Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(588)

Unified Diff: src/mips/simulator-mips.cc

Issue 6759025: Version 3.2.6 (Closed) Base URL: https://v8.googlecode.com/svn/trunk
Patch Set: Created 9 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/mips/simulator-mips.h ('k') | src/mips/stub-cache-mips.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/mips/simulator-mips.cc
diff --git a/src/mips/simulator-mips.cc b/src/mips/simulator-mips.cc
index 59a537324f1fc555554e04d0b209392e70cd2b1a..50ad7a18871aa9b9407d811d8db45c7391eb5058 100644
--- a/src/mips/simulator-mips.cc
+++ b/src/mips/simulator-mips.cc
@@ -26,6 +26,8 @@
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
+#include <math.h>
+#include <limits.h>
#include <cstdarg>
#include "v8.h"
@@ -37,23 +39,25 @@
#include "mips/constants-mips.h"
#include "mips/simulator-mips.h"
-namespace v8i = v8::internal;
-
-#if !defined(__mips) || defined(USE_SIMULATOR)
// Only build the simulator if not compiling for real MIPS hardware.
-namespace assembler {
-namespace mips {
+#if defined(USE_SIMULATOR)
-using ::v8::internal::Object;
-using ::v8::internal::PrintF;
-using ::v8::internal::OS;
-using ::v8::internal::ReadLine;
-using ::v8::internal::DeleteArray;
+namespace v8 {
+namespace internal {
// Utils functions
bool HaveSameSign(int32_t a, int32_t b) {
- return ((a ^ b) > 0);
+ return ((a ^ b) >= 0);
+}
+
+
+uint32_t get_fcsr_condition_bit(uint32_t cc) {
+ if (cc == 0) {
+ return 23;
+ } else {
+ return 24 + cc;
+ }
}
@@ -63,15 +67,18 @@ bool HaveSameSign(int32_t a, int32_t b) {
// Library does not provide vsscanf.
#define SScanF sscanf // NOLINT
-// The Debugger class is used by the simulator while debugging simulated MIPS
+// The MipsDebugger class is used by the simulator while debugging simulated
// code.
-class Debugger {
+class MipsDebugger {
public:
- explicit Debugger(Simulator* sim);
- ~Debugger();
+ explicit MipsDebugger(Simulator* sim);
+ ~MipsDebugger();
void Stop(Instruction* instr);
void Debug();
+ // Print all registers with a nice formatting.
+ void PrintAllRegs();
+ void PrintAllRegsIncludingFPU();
private:
// We set the breakpoint code to 0xfffff to easily recognize it.
@@ -81,6 +88,10 @@ class Debugger {
Simulator* sim_;
int32_t GetRegisterValue(int regnum);
+ int32_t GetFPURegisterValueInt(int regnum);
+ int64_t GetFPURegisterValueLong(int regnum);
+ float GetFPURegisterValueFloat(int regnum);
+ double GetFPURegisterValueDouble(int regnum);
bool GetValue(const char* desc, int32_t* value);
// Set or delete a breakpoint. Returns true if successful.
@@ -91,18 +102,17 @@ class Debugger {
// execution to skip past breakpoints when run from the debugger.
void UndoBreakpoints();
void RedoBreakpoints();
-
- // Print all registers with a nice formatting.
- void PrintAllRegs();
};
-Debugger::Debugger(Simulator* sim) {
+MipsDebugger::MipsDebugger(Simulator* sim) {
sim_ = sim;
}
-Debugger::~Debugger() {
+
+MipsDebugger::~MipsDebugger() {
}
+
#ifdef GENERATED_CODE_COVERAGE
static FILE* coverage_log = NULL;
@@ -115,7 +125,7 @@ static void InitializeCoverage() {
}
-void Debugger::Stop(Instruction* instr) {
+void MipsDebugger::Stop(Instruction* instr) {
UNIMPLEMENTED_MIPS();
char* str = reinterpret_cast<char*>(instr->InstructionBits());
if (strlen(str) > 0) {
@@ -125,9 +135,10 @@ void Debugger::Stop(Instruction* instr) {
}
instr->SetInstructionBits(0x0); // Overwrite with nop.
}
- sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize);
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
}
+
#else // ndef GENERATED_CODE_COVERAGE
#define UNSUPPORTED() printf("Unsupported instruction.\n");
@@ -135,16 +146,16 @@ void Debugger::Stop(Instruction* instr) {
static void InitializeCoverage() {}
-void Debugger::Stop(Instruction* instr) {
+void MipsDebugger::Stop(Instruction* instr) {
const char* str = reinterpret_cast<char*>(instr->InstructionBits());
PrintF("Simulator hit %s\n", str);
- sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize);
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
Debug();
}
#endif // GENERATED_CODE_COVERAGE
-int32_t Debugger::GetRegisterValue(int regnum) {
+int32_t MipsDebugger::GetRegisterValue(int regnum) {
if (regnum == kNumSimuRegisters) {
return sim_->get_pc();
} else {
@@ -153,11 +164,54 @@ int32_t Debugger::GetRegisterValue(int regnum) {
}
-bool Debugger::GetValue(const char* desc, int32_t* value) {
+int32_t MipsDebugger::GetFPURegisterValueInt(int regnum) {
+ if (regnum == kNumFPURegisters) {
+ return sim_->get_pc();
+ } else {
+ return sim_->get_fpu_register(regnum);
+ }
+}
+
+
+int64_t MipsDebugger::GetFPURegisterValueLong(int regnum) {
+ if (regnum == kNumFPURegisters) {
+ return sim_->get_pc();
+ } else {
+ return sim_->get_fpu_register_long(regnum);
+ }
+}
+
+
+float MipsDebugger::GetFPURegisterValueFloat(int regnum) {
+ if (regnum == kNumFPURegisters) {
+ return sim_->get_pc();
+ } else {
+ return sim_->get_fpu_register_float(regnum);
+ }
+}
+
+
+double MipsDebugger::GetFPURegisterValueDouble(int regnum) {
+ if (regnum == kNumFPURegisters) {
+ return sim_->get_pc();
+ } else {
+ return sim_->get_fpu_register_double(regnum);
+ }
+}
+
+
+bool MipsDebugger::GetValue(const char* desc, int32_t* value) {
int regnum = Registers::Number(desc);
+ int fpuregnum = FPURegisters::Number(desc);
+
if (regnum != kInvalidRegister) {
*value = GetRegisterValue(regnum);
return true;
+ } else if (fpuregnum != kInvalidFPURegister) {
+ *value = GetFPURegisterValueInt(fpuregnum);
+ return true;
+ } else if (strncmp(desc, "0x", 2) == 0) {
+ return SScanF(desc, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
} else {
return SScanF(desc, "%i", value) == 1;
}
@@ -165,7 +219,7 @@ bool Debugger::GetValue(const char* desc, int32_t* value) {
}
-bool Debugger::SetBreakpoint(Instruction* breakpc) {
+bool MipsDebugger::SetBreakpoint(Instruction* breakpc) {
// Check if a breakpoint can be set. If not return without any side-effects.
if (sim_->break_pc_ != NULL) {
return false;
@@ -180,7 +234,7 @@ bool Debugger::SetBreakpoint(Instruction* breakpc) {
}
-bool Debugger::DeleteBreakpoint(Instruction* breakpc) {
+bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
@@ -191,20 +245,21 @@ bool Debugger::DeleteBreakpoint(Instruction* breakpc) {
}
-void Debugger::UndoBreakpoints() {
+void MipsDebugger::UndoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
}
-void Debugger::RedoBreakpoints() {
+void MipsDebugger::RedoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
}
}
-void Debugger::PrintAllRegs() {
+
+void MipsDebugger::PrintAllRegs() {
#define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n)
PrintF("\n");
@@ -237,10 +292,45 @@ void Debugger::PrintAllRegs() {
// pc
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(31), REG_INFO(34));
+
+#undef REG_INFO
+#undef FPU_REG_INFO
+}
+
+
+void MipsDebugger::PrintAllRegsIncludingFPU() {
+#define FPU_REG_INFO(n) FPURegisters::Name(n), FPURegisters::Name(n+1), \
+ GetFPURegisterValueInt(n+1), \
+ GetFPURegisterValueInt(n), \
+ GetFPURegisterValueDouble(n)
+
+ PrintAllRegs();
+
+ PrintF("\n\n");
+ // f0, f1, f2, ... f31
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(0) );
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(2) );
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(4) );
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(6) );
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(8) );
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(10));
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(12));
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(14));
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(16));
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(18));
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(20));
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(22));
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(24));
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(26));
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(28));
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(30));
+
#undef REG_INFO
+#undef FPU_REG_INFO
}
-void Debugger::Debug() {
+
+void MipsDebugger::Debug() {
intptr_t last_pc = -1;
bool done = false;
@@ -253,6 +343,7 @@ void Debugger::Debug() {
char cmd[COMMAND_SIZE + 1];
char arg1[ARG_SIZE + 1];
char arg2[ARG_SIZE + 1];
+ char* argv[3] = { cmd, arg1, arg2 };
// make sure to have a proper terminating character if reaching the limit
cmd[COMMAND_SIZE] = 0;
@@ -280,19 +371,21 @@ void Debugger::Debug() {
} else {
// Use sscanf to parse the individual parts of the command line. At the
// moment no command expects more than two parameters.
