Index: src/mips/simulator-mips.cc |
diff --git a/src/mips/simulator-mips.cc b/src/mips/simulator-mips.cc |
index 59a537324f1fc555554e04d0b209392e70cd2b1a..50ad7a18871aa9b9407d811d8db45c7391eb5058 100644 |
--- a/src/mips/simulator-mips.cc |
+++ b/src/mips/simulator-mips.cc |
@@ -26,6 +26,8 @@ |
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
#include <stdlib.h> |
+#include <math.h> |
+#include <limits.h> |
#include <cstdarg> |
#include "v8.h" |
@@ -37,23 +39,25 @@ |
#include "mips/constants-mips.h" |
#include "mips/simulator-mips.h" |
-namespace v8i = v8::internal; |
- |
-#if !defined(__mips) || defined(USE_SIMULATOR) |
// Only build the simulator if not compiling for real MIPS hardware. |
-namespace assembler { |
-namespace mips { |
+#if defined(USE_SIMULATOR) |
-using ::v8::internal::Object; |
-using ::v8::internal::PrintF; |
-using ::v8::internal::OS; |
-using ::v8::internal::ReadLine; |
-using ::v8::internal::DeleteArray; |
+namespace v8 { |
+namespace internal { |
// Utils functions |
bool HaveSameSign(int32_t a, int32_t b) { |
- return ((a ^ b) > 0); |
+ return ((a ^ b) >= 0); |
+} |
+ |
+ |
+uint32_t get_fcsr_condition_bit(uint32_t cc) { |
+ if (cc == 0) { |
+ return 23; |
+ } else { |
+ return 24 + cc; |
+ } |
} |
@@ -63,15 +67,18 @@ bool HaveSameSign(int32_t a, int32_t b) { |
// Library does not provide vsscanf. |
#define SScanF sscanf // NOLINT |
-// The Debugger class is used by the simulator while debugging simulated MIPS |
+// The MipsDebugger class is used by the simulator while debugging simulated |
// code. |
-class Debugger { |
+class MipsDebugger { |
public: |
- explicit Debugger(Simulator* sim); |
- ~Debugger(); |
+ explicit MipsDebugger(Simulator* sim); |
+ ~MipsDebugger(); |
void Stop(Instruction* instr); |
void Debug(); |
+ // Print all registers with a nice formatting. |
+ void PrintAllRegs(); |
+ void PrintAllRegsIncludingFPU(); |
private: |
// We set the breakpoint code to 0xfffff to easily recognize it. |
@@ -81,6 +88,10 @@ class Debugger { |
Simulator* sim_; |
int32_t GetRegisterValue(int regnum); |
+ int32_t GetFPURegisterValueInt(int regnum); |
+ int64_t GetFPURegisterValueLong(int regnum); |
+ float GetFPURegisterValueFloat(int regnum); |
+ double GetFPURegisterValueDouble(int regnum); |
bool GetValue(const char* desc, int32_t* value); |
// Set or delete a breakpoint. Returns true if successful. |
@@ -91,18 +102,17 @@ class Debugger { |
// execution to skip past breakpoints when run from the debugger. |
void UndoBreakpoints(); |
void RedoBreakpoints(); |
- |
- // Print all registers with a nice formatting. |
- void PrintAllRegs(); |
}; |
-Debugger::Debugger(Simulator* sim) { |
+MipsDebugger::MipsDebugger(Simulator* sim) { |
sim_ = sim; |
} |
-Debugger::~Debugger() { |
+ |
+MipsDebugger::~MipsDebugger() { |
} |
+ |
#ifdef GENERATED_CODE_COVERAGE |
static FILE* coverage_log = NULL; |
@@ -115,7 +125,7 @@ static void InitializeCoverage() { |
} |
-void Debugger::Stop(Instruction* instr) { |
+void MipsDebugger::Stop(Instruction* instr) { |
UNIMPLEMENTED_MIPS(); |
char* str = reinterpret_cast<char*>(instr->InstructionBits()); |
if (strlen(str) > 0) { |
@@ -125,9 +135,10 @@ void Debugger::Stop(Instruction* instr) { |
} |
instr->SetInstructionBits(0x0); // Overwrite with nop. |
} |
- sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize); |
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); |
} |
+ |
#else // ndef GENERATED_CODE_COVERAGE |
#define UNSUPPORTED() printf("Unsupported instruction.\n"); |
@@ -135,16 +146,16 @@ void Debugger::Stop(Instruction* instr) { |
static void InitializeCoverage() {} |
-void Debugger::Stop(Instruction* instr) { |
+void MipsDebugger::Stop(Instruction* instr) { |
const char* str = reinterpret_cast<char*>(instr->InstructionBits()); |
PrintF("Simulator hit %s\n", str); |
- sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize); |
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); |
Debug(); |
} |
#endif // GENERATED_CODE_COVERAGE |
-int32_t Debugger::GetRegisterValue(int regnum) { |
+int32_t MipsDebugger::GetRegisterValue(int regnum) { |
if (regnum == kNumSimuRegisters) { |
return sim_->get_pc(); |
} else { |
@@ -153,11 +164,54 @@ int32_t Debugger::GetRegisterValue(int regnum) { |
} |
-bool Debugger::GetValue(const char* desc, int32_t* value) { |
+int32_t MipsDebugger::GetFPURegisterValueInt(int regnum) { |
+ if (regnum == kNumFPURegisters) { |
+ return sim_->get_pc(); |
+ } else { |
+ return sim_->get_fpu_register(regnum); |
+ } |
+} |
+ |
+ |
+int64_t MipsDebugger::GetFPURegisterValueLong(int regnum) { |
+ if (regnum == kNumFPURegisters) { |
+ return sim_->get_pc(); |
+ } else { |
+ return sim_->get_fpu_register_long(regnum); |
+ } |
+} |
+ |
+ |
+float MipsDebugger::GetFPURegisterValueFloat(int regnum) { |
+ if (regnum == kNumFPURegisters) { |
+ return sim_->get_pc(); |
+ } else { |
+ return sim_->get_fpu_register_float(regnum); |
+ } |
+} |
+ |
+ |
+double MipsDebugger::GetFPURegisterValueDouble(int regnum) { |
+ if (regnum == kNumFPURegisters) { |
+ return sim_->get_pc(); |
+ } else { |
+ return sim_->get_fpu_register_double(regnum); |
+ } |
+} |
+ |
+ |
+bool MipsDebugger::GetValue(const char* desc, int32_t* value) { |
int regnum = Registers::Number(desc); |
+ int fpuregnum = FPURegisters::Number(desc); |
+ |
if (regnum != kInvalidRegister) { |
*value = GetRegisterValue(regnum); |
return true; |
+ } else if (fpuregnum != kInvalidFPURegister) { |
+ *value = GetFPURegisterValueInt(fpuregnum); |
+ return true; |
+ } else if (strncmp(desc, "0x", 2) == 0) { |
+ return SScanF(desc, "%x", reinterpret_cast<uint32_t*>(value)) == 1; |
} else { |
return SScanF(desc, "%i", value) == 1; |
} |
@@ -165,7 +219,7 @@ bool Debugger::GetValue(const char* desc, int32_t* value) { |
} |
-bool Debugger::SetBreakpoint(Instruction* breakpc) { |
+bool MipsDebugger::SetBreakpoint(Instruction* breakpc) { |
// Check if a breakpoint can be set. If not return without any side-effects. |
if (sim_->break_pc_ != NULL) { |
return false; |
@@ -180,7 +234,7 @@ bool Debugger::SetBreakpoint(Instruction* breakpc) { |
} |
-bool Debugger::DeleteBreakpoint(Instruction* breakpc) { |
+bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) { |
if (sim_->break_pc_ != NULL) { |
sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
} |
@@ -191,20 +245,21 @@ bool Debugger::DeleteBreakpoint(Instruction* breakpc) { |
} |
-void Debugger::UndoBreakpoints() { |
+void MipsDebugger::UndoBreakpoints() { |
if (sim_->break_pc_ != NULL) { |
sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
} |
} |
-void Debugger::RedoBreakpoints() { |
+void MipsDebugger::RedoBreakpoints() { |
if (sim_->break_pc_ != NULL) { |
sim_->break_pc_->SetInstructionBits(kBreakpointInstr); |
} |
} |
-void Debugger::PrintAllRegs() { |
+ |
+void MipsDebugger::PrintAllRegs() { |
#define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n) |
PrintF("\n"); |
@@ -237,10 +292,45 @@ void Debugger::PrintAllRegs() { |
// pc |
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
REG_INFO(31), REG_INFO(34)); |
+ |
+#undef REG_INFO |
+#undef FPU_REG_INFO |
+} |
+ |
+ |
+void MipsDebugger::PrintAllRegsIncludingFPU() { |
+#define FPU_REG_INFO(n) FPURegisters::Name(n), FPURegisters::Name(n+1), \ |
+ GetFPURegisterValueInt(n+1), \ |
+ GetFPURegisterValueInt(n), \ |
+ GetFPURegisterValueDouble(n) |
+ |
+ PrintAllRegs(); |
+ |
+ PrintF("\n\n"); |
+ // f0, f1, f2, ... f31 |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(0) ); |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(2) ); |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(4) ); |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(6) ); |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(8) ); |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(10)); |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(12)); |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(14)); |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(16)); |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(18)); |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(20)); |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(22)); |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(24)); |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(26)); |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(28)); |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(30)); |
