Index: src/mips/assembler-mips.cc |
diff --git a/src/mips/assembler-mips.cc b/src/mips/assembler-mips.cc |
index a3b316b14c4d84a9030f13593abb42f1da87fbe7..7d00da1f8135e0249efa0b0658c72693f26e6606 100644 |
--- a/src/mips/assembler-mips.cc |
+++ b/src/mips/assembler-mips.cc |
@@ -40,82 +40,40 @@ |
#include "mips/assembler-mips-inl.h" |
#include "serialize.h" |
- |
namespace v8 { |
namespace internal { |
+CpuFeatures::CpuFeatures() |
+ : supported_(0), |
+ enabled_(0), |
+ found_by_runtime_probing_(0) { |
+} |
+void CpuFeatures::Probe(bool portable) { |
+ // If the compiler is allowed to use fpu then we can use fpu too in our |
+ // code generation. |
+#if !defined(__mips__) |
+ // For the simulator=mips build, use FPU when FLAG_enable_fpu is enabled. |
+ if (FLAG_enable_fpu) { |
+ supported_ |= 1u << FPU; |
+ } |
+#else |
+ if (portable && Serializer::enabled()) { |
+ supported_ |= OS::CpuFeaturesImpliedByPlatform(); |
+ return; // No features if we might serialize. |
+ } |
+ |
+ if (OS::MipsCpuHasFeature(FPU)) { |
+ // This implementation also sets the FPU flags if |
+ // runtime detection of FPU returns true. |
+ supported_ |= 1u << FPU; |
+ found_by_runtime_probing_ |= 1u << FPU; |
+ } |
+ |
+ if (!portable) found_by_runtime_probing_ = 0; |
+#endif |
+} |
-const Register no_reg = { -1 }; |
- |
-const Register zero_reg = { 0 }; |
-const Register at = { 1 }; |
-const Register v0 = { 2 }; |
-const Register v1 = { 3 }; |
-const Register a0 = { 4 }; |
-const Register a1 = { 5 }; |
-const Register a2 = { 6 }; |
-const Register a3 = { 7 }; |
-const Register t0 = { 8 }; |
-const Register t1 = { 9 }; |
-const Register t2 = { 10 }; |
-const Register t3 = { 11 }; |
-const Register t4 = { 12 }; |
-const Register t5 = { 13 }; |
-const Register t6 = { 14 }; |
-const Register t7 = { 15 }; |
-const Register s0 = { 16 }; |
-const Register s1 = { 17 }; |
-const Register s2 = { 18 }; |
-const Register s3 = { 19 }; |
-const Register s4 = { 20 }; |
-const Register s5 = { 21 }; |
-const Register s6 = { 22 }; |
-const Register s7 = { 23 }; |
-const Register t8 = { 24 }; |
-const Register t9 = { 25 }; |
-const Register k0 = { 26 }; |
-const Register k1 = { 27 }; |
-const Register gp = { 28 }; |
-const Register sp = { 29 }; |
-const Register s8_fp = { 30 }; |
-const Register ra = { 31 }; |
- |
- |
-const FPURegister no_creg = { -1 }; |
- |
-const FPURegister f0 = { 0 }; |
-const FPURegister f1 = { 1 }; |
-const FPURegister f2 = { 2 }; |
-const FPURegister f3 = { 3 }; |
-const FPURegister f4 = { 4 }; |
-const FPURegister f5 = { 5 }; |
-const FPURegister f6 = { 6 }; |
-const FPURegister f7 = { 7 }; |
-const FPURegister f8 = { 8 }; |
-const FPURegister f9 = { 9 }; |
-const FPURegister f10 = { 10 }; |
-const FPURegister f11 = { 11 }; |
-const FPURegister f12 = { 12 }; |
-const FPURegister f13 = { 13 }; |
-const FPURegister f14 = { 14 }; |
-const FPURegister f15 = { 15 }; |
-const FPURegister f16 = { 16 }; |
-const FPURegister f17 = { 17 }; |
-const FPURegister f18 = { 18 }; |
-const FPURegister f19 = { 19 }; |
-const FPURegister f20 = { 20 }; |
-const FPURegister f21 = { 21 }; |
-const FPURegister f22 = { 22 }; |