- int args = SScanF(line,
+ int argc = SScanF(line,
"%" XSTR(COMMAND_SIZE) "s "
"%" XSTR(ARG_SIZE) "s "
"%" XSTR(ARG_SIZE) "s",
cmd, arg1, arg2);
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
- if (!(reinterpret_cast<Instruction*>(sim_->get_pc())->IsTrap())) {
+ Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc());
+ if (!(instr->IsTrap()) ||
+ instr->InstructionBits() == rtCallRedirInstr) {
sim_->InstructionDecode(
- reinterpret_cast<Instruction*>(sim_->get_pc()));
+ reinterpret_cast<Instruction*>(sim_->get_pc()));
} else {
// Allow si to jump over generated breakpoints.
PrintF("/!\\ Jumping over generated breakpoint.\n");
- sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize);
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
}
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
// Execute the one instruction we broke at with breakpoints disabled.
@@ -300,23 +393,65 @@ void Debugger::Debug() {
// Leave the debugger shell.
done = true;
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
- if (args == 2) {
+ if (argc == 2) {
int32_t value;
+ float fvalue;
if (strcmp(arg1, "all") == 0) {
PrintAllRegs();
+ } else if (strcmp(arg1, "allf") == 0) {
+ PrintAllRegsIncludingFPU();
} else {
- if (GetValue(arg1, &value)) {
+ int regnum = Registers::Number(arg1);
+ int fpuregnum = FPURegisters::Number(arg1);
+
+ if (regnum != kInvalidRegister) {
+ value = GetRegisterValue(regnum);
PrintF("%s: 0x%08x %d \n", arg1, value, value);
+ } else if (fpuregnum != kInvalidFPURegister) {
+ if (fpuregnum % 2 == 1) {
+ value = GetFPURegisterValueInt(fpuregnum);
+ fvalue = GetFPURegisterValueFloat(fpuregnum);
+ PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue);
+ } else {
+ double dfvalue;
+ int32_t lvalue1 = GetFPURegisterValueInt(fpuregnum);
+ int32_t lvalue2 = GetFPURegisterValueInt(fpuregnum + 1);
+ dfvalue = GetFPURegisterValueDouble(fpuregnum);
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n",
+ FPURegisters::Name(fpuregnum+1),
+ FPURegisters::Name(fpuregnum),
+ lvalue1,
+ lvalue2,
+ dfvalue);
+ }
} else {
PrintF("%s unrecognized\n", arg1);
}
}
} else {
- PrintF("print <register>\n");
+ if (argc == 3) {
+ if (strcmp(arg2, "single") == 0) {
+ int32_t value;
+ float fvalue;
+ int fpuregnum = FPURegisters::Number(arg1);
+
+ if (fpuregnum != kInvalidFPURegister) {
+ value = GetFPURegisterValueInt(fpuregnum);
+ fvalue = GetFPURegisterValueFloat(fpuregnum);
+ PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue);
+ } else {
+ PrintF("%s unrecognized\n", arg1);
+ }
+ } else {
+ PrintF("print <fpu register> single\n");
+ }
+ } else {
+ PrintF("print <register> or print <fpu register> single\n");
+ }
}
} else if ((strcmp(cmd, "po") == 0)
|| (strcmp(cmd, "printobject") == 0)) {
- if (args == 2) {
+ if (argc == 2) {
int32_t value;
if (GetValue(arg1, &value)) {
Object* obj = reinterpret_cast<Object*>(value);
@@ -333,6 +468,39 @@ void Debugger::Debug() {
} else {
PrintF("printobject <value>\n");
}
+ } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
+ int32_t* cur = NULL;
+ int32_t* end = NULL;
+ int next_arg = 1;
+
+ if (strcmp(cmd, "stack") == 0) {
+ cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
+ } else { // "mem"
+ int32_t value;
+ if (!GetValue(arg1, &value)) {
+ PrintF("%s unrecognized\n", arg1);
+ continue;
+ }
+ cur = reinterpret_cast<int32_t*>(value);
+ next_arg++;
+ }
+
+ int32_t words;
+ if (argc == next_arg) {
+ words = 10;
+ } else if (argc == next_arg + 1) {
+ if (!GetValue(argv[next_arg], &words)) {
+ words = 10;
+ }
+ }
+ end = cur + words;
+
+ while (cur < end) {
+ PrintF(" 0x%08x: 0x%08x %10d\n",
+ reinterpret_cast<intptr_t>(cur), *cur, *cur);
+ cur++;
+ }
+
} else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0)) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
@@ -342,36 +510,37 @@ void Debugger::Debug() {
byte_* cur = NULL;
byte_* end = NULL;
- if (args == 1) {
+ if (argc == 1) {
cur = reinterpret_cast<byte_*>(sim_->get_pc());
- end = cur + (10 * Instruction::kInstructionSize);
- } else if (args == 2) {
+ end = cur + (10 * Instruction::kInstrSize);
+ } else if (argc == 2) {
int32_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte_*>(value);
// no length parameter passed, assume 10 instructions
- end = cur + (10 * Instruction::kInstructionSize);
+ end = cur + (10 * Instruction::kInstrSize);
}
} else {
int32_t value1;
int32_t value2;
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
cur = reinterpret_cast<byte_*>(value1);
- end = cur + (value2 * Instruction::kInstructionSize);
+ end = cur + (value2 * Instruction::kInstrSize);
}
}
while (cur < end) {
dasm.InstructionDecode(buffer, cur);
- PrintF(" 0x%08x %s\n", cur, buffer.start());
- cur += Instruction::kInstructionSize;
+ PrintF(" 0x%08x %s\n",
+ reinterpret_cast<intptr_t>(cur), buffer.start());
+ cur += Instruction::kInstrSize;
}
} else if (strcmp(cmd, "gdb") == 0) {
PrintF("relinquishing control to gdb\n");
v8::internal::OS::DebugBreak();
PrintF("regaining control from gdb\n");
} else if (strcmp(cmd, "break") == 0) {
- if (args == 2) {
+ if (argc == 2) {
int32_t value;
if (GetValue(arg1, &value)) {
if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
@@ -404,29 +573,30 @@ void Debugger::Debug() {
byte_* cur = NULL;
byte_* end = NULL;
- if (args == 1) {
+ if (argc == 1) {
cur = reinterpret_cast<byte_*>(sim_->get_pc());
- end = cur + (10 * Instruction::kInstructionSize);
- } else if (args == 2) {
+ end = cur + (10 * Instruction::kInstrSize);
+ } else if (argc == 2) {
int32_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte_*>(value);
// no length parameter passed, assume 10 instructions
- end = cur + (10 * Instruction::kInstructionSize);
+ end = cur + (10 * Instruction::kInstrSize);
}
} else {
int32_t value1;
int32_t value2;
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
cur = reinterpret_cast<byte_*>(value1);
- end = cur + (value2 * Instruction::kInstructionSize);
+ end = cur + (value2 * Instruction::kInstrSize);
}
}
while (cur < end) {
dasm.InstructionDecode(buffer, cur);
- PrintF(" 0x%08x %s\n", cur, buffer.start());
- cur += Instruction::kInstructionSize;
+ PrintF(" 0x%08x %s\n",
+ reinterpret_cast<intptr_t>(cur), buffer.start());
+ cur += Instruction::kInstrSize;
}
} else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
PrintF("cont\n");
@@ -438,6 +608,10 @@ void Debugger::Debug() {
PrintF(" use register name 'all' to print all registers\n");
PrintF("printobject <register>\n");
PrintF(" print an object from a register (alias 'po')\n");
+ PrintF("stack [<words>]\n");
+ PrintF(" dump stack content, default dump 10 words)\n");
+ PrintF("mem <address> [<words>]\n");
+ PrintF(" dump memory content, default dump 10 words)\n");
PrintF("flags\n");
PrintF(" print flags\n");
PrintF("disasm [<instructions>]\n");
@@ -471,29 +645,120 @@ void Debugger::Debug() {
}
-// Create one simulator per thread and keep it in thread local storage.