+ |
#undef REG_INFO |
+#undef FPU_REG_INFO |
} |
-void Debugger::Debug() { |
+ |
+void MipsDebugger::Debug() { |
intptr_t last_pc = -1; |
bool done = false; |
@@ -253,6 +343,7 @@ void Debugger::Debug() { |
char cmd[COMMAND_SIZE + 1]; |
char arg1[ARG_SIZE + 1]; |
char arg2[ARG_SIZE + 1]; |
+ char* argv[3] = { cmd, arg1, arg2 }; |
// make sure to have a proper terminating character if reaching the limit |
cmd[COMMAND_SIZE] = 0; |
@@ -280,19 +371,21 @@ void Debugger::Debug() { |
} else { |
// Use sscanf to parse the individual parts of the command line. At the |
// moment no command expects more than two parameters. |
- int args = SScanF(line, |
+ int argc = SScanF(line, |
"%" XSTR(COMMAND_SIZE) "s " |
"%" XSTR(ARG_SIZE) "s " |
"%" XSTR(ARG_SIZE) "s", |
cmd, arg1, arg2); |
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
- if (!(reinterpret_cast<Instruction*>(sim_->get_pc())->IsTrap())) { |
+ Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc()); |
+ if (!(instr->IsTrap()) || |
+ instr->InstructionBits() == rtCallRedirInstr) { |
sim_->InstructionDecode( |
- reinterpret_cast<Instruction*>(sim_->get_pc())); |
+ reinterpret_cast<Instruction*>(sim_->get_pc())); |
} else { |
// Allow si to jump over generated breakpoints. |
PrintF("/!\\ Jumping over generated breakpoint.\n"); |
- sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize); |
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); |
} |
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
// Execute the one instruction we broke at with breakpoints disabled. |
@@ -300,23 +393,65 @@ void Debugger::Debug() { |
// Leave the debugger shell. |
done = true; |
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
- if (args == 2) { |
+ if (argc == 2) { |
int32_t value; |
+ float fvalue; |
if (strcmp(arg1, "all") == 0) { |
PrintAllRegs(); |
+ } else if (strcmp(arg1, "allf") == 0) { |
+ PrintAllRegsIncludingFPU(); |
} else { |
- if (GetValue(arg1, &value)) { |
+ int regnum = Registers::Number(arg1); |
+ int fpuregnum = FPURegisters::Number(arg1); |
+ |
+ if (regnum != kInvalidRegister) { |
+ value = GetRegisterValue(regnum); |
PrintF("%s: 0x%08x %d \n", arg1, value, value); |
+ } else if (fpuregnum != kInvalidFPURegister) { |
+ if (fpuregnum % 2 == 1) { |
+ value = GetFPURegisterValueInt(fpuregnum); |
+ fvalue = GetFPURegisterValueFloat(fpuregnum); |
+ PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue); |
+ } else { |
+ double dfvalue; |
+ int32_t lvalue1 = GetFPURegisterValueInt(fpuregnum); |
+ int32_t lvalue2 = GetFPURegisterValueInt(fpuregnum + 1); |
+ dfvalue = GetFPURegisterValueDouble(fpuregnum); |
+ PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", |
+ FPURegisters::Name(fpuregnum+1), |
+ FPURegisters::Name(fpuregnum), |
+ lvalue1, |
+ lvalue2, |
+ dfvalue); |
+ } |
} else { |
PrintF("%s unrecognized\n", arg1); |
} |
} |
} else { |
- PrintF("print <register>\n"); |
+ if (argc == 3) { |
+ if (strcmp(arg2, "single") == 0) { |
+ int32_t value; |
+ float fvalue; |
+ int fpuregnum = FPURegisters::Number(arg1); |
+ |
+ if (fpuregnum != kInvalidFPURegister) { |
+ value = GetFPURegisterValueInt(fpuregnum); |
+ fvalue = GetFPURegisterValueFloat(fpuregnum); |
+ PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue); |
+ } else { |
+ PrintF("%s unrecognized\n", arg1); |
+ } |
+ } else { |
+ PrintF("print <fpu register> single\n"); |
+ } |
+ } else { |
+ PrintF("print <register> or print <fpu register> single\n"); |
+ } |
} |
} else if ((strcmp(cmd, "po") == 0) |
|| (strcmp(cmd, "printobject") == 0)) { |
- if (args == 2) { |
+ if (argc == 2) { |
int32_t value; |
if (GetValue(arg1, &value)) { |
Object* obj = reinterpret_cast<Object*>(value); |
@@ -333,6 +468,39 @@ void Debugger::Debug() { |
} else { |
PrintF("printobject <value>\n"); |
} |
+ } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { |
+ int32_t* cur = NULL; |
+ int32_t* end = NULL; |
+ int next_arg = 1; |
+ |
+ if (strcmp(cmd, "stack") == 0) { |
+ cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp)); |
+ } else { // "mem" |
+ int32_t value; |
+ if (!GetValue(arg1, &value)) { |
+ PrintF("%s unrecognized\n", arg1); |
+ continue; |
+ } |
+ cur = reinterpret_cast<int32_t*>(value); |
+ next_arg++; |
+ } |
+ |
+ int32_t words; |
+ if (argc == next_arg) { |
+ words = 10; |
+ } else if (argc == next_arg + 1) { |
+ if (!GetValue(argv[next_arg], &words)) { |
+ words = 10; |
+ } |
+ } |
+ end = cur + words; |
+ |
+ while (cur < end) { |
+ PrintF(" 0x%08x: 0x%08x %10d\n", |
+ reinterpret_cast<intptr_t>(cur), *cur, *cur); |
+ cur++; |
+ } |
+ |
} else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0)) { |
disasm::NameConverter converter; |
disasm::Disassembler dasm(converter); |
@@ -342,36 +510,37 @@ void Debugger::Debug() { |
byte_* cur = NULL; |
byte_* end = NULL; |
- if (args == 1) { |
+ if (argc == 1) { |
cur = reinterpret_cast<byte_*>(sim_->get_pc()); |
- end = cur + (10 * Instruction::kInstructionSize); |
- } else if (args == 2) { |
+ end = cur + (10 * Instruction::kInstrSize); |
+ } else if (argc == 2) { |
int32_t value; |
if (GetValue(arg1, &value)) { |
cur = reinterpret_cast<byte_*>(value); |
// no length parameter passed, assume 10 instructions |
- end = cur + (10 * Instruction::kInstructionSize); |
+ end = cur + (10 * Instruction::kInstrSize); |
} |
} else { |
int32_t value1; |
int32_t value2; |
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
cur = reinterpret_cast<byte_*>(value1); |
- end = cur + (value2 * Instruction::kInstructionSize); |
+ end = cur + (value2 * Instruction::kInstrSize); |
} |
} |
while (cur < end) { |
dasm.InstructionDecode(buffer, cur); |
- PrintF(" 0x%08x %s\n", cur, buffer.start()); |
- cur += Instruction::kInstructionSize; |
+ PrintF(" 0x%08x %s\n", |
+ reinterpret_cast<intptr_t>(cur), buffer.start()); |
+ cur += Instruction::kInstrSize; |
} |
} else if (strcmp(cmd, "gdb") == 0) { |
PrintF("relinquishing control to gdb\n"); |
v8::internal::OS::DebugBreak(); |
PrintF("regaining control from gdb\n"); |
} else if (strcmp(cmd, "break") == 0) { |
- if (args == 2) { |
+ if (argc == 2) { |
int32_t value; |
if (GetValue(arg1, &value)) { |
if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { |
@@ -404,29 +573,30 @@ void Debugger::Debug() { |
byte_* cur = NULL; |
byte_* end = NULL; |
- if (args == 1) { |
+ if (argc == 1) { |
cur = reinterpret_cast<byte_*>(sim_->get_pc()); |
- end = cur + (10 * Instruction::kInstructionSize); |
- } else if (args == 2) { |
+ end = cur + (10 * Instruction::kInstrSize); |
+ } else if (argc == 2) { |
int32_t value; |
if (GetValue(arg1, &value)) { |
cur = reinterpret_cast<byte_*>(value); |
// no length parameter passed, assume 10 instructions |
- end = cur + (10 * Instruction::kInstructionSize); |
+ end = cur + (10 * Instruction::kInstrSize); |
} |
} else { |
int32_t value1; |
int32_t value2; |
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
cur = reinterpret_cast<byte_*>(value1); |
- end = cur + (value2 * Instruction::kInstructionSize); |
+ end = cur + (value2 * Instruction::kInstrSize); |
} |
} |
while (cur < end) { |
dasm.InstructionDecode(buffer, cur); |
- PrintF(" 0x%08x %s\n", cur, buffer.start()); |
- cur += Instruction::kInstructionSize; |
+ PrintF(" 0x%08x %s\n", |
+ reinterpret_cast<intptr_t>(cur), buffer.start()); |
+ cur += Instruction::kInstrSize; |
} |
} else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
PrintF("cont\n"); |
@@ -438,6 +608,10 @@ void Debugger::Debug() { |
PrintF(" use register name 'all' to print all registers\n"); |
PrintF("printobject <register>\n"); |
PrintF(" print an object from a register (alias 'po')\n"); |
+ PrintF("stack [<words>]\n"); |
+ PrintF(" dump stack content, default dump 10 words)\n"); |
+ PrintF("mem <address> [<words>]\n"); |
+ PrintF(" dump memory content, default dump 10 words)\n"); |
PrintF("flags\n"); |
PrintF(" print flags\n"); |
PrintF("disasm [<instructions>]\n"); |
@@ -471,29 +645,120 @@ void Debugger::Debug() { |
} |
-// Create one simulator per thread and keep it in thread local storage. |
-static v8::internal::Thread::LocalStorageKey simulator_key; |
+static bool ICacheMatch(void* one, void* two) { |
+ ASSERT((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0); |