-const FPURegister f23 = { 23 }; |
-const FPURegister f24 = { 24 }; |
-const FPURegister f25 = { 25 }; |
-const FPURegister f26 = { 26 }; |
-const FPURegister f27 = { 27 }; |
-const FPURegister f28 = { 28 }; |
-const FPURegister f29 = { 29 }; |
-const FPURegister f30 = { 30 }; |
-const FPURegister f31 = { 31 }; |
int ToNumber(Register reg) { |
ASSERT(reg.is_valid()); |
@@ -156,6 +114,7 @@ int ToNumber(Register reg) { |
return kNumbers[reg.code()]; |
} |
+ |
Register ToRegister(int num) { |
ASSERT(num >= 0 && num < kNumRegisters); |
const Register kRegisters[] = { |
@@ -181,6 +140,15 @@ Register ToRegister(int num) { |
const int RelocInfo::kApplyMask = 0; |
+ |
+bool RelocInfo::IsCodedSpecially() { |
+ // The deserializer needs to know whether a pointer is specially coded. Being |
+ // specially coded on MIPS means that it is a lui/ori instruction, and that is |
+ // always the case inside code objects. |
+ return true; |
+} |
+ |
+ |
// Patch the code at the current address with the supplied instructions. |
void RelocInfo::PatchCode(byte* instructions, int instruction_count) { |
Instr* pc = reinterpret_cast<Instr*>(pc_); |
@@ -210,7 +178,7 @@ Operand::Operand(Handle<Object> handle) { |
rm_ = no_reg; |
// Verify all Objects referred by code are NOT in new space. |
Object* obj = *handle; |
- ASSERT(!Heap::InNewSpace(obj)); |
+ ASSERT(!HEAP->InNewSpace(obj)); |
if (obj->IsHeapObject()) { |
imm32_ = reinterpret_cast<intptr_t>(handle.location()); |
rmode_ = RelocInfo::EMBEDDED_OBJECT; |
@@ -221,26 +189,66 @@ Operand::Operand(Handle<Object> handle) { |
} |
} |
-MemOperand::MemOperand(Register rm, int16_t offset) : Operand(rm) { |
+ |
+MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) { |
offset_ = offset; |
} |
// ----------------------------------------------------------------------------- |
-// Implementation of Assembler. |
- |
-static const int kMinimalBufferSize = 4*KB; |
-static byte* spare_buffer_ = NULL; |
- |
-Assembler::Assembler(void* buffer, int buffer_size) { |
+// Specific instructions, constants, and masks. |
+ |
+static const int kNegOffset = 0x00008000; |
+// addiu(sp, sp, 4) aka Pop() operation or part of Pop(r) |
+// operations as post-increment of sp. |
+const Instr kPopInstruction = ADDIU | (sp.code() << kRsShift) |
+ | (sp.code() << kRtShift) | (kPointerSize & kImm16Mask); |
+// addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp. |
+const Instr kPushInstruction = ADDIU | (sp.code() << kRsShift) |
+ | (sp.code() << kRtShift) | (-kPointerSize & kImm16Mask); |
+// sw(r, MemOperand(sp, 0)) |
+const Instr kPushRegPattern = SW | (sp.code() << kRsShift) |
+ | (0 & kImm16Mask); |
+// lw(r, MemOperand(sp, 0)) |
+const Instr kPopRegPattern = LW | (sp.code() << kRsShift) |
+ | (0 & kImm16Mask); |
+ |
+const Instr kLwRegFpOffsetPattern = LW | (s8_fp.code() << kRsShift) |
+ | (0 & kImm16Mask); |
+ |
+const Instr kSwRegFpOffsetPattern = SW | (s8_fp.code() << kRsShift) |
+ | (0 & kImm16Mask); |
+ |
+const Instr kLwRegFpNegOffsetPattern = LW | (s8_fp.code() << kRsShift) |
+ | (kNegOffset & kImm16Mask); |
+ |
+const Instr kSwRegFpNegOffsetPattern = SW | (s8_fp.code() << kRsShift) |