-static v8::internal::Thread::LocalStorageKey simulator_key;
+static bool ICacheMatch(void* one, void* two) {
+ ASSERT((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
+ ASSERT((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
+ return one == two;
+}
+
+static uint32_t ICacheHash(void* key) {
+ return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
+}
-bool Simulator::initialized_ = false;
+
+static bool AllOnOnePage(uintptr_t start, int size) {
+ intptr_t start_page = (start & ~CachePage::kPageMask);
+ intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
+ return start_page == end_page;
+}
+
+
+void Simulator::FlushICache(v8::internal::HashMap* i_cache,
+ void* start_addr,
+ size_t size) {
+ intptr_t start = reinterpret_cast<intptr_t>(start_addr);
+ int intra_line = (start & CachePage::kLineMask);
+ start -= intra_line;
+ size += intra_line;
+ size = ((size - 1) | CachePage::kLineMask) + 1;
+ int offset = (start & CachePage::kPageMask);
+ while (!AllOnOnePage(start, size - 1)) {
+ int bytes_to_flush = CachePage::kPageSize - offset;
+ FlushOnePage(i_cache, start, bytes_to_flush);
+ start += bytes_to_flush;
+ size -= bytes_to_flush;
+ ASSERT_EQ(0, start & CachePage::kPageMask);
+ offset = 0;
+ }
+ if (size != 0) {
+ FlushOnePage(i_cache, start, size);
+ }
+}
+
+
+CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
+ v8::internal::HashMap::Entry* entry = i_cache->Lookup(page,
+ ICacheHash(page),
+ true);
+ if (entry->value == NULL) {
+ CachePage* new_page = new CachePage();
+ entry->value = new_page;
+ }
+ return reinterpret_cast<CachePage*>(entry->value);
+}
+
+
+// Flush from start up to and not including start + size.
+void Simulator::FlushOnePage(v8::internal::HashMap* i_cache,
+ intptr_t start,
+ int size) {
+ ASSERT(size <= CachePage::kPageSize);
+ ASSERT(AllOnOnePage(start, size - 1));
+ ASSERT((start & CachePage::kLineMask) == 0);
+ ASSERT((size & CachePage::kLineMask) == 0);
+ void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
+ int offset = (start & CachePage::kPageMask);
+ CachePage* cache_page = GetCachePage(i_cache, page);
+ char* valid_bytemap = cache_page->ValidityByte(offset);
+ memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
+}
+
+
+void Simulator::CheckICache(v8::internal::HashMap* i_cache,
+ Instruction* instr) {
+ intptr_t address = reinterpret_cast<intptr_t>(instr);
+ void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
+ void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
+ int offset = (address & CachePage::kPageMask);
+ CachePage* cache_page = GetCachePage(i_cache, page);
+ char* cache_valid_byte = cache_page->ValidityByte(offset);
+ bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
+ char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
+ if (cache_hit) {
+ // Check that the data in memory matches the contents of the I-cache.
+ CHECK(memcmp(reinterpret_cast<void*>(instr),
+ cache_page->CachedData(offset),
+ Instruction::kInstrSize) == 0);
+ } else {
+ // Cache miss. Load memory into the cache.
+ memcpy(cached_line, line, CachePage::kLineLength);
+ *cache_valid_byte = CachePage::LINE_VALID;
+ }
+}
void Simulator::Initialize() {
- if (initialized_) return;
- simulator_key = v8::internal::Thread::CreateThreadLocalKey();
- initialized_ = true;
+ if (Isolate::Current()->simulator_initialized()) return;
+ Isolate::Current()->set_simulator_initialized(true);
::v8::internal::ExternalReference::set_redirector(&RedirectExternalReference);
}
-Simulator::Simulator() {
+Simulator::Simulator() : isolate_(Isolate::Current()) {
+ i_cache_ = isolate_->simulator_i_cache();
+ if (i_cache_ == NULL) {
+ i_cache_ = new v8::internal::HashMap(&ICacheMatch);
+ isolate_->set_simulator_i_cache(i_cache_);
+ }
Initialize();
// Setup simulator support first. Some of this information is needed to
// setup the architecture state.
- size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack
- stack_ = reinterpret_cast<char*>(malloc(stack_size));
+ stack_size_ = 1 * 1024*1024; // allocate 1MB for stack
+ stack_ = reinterpret_cast<char*>(malloc(stack_size_));
pc_modified_ = false;
icount_ = 0;
+ break_count_ = 0;
break_pc_ = NULL;
break_instr_ = 0;
@@ -502,16 +767,23 @@ Simulator::Simulator() {
for (int i = 0; i < kNumSimuRegisters; i++) {
registers_[i] = 0;
}
+ for (int i = 0; i < kNumFPURegisters; i++) {
+ FPUregisters_[i] = 0;
+ }
+ FCSR_ = 0;
// The sp is initialized to point to the bottom (high address) of the
// allocated stack area. To be safe in potential stack underflows we leave
// some buffer below.
- registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64;
+ registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size_ - 64;
// The ra and pc are initialized to a known bad value that will cause an
// access violation if the simulator ever tries to execute it.
registers_[pc] = bad_ra;
registers_[ra] = bad_ra;
InitializeCoverage();
+ for (int i = 0; i < kNumExceptions; i++) {
+ exceptions[i] = 0;
+ }
}
@@ -524,12 +796,18 @@ Simulator::Simulator() {
// offset from the swi instruction so the simulator knows what to call.
class Redirection {
public:
- Redirection(void* external_function, bool fp_return)
+ Redirection(void* external_function, ExternalReference::Type type)
: external_function_(external_function),
swi_instruction_(rtCallRedirInstr),
- fp_return_(fp_return),
- next_(list_) {
- list_ = this;
+ type_(type),
+ next_(NULL) {
+ Isolate* isolate = Isolate::Current();
+ next_ = isolate->simulator_redirection();
+ Simulator::current(isolate)->
+ FlushICache(isolate->simulator_i_cache(),
+ reinterpret_cast<void*>(&swi_instruction_),
+ Instruction::kInstrSize);
+ isolate->set_simulator_redirection(this);
}
void* address_of_swi_instruction() {
@@ -537,14 +815,16 @@ class Redirection {
}
void* external_function() { return external_function_; }
- bool fp_return() { return fp_return_; }
+ ExternalReference::Type type() { return type_; }
- static Redirection* Get(void* external_function, bool fp_return) {
- Redirection* current;
- for (current = list_; current != NULL; current = current->next_) {
+ static Redirection* Get(void* external_function,
+ ExternalReference::Type type) {
+ Isolate* isolate = Isolate::Current();
+ Redirection* current = isolate->simulator_redirection();
+ for (; current != NULL; current = current->next_) {
if (current->external_function_ == external_function) return current;
}
- return new Redirection(external_function, fp_return);
+ return new Redirection(external_function, type);
}
static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
@@ -557,31 +837,33 @@ class Redirection {
private:
void* external_function_;
uint32_t swi_instruction_;
- bool fp_return_;
+ ExternalReference::Type type_;
Redirection* next_;
- static Redirection* list_;
};
-Redirection* Redirection::list_ = NULL;
-
-
void* Simulator::RedirectExternalReference(void* external_function,
- bool fp_return) {
- Redirection* redirection = Redirection::Get(external_function, fp_return);
+ ExternalReference::Type type) {
+ Redirection* redirection = Redirection::Get(external_function, type);
return redirection->address_of_swi_instruction();
}
// Get the active Simulator for the current thread.
-Simulator* Simulator::current() {
- Initialize();
- Simulator* sim = reinterpret_cast<Simulator*>(
- v8::internal::Thread::GetThreadLocal(simulator_key));
+Simulator* Simulator::current(Isolate* isolate) {
+ v8::internal::Isolate::PerIsolateThreadData* isolate_data =
+ Isolate::CurrentPerIsolateThreadData();
+ if (isolate_data == NULL) {
+ Isolate::EnterDefaultIsolate();
+ isolate_data = Isolate::CurrentPerIsolateThreadData();
+ }
+ ASSERT(isolate_data != NULL);
+
+ Simulator* sim = isolate_data->simulator();
if (sim == NULL) {
- // TODO(146): delete the simulator object when a thread goes away.