+ ASSERT((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0); |
+ return one == two; |
+} |
+ |
+static uint32_t ICacheHash(void* key) { |
+ return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; |
+} |
-bool Simulator::initialized_ = false; |
+ |
+static bool AllOnOnePage(uintptr_t start, int size) { |
+ intptr_t start_page = (start & ~CachePage::kPageMask); |
+ intptr_t end_page = ((start + size) & ~CachePage::kPageMask); |
+ return start_page == end_page; |
+} |
+ |
+ |
+void Simulator::FlushICache(v8::internal::HashMap* i_cache, |
+ void* start_addr, |
+ size_t size) { |
+ intptr_t start = reinterpret_cast<intptr_t>(start_addr); |
+ int intra_line = (start & CachePage::kLineMask); |
+ start -= intra_line; |
+ size += intra_line; |
+ size = ((size - 1) | CachePage::kLineMask) + 1; |
+ int offset = (start & CachePage::kPageMask); |
+ while (!AllOnOnePage(start, size - 1)) { |
+ int bytes_to_flush = CachePage::kPageSize - offset; |
+ FlushOnePage(i_cache, start, bytes_to_flush); |
+ start += bytes_to_flush; |
+ size -= bytes_to_flush; |
+ ASSERT_EQ(0, start & CachePage::kPageMask); |
+ offset = 0; |
+ } |
+ if (size != 0) { |
+ FlushOnePage(i_cache, start, size); |
+ } |
+} |
+ |
+ |
+CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) { |
+ v8::internal::HashMap::Entry* entry = i_cache->Lookup(page, |
+ ICacheHash(page), |
+ true); |
+ if (entry->value == NULL) { |
+ CachePage* new_page = new CachePage(); |
+ entry->value = new_page; |
+ } |
+ return reinterpret_cast<CachePage*>(entry->value); |
+} |
+ |
+ |
+// Flush from start up to and not including start + size. |
+void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, |
+ intptr_t start, |
+ int size) { |
+ ASSERT(size <= CachePage::kPageSize); |
+ ASSERT(AllOnOnePage(start, size - 1)); |
+ ASSERT((start & CachePage::kLineMask) == 0); |
+ ASSERT((size & CachePage::kLineMask) == 0); |
+ void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); |
+ int offset = (start & CachePage::kPageMask); |
+ CachePage* cache_page = GetCachePage(i_cache, page); |
+ char* valid_bytemap = cache_page->ValidityByte(offset); |
+ memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); |
+} |
+ |
+ |
+void Simulator::CheckICache(v8::internal::HashMap* i_cache, |
+ Instruction* instr) { |
+ intptr_t address = reinterpret_cast<intptr_t>(instr); |
+ void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); |
+ void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); |
+ int offset = (address & CachePage::kPageMask); |
+ CachePage* cache_page = GetCachePage(i_cache, page); |
+ char* cache_valid_byte = cache_page->ValidityByte(offset); |
+ bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); |
+ char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); |
+ if (cache_hit) { |
+ // Check that the data in memory matches the contents of the I-cache. |
+ CHECK(memcmp(reinterpret_cast<void*>(instr), |
+ cache_page->CachedData(offset), |
+ Instruction::kInstrSize) == 0); |
+ } else { |
+ // Cache miss. Load memory into the cache. |
+ memcpy(cached_line, line, CachePage::kLineLength); |
+ *cache_valid_byte = CachePage::LINE_VALID; |
+ } |
+} |
void Simulator::Initialize() { |
- if (initialized_) return; |
- simulator_key = v8::internal::Thread::CreateThreadLocalKey(); |
- initialized_ = true; |
+ if (Isolate::Current()->simulator_initialized()) return; |
+ Isolate::Current()->set_simulator_initialized(true); |
::v8::internal::ExternalReference::set_redirector(&RedirectExternalReference); |
} |
-Simulator::Simulator() { |
+Simulator::Simulator() : isolate_(Isolate::Current()) { |
+ i_cache_ = isolate_->simulator_i_cache(); |
+ if (i_cache_ == NULL) { |
+ i_cache_ = new v8::internal::HashMap(&ICacheMatch); |
+ isolate_->set_simulator_i_cache(i_cache_); |
+ } |
Initialize(); |
// Setup simulator support first. Some of this information is needed to |
// setup the architecture state. |
- size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack |
- stack_ = reinterpret_cast<char*>(malloc(stack_size)); |
+ stack_size_ = 1 * 1024*1024; // allocate 1MB for stack |
+ stack_ = reinterpret_cast<char*>(malloc(stack_size_)); |
pc_modified_ = false; |
icount_ = 0; |
+ break_count_ = 0; |
break_pc_ = NULL; |
break_instr_ = 0; |
@@ -502,16 +767,23 @@ Simulator::Simulator() { |
for (int i = 0; i < kNumSimuRegisters; i++) { |
registers_[i] = 0; |
} |
+ for (int i = 0; i < kNumFPURegisters; i++) { |
+ FPUregisters_[i] = 0; |
+ } |
+ FCSR_ = 0; |
// The sp is initialized to point to the bottom (high address) of the |
// allocated stack area. To be safe in potential stack underflows we leave |
// some buffer below. |
- registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64; |
+ registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size_ - 64; |
// The ra and pc are initialized to a known bad value that will cause an |
// access violation if the simulator ever tries to execute it. |
registers_[pc] = bad_ra; |
registers_[ra] = bad_ra; |
InitializeCoverage(); |
+ for (int i = 0; i < kNumExceptions; i++) { |
+ exceptions[i] = 0; |
+ } |
} |
@@ -524,12 +796,18 @@ Simulator::Simulator() { |
// offset from the swi instruction so the simulator knows what to call. |
class Redirection { |
public: |
- Redirection(void* external_function, bool fp_return) |
+ Redirection(void* external_function, ExternalReference::Type type) |
: external_function_(external_function), |
swi_instruction_(rtCallRedirInstr), |
- fp_return_(fp_return), |
- next_(list_) { |
- list_ = this; |
+ type_(type), |
+ next_(NULL) { |
+ Isolate* isolate = Isolate::Current(); |
+ next_ = isolate->simulator_redirection(); |
+ Simulator::current(isolate)-> |
+ FlushICache(isolate->simulator_i_cache(), |
+ reinterpret_cast<void*>(&swi_instruction_), |
+ Instruction::kInstrSize); |
+ isolate->set_simulator_redirection(this); |
} |
void* address_of_swi_instruction() { |
@@ -537,14 +815,16 @@ class Redirection { |
} |
void* external_function() { return external_function_; } |
- bool fp_return() { return fp_return_; } |
+ ExternalReference::Type type() { return type_; } |
- static Redirection* Get(void* external_function, bool fp_return) { |
- Redirection* current; |
- for (current = list_; current != NULL; current = current->next_) { |
+ static Redirection* Get(void* external_function, |
+ ExternalReference::Type type) { |
+ Isolate* isolate = Isolate::Current(); |
+ Redirection* current = isolate->simulator_redirection(); |
+ for (; current != NULL; current = current->next_) { |
if (current->external_function_ == external_function) return current; |
} |
- return new Redirection(external_function, fp_return); |
+ return new Redirection(external_function, type); |
} |
static Redirection* FromSwiInstruction(Instruction* swi_instruction) { |
@@ -557,31 +837,33 @@ class Redirection { |
private: |
void* external_function_; |
uint32_t swi_instruction_; |
- bool fp_return_; |
+ ExternalReference::Type type_; |
Redirection* next_; |
- static Redirection* list_; |
}; |
-Redirection* Redirection::list_ = NULL; |
- |
- |
void* Simulator::RedirectExternalReference(void* external_function, |
- bool fp_return) { |
- Redirection* redirection = Redirection::Get(external_function, fp_return); |
+ ExternalReference::Type type) { |
+ Redirection* redirection = Redirection::Get(external_function, type); |
return redirection->address_of_swi_instruction(); |
} |
// Get the active Simulator for the current thread. |
-Simulator* Simulator::current() { |
- Initialize(); |
- Simulator* sim = reinterpret_cast<Simulator*>( |
- v8::internal::Thread::GetThreadLocal(simulator_key)); |
+Simulator* Simulator::current(Isolate* isolate) { |
+ v8::internal::Isolate::PerIsolateThreadData* isolate_data = |
+ Isolate::CurrentPerIsolateThreadData(); |
+ if (isolate_data == NULL) { |
+ Isolate::EnterDefaultIsolate(); |
+ isolate_data = Isolate::CurrentPerIsolateThreadData(); |
+ } |
+ ASSERT(isolate_data != NULL); |
+ |
+ Simulator* sim = isolate_data->simulator(); |
if (sim == NULL) { |
- // TODO(146): delete the simulator object when a thread goes away. |
+ // TODO(146): delete the simulator object when a thread/isolate goes away. |
sim = new Simulator(); |
- v8::internal::Thread::SetThreadLocal(simulator_key, sim); |
