (instr->IsLinkingInstruction()) {
|
| - set_register(31, current_pc + 2* Instruction::kInstructionSize);
|
| + set_register(31, current_pc + 2* Instruction::kInstrSize);
|
| }
|
| } else {
|
| - next_pc = current_pc + 2 * Instruction::kInstructionSize;
|
| + next_pc = current_pc + 2 * Instruction::kInstrSize;
|
| }
|
| break;
|
| // ------------- Arithmetic instructions
|
| @@ -1388,16 +2158,29 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
|
| break;
|
| // ------------- Memory instructions
|
| case LB:
|
| + case LH:
|
| + case LWL:
|
| case LW:
|
| case LBU:
|
| + case LHU:
|
| + case LWR:
|
| set_register(rt_reg, alu_out);
|
| break;
|
| case SB:
|
| WriteB(addr, static_cast<int8_t>(rt));
|
| break;
|
| + case SH:
|
| + WriteH(addr, static_cast<uint16_t>(rt), instr);
|
| + break;
|
| + case SWL:
|
| + WriteW(addr, mem_value, instr);
|
| + break;
|
| case SW:
|
| WriteW(addr, rt, instr);
|
| break;
|
| + case SWR:
|
| + WriteW(addr, mem_value, instr);
|
| + break;
|
| case LWC1:
|
| set_fpu_register(ft_reg, alu_out);
|
| break;
|
| @@ -1410,7 +2193,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
|
| break;
|
| case SDC1:
|
| addr = rs + se_imm16;
|
| - WriteD(addr, ft, instr);
|
| + WriteD(addr, get_fpu_register_double(ft_reg), instr);
|
| break;
|
| default:
|
| break;
|
| @@ -1422,7 +2205,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
|
| // We don't check for end_sim_pc. First it should not be met as the current
|
| // pc is valid. Secondly a jump should always execute its branch delay slot.
|
| Instruction* branch_delay_instr =
|
| - reinterpret_cast<Instruction*>(current_pc+Instruction::kInstructionSize);
|
| + reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize);
|
| BranchDelayInstructionDecode(branch_delay_instr);
|
| }
|
|
|
| @@ -1432,6 +2215,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
|
| }
|
| }
|
|
|
| +
|
| // Type 3: instructions using a 26 bytes immediate. (eg: j, jal)
|
| void Simulator::DecodeTypeJump(Instruction* instr) {
|
| // Get current pc.
|
| @@ -1439,35 +2223,39 @@ void Simulator::DecodeTypeJump(Instruction* instr) {
|
| // Get unchanged bits of pc.
|
| int32_t pc_high_bits = current_pc & 0xf0000000;
|
| // Next pc
|
| - int32_t next_pc = pc_high_bits | (instr->Imm26Field() << 2);
|
| + int32_t next_pc = pc_high_bits | (instr->Imm26Value() << 2);
|
|
|
| // Execute branch delay slot
|
| // We don't check for end_sim_pc. First it should not be met as the current pc
|
| // is valid. Secondly a jump should always execute its branch delay slot.
|
| Instruction* branch_delay_instr =
|
| - reinterpret_cast<Instruction*>(current_pc+Instruction::kInstructionSize);
|
| + reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize);
|
| BranchDelayInstructionDecode(branch_delay_instr);
|
|
|
| // Update pc and ra if necessary.
|
| // Do this after the branch delay execution.
|
| if (instr->IsLinkingInstruction()) {
|
| - set_register(31, current_pc + 2* Instruction::kInstructionSize);
|
| + set_register(31, current_pc + 2* Instruction::kInstrSize);
|
| }
|
| set_pc(next_pc);
|
| pc_modified_ = true;
|
| }
|
|
|
| +
|
| // Executes the current instruction.
|
| void Simulator::InstructionDecode(Instruction* instr) {
|
| + if (v8::internal::FLAG_check_icache) {
|
| + CheckICache(isolate_->simulator_i_cache(), instr);
|
| + }
|
| pc_modified_ = false;
|
| if (::v8::internal::FLAG_trace_sim) {
|
| disasm::NameConverter converter;
|
| disasm::Disassembler dasm(converter);
|
| // use a reasonably large buffer
|
| v8::internal::EmbeddedVector<char, 256> buffer;
|
| - dasm.InstructionDecode(buffer,
|
| - reinterpret_cast<byte_*>(instr));
|
| - PrintF(" 0x%08x %s\n", instr, buffer.start());
|
| + dasm.InstructionDecode(buffer, reinterpret_cast<byte_*>(instr));
|
| + PrintF(" 0x%08x %s\n", reinterpret_cast<intptr_t>(instr),
|
| + buffer.start());
|
| }
|
|
|
| switch (instr->InstructionType()) {
|
| @@ -1485,7 +2273,7 @@ void Simulator::InstructionDecode(Instruction* instr) {
|
| }
|
| if (!pc_modified_) {
|
| set_register(pc, reinterpret_cast<int32_t>(instr) +
|
| - Instruction::kInstructionSize);
|
| + Instruction::kInstrSize);
|
| }
|
| }
|
|
|
| @@ -1511,7 +2299,7 @@ void Simulator::Execute() {
|
| Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
|
| icount_++;
|
| if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
|
| - Debugger dbg(this);
|
| + MipsDebugger dbg(this);
|
| dbg.Debug();
|
| } else {
|
| InstructionDecode(instr);
|
| @@ -1538,7 +2326,7 @@ int32_t Simulator::Call(byte_* entry, int argument_count, ...) {
|
| int original_stack = get_register(sp);
|
| // Compute position of stack on entry to generated code.
|
| int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t)
|
| - - kArgsSlotsSize);
|
| + - kCArgsSlotsSize);
|
| if (OS::ActivationFrameAlignment() != 0) {
|
| entry_stack &= -OS::ActivationFrameAlignment();
|
| }
|
| @@ -1643,8 +2431,8 @@ uintptr_t Simulator::PopAddress() {
|
|
|
| #undef UNSUPPORTED
|
|
|
| -} } // namespace assembler::mips
|
| +} } // namespace v8::internal
|
|
|
| -#endif // !__mips || USE_SIMULATOR
|
| +#endif // USE_SIMULATOR
|
|
|
| #endif // V8_TARGET_ARCH_MIPS
|
|
|