+ // TODO(146): delete the simulator object when a thread/isolate goes away.
sim = new Simulator();
- v8::internal::Thread::SetThreadLocal(simulator_key, sim);
+ isolate_data->set_simulator(sim);
}
return sim;
}
@@ -599,14 +881,22 @@ void Simulator::set_register(int reg, int32_t value) {
registers_[reg] = (reg == 0) ? 0 : value;
}
+
void Simulator::set_fpu_register(int fpureg, int32_t value) {
ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
FPUregisters_[fpureg] = value;
}
+
+void Simulator::set_fpu_register_float(int fpureg, float value) {
+ ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
+ *BitCast<float*>(&FPUregisters_[fpureg]) = value;
+}
+
+
void Simulator::set_fpu_register_double(int fpureg, double value) {
ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
- *v8i::BitCast<double*>(&FPUregisters_[fpureg]) = value;
+ *BitCast<double*>(&FPUregisters_[fpureg]) = value;
}
@@ -620,22 +910,75 @@ int32_t Simulator::get_register(int reg) const {
return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0);
}
+
int32_t Simulator::get_fpu_register(int fpureg) const {
ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
return FPUregisters_[fpureg];
}
+
+int64_t Simulator::get_fpu_register_long(int fpureg) const {
+ ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
+ return *BitCast<int64_t*>(
+ const_cast<int32_t*>(&FPUregisters_[fpureg]));
+}
+
+
+float Simulator::get_fpu_register_float(int fpureg) const {
+ ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
+ return *BitCast<float*>(
+ const_cast<int32_t*>(&FPUregisters_[fpureg]));
+}
+
+
double Simulator::get_fpu_register_double(int fpureg) const {
ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
- return *v8i::BitCast<double*>(const_cast<int32_t*>(&FPUregisters_[fpureg]));
+ return *BitCast<double*>(const_cast<int32_t*>(&FPUregisters_[fpureg]));
+}
+
+
+// Helper functions for setting and testing the FCSR register's bits.
+void Simulator::set_fcsr_bit(uint32_t cc, bool value) {
+ if (value) {
+ FCSR_ |= (1 << cc);
+ } else {
+ FCSR_ &= ~(1 << cc);
+ }
+}
+
+
+bool Simulator::test_fcsr_bit(uint32_t cc) {
+ return FCSR_ & (1 << cc);
}
+
+// Sets the rounding error codes in FCSR based on the result of the rounding.
+// Returns true if the operation was invalid.
+bool Simulator::set_fcsr_round_error(double original, double rounded) {
+ if (!isfinite(original) ||
+ rounded > LONG_MAX ||
+ rounded < LONG_MIN) {
+ set_fcsr_bit(6, true); // Invalid operation.
+ return true;
+ } else if (original != static_cast<double>(rounded)) {
+ set_fcsr_bit(2, true); // Inexact.
+ }
+ return false;
+}
+
+
// Raw access to the PC register.
void Simulator::set_pc(int32_t value) {
pc_modified_ = true;
registers_[pc] = value;
}
+
+bool Simulator::has_bad_pc() const {
+ return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc));
+}
+
+
// Raw access to the PC register without the special adjustment when reading.
int32_t Simulator::get_pc() const {
return registers_[pc];
@@ -651,24 +994,38 @@ int32_t Simulator::get_pc() const {
// get the correct MIPS-like behaviour on unaligned accesses.
int Simulator::ReadW(int32_t addr, Instruction* instr) {
- if ((addr & v8i::kPointerAlignmentMask) == 0) {
+ if (addr >=0 && addr < 0x400) {
+ // this has to be a NULL-dereference
+ MipsDebugger dbg(this);
+ dbg.Debug();
+ }
+ if ((addr & kPointerAlignmentMask) == 0) {
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
return *ptr;
}
- PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, instr);
- OS::Abort();
+ PrintF("Unaligned read at 0x%08x, pc=%p\n", addr,
+ reinterpret_cast<void*>(instr));
+ MipsDebugger dbg(this);
+ dbg.Debug();
return 0;
}
void Simulator::WriteW(int32_t addr, int value, Instruction* instr) {
- if ((addr & v8i::kPointerAlignmentMask) == 0) {
+ if (addr >= 0 && addr < 0x400) {
+ // this has to be a NULL-dereference
+ MipsDebugger dbg(this);
+ dbg.Debug();
+ }
+ if ((addr & kPointerAlignmentMask) == 0) {
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
*ptr = value;
return;
}
- PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr);
- OS::Abort();
+ PrintF("Unaligned write at 0x%08x, pc=%p\n", addr,
+ reinterpret_cast<void*>(instr));
+ MipsDebugger dbg(this);
+ dbg.Debug();
}
@@ -677,7 +1034,8 @@ double Simulator::ReadD(int32_t addr, Instruction* instr) {
double* ptr = reinterpret_cast<double*>(addr);
return *ptr;
}
- PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, instr);
+ PrintF("Unaligned (double) read at 0x%08x, pc=%p\n", addr,
+ reinterpret_cast<void*>(instr));
OS::Abort();
return 0;
}
@@ -689,7 +1047,8 @@ void Simulator::WriteD(int32_t addr, double value, Instruction* instr) {
*ptr = value;
return;
}
- PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr);
+ PrintF("Unaligned (double) write at 0x%08x, pc=%p\n", addr,
+ reinterpret_cast<void*>(instr));
OS::Abort();
}
@@ -699,7 +1058,8 @@ uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
return *ptr;
}
- PrintF("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, instr);
+ PrintF("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr,
+ reinterpret_cast<void*>(instr));
OS::Abort();
return 0;
}
@@ -710,7 +1070,8 @@ int16_t Simulator::ReadH(int32_t addr, Instruction* instr) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
return *ptr;
}
- PrintF("Unaligned signed halfword read at 0x%08x, pc=%p\n", addr, instr);
+ PrintF("Unaligned signed halfword read at 0x%08x, pc=%p\n", addr,
+ reinterpret_cast<void*>(instr));
OS::Abort();
return 0;
}
@@ -722,7 +1083,8 @@ void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) {
*ptr = value;
return;
}
- PrintF("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, instr);
+ PrintF("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr,
+ reinterpret_cast<void*>(instr));
OS::Abort();
}
@@ -733,7 +1095,8 @@ void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) {
*ptr = value;
return;
}
- PrintF("Unaligned halfword write at 0x%08x, pc=%p\n", addr, instr);
+ PrintF("Unaligned halfword write at 0x%08x, pc=%p\n", addr,
+ reinterpret_cast<void*>(instr));
OS::Abort();
}
@@ -746,7 +1109,7 @@ uint32_t Simulator::ReadBU(int32_t addr) {
int32_t Simulator::ReadB(int32_t addr) {
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
- return ((*ptr << 24) >> 24) & 0xff;
+ return *ptr;
}
@@ -773,7 +1136,7 @@ uintptr_t Simulator::StackLimit() const {
// Unsupported instructions use Format to print an error and stop execution.
void Simulator::Format(Instruction* instr, const char* format) {
PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n",
- instr, format);
+ reinterpret_cast<intptr_t>(instr), format);
UNIMPLEMENTED_MIPS();
}
@@ -782,75 +1145,140 @@ void Simulator::Format(Instruction* instr, const char* format) {
// Note: To be able to return two values from some calls the code in runtime.cc
// uses the ObjectPair which is essentially two 32-bit values stuffed into a
// 64-bit value. With the code below we assume that all runtime calls return
-// 64 bits of result. If they don't, the r1 result register contains a bogus
+// 64 bits of result. If they don't, the v1 result register contains a bogus
// value, which is fine because it is caller-saved.
typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0,
int32_t arg1,
int32_t arg2,
- int32_t arg3);
-typedef double (*SimulatorRuntimeFPCall)(double fparg0,
- double fparg1);
-
+ int32_t arg3,
+ int32_t arg4,
+ int32_t arg5);
+typedef double (*SimulatorRuntimeFPCall)(int32_t arg0,
+ int32_t arg1,
+ int32_t arg2,
+ int32_t arg3);
// Software interrupt instructions are used by the simulator to call into the
-// C-based V8 runtime.
+// C-based V8 runtime. They are also used for debugging with simulator.
void Simulator::SoftwareInterrupt(Instruction* instr) {
+ // There are several instructions that could get us here,
+ // the break_ instruction, or several variants of traps. All
+ // Are "SPECIAL" class opcode, and are distinuished by function.
+ int32_t func = instr->FunctionFieldRaw();
+ int32_t code = (func == BREAK) ? instr->Bits(25, 6) : -1;
+
// We first check if we met a call_rt_redirected.
if (instr->InstructionBits() == rtCallRedirInstr) {
+ // Check if stack is aligned. Error if not aligned is reported below to
+ // include information on the function called.
+ bool stack_aligned =
+ (get_register(sp)
+ & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0;
Redirection* redirection = Redirection::FromSwiInstruction(instr);
int32_t arg0 = get_register(a0);
int32_t arg1 = get_register(a1);
int32_t arg2 = get_register(a2);
int32_t arg3 = get_register(a3);
- // fp args are (not always) in f12 and f14.
- // See MIPS conventions for more details.
- double fparg0 = get_fpu_register_double(f12);
- double fparg1 = get_fpu_register_double(f14);
+ int32_t arg4 = 0;
+ int32_t arg5 = 0;
+
+ // Need to check if sp is valid before assigning arg4, arg5.
+ // This is a fix for cctest test-api/CatchStackOverflow which causes
+ // the stack to overflow. For some reason arm doesn't need this
+ // stack check here.