+ isolate_data->set_simulator(sim); |
} |
return sim; |
} |
@@ -599,14 +881,22 @@ void Simulator::set_register(int reg, int32_t value) { |
registers_[reg] = (reg == 0) ? 0 : value; |
} |
+ |
void Simulator::set_fpu_register(int fpureg, int32_t value) { |
ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
FPUregisters_[fpureg] = value; |
} |
+ |
+void Simulator::set_fpu_register_float(int fpureg, float value) { |
+ ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
+ *BitCast<float*>(&FPUregisters_[fpureg]) = value; |
+} |
+ |
+ |
void Simulator::set_fpu_register_double(int fpureg, double value) { |
ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); |
- *v8i::BitCast<double*>(&FPUregisters_[fpureg]) = value; |
+ *BitCast<double*>(&FPUregisters_[fpureg]) = value; |
} |
@@ -620,22 +910,75 @@ int32_t Simulator::get_register(int reg) const { |
return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); |
} |
+ |
int32_t Simulator::get_fpu_register(int fpureg) const { |
ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
return FPUregisters_[fpureg]; |
} |
+ |
+int64_t Simulator::get_fpu_register_long(int fpureg) const { |
+ ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); |
+ return *BitCast<int64_t*>( |
+ const_cast<int32_t*>(&FPUregisters_[fpureg])); |
+} |
+ |
+ |
+float Simulator::get_fpu_register_float(int fpureg) const { |
+ ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
+ return *BitCast<float*>( |
+ const_cast<int32_t*>(&FPUregisters_[fpureg])); |
+} |
+ |
+ |
double Simulator::get_fpu_register_double(int fpureg) const { |
ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); |
- return *v8i::BitCast<double*>(const_cast<int32_t*>(&FPUregisters_[fpureg])); |
+ return *BitCast<double*>(const_cast<int32_t*>(&FPUregisters_[fpureg])); |
+} |
+ |
+ |
+// Helper functions for setting and testing the FCSR register's bits. |
+void Simulator::set_fcsr_bit(uint32_t cc, bool value) { |
+ if (value) { |
+ FCSR_ |= (1 << cc); |
+ } else { |
+ FCSR_ &= ~(1 << cc); |
+ } |
+} |
+ |
+ |
+bool Simulator::test_fcsr_bit(uint32_t cc) { |
+ return FCSR_ & (1 << cc); |
} |
+ |
+// Sets the rounding error codes in FCSR based on the result of the rounding. |
+// Returns true if the operation was invalid. |
+bool Simulator::set_fcsr_round_error(double original, double rounded) { |
+ if (!isfinite(original) || |
+ rounded > LONG_MAX || |
+ rounded < LONG_MIN) { |
+ set_fcsr_bit(6, true); // Invalid operation. |
+ return true; |
+ } else if (original != static_cast<double>(rounded)) { |
+ set_fcsr_bit(2, true); // Inexact. |
+ } |
+ return false; |
+} |
+ |
+ |
// Raw access to the PC register. |
void Simulator::set_pc(int32_t value) { |
pc_modified_ = true; |
registers_[pc] = value; |
} |
+ |
+bool Simulator::has_bad_pc() const { |
+ return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc)); |
+} |
+ |
+ |
// Raw access to the PC register without the special adjustment when reading. |
int32_t Simulator::get_pc() const { |
return registers_[pc]; |
@@ -651,24 +994,38 @@ int32_t Simulator::get_pc() const { |
// get the correct MIPS-like behaviour on unaligned accesses. |
int Simulator::ReadW(int32_t addr, Instruction* instr) { |
- if ((addr & v8i::kPointerAlignmentMask) == 0) { |
+ if (addr >=0 && addr < 0x400) { |
+ // this has to be a NULL-dereference |
+ MipsDebugger dbg(this); |
+ dbg.Debug(); |
+ } |
+ if ((addr & kPointerAlignmentMask) == 0) { |
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
return *ptr; |
} |
- PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, instr); |
- OS::Abort(); |
+ PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, |
+ reinterpret_cast<void*>(instr)); |
+ MipsDebugger dbg(this); |
+ dbg.Debug(); |
return 0; |
} |
void Simulator::WriteW(int32_t addr, int value, Instruction* instr) { |
- if ((addr & v8i::kPointerAlignmentMask) == 0) { |
+ if (addr >= 0 && addr < 0x400) { |
+ // this has to be a NULL-dereference |
+ MipsDebugger dbg(this); |
+ dbg.Debug(); |
+ } |
+ if ((addr & kPointerAlignmentMask) == 0) { |
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
*ptr = value; |
return; |
} |
- PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr); |
- OS::Abort(); |
+ PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, |
+ reinterpret_cast<void*>(instr)); |
+ MipsDebugger dbg(this); |
+ dbg.Debug(); |
} |
@@ -677,7 +1034,8 @@ double Simulator::ReadD(int32_t addr, Instruction* instr) { |
double* ptr = reinterpret_cast<double*>(addr); |
return *ptr; |
} |
- PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, instr); |
+ PrintF("Unaligned (double) read at 0x%08x, pc=%p\n", addr, |
+ reinterpret_cast<void*>(instr)); |
OS::Abort(); |
return 0; |
} |
@@ -689,7 +1047,8 @@ void Simulator::WriteD(int32_t addr, double value, Instruction* instr) { |
*ptr = value; |
return; |
} |
- PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr); |
+ PrintF("Unaligned (double) write at 0x%08x, pc=%p\n", addr, |
+ reinterpret_cast<void*>(instr)); |
OS::Abort(); |
} |
@@ -699,7 +1058,8 @@ uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) { |
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
return *ptr; |
} |
- PrintF("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, instr); |
+ PrintF("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, |
+ reinterpret_cast<void*>(instr)); |
OS::Abort(); |
return 0; |
} |
@@ -710,7 +1070,8 @@ int16_t Simulator::ReadH(int32_t addr, Instruction* instr) { |
int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
return *ptr; |
} |
- PrintF("Unaligned signed halfword read at 0x%08x, pc=%p\n", addr, instr); |
+ PrintF("Unaligned signed halfword read at 0x%08x, pc=%p\n", addr, |
+ reinterpret_cast<void*>(instr)); |
OS::Abort(); |
return 0; |
} |
@@ -722,7 +1083,8 @@ void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) { |
*ptr = value; |
return; |
} |
- PrintF("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, instr); |
+ PrintF("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, |
+ reinterpret_cast<void*>(instr)); |
OS::Abort(); |
} |
@@ -733,7 +1095,8 @@ void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) { |
*ptr = value; |
return; |
} |
- PrintF("Unaligned halfword write at 0x%08x, pc=%p\n", addr, instr); |
+ PrintF("Unaligned halfword write at 0x%08x, pc=%p\n", addr, |
+ reinterpret_cast<void*>(instr)); |
OS::Abort(); |
} |
@@ -746,7 +1109,7 @@ uint32_t Simulator::ReadBU(int32_t addr) { |
int32_t Simulator::ReadB(int32_t addr) { |
int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
- return ((*ptr << 24) >> 24) & 0xff; |
+ return *ptr; |
} |
@@ -773,7 +1136,7 @@ uintptr_t Simulator::StackLimit() const { |
// Unsupported instructions use Format to print an error and stop execution. |
void Simulator::Format(Instruction* instr, const char* format) { |
PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n", |
- instr, format); |
+ reinterpret_cast<intptr_t>(instr), format); |
UNIMPLEMENTED_MIPS(); |
} |
@@ -782,75 +1145,140 @@ void Simulator::Format(Instruction* instr, const char* format) { |
// Note: To be able to return two values from some calls the code in runtime.cc |
// uses the ObjectPair which is essentially two 32-bit values stuffed into a |
// 64-bit value. With the code below we assume that all runtime calls return |
-// 64 bits of result. If they don't, the r1 result register contains a bogus |
+// 64 bits of result. If they don't, the v1 result register contains a bogus |
// value, which is fine because it is caller-saved. |
typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0, |
int32_t arg1, |
int32_t arg2, |
- int32_t arg3); |
-typedef double (*SimulatorRuntimeFPCall)(double fparg0, |
- double fparg1); |
- |
+ int32_t arg3, |
+ int32_t arg4, |
+ int32_t arg5); |
+typedef double (*SimulatorRuntimeFPCall)(int32_t arg0, |
+ int32_t arg1, |
+ int32_t arg2, |
+ int32_t arg3); |
// Software interrupt instructions are used by the simulator to call into the |
-// C-based V8 runtime. |
+// C-based V8 runtime. They are also used for debugging with simulator. |
void Simulator::SoftwareInterrupt(Instruction* instr) { |
+ // There are several instructions that could get us here, |
+ // the break_ instruction, or several variants of traps. All |