+ | (kNegOffset & kImm16Mask); |
+// A mask for the Rt register for push, pop, lw, sw instructions. |
+const Instr kRtMask = kRtFieldMask; |
+const Instr kLwSwInstrTypeMask = 0xffe00000; |
+const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask; |
+const Instr kLwSwOffsetMask = kImm16Mask; |
+ |
+ |
+// Spare buffer. |
+static const int kMinimalBufferSize = 4 * KB; |
+ |
+ |
+Assembler::Assembler(void* buffer, int buffer_size) |
+ : AssemblerBase(Isolate::Current()), |
+ positions_recorder_(this), |
+ allow_peephole_optimization_(false) { |
+ // BUG(3245989): disable peephole optimization if crankshaft is enabled. |
+ allow_peephole_optimization_ = FLAG_peephole_optimization; |
if (buffer == NULL) { |
// Do our own buffer management. |
if (buffer_size <= kMinimalBufferSize) { |
buffer_size = kMinimalBufferSize; |
- if (spare_buffer_ != NULL) { |
- buffer = spare_buffer_; |
- spare_buffer_ = NULL; |
+ if (isolate()->assembler_spare_buffer() != NULL) { |
+ buffer = isolate()->assembler_spare_buffer(); |
+ isolate()->set_assembler_spare_buffer(NULL); |
} |
} |
if (buffer == NULL) { |
@@ -263,17 +271,19 @@ Assembler::Assembler(void* buffer, int buffer_size) { |
ASSERT(buffer_ != NULL); |
pc_ = buffer_; |
reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); |
- current_statement_position_ = RelocInfo::kNoPosition; |
- current_position_ = RelocInfo::kNoPosition; |
- written_statement_position_ = current_statement_position_; |
- written_position_ = current_position_; |
+ |
+ last_trampoline_pool_end_ = 0; |
+ no_trampoline_pool_before_ = 0; |
+ trampoline_pool_blocked_nesting_ = 0; |
+ next_buffer_check_ = kMaxBranchOffset - kTrampolineSize; |
} |
Assembler::~Assembler() { |
if (own_buffer_) { |
- if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { |
- spare_buffer_ = buffer_; |
+ if (isolate()->assembler_spare_buffer() == NULL && |
+ buffer_size_ == kMinimalBufferSize) { |
+ isolate()->set_assembler_spare_buffer(buffer_); |
} else { |
DeleteArray(buffer_); |
} |
@@ -282,7 +292,7 @@ Assembler::~Assembler() { |
void Assembler::GetCode(CodeDesc* desc) { |
- ASSERT(pc_ <= reloc_info_writer.pos()); // no overlap |
+ ASSERT(pc_ <= reloc_info_writer.pos()); // No overlap. |
// Setup code descriptor. |
desc->buffer = buffer_; |
desc->buffer_size = buffer_size_; |
@@ -291,6 +301,60 @@ void Assembler::GetCode(CodeDesc* desc) { |
} |
+void Assembler::Align(int m) { |
+ ASSERT(m >= 4 && IsPowerOf2(m)); |
+ while ((pc_offset() & (m - 1)) != 0) { |
+ nop(); |
+ } |
+} |
+ |
+ |
+void Assembler::CodeTargetAlign() { |
+ // No advantage to aligning branch/call targets to more than |
+ // single instruction, that I am aware of. |
+ Align(4); |
+} |
+ |
+ |
+Register Assembler::GetRt(Instr instr) { |
+ Register rt; |
+ rt.code_ = (instr & kRtMask) >> kRtShift; |
+ return rt; |
+} |
+ |
+ |
+bool Assembler::IsPop(Instr instr) { |
+ return (instr & ~kRtMask) == kPopRegPattern; |
+} |
+ |
+ |
+bool Assembler::IsPush(Instr instr) { |
+ return (instr & ~kRtMask) == kPushRegPattern; |
+} |
+ |
+ |
+bool Assembler::IsSwRegFpOffset(Instr instr) { |