+ int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
+ int32_t* stack = reinterpret_cast<int32_t*>(stack_);
+ if (stack_pointer >= stack && stack_pointer < stack + stack_size_) {
+ arg4 = stack_pointer[0];
+ arg5 = stack_pointer[1];
+ }
// This is dodgy but it works because the C entry stubs are never moved.
// See comment in codegen-arm.cc and bug 1242173.
int32_t saved_ra = get_register(ra);
- if (redirection->fp_return()) {
- intptr_t external =
- reinterpret_cast<intptr_t>(redirection->external_function());
+
+ intptr_t external =
+ reinterpret_cast<int32_t>(redirection->external_function());
+
+ // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware
+ // FPU, or gcc soft-float routines. Hardware FPU is simulated in this
+ // simulator. Soft-float has additional abstraction of ExternalReference,
+ // to support serialization. Finally, when simulated on x86 host, the
+ // x86 softfloat routines are used, and this Redirection infrastructure
+ // lets simulated-mips make calls into x86 C code.
+ // When doing that, the 'double' return type must be handled differently
+ // than the usual int64_t return. The data is returned in different
+ // registers and cannot be cast from one type to the other. However, the
+ // calling arguments are passed the same way in both cases.
+ if (redirection->type() == ExternalReference::FP_RETURN_CALL) {
SimulatorRuntimeFPCall target =
reinterpret_cast<SimulatorRuntimeFPCall>(external);
- if (::v8::internal::FLAG_trace_sim) {
- PrintF("Call to host function at %p with args %f, %f\n",
- FUNCTION_ADDR(target), fparg0, fparg1);
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ PrintF("Call to host function at %p with args %08x:%08x %08x:%08x",
+ FUNCTION_ADDR(target), arg0, arg1, arg2, arg3);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08x\n", get_register(sp));
+ }
+ PrintF("\n");
}
- double result = target(fparg0, fparg1);
- set_fpu_register_double(f0, result);
+ double result = target(arg0, arg1, arg2, arg3);
+ // fp result -> registers v0 and v1.
+ int32_t gpreg_pair[2];
+ memcpy(&gpreg_pair[0], &result, 2 * sizeof(int32_t));
+ set_register(v0, gpreg_pair[0]);
+ set_register(v1, gpreg_pair[1]);
+ } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
+ PrintF("Mips does not yet support ExternalReference::DIRECT_API_CALL\n");
+ ASSERT(redirection->type() != ExternalReference::DIRECT_API_CALL);
+ } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
+ PrintF("Mips does not support ExternalReference::DIRECT_GETTER_CALL\n");
+ ASSERT(redirection->type() != ExternalReference::DIRECT_GETTER_CALL);
} else {
- intptr_t external =
- reinterpret_cast<int32_t>(redirection->external_function());
+ // Builtin call.
+ ASSERT(redirection->type() == ExternalReference::BUILTIN_CALL);
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(external);
- if (::v8::internal::FLAG_trace_sim) {
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
PrintF(
- "Call to host function at %p with args %08x, %08x, %08x, %08x\n",
+ "Call to host function at %p: %08x, %08x, %08x, %08x, %08x, %08x",
FUNCTION_ADDR(target),
arg0,
arg1,
arg2,
- arg3);
- }
- int64_t result = target(arg0, arg1, arg2, arg3);
- int32_t lo_res = static_cast<int32_t>(result);
- int32_t hi_res = static_cast<int32_t>(result >> 32);
- if (::v8::internal::FLAG_trace_sim) {
- PrintF("Returned %08x\n", lo_res);
+ arg3,
+ arg4,
+ arg5);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08x\n", get_register(sp));
+ }
+ PrintF("\n");
}
- set_register(v0, lo_res);
- set_register(v1, hi_res);
+
+ int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
+ set_register(v0, static_cast<int32_t>(result));
+ set_register(v1, static_cast<int32_t>(result >> 32));
+ }
+ if (::v8::internal::FLAG_trace_sim) {
+ PrintF("Returned %08x : %08x\n", get_register(v1), get_register(v0));
}
set_register(ra, saved_ra);
set_pc(get_register(ra));
+
+ } else if (func == BREAK && code >= 0 && code < 16) {
+ // First 16 break_ codes interpreted as debug markers.
+ MipsDebugger dbg(this);
+ ++break_count_;
+ PrintF("\n---- break %d marker: %3d (instr count: %8d) ----------"
+ "----------------------------------",
+ code, break_count_, icount_);
+ dbg.PrintAllRegs(); // Print registers and continue running.
} else {
- Debugger dbg(this);
+ // All remaining break_ codes, and all traps are handled here.
+ MipsDebugger dbg(this);
dbg.Debug();
}
}
+
void Simulator::SignalExceptions() {
for (int i = 1; i < kNumExceptions; i++) {
if (exceptions[i] != 0) {
@@ -859,51 +1287,52 @@ void Simulator::SignalExceptions() {
}
}
-// Handle execution based on instruction types.
-void Simulator::DecodeTypeRegister(Instruction* instr) {
- // Instruction fields
- Opcode op = instr->OpcodeFieldRaw();
- int32_t rs_reg = instr->RsField();
- int32_t rs = get_register(rs_reg);
- uint32_t rs_u = static_cast<uint32_t>(rs);
- int32_t rt_reg = instr->RtField();
- int32_t rt = get_register(rt_reg);
- uint32_t rt_u = static_cast<uint32_t>(rt);
- int32_t rd_reg = instr->RdField();
- uint32_t sa = instr->SaField();
-
- int32_t fs_reg= instr->FsField();
- // ALU output
- // It should not be used as is. Instructions using it should always initialize
- // it first.
- int32_t alu_out = 0x12345678;
- // Output or temporary for floating point.
- double fp_out = 0.0;
+// Handle execution based on instruction types.
- // For break and trap instructions.
- bool do_interrupt = false;
+void Simulator::ConfigureTypeRegister(Instruction* instr,
+ int32_t& alu_out,
+ int64_t& i64hilo,
+ uint64_t& u64hilo,
+ int32_t& next_pc,
+ bool& do_interrupt) {
+ // Every local variable declared here needs to be const.
+ // This is to make sure that changed values are sent back to
+ // DecodeTypeRegister correctly.
+
+ // Instruction fields.
+ const Opcode op = instr->OpcodeFieldRaw();
+ const int32_t rs_reg = instr->RsValue();
+ const int32_t rs = get_register(rs_reg);
+ const uint32_t rs_u = static_cast<uint32_t>(rs);
+ const int32_t rt_reg = instr->RtValue();
+ const int32_t rt = get_register(rt_reg);
+ const uint32_t rt_u = static_cast<uint32_t>(rt);
+ const int32_t rd_reg = instr->RdValue();
+ const uint32_t sa = instr->SaValue();
+
+ const int32_t fs_reg = instr->FsValue();
- // For jr and jalr
- // Get current pc.
- int32_t current_pc = get_pc();
- // Next pc
- int32_t next_pc = 0;
// ---------- Configuration
switch (op) {
case COP1: // Coprocessor instructions
switch (instr->RsFieldRaw()) {
- case BC1: // branch on coprocessor condition
+ case BC1: // Handled in DecodeTypeImmed, should never come here.
UNREACHABLE();
break;
+ case CFC1:
+ // At the moment only FCSR is supported.
+ ASSERT(fs_reg == kFCSRRegister);
+ alu_out = FCSR_;
+ break;
case MFC1:
alu_out = get_fpu_register(fs_reg);
break;
case MFHC1:
- fp_out = get_fpu_register_double(fs_reg);
- alu_out = *v8i::BitCast<int32_t*>(&fp_out);
+ UNIMPLEMENTED_MIPS();
break;
+ case CTC1:
case MTC1:
case MTHC1:
// Do the store in the execution step.
@@ -923,13 +1352,22 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
switch (instr->FunctionFieldRaw()) {
case JR:
case JALR:
- next_pc = get_register(instr->RsField());
+ next_pc = get_register(instr->RsValue());
break;
case SLL:
alu_out = rt << sa;
break;
case SRL:
- alu_out = rt_u >> sa;
+ if (rs_reg == 0) {
+ // Regular logical right shift of a word by a fixed number of
+ // bits instruction. RS field is always equal to 0.
+ alu_out = rt_u >> sa;
+ } else {
+ // Logical right-rotate of a word by a fixed number of bits. This
+ // is special case of SRL instruction, added in MIPS32 Release 2.
+ // RS field is equal to 00001
+ alu_out = (rt_u >> sa) | (rt_u << (32 - sa));
+ }
break;
case SRA:
alu_out = rt >> sa;
@@ -938,7 +1376,16 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
alu_out = rt << rs;
break;
case SRLV:
- alu_out = rt_u >> rs;
+ if (sa == 0) {
+ // Regular logical right-shift of a word by a variable number of
+ // bits instruction. SA field is always equal to 0.