+ // Are "SPECIAL" class opcode, and are distinuished by function. |
+ int32_t func = instr->FunctionFieldRaw(); |
+ int32_t code = (func == BREAK) ? instr->Bits(25, 6) : -1; |
+ |
// We first check if we met a call_rt_redirected. |
if (instr->InstructionBits() == rtCallRedirInstr) { |
+ // Check if stack is aligned. Error if not aligned is reported below to |
+ // include information on the function called. |
+ bool stack_aligned = |
+ (get_register(sp) |
+ & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0; |
Redirection* redirection = Redirection::FromSwiInstruction(instr); |
int32_t arg0 = get_register(a0); |
int32_t arg1 = get_register(a1); |
int32_t arg2 = get_register(a2); |
int32_t arg3 = get_register(a3); |
- // fp args are (not always) in f12 and f14. |
- // See MIPS conventions for more details. |
- double fparg0 = get_fpu_register_double(f12); |
- double fparg1 = get_fpu_register_double(f14); |
+ int32_t arg4 = 0; |
+ int32_t arg5 = 0; |
+ |
+ // Need to check if sp is valid before assigning arg4, arg5. |
+ // This is a fix for cctest test-api/CatchStackOverflow which causes |
+ // the stack to overflow. For some reason arm doesn't need this |
+ // stack check here. |
+ int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp)); |
+ int32_t* stack = reinterpret_cast<int32_t*>(stack_); |
+ if (stack_pointer >= stack && stack_pointer < stack + stack_size_) { |
+ arg4 = stack_pointer[0]; |
+ arg5 = stack_pointer[1]; |
+ } |
// This is dodgy but it works because the C entry stubs are never moved. |
// See comment in codegen-arm.cc and bug 1242173. |
int32_t saved_ra = get_register(ra); |
- if (redirection->fp_return()) { |
- intptr_t external = |
- reinterpret_cast<intptr_t>(redirection->external_function()); |
+ |
+ intptr_t external = |
+ reinterpret_cast<int32_t>(redirection->external_function()); |
+ |
+ // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware |
+ // FPU, or gcc soft-float routines. Hardware FPU is simulated in this |
+ // simulator. Soft-float has additional abstraction of ExternalReference, |
+ // to support serialization. Finally, when simulated on x86 host, the |
+ // x86 softfloat routines are used, and this Redirection infrastructure |
+ // lets simulated-mips make calls into x86 C code. |
+ // When doing that, the 'double' return type must be handled differently |
+ // than the usual int64_t return. The data is returned in different |
+ // registers and cannot be cast from one type to the other. However, the |
+ // calling arguments are passed the same way in both cases. |
+ if (redirection->type() == ExternalReference::FP_RETURN_CALL) { |
SimulatorRuntimeFPCall target = |
reinterpret_cast<SimulatorRuntimeFPCall>(external); |
- if (::v8::internal::FLAG_trace_sim) { |
- PrintF("Call to host function at %p with args %f, %f\n", |
- FUNCTION_ADDR(target), fparg0, fparg1); |
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
+ PrintF("Call to host function at %p with args %08x:%08x %08x:%08x", |
+ FUNCTION_ADDR(target), arg0, arg1, arg2, arg3); |
+ if (!stack_aligned) { |
+ PrintF(" with unaligned stack %08x\n", get_register(sp)); |
+ } |
+ PrintF("\n"); |
} |
- double result = target(fparg0, fparg1); |
- set_fpu_register_double(f0, result); |
+ double result = target(arg0, arg1, arg2, arg3); |
+ // fp result -> registers v0 and v1. |
+ int32_t gpreg_pair[2]; |
+ memcpy(&gpreg_pair[0], &result, 2 * sizeof(int32_t)); |
+ set_register(v0, gpreg_pair[0]); |
+ set_register(v1, gpreg_pair[1]); |
+ } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { |
+ PrintF("Mips does not yet support ExternalReference::DIRECT_API_CALL\n"); |
+ ASSERT(redirection->type() != ExternalReference::DIRECT_API_CALL); |
+ } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { |
+ PrintF("Mips does not support ExternalReference::DIRECT_GETTER_CALL\n"); |
+ ASSERT(redirection->type() != ExternalReference::DIRECT_GETTER_CALL); |
} else { |
- intptr_t external = |
- reinterpret_cast<int32_t>(redirection->external_function()); |
+ // Builtin call. |
+ ASSERT(redirection->type() == ExternalReference::BUILTIN_CALL); |
SimulatorRuntimeCall target = |
reinterpret_cast<SimulatorRuntimeCall>(external); |
- if (::v8::internal::FLAG_trace_sim) { |
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
PrintF( |
- "Call to host function at %p with args %08x, %08x, %08x, %08x\n", |
+ "Call to host function at %p: %08x, %08x, %08x, %08x, %08x, %08x", |
FUNCTION_ADDR(target), |
arg0, |
arg1, |
arg2, |
- arg3); |
- } |
- int64_t result = target(arg0, arg1, arg2, arg3); |
- int32_t lo_res = static_cast<int32_t>(result); |
- int32_t hi_res = static_cast<int32_t>(result >> 32); |
- if (::v8::internal::FLAG_trace_sim) { |
- PrintF("Returned %08x\n", lo_res); |
+ arg3, |
+ arg4, |
+ arg5); |
+ if (!stack_aligned) { |
+ PrintF(" with unaligned stack %08x\n", get_register(sp)); |
+ } |
+ PrintF("\n"); |
} |
- set_register(v0, lo_res); |
- set_register(v1, hi_res); |
+ |
+ int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); |
+ set_register(v0, static_cast<int32_t>(result)); |
+ set_register(v1, static_cast<int32_t>(result >> 32)); |
+ } |
+ if (::v8::internal::FLAG_trace_sim) { |
+ PrintF("Returned %08x : %08x\n", get_register(v1), get_register(v0)); |
} |
set_register(ra, saved_ra); |
set_pc(get_register(ra)); |
+ |
+ } else if (func == BREAK && code >= 0 && code < 16) { |
+ // First 16 break_ codes interpreted as debug markers. |
+ MipsDebugger dbg(this); |
+ ++break_count_; |
+ PrintF("\n---- break %d marker: %3d (instr count: %8d) ----------" |
+ "----------------------------------", |
+ code, break_count_, icount_); |
+ dbg.PrintAllRegs(); // Print registers and continue running. |
} else { |
- Debugger dbg(this); |
+ // All remaining break_ codes, and all traps are handled here. |
+ MipsDebugger dbg(this); |
dbg.Debug(); |
} |
} |
+ |
void Simulator::SignalExceptions() { |
for (int i = 1; i < kNumExceptions; i++) { |
if (exceptions[i] != 0) { |
@@ -859,51 +1287,52 @@ void Simulator::SignalExceptions() { |
} |
} |
-// Handle execution based on instruction types. |
-void Simulator::DecodeTypeRegister(Instruction* instr) { |
- // Instruction fields |
- Opcode op = instr->OpcodeFieldRaw(); |
- int32_t rs_reg = instr->RsField(); |
- int32_t rs = get_register(rs_reg); |
- uint32_t rs_u = static_cast<uint32_t>(rs); |
- int32_t rt_reg = instr->RtField(); |
- int32_t rt = get_register(rt_reg); |
- uint32_t rt_u = static_cast<uint32_t>(rt); |
- int32_t rd_reg = instr->RdField(); |
- uint32_t sa = instr->SaField(); |
- |
- int32_t fs_reg= instr->FsField(); |
- // ALU output |
- // It should not be used as is. Instructions using it should always initialize |
- // it first. |
- int32_t alu_out = 0x12345678; |
- // Output or temporary for floating point. |
- double fp_out = 0.0; |
+// Handle execution based on instruction types. |
- // For break and trap instructions. |
- bool do_interrupt = false; |
+void Simulator::ConfigureTypeRegister(Instruction* instr, |
+ int32_t& alu_out, |
+ int64_t& i64hilo, |
+ uint64_t& u64hilo, |
+ int32_t& next_pc, |
+ bool& do_interrupt) { |
+ // Every local variable declared here needs to be const. |
+ // This is to make sure that changed values are sent back to |
+ // DecodeTypeRegister correctly. |
+ |
+ // Instruction fields. |
+ const Opcode op = instr->OpcodeFieldRaw(); |
+ const int32_t rs_reg = instr->RsValue(); |
+ const int32_t rs = get_register(rs_reg); |
+ const uint32_t rs_u = static_cast<uint32_t>(rs); |
+ const int32_t rt_reg = instr->RtValue(); |
+ const int32_t rt = get_register(rt_reg); |
+ const uint32_t rt_u = static_cast<uint32_t>(rt); |
+ const int32_t rd_reg = instr->RdValue(); |
+ const uint32_t sa = instr->SaValue(); |
+ |
+ const int32_t fs_reg = instr->FsValue(); |
- // For jr and jalr |
- // Get current pc. |
- int32_t current_pc = get_pc(); |
- // Next pc |
- int32_t next_pc = 0; |
// ---------- Configuration |
switch (op) { |
case COP1: // Coprocessor instructions |
switch (instr->RsFieldRaw()) { |
- case BC1: // branch on coprocessor condition |
+ case BC1: // Handled in DecodeTypeImmed, should never come here. |
UNREACHABLE(); |
break; |
+ case CFC1: |
+ // At the moment only FCSR is supported. |
+ ASSERT(fs_reg == kFCSRRegister); |
+ alu_out = FCSR_; |
+ break; |
case MFC1: |