+ return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern); |
+} |
+ |
+ |
+bool Assembler::IsLwRegFpOffset(Instr instr) { |
+ return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern); |
+} |
+ |
+ |
+bool Assembler::IsSwRegFpNegOffset(Instr instr) { |
+ return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == |
+ kSwRegFpNegOffsetPattern); |
+} |
+ |
+ |
+bool Assembler::IsLwRegFpNegOffset(Instr instr) { |
+ return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == |
+ kLwRegFpNegOffsetPattern); |
+} |
+ |
+ |
// Labels refer to positions in the (to be) generated code. |
// There are bound, linked, and unused labels. |
// |
@@ -301,14 +365,19 @@ void Assembler::GetCode(CodeDesc* desc) { |
// to be generated; pos() is the position of the last |
// instruction using the label. |
+// The link chain is terminated by a value in the instruction of -1, |
+// which is an otherwise illegal value (branch -1 is inf loop). |
+// The instruction 16-bit offset field addresses 32-bit words, but in |
+// code is conv to an 18-bit value addressing bytes, hence the -4 value. |
-// The link chain is terminated by a negative code position (must be aligned). |
const int kEndOfChain = -4; |
-bool Assembler::is_branch(Instr instr) { |
+ |
+bool Assembler::IsBranch(Instr instr) { |
uint32_t opcode = ((instr & kOpcodeMask)); |
uint32_t rt_field = ((instr & kRtFieldMask)); |
uint32_t rs_field = ((instr & kRsFieldMask)); |
+ uint32_t label_constant = (instr & ~kImm16Mask); |
// Checks if the instruction is a branch. |
return opcode == BEQ || |
opcode == BNE || |
@@ -320,7 +389,79 @@ bool Assembler::is_branch(Instr instr) { |
opcode == BGTZL|| |
(opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ || |
rt_field == BLTZAL || rt_field == BGEZAL)) || |
- (opcode == COP1 && rs_field == BC1); // Coprocessor branch. |
+ (opcode == COP1 && rs_field == BC1) || // Coprocessor branch. |
+ label_constant == 0; // Emitted label const in reg-exp engine. |
+} |
+ |
+ |
+bool Assembler::IsNop(Instr instr, unsigned int type) { |
+ // See Assembler::nop(type). |
+ ASSERT(type < 32); |
+ uint32_t opcode = ((instr & kOpcodeMask)); |
+ uint32_t rt = ((instr & kRtFieldMask) >> kRtShift); |
+ uint32_t rs = ((instr & kRsFieldMask) >> kRsShift); |
+ uint32_t sa = ((instr & kSaFieldMask) >> kSaShift); |
+ |
+ // nop(type) == sll(zero_reg, zero_reg, type); |
+ // Technically all these values will be 0 but |
+ // this makes more sense to the reader. |
+ |
+ bool ret = (opcode == SLL && |
+ rt == static_cast<uint32_t>(ToNumber(zero_reg)) && |
+ rs == static_cast<uint32_t>(ToNumber(zero_reg)) && |
+ sa == type); |
+ |
+ return ret; |
+} |
+ |
+ |
+int32_t Assembler::GetBranchOffset(Instr instr) { |
+ ASSERT(IsBranch(instr)); |
+ return ((int16_t)(instr & kImm16Mask)) << 2; |
+} |
+ |
+ |
+bool Assembler::IsLw(Instr instr) { |
+ return ((instr & kOpcodeMask) == LW); |
+} |
+ |
+ |
+int16_t Assembler::GetLwOffset(Instr instr) { |
+ ASSERT(IsLw(instr)); |
+ return ((instr & kImm16Mask)); |
+} |
+ |
+ |
+Instr Assembler::SetLwOffset(Instr instr, int16_t offset) { |
+ ASSERT(IsLw(instr)); |
+ |