+ alu_out = rt_u >> rs;
+ } else {
+ // Logical right-rotate of a word by a variable number of bits.
+ // This is special case od SRLV instruction, added in MIPS32
+ // Release 2. SA field is equal to 00001
+ alu_out = (rt_u >> rs_u) | (rt_u << (32 - rs_u));
+ }
break;
case SRAV:
alu_out = rt >> rs;
@@ -950,10 +1397,10 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
alu_out = get_register(LO);
break;
case MULT:
- UNIMPLEMENTED_MIPS();
+ i64hilo = static_cast<int64_t>(rs) * static_cast<int64_t>(rt);
break;
case MULTU:
- UNIMPLEMENTED_MIPS();
+ u64hilo = static_cast<uint64_t>(rs_u) * static_cast<uint64_t>(rt_u);
break;
case DIV:
case DIVU:
@@ -1005,6 +1452,7 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
break;
// Break and trap instructions
case BREAK:
+
do_interrupt = true;
break;
case TGE:
@@ -1025,6 +1473,11 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
case TNE:
do_interrupt = rs != rt;
break;
+ case MOVN:
+ case MOVZ:
+ case MOVCI:
+ // No action taken on decode.
+ break;
default:
UNREACHABLE();
};
@@ -1034,13 +1487,83 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
case MUL:
alu_out = rs_u * rt_u; // Only the lower 32 bits are kept.
break;
+ case CLZ:
+ alu_out = __builtin_clz(rs_u);
+ break;
default:
UNREACHABLE();
- }
+ };
+ break;
+ case SPECIAL3:
+ switch (instr->FunctionFieldRaw()) {
+ case INS: { // Mips32r2 instruction.
+ // Interpret Rd field as 5-bit msb of insert.
+ uint16_t msb = rd_reg;
+ // Interpret sa field as 5-bit lsb of insert.
+ uint16_t lsb = sa;
+ uint16_t size = msb - lsb + 1;
+ uint32_t mask = (1 << size) - 1;
+ alu_out = (rt_u & ~(mask << lsb)) | ((rs_u & mask) << lsb);
+ break;
+ }
+ case EXT: { // Mips32r2 instruction.
+ // Interpret Rd field as 5-bit msb of extract.
+ uint16_t msb = rd_reg;
+ // Interpret sa field as 5-bit lsb of extract.
+ uint16_t lsb = sa;
+ uint16_t size = msb + 1;
+ uint32_t mask = (1 << size) - 1;
+ alu_out = (rs_u & (mask << lsb)) >> lsb;
+ break;
+ }
+ default:
+ UNREACHABLE();
+ };
break;
default:
UNREACHABLE();
};
+}
+
+
+void Simulator::DecodeTypeRegister(Instruction* instr) {
+ // Instruction fields.
+ const Opcode op = instr->OpcodeFieldRaw();
+ const int32_t rs_reg = instr->RsValue();
+ const int32_t rs = get_register(rs_reg);
+ const uint32_t rs_u = static_cast<uint32_t>(rs);
+ const int32_t rt_reg = instr->RtValue();
+ const int32_t rt = get_register(rt_reg);
+ const uint32_t rt_u = static_cast<uint32_t>(rt);
+ const int32_t rd_reg = instr->RdValue();
+
+ const int32_t fs_reg = instr->FsValue();
+ const int32_t ft_reg = instr->FtValue();
+ const int32_t fd_reg = instr->FdValue();
+ int64_t i64hilo = 0;
+ uint64_t u64hilo = 0;
+
+ // ALU output
+ // It should not be used as is. Instructions using it should always
+ // initialize it first.
+ int32_t alu_out = 0x12345678;
+
+ // For break and trap instructions.
+ bool do_interrupt = false;
+
+ // For jr and jalr
+ // Get current pc.
+ int32_t current_pc = get_pc();
+ // Next pc
+ int32_t next_pc = 0;
+
+ // Setup the variables if needed before executing the instruction.
+ ConfigureTypeRegister(instr,
+ alu_out,
+ i64hilo,
+ u64hilo,
+ next_pc,
+ do_interrupt);
// ---------- Raise exceptions triggered.
SignalExceptions();
@@ -1052,25 +1575,42 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
case BC1: // branch on coprocessor condition
UNREACHABLE();
break;
+ case CFC1:
+ set_register(rt_reg, alu_out);
case MFC1:
- case MFHC1:
set_register(rt_reg, alu_out);
break;
+ case MFHC1:
+ UNIMPLEMENTED_MIPS();
+ break;
+ case CTC1:
+ // At the moment only FCSR is supported.
+ ASSERT(fs_reg == kFCSRRegister);
+ FCSR_ = registers_[rt_reg];
+ break;
case MTC1:
- // We don't need to set the higher bits to 0, because MIPS ISA says
- // they are in an unpredictable state after executing MTC1.
FPUregisters_[fs_reg] = registers_[rt_reg];
- FPUregisters_[fs_reg+1] = Unpredictable;
break;
case MTHC1:
- // Here we need to keep the lower bits unchanged.
- FPUregisters_[fs_reg+1] = registers_[rt_reg];
+ UNIMPLEMENTED_MIPS();
break;
case S:
+ float f;
switch (instr->FunctionFieldRaw()) {
case CVT_D_S:
+ f = get_fpu_register_float(fs_reg);
+ set_fpu_register_double(fd_reg, static_cast<double>(f));
+ break;
case CVT_W_S:
case CVT_L_S:
+ case TRUNC_W_S:
+ case TRUNC_L_S:
+ case ROUND_W_S:
+ case ROUND_L_S:
+ case FLOOR_W_S:
+ case FLOOR_L_S:
+ case CEIL_W_S:
+ case CEIL_L_S:
case CVT_PS_S:
UNIMPLEMENTED_MIPS();
break;
@@ -1079,10 +1619,133 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
}
break;
case D:
+ double ft, fs;
+ uint32_t cc, fcsr_cc;
+ int64_t i64;
+ fs = get_fpu_register_double(fs_reg);
+ ft = get_fpu_register_double(ft_reg);
+ cc = instr->FCccValue();
+ fcsr_cc = get_fcsr_condition_bit(cc);
switch (instr->FunctionFieldRaw()) {
- case CVT_S_D:
- case CVT_W_D:
- case CVT_L_D:
+ case ADD_D:
+ set_fpu_register_double(fd_reg, fs + ft);
+ break;
+ case SUB_D:
+ set_fpu_register_double(fd_reg, fs - ft);
+ break;
+ case MUL_D:
+ set_fpu_register_double(fd_reg, fs * ft);
+ break;
+ case DIV_D:
+ set_fpu_register_double(fd_reg, fs / ft);
+ break;
+ case ABS_D:
+ set_fpu_register_double(fd_reg, fs < 0 ? -fs : fs);
+ break;
+ case MOV_D:
+ set_fpu_register_double(fd_reg, fs);
+ break;
+ case NEG_D:
+ set_fpu_register_double(fd_reg, -fs);
+ break;
+ case SQRT_D:
+ set_fpu_register_double(fd_reg, sqrt(fs));
+ break;
+ case C_UN_D:
+ set_fcsr_bit(fcsr_cc, isnan(fs) || isnan(ft));
+ break;
+ case C_EQ_D:
+ set_fcsr_bit(fcsr_cc, (fs == ft));
+ break;
+ case C_UEQ_D:
+ set_fcsr_bit(fcsr_cc, (fs == ft) || (isnan(fs) || isnan(ft)));
+ break;
+ case C_OLT_D:
+ set_fcsr_bit(fcsr_cc, (fs < ft));
+ break;
+ case C_ULT_D:
+ set_fcsr_bit(fcsr_cc, (fs < ft) || (isnan(fs) || isnan(ft)));
+ break;
+ case C_OLE_D:
+ set_fcsr_bit(fcsr_cc, (fs <= ft));
+ break;
+ case C_ULE_D:
+ set_fcsr_bit(fcsr_cc, (fs <= ft) || (isnan(fs) || isnan(ft)));
+ break;
+ case CVT_W_D: // Convert double to word.
+ // Rounding modes are not yet supported.
+ ASSERT((FCSR_ & 3) == 0);
+ // In rounding mode 0 it should behave like ROUND.
+ case ROUND_W_D: // Round double to word.
+ {
+ double rounded = fs > 0 ? floor(fs + 0.5) : ceil(fs - 0.5);
+ int32_t result = static_cast<int32_t>(rounded);
+ set_fpu_register(fd_reg, result);
+ if (set_fcsr_round_error(fs, rounded)) {
+ set_fpu_register(fd_reg, kFPUInvalidResult);
+ }
+ }
+ break;
+ case TRUNC_W_D: // Truncate double to word (round towards 0).