alu_out = get_fpu_register(fs_reg); |
break; |
case MFHC1: |
- fp_out = get_fpu_register_double(fs_reg); |
- alu_out = *v8i::BitCast<int32_t*>(&fp_out); |
+ UNIMPLEMENTED_MIPS(); |
break; |
+ case CTC1: |
case MTC1: |
case MTHC1: |
// Do the store in the execution step. |
@@ -923,13 +1352,22 @@ void Simulator::DecodeTypeRegister(Instruction* instr) { |
switch (instr->FunctionFieldRaw()) { |
case JR: |
case JALR: |
- next_pc = get_register(instr->RsField()); |
+ next_pc = get_register(instr->RsValue()); |
break; |
case SLL: |
alu_out = rt << sa; |
break; |
case SRL: |
- alu_out = rt_u >> sa; |
+ if (rs_reg == 0) { |
+ // Regular logical right shift of a word by a fixed number of |
+ // bits instruction. RS field is always equal to 0. |
+ alu_out = rt_u >> sa; |
+ } else { |
+ // Logical right-rotate of a word by a fixed number of bits. This |
+ // is special case of SRL instruction, added in MIPS32 Release 2. |
+ // RS field is equal to 00001 |
+ alu_out = (rt_u >> sa) | (rt_u << (32 - sa)); |
+ } |
break; |
case SRA: |
alu_out = rt >> sa; |
@@ -938,7 +1376,16 @@ void Simulator::DecodeTypeRegister(Instruction* instr) { |
alu_out = rt << rs; |
break; |
case SRLV: |
- alu_out = rt_u >> rs; |
+ if (sa == 0) { |
+ // Regular logical right-shift of a word by a variable number of |
+ // bits instruction. SA field is always equal to 0. |
+ alu_out = rt_u >> rs; |
+ } else { |
+ // Logical right-rotate of a word by a variable number of bits. |
+ // This is special case od SRLV instruction, added in MIPS32 |
+ // Release 2. SA field is equal to 00001 |
+ alu_out = (rt_u >> rs_u) | (rt_u << (32 - rs_u)); |
+ } |
break; |
case SRAV: |
alu_out = rt >> rs; |
@@ -950,10 +1397,10 @@ void Simulator::DecodeTypeRegister(Instruction* instr) { |
alu_out = get_register(LO); |
break; |
case MULT: |
- UNIMPLEMENTED_MIPS(); |
+ i64hilo = static_cast<int64_t>(rs) * static_cast<int64_t>(rt); |
break; |
case MULTU: |
- UNIMPLEMENTED_MIPS(); |
+ u64hilo = static_cast<uint64_t>(rs_u) * static_cast<uint64_t>(rt_u); |
break; |
case DIV: |
case DIVU: |
@@ -1005,6 +1452,7 @@ void Simulator::DecodeTypeRegister(Instruction* instr) { |
break; |
// Break and trap instructions |
case BREAK: |
+ |
do_interrupt = true; |
break; |
case TGE: |
@@ -1025,6 +1473,11 @@ void Simulator::DecodeTypeRegister(Instruction* instr) { |
case TNE: |
do_interrupt = rs != rt; |
break; |
+ case MOVN: |
+ case MOVZ: |
+ case MOVCI: |
+ // No action taken on decode. |
+ break; |
default: |
UNREACHABLE(); |
}; |
@@ -1034,13 +1487,83 @@ void Simulator::DecodeTypeRegister(Instruction* instr) { |
case MUL: |
alu_out = rs_u * rt_u; // Only the lower 32 bits are kept. |
break; |
+ case CLZ: |
+ alu_out = __builtin_clz(rs_u); |
+ break; |
default: |
UNREACHABLE(); |
- } |
+ }; |
+ break; |
+ case SPECIAL3: |
+ switch (instr->FunctionFieldRaw()) { |
+ case INS: { // Mips32r2 instruction. |
+ // Interpret Rd field as 5-bit msb of insert. |
+ uint16_t msb = rd_reg; |
+ // Interpret sa field as 5-bit lsb of insert. |
+ uint16_t lsb = sa; |
+ uint16_t size = msb - lsb + 1; |
+ uint32_t mask = (1 << size) - 1; |
+ alu_out = (rt_u & ~(mask << lsb)) | ((rs_u & mask) << lsb); |
+ break; |
+ } |
+ case EXT: { // Mips32r2 instruction. |
+ // Interpret Rd field as 5-bit msb of extract. |
+ uint16_t msb = rd_reg; |
+ // Interpret sa field as 5-bit lsb of extract. |
+ uint16_t lsb = sa; |
+ uint16_t size = msb + 1; |
+ uint32_t mask = (1 << size) - 1; |
+ alu_out = (rs_u & (mask << lsb)) >> lsb; |
+ break; |
+ } |
+ default: |
+ UNREACHABLE(); |
+ }; |
break; |
default: |
UNREACHABLE(); |
}; |
+} |
+ |
+ |
+void Simulator::DecodeTypeRegister(Instruction* instr) { |
+ // Instruction fields. |
+ const Opcode op = instr->OpcodeFieldRaw(); |
+ const int32_t rs_reg = instr->RsValue(); |
+ const int32_t rs = get_register(rs_reg); |
+ const uint32_t rs_u = static_cast<uint32_t>(rs); |
+ const int32_t rt_reg = instr->RtValue(); |
+ const int32_t rt = get_register(rt_reg); |
+ const uint32_t rt_u = static_cast<uint32_t>(rt); |
+ const int32_t rd_reg = instr->RdValue(); |
+ |
+ const int32_t fs_reg = instr->FsValue(); |
+ const int32_t ft_reg = instr->FtValue(); |
+ const int32_t fd_reg = instr->FdValue(); |
+ int64_t i64hilo = 0; |
+ uint64_t u64hilo = 0; |
+ |
+ // ALU output |
+ // It should not be used as is. Instructions using it should always |
+ // initialize it first. |
+ int32_t alu_out = 0x12345678; |
+ |
+ // For break and trap instructions. |
+ bool do_interrupt = false; |
+ |
+ // For jr and jalr |
+ // Get current pc. |
+ int32_t current_pc = get_pc(); |
+ // Next pc |
+ int32_t next_pc = 0; |
+ |
+ // Setup the variables if needed before executing the instruction. |
+ ConfigureTypeRegister(instr, |
+ alu_out, |
+ i64hilo, |
+ u64hilo, |
+ next_pc, |
+ do_interrupt); |
// ---------- Raise exceptions triggered. |
SignalExceptions(); |
@@ -1052,25 +1575,42 @@ void Simulator::DecodeTypeRegister(Instruction* instr) { |
case BC1: // branch on coprocessor condition |
UNREACHABLE(); |
break; |
+ case CFC1: |
+ set_register(rt_reg, alu_out); |
case MFC1: |
- case MFHC1: |
set_register(rt_reg, alu_out); |
break; |
+ case MFHC1: |
+ UNIMPLEMENTED_MIPS(); |
+ break; |
+ case CTC1: |
+ // At the moment only FCSR is supported. |
+ ASSERT(fs_reg == kFCSRRegister); |
+ FCSR_ = registers_[rt_reg]; |
+ break; |
case MTC1: |
- // We don't need to set the higher bits to 0, because MIPS ISA says |
- // they are in an unpredictable state after executing MTC1. |
FPUregisters_[fs_reg] = registers_[rt_reg]; |
- FPUregisters_[fs_reg+1] = Unpredictable; |
break; |
case MTHC1: |
- // Here we need to keep the lower bits unchanged. |
- FPUregisters_[fs_reg+1] = registers_[rt_reg]; |
+ UNIMPLEMENTED_MIPS(); |
break; |
case S: |
+ float f; |
switch (instr->FunctionFieldRaw()) { |
case CVT_D_S: |
+ f = get_fpu_register_float(fs_reg); |
+ set_fpu_register_double(fd_reg, static_cast<double>(f)); |
+ break; |
case CVT_W_S: |
case CVT_L_S: |
+ case TRUNC_W_S: |
+ case TRUNC_L_S: |
+ case ROUND_W_S: |
+ case ROUND_L_S: |
+ case FLOOR_W_S: |
+ case FLOOR_L_S: |
+ case CEIL_W_S: |
+ case CEIL_L_S: |
case CVT_PS_S: |
UNIMPLEMENTED_MIPS(); |
break; |
@@ -1079,10 +1619,133 @@ void Simulator::DecodeTypeRegister(Instruction* instr) { |
} |
break; |
case D: |
+ double ft, fs; |
+ uint32_t cc, fcsr_cc; |
+ int64_t i64; |
+ fs = get_fpu_register_double(fs_reg); |
+ ft = get_fpu_register_double(ft_reg); |
+ cc = instr->FCccValue(); |
+ fcsr_cc = get_fcsr_condition_bit(cc); |
switch (instr->FunctionFieldRaw()) { |
- case CVT_S_D: |
- case CVT_W_D: |
- case CVT_L_D: |
+ case ADD_D: |
+ set_fpu_register_double(fd_reg, fs + ft); |
+ break; |
+ case SUB_D: |
+ set_fpu_register_double(fd_reg, fs - ft); |
+ break; |
+ case MUL_D: |
+ set_fpu_register_double(fd_reg, fs * ft); |
+ break; |
+ case DIV_D: |
+ set_fpu_register_double(fd_reg, fs / ft); |
+ break; |
+ case ABS_D: |
+ set_fpu_register_double(fd_reg, fs < 0 ? -fs : fs); |
+ break; |
+ case MOV_D: |
+ set_fpu_register_double(fd_reg, fs); |
+ break; |
+ case NEG_D: |
+ set_fpu_register_double(fd_reg, -fs); |
+ break; |
+ case SQRT_D: |
+ set_fpu_register_double(fd_reg, sqrt(fs)); |
+ break; |
+ case C_UN_D: |
+ set_fcsr_bit(fcsr_cc, isnan(fs) || isnan(ft)); |
+ break; |
+ case C_EQ_D: |
+ set_fcsr_bit(fcsr_cc, (fs == ft)); |
+ break; |
+ case C_UEQ_D: |
+ set_fcsr_bit(fcsr_cc, (fs == ft) || (isnan(fs) || isnan(ft))); |
+ break; |
+ case C_OLT_D: |
+ set_fcsr_bit(fcsr_cc, (fs < ft)); |
+ break; |
+ case C_ULT_D: |
+ set_fcsr_bit(fcsr_cc, (fs < ft) || (isnan(fs) || isnan(ft))); |
+ break; |
+ case C_OLE_D: |
+ set_fcsr_bit(fcsr_cc, (fs <= ft)); |
+ break; |
+ case C_ULE_D: |
+ set_fcsr_bit(fcsr_cc, (fs <= ft) || (isnan(fs) || isnan(ft))); |
+ break; |
+ case CVT_W_D: // Convert double to word. |
+ // Rounding modes are not yet supported. |
+ ASSERT((FCSR_ & 3) == 0); |
+ // In rounding mode 0 it should behave like ROUND. |
+ case ROUND_W_D: // Round double to word. |
+ { |
+ double rounded = fs > 0 ? floor(fs + 0.5) : ceil(fs - 0.5); |
+ int32_t result = static_cast<int32_t>(rounded); |
+ set_fpu_register(fd_reg, result); |
+ if (set_fcsr_round_error(fs, rounded)) { |
+ set_fpu_register(fd_reg, kFPUInvalidResult); |
+ } |
+ } |
+ break; |
+ case TRUNC_W_D: // Truncate double to word (round towards 0). |