+ // We actually create a new lw instruction based on the original one. |
+ Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) |
+ | (offset & kImm16Mask); |
+ |
+ return temp_instr; |
+} |
+ |
+ |
+bool Assembler::IsSw(Instr instr) { |
+ return ((instr & kOpcodeMask) == SW); |
+} |
+ |
+ |
+Instr Assembler::SetSwOffset(Instr instr, int16_t offset) { |
+ ASSERT(IsSw(instr)); |
+ return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); |
+} |
+ |
+ |
+bool Assembler::IsAddImmediate(Instr instr) { |
+ return ((instr & kOpcodeMask) == ADDIU); |
+} |
+ |
+ |
+Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) { |
+ ASSERT(IsAddImmediate(instr)); |
+ return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); |
} |
@@ -328,16 +469,25 @@ int Assembler::target_at(int32_t pos) { |
Instr instr = instr_at(pos); |
if ((instr & ~kImm16Mask) == 0) { |
// Emitted label constant, not part of a branch. |
- return instr - (Code::kHeaderSize - kHeapObjectTag); |
+ if (instr == 0) { |
+ return kEndOfChain; |
+ } else { |
+ int32_t imm18 =((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14; |
+ return (imm18 + pos); |
+ } |
} |
// Check we have a branch instruction. |
- ASSERT(is_branch(instr)); |
+ ASSERT(IsBranch(instr)); |
// Do NOT change this to <<2. We rely on arithmetic shifts here, assuming |
// the compiler uses arithmectic shifts for signed integers. |
- int32_t imm18 = ((instr & |
- static_cast<int32_t>(kImm16Mask)) << 16) >> 14; |
+ int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14; |
- return pos + kBranchPCOffset + imm18; |
+ if (imm18 == kEndOfChain) { |
+ // EndOfChain sentinel is returned directly, not relative to pc or pos. |
+ return kEndOfChain; |
+ } else { |
+ return pos + kBranchPCOffset + imm18; |
+ } |
} |
@@ -351,7 +501,7 @@ void Assembler::target_at_put(int32_t pos, int32_t target_pos) { |
return; |
} |
- ASSERT(is_branch(instr)); |
+ ASSERT(IsBranch(instr)); |
int32_t imm18 = target_pos - (pos + kBranchPCOffset); |
ASSERT((imm18 & 3) == 0); |
@@ -388,10 +538,28 @@ void Assembler::print(Label* L) { |
void Assembler::bind_to(Label* L, int pos) { |
- ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position |
+ ASSERT(0 <= pos && pos <= pc_offset()); // Must have valid binding position. |
while (L->is_linked()) { |
int32_t fixup_pos = L->pos(); |
- next(L); // call next before overwriting link with target at fixup_pos |
+ int32_t dist = pos - fixup_pos; |
+ next(L); // Call next before overwriting link with target at fixup_pos. |
+ if (dist > kMaxBranchOffset) { |
+ do { |
+ int32_t trampoline_pos = get_trampoline_entry(fixup_pos); |
+ ASSERT((trampoline_pos - fixup_pos) <= kMaxBranchOffset); |
+ target_at_put(fixup_pos, trampoline_pos); |
+ fixup_pos = trampoline_pos; |
+ dist = pos - fixup_pos; |
+ } while (dist > kMaxBranchOffset); |
+ } else if (dist < -kMaxBranchOffset) { |
+ do { |
+ int32_t trampoline_pos = get_trampoline_entry(fixup_pos, false); |
+ ASSERT((trampoline_pos - fixup_pos) >= -kMaxBranchOffset); |
+ target_at_put(fixup_pos, trampoline_pos); |
+ fixup_pos = trampoline_pos; |
+ dist = pos - fixup_pos; |
+ } while (dist < -kMaxBranchOffset); |