+ {
+ int32_t result = static_cast<int32_t>(fs);
+ set_fpu_register(fd_reg, result);
+ if (set_fcsr_round_error(fs, static_cast<double>(result))) {
+ set_fpu_register(fd_reg, kFPUInvalidResult);
+ }
+ }
+ break;
+ case FLOOR_W_D: // Round double to word towards negative infinity.
+ {
+ double rounded = floor(fs);
+ int32_t result = static_cast<int32_t>(rounded);
+ set_fpu_register(fd_reg, result);
+ if (set_fcsr_round_error(fs, rounded)) {
+ set_fpu_register(fd_reg, kFPUInvalidResult);
+ }
+ }
+ break;
+ case CEIL_W_D: // Round double to word towards positive infinity.
+ {
+ double rounded = ceil(fs);
+ int32_t result = static_cast<int32_t>(rounded);
+ set_fpu_register(fd_reg, result);
+ if (set_fcsr_round_error(fs, rounded)) {
+ set_fpu_register(fd_reg, kFPUInvalidResult);
+ }
+ }
+ break;
+ case CVT_S_D: // Convert double to float (single).
+ set_fpu_register_float(fd_reg, static_cast<float>(fs));
+ break;
+ case CVT_L_D: // Mips32r2: Truncate double to 64-bit long-word.
+ i64 = static_cast<int64_t>(fs);
+ set_fpu_register(fd_reg, i64 & 0xffffffff);
+ set_fpu_register(fd_reg + 1, i64 >> 32);
+ break;
+ case TRUNC_L_D: // Mips32r2 instruction.
+ i64 = static_cast<int64_t>(fs);
+ set_fpu_register(fd_reg, i64 & 0xffffffff);
+ set_fpu_register(fd_reg + 1, i64 >> 32);
+ break;
+ case ROUND_L_D: { // Mips32r2 instruction.
+ double rounded = fs > 0 ? floor(fs + 0.5) : ceil(fs - 0.5);
+ i64 = static_cast<int64_t>(rounded);
+ set_fpu_register(fd_reg, i64 & 0xffffffff);
+ set_fpu_register(fd_reg + 1, i64 >> 32);
+ break;
+ }
+ case FLOOR_L_D: // Mips32r2 instruction.
+ i64 = static_cast<int64_t>(floor(fs));
+ set_fpu_register(fd_reg, i64 & 0xffffffff);
+ set_fpu_register(fd_reg + 1, i64 >> 32);
+ break;
+ case CEIL_L_D: // Mips32r2 instruction.
+ i64 = static_cast<int64_t>(ceil(fs));
+ set_fpu_register(fd_reg, i64 & 0xffffffff);
+ set_fpu_register(fd_reg + 1, i64 >> 32);
+ break;
+ case C_F_D:
UNIMPLEMENTED_MIPS();
break;
default:
@@ -1091,11 +1754,13 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
break;
case W:
switch (instr->FunctionFieldRaw()) {
- case CVT_S_W:
- UNIMPLEMENTED_MIPS();
+ case CVT_S_W: // Convert word to float (single).
+ alu_out = get_fpu_register(fs_reg);
+ set_fpu_register_float(fd_reg, static_cast<float>(alu_out));
break;
case CVT_D_W: // Convert word to double.
- set_fpu_register(rd_reg, static_cast<double>(rs));
+ alu_out = get_fpu_register(fs_reg);
+ set_fpu_register_double(fd_reg, static_cast<double>(alu_out));
break;
default:
UNREACHABLE();
@@ -1103,8 +1768,14 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
break;
case L:
switch (instr->FunctionFieldRaw()) {
+ case CVT_D_L: // Mips32r2 instruction.
+ // Watch the signs here, we want 2 32-bit vals
+ // to make a sign-64.
+ i64 = (uint32_t) get_fpu_register(fs_reg);
+ i64 |= ((int64_t) get_fpu_register(fs_reg + 1) << 32);
+ set_fpu_register_double(fd_reg, static_cast<double>(i64));
+ break;
case CVT_S_L:
- case CVT_D_L:
UNIMPLEMENTED_MIPS();
break;
default:
@@ -1121,7 +1792,7 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
switch (instr->FunctionFieldRaw()) {
case JR: {
Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(
- current_pc+Instruction::kInstructionSize);
+ current_pc+Instruction::kInstrSize);
BranchDelayInstructionDecode(branch_delay_instr);
set_pc(next_pc);
pc_modified_ = true;
@@ -1129,16 +1800,21 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
}
case JALR: {
Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(
- current_pc+Instruction::kInstructionSize);
+ current_pc+Instruction::kInstrSize);
BranchDelayInstructionDecode(branch_delay_instr);
- set_register(31, current_pc + 2* Instruction::kInstructionSize);
+ set_register(31, current_pc + 2* Instruction::kInstrSize);
set_pc(next_pc);
pc_modified_ = true;
break;
}
// Instructions using HI and LO registers.
case MULT:
+ set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff));
+ set_register(HI, static_cast<int32_t>(i64hilo >> 32));
+ break;
case MULTU:
+ set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff));
+ set_register(HI, static_cast<int32_t>(u64hilo >> 32));
break;
case DIV:
// Divide by zero was checked in the configuration step.
@@ -1149,7 +1825,7 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
set_register(LO, rs_u / rt_u);
set_register(HI, rs_u % rt_u);
break;
- // Break and trap instructions
+ // Break and trap instructions.
case BREAK:
case TGE:
case TGEU:
@@ -1161,6 +1837,23 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
SoftwareInterrupt(instr);
}
break;
+ // Conditional moves.
+ case MOVN:
+ if (rt) set_register(rd_reg, rs);
+ break;
+ case MOVCI: {
+ uint32_t cc = instr->FCccValue();
+ uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
+ if (instr->Bit(16)) { // Read Tf bit
+ if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs);
+ } else {
+ if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs);
+ }
+ break;
+ }
+ case MOVZ:
+ if (!rt) set_register(rd_reg, rs);
+ break;
default: // For other special opcodes we do the default operation.
set_register(rd_reg, alu_out);
};
@@ -1173,9 +1866,23 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
set_register(LO, Unpredictable);
set_register(HI, Unpredictable);
break;
+ default: // For other special2 opcodes we do the default operation.
+ set_register(rd_reg, alu_out);
+ }
+ break;
+ case SPECIAL3:
+ switch (instr->FunctionFieldRaw()) {
+ case INS:
+ // Ins instr leaves result in Rt, rather than Rd.
+ set_register(rt_reg, alu_out);
+ break;
+ case EXT:
+ // Ext instr leaves result in Rt, rather than Rd.
+ set_register(rt_reg, alu_out);
+ break;
default:
UNREACHABLE();
- }
+ };
break;
// Unimplemented opcodes raised an error in the configuration step before,
// so we can use the default here to set the destination register in common
@@ -1185,22 +1892,22 @@ void Simulator::DecodeTypeRegister(Instruction* instr) {
};
}
+
// Type 2: instructions using a 16 bytes immediate. (eg: addi, beq)
void Simulator::DecodeTypeImmediate(Instruction* instr) {
- // Instruction fields
+ // Instruction fields.
Opcode op = instr->OpcodeFieldRaw();
- int32_t rs = get_register(instr->RsField());
+ int32_t rs = get_register(instr->RsValue());
uint32_t rs_u = static_cast<uint32_t>(rs);
- int32_t rt_reg = instr->RtField(); // destination register
+ int32_t rt_reg = instr->RtValue(); // destination register
int32_t rt = get_register(rt_reg);
- int16_t imm16 = instr->Imm16Field();
+ int16_t imm16 = instr->Imm16Value();
- int32_t ft_reg = instr->FtField(); // destination register
- int32_t ft = get_register(ft_reg);
+ int32_t ft_reg = instr->FtValue(); // destination register
- // zero extended immediate
+ // Zero extended immediate.
uint32_t oe_imm16 = 0xffff & imm16;
- // sign extended immediate
+ // Sign extended immediate.
int32_t se_imm16 = imm16;
// Get current pc.
@@ -1208,25 +1915,38 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
// Next pc.
int32_t next_pc = bad_ra;
- // Used for conditional branch instructions
+ // Used for conditional branch instructions.
bool do_branch = false;
bool execute_branch_delay_instruction = false;
- // Used for arithmetic instructions
+ // Used for arithmetic instructions.
int32_t alu_out = 0;
- // Floating point
+ // Floating point.
double fp_out = 0.0;
+ uint32_t cc, cc_value, fcsr_cc;
- // Used for memory instructions
+ // Used for memory instructions.
int32_t addr = 0x0;
+ // Value to be written in memory
+ uint32_t mem_value = 0x0;
// ---------- Configuration (and execution for REGIMM)
switch (op) {
- // ------------- COP1. Coprocessor instructions
+ // ------------- COP1. Coprocessor instructions.
case COP1:
switch (instr->RsFieldRaw()) {
- case BC1: // branch on coprocessor condition
- UNIMPLEMENTED_MIPS();
+ case BC1: // Branch on coprocessor condition.