+ { |
+ int32_t result = static_cast<int32_t>(fs); |
+ set_fpu_register(fd_reg, result); |
+ if (set_fcsr_round_error(fs, static_cast<double>(result))) { |
+ set_fpu_register(fd_reg, kFPUInvalidResult); |
+ } |
+ } |
+ break; |
+ case FLOOR_W_D: // Round double to word towards negative infinity. |
+ { |
+ double rounded = floor(fs); |
+ int32_t result = static_cast<int32_t>(rounded); |
+ set_fpu_register(fd_reg, result); |
+ if (set_fcsr_round_error(fs, rounded)) { |
+ set_fpu_register(fd_reg, kFPUInvalidResult); |
+ } |
+ } |
+ break; |
+ case CEIL_W_D: // Round double to word towards positive infinity. |
+ { |
+ double rounded = ceil(fs); |
+ int32_t result = static_cast<int32_t>(rounded); |
+ set_fpu_register(fd_reg, result); |
+ if (set_fcsr_round_error(fs, rounded)) { |
+ set_fpu_register(fd_reg, kFPUInvalidResult); |
+ } |
+ } |
+ break; |
+ case CVT_S_D: // Convert double to float (single). |
+ set_fpu_register_float(fd_reg, static_cast<float>(fs)); |
+ break; |
+ case CVT_L_D: // Mips32r2: Truncate double to 64-bit long-word. |
+ i64 = static_cast<int64_t>(fs); |
+ set_fpu_register(fd_reg, i64 & 0xffffffff); |
+ set_fpu_register(fd_reg + 1, i64 >> 32); |
+ break; |
+ case TRUNC_L_D: // Mips32r2 instruction. |
+ i64 = static_cast<int64_t>(fs); |
+ set_fpu_register(fd_reg, i64 & 0xffffffff); |
+ set_fpu_register(fd_reg + 1, i64 >> 32); |
+ break; |
+ case ROUND_L_D: { // Mips32r2 instruction. |
+ double rounded = fs > 0 ? floor(fs + 0.5) : ceil(fs - 0.5); |
+ i64 = static_cast<int64_t>(rounded); |
+ set_fpu_register(fd_reg, i64 & 0xffffffff); |
+ set_fpu_register(fd_reg + 1, i64 >> 32); |
+ break; |
+ } |
+ case FLOOR_L_D: // Mips32r2 instruction. |
+ i64 = static_cast<int64_t>(floor(fs)); |
+ set_fpu_register(fd_reg, i64 & 0xffffffff); |
+ set_fpu_register(fd_reg + 1, i64 >> 32); |
+ break; |
+ case CEIL_L_D: // Mips32r2 instruction. |
+ i64 = static_cast<int64_t>(ceil(fs)); |
+ set_fpu_register(fd_reg, i64 & 0xffffffff); |
+ set_fpu_register(fd_reg + 1, i64 >> 32); |
+ break; |
+ case C_F_D: |
UNIMPLEMENTED_MIPS(); |
break; |
default: |
@@ -1091,11 +1754,13 @@ void Simulator::DecodeTypeRegister(Instruction* instr) { |
break; |
case W: |
switch (instr->FunctionFieldRaw()) { |
- case CVT_S_W: |
- UNIMPLEMENTED_MIPS(); |
+ case CVT_S_W: // Convert word to float (single). |
+ alu_out = get_fpu_register(fs_reg); |
+ set_fpu_register_float(fd_reg, static_cast<float>(alu_out)); |
break; |
case CVT_D_W: // Convert word to double. |
- set_fpu_register(rd_reg, static_cast<double>(rs)); |
+ alu_out = get_fpu_register(fs_reg); |
+ set_fpu_register_double(fd_reg, static_cast<double>(alu_out)); |
break; |
default: |
UNREACHABLE(); |
@@ -1103,8 +1768,14 @@ void Simulator::DecodeTypeRegister(Instruction* instr) { |
break; |
case L: |
switch (instr->FunctionFieldRaw()) { |
+ case CVT_D_L: // Mips32r2 instruction. |
+ // Watch the signs here, we want 2 32-bit vals |
+ // to make a sign-64. |
+ i64 = (uint32_t) get_fpu_register(fs_reg); |
+ i64 |= ((int64_t) get_fpu_register(fs_reg + 1) << 32); |
+ set_fpu_register_double(fd_reg, static_cast<double>(i64)); |
+ break; |
case CVT_S_L: |
- case CVT_D_L: |
UNIMPLEMENTED_MIPS(); |
break; |
default: |
@@ -1121,7 +1792,7 @@ void Simulator::DecodeTypeRegister(Instruction* instr) { |
switch (instr->FunctionFieldRaw()) { |
case JR: { |
Instruction* branch_delay_instr = reinterpret_cast<Instruction*>( |
- current_pc+Instruction::kInstructionSize); |
+ current_pc+Instruction::kInstrSize); |
BranchDelayInstructionDecode(branch_delay_instr); |
set_pc(next_pc); |
pc_modified_ = true; |
@@ -1129,16 +1800,21 @@ void Simulator::DecodeTypeRegister(Instruction* instr) { |
} |
case JALR: { |
Instruction* branch_delay_instr = reinterpret_cast<Instruction*>( |
- current_pc+Instruction::kInstructionSize); |
+ current_pc+Instruction::kInstrSize); |
BranchDelayInstructionDecode(branch_delay_instr); |
- set_register(31, current_pc + 2* Instruction::kInstructionSize); |
+ set_register(31, current_pc + 2* Instruction::kInstrSize); |
set_pc(next_pc); |
pc_modified_ = true; |
break; |
} |
// Instructions using HI and LO registers. |
case MULT: |
+ set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff)); |
+ set_register(HI, static_cast<int32_t>(i64hilo >> 32)); |
+ break; |
case MULTU: |
+ set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff)); |
+ set_register(HI, static_cast<int32_t>(u64hilo >> 32)); |
break; |
case DIV: |
// Divide by zero was checked in the configuration step. |
@@ -1149,7 +1825,7 @@ void Simulator::DecodeTypeRegister(Instruction* instr) { |
set_register(LO, rs_u / rt_u); |
set_register(HI, rs_u % rt_u); |
break; |
- // Break and trap instructions |
+ // Break and trap instructions. |
case BREAK: |
case TGE: |
case TGEU: |
@@ -1161,6 +1837,23 @@ void Simulator::DecodeTypeRegister(Instruction* instr) { |
SoftwareInterrupt(instr); |
} |
break; |
+ // Conditional moves. |
+ case MOVN: |
+ if (rt) set_register(rd_reg, rs); |
+ break; |
+ case MOVCI: { |
+ uint32_t cc = instr->FCccValue(); |
+ uint32_t fcsr_cc = get_fcsr_condition_bit(cc); |
+ if (instr->Bit(16)) { // Read Tf bit |
+ if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs); |
+ } else { |
+ if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs); |
+ } |
+ break; |
+ } |
+ case MOVZ: |
+ if (!rt) set_register(rd_reg, rs); |
+ break; |
default: // For other special opcodes we do the default operation. |
set_register(rd_reg, alu_out); |
}; |
@@ -1173,9 +1866,23 @@ void Simulator::DecodeTypeRegister(Instruction* instr) { |
set_register(LO, Unpredictable); |
set_register(HI, Unpredictable); |
break; |
+ default: // For other special2 opcodes we do the default operation. |
+ set_register(rd_reg, alu_out); |
+ } |
+ break; |
+ case SPECIAL3: |
+ switch (instr->FunctionFieldRaw()) { |
+ case INS: |
+ // Ins instr leaves result in Rt, rather than Rd. |
+ set_register(rt_reg, alu_out); |
+ break; |
+ case EXT: |
+ // Ext instr leaves result in Rt, rather than Rd. |
+ set_register(rt_reg, alu_out); |
+ break; |
default: |
UNREACHABLE(); |
- } |
+ }; |
break; |
// Unimplemented opcodes raised an error in the configuration step before, |
// so we can use the default here to set the destination register in common |
@@ -1185,22 +1892,22 @@ void Simulator::DecodeTypeRegister(Instruction* instr) { |
}; |
} |
+ |
// Type 2: instructions using a 16 bytes immediate. (eg: addi, beq) |
void Simulator::DecodeTypeImmediate(Instruction* instr) { |
- // Instruction fields |
+ // Instruction fields. |
Opcode op = instr->OpcodeFieldRaw(); |
- int32_t rs = get_register(instr->RsField()); |
+ int32_t rs = get_register(instr->RsValue()); |
uint32_t rs_u = static_cast<uint32_t>(rs); |
- int32_t rt_reg = instr->RtField(); // destination register |
+ int32_t rt_reg = instr->RtValue(); // destination register |
int32_t rt = get_register(rt_reg); |
- int16_t imm16 = instr->Imm16Field(); |
+ int16_t imm16 = instr->Imm16Value(); |
- int32_t ft_reg = instr->FtField(); // destination register |
- int32_t ft = get_register(ft_reg); |
+ int32_t ft_reg = instr->FtValue(); // destination register |
- // zero extended immediate |
+ // Zero extended immediate. |
uint32_t oe_imm16 = 0xffff & imm16; |
- // sign extended immediate |
+ // Sign extended immediate. |
int32_t se_imm16 = imm16; |
// Get current pc. |
@@ -1208,25 +1915,38 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) { |
// Next pc. |
int32_t next_pc = bad_ra; |
- // Used for conditional branch instructions |
+ // Used for conditional branch instructions. |
bool do_branch = false; |
bool execute_branch_delay_instruction = false; |
- // Used for arithmetic instructions |
+ // Used for arithmetic instructions. |
int32_t alu_out = 0; |
- // Floating point |
+ // Floating point. |
double fp_out = 0.0; |
+ uint32_t cc, cc_value, fcsr_cc; |
- // Used for memory instructions |
+ // Used for memory instructions. |
int32_t addr = 0x0; |
+ // Value to be written in memory |
+ uint32_t mem_value = 0x0; |
// ---------- Configuration (and execution for REGIMM) |
switch (op) { |
- // ------------- COP1. Coprocessor instructions |
+ // ------------- COP1. Coprocessor instructions. |
case COP1: |
switch (instr->RsFieldRaw()) { |
- case BC1: // branch on coprocessor condition |
- UNIMPLEMENTED_MIPS(); |
+ case BC1: // Branch on coprocessor condition. |
+ cc = instr->FBccValue(); |
+ fcsr_cc = get_fcsr_condition_bit(cc); |
+ cc_value = test_fcsr_bit(fcsr_cc); |
+ do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value; |
+ execute_branch_delay_instruction = true; |
+ // Set next_pc |
+ if (do_branch) { |
+ next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; |
+ } else { |
+ next_pc = current_pc + kBranchReturnOffset; |
+ } |
break; |
default: |
UNREACHABLE(); |
@@ -1259,7 +1979,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) { |
execute_branch_delay_instruction = true; |
// Set next_pc |
if (do_branch) { |
- next_pc = current_pc + (imm16 << 2) + Instruction::kInstructionSize; |
+ next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; |
if (instr->IsLinkingInstruction()) { |
set_register(31, current_pc + kBranchReturnOffset); |
} |
@@ -1323,6 +2043,21 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) { |
addr = rs + se_imm16; |
alu_out = ReadB(addr); |
break; |
+ case LH: |
+ addr = rs + se_imm16; |
+ alu_out = ReadH(addr, instr); |
+ break; |
+ case LWL: { |
+ // al_offset is an offset of the effective address within an aligned word |
+ uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; |
+ uint8_t byte_shift = kPointerAlignmentMask - al_offset; |
+ uint32_t mask = (1 << byte_shift * 8) - 1; |
+ addr = rs + se_imm16 - al_offset; |
+ alu_out = ReadW(addr, instr); |
+ alu_out <<= byte_shift * 8; |
+ alu_out |= rt & mask; |
+ break; |
+ } |
case LW: |
addr = rs + se_imm16; |
alu_out = ReadW(addr, instr); |
@@ -1331,12 +2066,47 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) { |
addr = rs + se_imm16; |
alu_out = ReadBU(addr); |
break; |
+ case LHU: |
+ addr = rs + se_imm16; |
+ alu_out = ReadHU(addr, instr); |
+ break; |
+ case LWR: { |
+ // al_offset is an offset of the effective address within an aligned word |
+ uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; |
+ uint8_t byte_shift = kPointerAlignmentMask - al_offset; |
+ uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0; |
+ addr = rs + se_imm16 - al_offset; |
+ alu_out = ReadW(addr, instr); |
+ alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8; |
+ alu_out |= rt & mask; |
+ break; |
+ } |
case SB: |
addr = rs + se_imm16; |
break; |
+ case SH: |
+ addr = rs + se_imm16; |
+ break; |
+ case SWL: { |
+ uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; |
+ uint8_t byte_shift = kPointerAlignmentMask - al_offset; |
+ uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0; |
+ addr = rs + se_imm16 - al_offset; |
+ mem_value = ReadW(addr, instr) & mask; |
+ mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8; |
+ break; |
+ } |
case SW: |
addr = rs + se_imm16; |
break; |
+ case SWR: { |
+ uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; |
+ uint32_t mask = (1 << al_offset * 8) - 1; |
+ addr = rs + se_imm16 - al_offset; |
+ mem_value = ReadW(addr, instr); |
+ mem_value = (rt << al_offset * 8) | (mem_value & mask); |
+ break; |
+ } |
case LWC1: |
addr = rs + se_imm16; |
alu_out = ReadW(addr, instr); |
@@ -1367,12 +2137,12 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) { |
execute_branch_delay_instruction = true; |
// Set next_pc |
if (do_branch) { |
- next_pc = current_pc + (imm16 << 2) + Instruction::kInstructionSize; |
+ next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; |
if (instr->IsLinkingInstruction()) { |
- set_register(31, current_pc + 2* Instruction::kInstructionSize); |
+ set_register(31, current_pc + 2* Instruction::kInstrSize); |
} |
} else { |
- next_pc = current_pc + 2 * Instruction::kInstructionSize; |
+ next_pc = current_pc + 2 * Instruction::kInstrSize; |
} |
break; |
// ------------- Arithmetic instructions |
@@ -1388,16 +2158,29 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) { |
break; |
// ------------- Memory instructions |
case LB: |
+ case LH: |
+ case LWL: |
case LW: |
case LBU: |
+ case LHU: |
+ case LWR: |
set_register(rt_reg, alu_out); |
break; |
case SB: |
WriteB(addr, static_cast<int8_t>(rt)); |
break; |
+ case SH: |
+ WriteH(addr, static_cast<uint16_t>(rt), instr); |
+ break; |
+ case SWL: |
+ WriteW(addr, mem_value, instr); |
+ break; |
case SW: |
WriteW(addr, rt, instr); |
break; |
+ case SWR: |
+ WriteW(addr, mem_value, instr); |
+ break; |
case LWC1: |
set_fpu_register(ft_reg, alu_out); |
break; |
@@ -1410,7 +2193,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) { |
break; |
case SDC1: |
addr = rs + se_imm16; |
- WriteD(addr, ft, instr); |
+ WriteD(addr, get_fpu_register_double(ft_reg), instr); |
break; |
default: |
break; |
@@ -1422,7 +2205,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) { |
// We don't check for end_sim_pc. First it should not be met as the current |
// pc is valid. Secondly a jump should always execute its branch delay slot. |
Instruction* branch_delay_instr = |
- reinterpret_cast<Instruction*>(current_pc+Instruction::kInstructionSize); |
+ reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize); |
BranchDelayInstructionDecode(branch_delay_instr); |
} |
@@ -1432,6 +2215,7 @@ void Simulator::DecodeTypeImmediate(Instruction* instr) { |
} |
} |
+ |
// Type 3: instructions using a 26 bytes immediate. (eg: j, jal) |
void Simulator::DecodeTypeJump(Instruction* instr) { |
// Get current pc. |
@@ -1439,35 +2223,39 @@ void Simulator::DecodeTypeJump(Instruction* instr) { |
// Get unchanged bits of pc. |
int32_t pc_high_bits = current_pc & 0xf0000000; |
// Next pc |
- int32_t next_pc = pc_high_bits | (instr->Imm26Field() << 2); |
+ int32_t next_pc = pc_high_bits | (instr->Imm26Value() << 2); |
// Execute branch delay slot |
// We don't check for end_sim_pc. First it should not be met as the current pc |
// is valid. Secondly a jump should always execute its branch delay slot. |
Instruction* branch_delay_instr = |
- reinterpret_cast<Instruction*>(current_pc+Instruction::kInstructionSize); |
+ reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize); |
BranchDelayInstructionDecode(branch_delay_instr); |
// Update pc and ra if necessary. |
// Do this after the branch delay execution. |
if (instr->IsLinkingInstruction()) { |
- set_register(31, current_pc + 2* Instruction::kInstructionSize); |
+ set_register(31, current_pc + 2* Instruction::kInstrSize); |
} |
set_pc(next_pc); |
pc_modified_ = true; |
} |
+ |
// Executes the current instruction. |
void Simulator::InstructionDecode(Instruction* instr) { |
+ if (v8::internal::FLAG_check_icache) { |
+ CheckICache(isolate_->simulator_i_cache(), instr); |
+ } |
pc_modified_ = false; |
if (::v8::internal::FLAG_trace_sim) { |
disasm::NameConverter converter; |
disasm::Disassembler dasm(converter); |
// use a reasonably large buffer |
v8::internal::EmbeddedVector<char, 256> buffer; |
- dasm.InstructionDecode(buffer, |
- reinterpret_cast<byte_*>(instr)); |
- PrintF(" 0x%08x %s\n", instr, buffer.start()); |
+ dasm.InstructionDecode(buffer, reinterpret_cast<byte_*>(instr)); |
+ PrintF(" 0x%08x %s\n", reinterpret_cast<intptr_t>(instr), |
+ buffer.start()); |
} |
switch (instr->InstructionType()) { |
@@ -1485,7 +2273,7 @@ void Simulator::InstructionDecode(Instruction* instr) { |
} |
if (!pc_modified_) { |
set_register(pc, reinterpret_cast<int32_t>(instr) + |
- Instruction::kInstructionSize); |
+ Instruction::kInstrSize); |
} |
} |
@@ -1511,7 +2299,7 @@ void Simulator::Execute() { |
Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
icount_++; |
if (icount_ == ::v8::internal::FLAG_stop_sim_at) { |
- Debugger dbg(this); |
+ MipsDebugger dbg(this); |
dbg.Debug(); |
} else { |
InstructionDecode(instr); |
@@ -1538,7 +2326,7 @@ int32_t Simulator::Call(byte_* entry, int argument_count, ...) { |
int original_stack = get_register(sp); |
// Compute position of stack on entry to generated code. |
int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t) |
- - kArgsSlotsSize); |
+ - kCArgsSlotsSize); |
if (OS::ActivationFrameAlignment() != 0) { |
entry_stack &= -OS::ActivationFrameAlignment(); |
} |
@@ -1643,8 +2431,8 @@ uintptr_t Simulator::PopAddress() { |
#undef UNSUPPORTED |
-} } // namespace assembler::mips |
+} } // namespace v8::internal |
-#endif // !__mips || USE_SIMULATOR |
+#endif // USE_SIMULATOR |
#endif // V8_TARGET_ARCH_MIPS |