+ cc = instr->FBccValue();
+ fcsr_cc = get_fcsr_condition_bit(cc);
+ cc_value = test_fcsr_bit(fcsr_cc);
+ do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value;
+ execute_branch_delay_instruction = true;
+ // Set next_pc
+ if (do_branch) {
+ next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
+ } else {
+ next_pc = current_pc + kBranchReturnOffset;
+ }
break;
default:
UNREACHABLE();
@@ -1259,7 +1979,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
execute_branch_delay_instruction = true;
// Set next_pc
if (do_branch) {
- next_pc = current_pc + (imm16 << 2) + Instruction::kInstructionSize;
+ next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
if (instr->IsLinkingInstruction()) {
set_register(31, current_pc + kBranchReturnOffset);
}
@@ -1323,6 +2043,21 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
addr = rs + se_imm16;
alu_out = ReadB(addr);
break;
+ case LH:
+ addr = rs + se_imm16;
+ alu_out = ReadH(addr, instr);
+ break;
+ case LWL: {
+ // al_offset is an offset of the effective address within an aligned word
+ uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
+ uint8_t byte_shift = kPointerAlignmentMask - al_offset;
+ uint32_t mask = (1 << byte_shift * 8) - 1;
+ addr = rs + se_imm16 - al_offset;
+ alu_out = ReadW(addr, instr);
+ alu_out <<= byte_shift * 8;
+ alu_out |= rt & mask;
+ break;
+ }
case LW:
addr = rs + se_imm16;
alu_out = ReadW(addr, instr);
@@ -1331,12 +2066,47 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
addr = rs + se_imm16;
alu_out = ReadBU(addr);
break;
+ case LHU:
+ addr = rs + se_imm16;
+ alu_out = ReadHU(addr, instr);
+ break;
+ case LWR: {
+ // al_offset is an offset of the effective address within an aligned word
+ uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
+ uint8_t byte_shift = kPointerAlignmentMask - al_offset;
+ uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0;
+ addr = rs + se_imm16 - al_offset;
+ alu_out = ReadW(addr, instr);
+ alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8;
+ alu_out |= rt & mask;
+ break;
+ }
case SB:
addr = rs + se_imm16;
break;
+ case SH:
+ addr = rs + se_imm16;
+ break;
+ case SWL: {
+ uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
+ uint8_t byte_shift = kPointerAlignmentMask - al_offset;
+ uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0;
+ addr = rs + se_imm16 - al_offset;
+ mem_value = ReadW(addr, instr) & mask;
+ mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8;
+ break;
+ }
case SW:
addr = rs + se_imm16;
break;
+ case SWR: {
+ uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
+ uint32_t mask = (1 << al_offset * 8) - 1;
+ addr = rs + se_imm16 - al_offset;
+ mem_value = ReadW(addr, instr);
+ mem_value = (rt << al_offset * 8) | (mem_value & mask);
+ break;
+ }
case LWC1:
addr = rs + se_imm16;
alu_out = ReadW(addr, instr);
@@ -1367,12 +2137,12 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
execute_branch_delay_instruction = true;
// Set next_pc
if (do_branch) {
- next_pc = current_pc + (imm16 << 2) + Instruction::kInstructionSize;
+ next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
if (instr->IsLinkingInstruction()) {
- set_register(31, current_pc + 2* Instruction::kInstructionSize);
+ set_register(31, current_pc + 2* Instruction::kInstrSize);
}
} else {
- next_pc = current_pc + 2 * Instruction::kInstructionSize;
+ next_pc = current_pc + 2 * Instruction::kInstrSize;
}
break;
// ------------- Arithmetic instructions
@@ -1388,16 +2158,29 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
break;
// ------------- Memory instructions
case LB:
+ case LH:
+ case LWL:
case LW:
case LBU:
+ case LHU:
+ case LWR:
set_register(rt_reg, alu_out);
break;
case SB:
WriteB(addr, static_cast<int8_t>(rt));
break;
+ case SH:
+ WriteH(addr, static_cast<uint16_t>(rt), instr);
+ break;
+ case SWL:
+ WriteW(addr, mem_value, instr);
+ break;
case SW:
WriteW(addr, rt, instr);
break;
+ case SWR:
+ WriteW(addr, mem_value, instr);
+ break;
case LWC1:
set_fpu_register(ft_reg, alu_out);
break;
@@ -1410,7 +2193,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
break;
case SDC1:
addr = rs + se_imm16;
- WriteD(addr, ft, instr);
+ WriteD(addr, get_fpu_register_double(ft_reg), instr);
break;
default:
break;
@@ -1422,7 +2205,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
// We don't check for end_sim_pc. First it should not be met as the current
// pc is valid. Secondly a jump should always execute its branch delay slot.
Instruction* branch_delay_instr =
- reinterpret_cast<Instruction*>(current_pc+Instruction::kInstructionSize);
+ reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize);
BranchDelayInstructionDecode(branch_delay_instr);
}
@@ -1432,6 +2215,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) {
}
}
+
// Type 3: instructions using a 26 bytes immediate. (eg: j, jal)
void Simulator::DecodeTypeJump(Instruction* instr) {
// Get current pc.
@@ -1439,35 +2223,39 @@ void Simulator::DecodeTypeJump(Instruction* instr) {
// Get unchanged bits of pc.
int32_t pc_high_bits = current_pc & 0xf0000000;
// Next pc
- int32_t next_pc = pc_high_bits | (instr->Imm26Field() << 2);
+ int32_t next_pc = pc_high_bits | (instr->Imm26Value() << 2);
// Execute branch delay slot
// We don't check for end_sim_pc. First it should not be met as the current pc
// is valid. Secondly a jump should always execute its branch delay slot.
Instruction* branch_delay_instr =
- reinterpret_cast<Instruction*>(current_pc+Instruction::kInstructionSize);
+ reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize);
BranchDelayInstructionDecode(branch_delay_instr);
// Update pc and ra if necessary.
// Do this after the branch delay execution.
if (instr->IsLinkingInstruction()) {
- set_register(31, current_pc + 2* Instruction::kInstructionSize);
+ set_register(31, current_pc + 2* Instruction::kInstrSize);
}
set_pc(next_pc);
pc_modified_ = true;
}
+
// Executes the current instruction.
void Simulator::InstructionDecode(Instruction* instr) {
+ if (v8::internal::FLAG_check_icache) {
+ CheckICache(isolate_->simulator_i_cache(), instr);
+ }
pc_modified_ = false;
if (::v8::internal::FLAG_trace_sim) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// use a reasonably large buffer
v8::internal::EmbeddedVector<char, 256> buffer;
- dasm.InstructionDecode(buffer,
- reinterpret_cast<byte_*>(instr));
- PrintF(" 0x%08x %s\n", instr, buffer.start());
+ dasm.InstructionDecode(buffer, reinterpret_cast<byte_*>(instr));
+ PrintF(" 0x%08x %s\n", reinterpret_cast<intptr_t>(instr),
+ buffer.start());
}
switch (instr->InstructionType()) {
@@ -1485,7 +2273,7 @@ void Simulator::InstructionDecode(Instruction* instr) {
}
if (!pc_modified_) {
set_register(pc, reinterpret_cast<int32_t>(instr) +
- Instruction::kInstructionSize);
+ Instruction::kInstrSize);
}
}
@@ -1511,7 +2299,7 @@ void Simulator::Execute() {
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
icount_++;
if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
- Debugger dbg(this);
+ MipsDebugger dbg(this);
dbg.Debug();
} else {
InstructionDecode(instr);
@@ -1538,7 +2326,7 @@ int32_t Simulator::Call(byte_* entry, int argument_count, ...) {
int original_stack = get_register(sp);
// Compute position of stack on entry to generated code.
int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t)
- - kArgsSlotsSize);
+ - kCArgsSlotsSize);
if (OS::ActivationFrameAlignment() != 0) {
entry_stack &= -OS::ActivationFrameAlignment();
}
@@ -1643,8 +2431,8 @@ uintptr_t Simulator::PopAddress() {
#undef UNSUPPORTED
-} } // namespace assembler::mips
+} } // namespace v8::internal
-#endif // !__mips || USE_SIMULATOR
+#endif // USE_SIMULATOR
#endif // V8_TARGET_ARCH_MIPS
« no previous file with comments | « src/mips/simulator-mips.h ('k') | src/mips/stub-cache-mips.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698