+ }; |
target_at_put(fixup_pos, pos); |
} |
L->bind_to(pos); |
@@ -416,16 +584,16 @@ void Assembler::link_to(Label* L, Label* appendix) { |
ASSERT(link == kEndOfChain); |
target_at_put(fixup_pos, appendix->pos()); |
} else { |
- // L is empty, simply use appendix |
+ // L is empty, simply use appendix. |
*L = *appendix; |
} |
} |
- appendix->Unuse(); // appendix should not be used anymore |
+ appendix->Unuse(); // Appendix should not be used anymore. |
} |
void Assembler::bind(Label* L) { |
- ASSERT(!L->is_bound()); // label can only be bound once |
+ ASSERT(!L->is_bound()); // Label can only be bound once. |
bind_to(L, pc_offset()); |
} |
@@ -433,11 +601,11 @@ void Assembler::bind(Label* L) { |
void Assembler::next(Label* L) { |
ASSERT(L->is_linked()); |
int link = target_at(L->pos()); |
- if (link > 0) { |
- L->link_to(link); |
- } else { |
- ASSERT(link == kEndOfChain); |
+ ASSERT(link > 0 || link == kEndOfChain); |
+ if (link == kEndOfChain) { |
L->Unuse(); |
+ } else if (link > 0) { |
+ L->link_to(link); |
} |
} |
@@ -446,13 +614,8 @@ void Assembler::next(Label* L) { |
// if they can be encoded in the MIPS's 16 bits of immediate-offset instruction |
// space. There is no guarantee that the relocated location can be similarly |
// encoded. |
-bool Assembler::MustUseAt(RelocInfo::Mode rmode) { |
- if (rmode == RelocInfo::EXTERNAL_REFERENCE) { |
- return Serializer::enabled(); |
- } else if (rmode == RelocInfo::NONE) { |
- return false; |
- } |
- return true; |
+bool Assembler::MustUseReg(RelocInfo::Mode rmode) { |
+ return rmode != RelocInfo::NONE; |
} |
@@ -470,14 +633,28 @@ void Assembler::GenInstrRegister(Opcode opcode, |
void Assembler::GenInstrRegister(Opcode opcode, |
+ Register rs, |
+ Register rt, |
+ uint16_t msb, |
+ uint16_t lsb, |
+ SecondaryField func) { |
+ ASSERT(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb)); |
+ Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
+ | (msb << kRdShift) | (lsb << kSaShift) | func; |
+ emit(instr); |
+} |
+ |
+ |
+void Assembler::GenInstrRegister(Opcode opcode, |
SecondaryField fmt, |
FPURegister ft, |
FPURegister fs, |
FPURegister fd, |
SecondaryField func) { |
ASSERT(fd.is_valid() && fs.is_valid() && ft.is_valid()); |
- Instr instr = opcode | fmt | (ft.code() << 16) | (fs.code() << kFsShift) |
- | (fd.code() << 6) | func; |
+ ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); |
+ Instr instr = opcode | fmt | (ft.code() << kFtShift) | (fs.code() << kFsShift) |
+ | (fd.code() << kFdShift) | func; |
emit(instr); |
} |
@@ -489,8 +666,22 @@ void Assembler::GenInstrRegister(Opcode opcode, |
FPURegister fd, |
SecondaryField func) { |
ASSERT(fd.is_valid() && fs.is_valid() && rt.is_valid()); |
+ ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); |
Instr instr = opcode | fmt | (rt.code() << kRtShift) |
- | (fs.code() << kFsShift) | (fd.code() << 6) | func; |
+ | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; |
+ emit(instr); |
+} |
+ |
+ |
+void Assembler::GenInstrRegister(Opcode opcode, |
+ SecondaryField fmt, |
+ Register rt, |
+ FPUControlRegister fs, |
+ SecondaryField func) { |
+ ASSERT(fs.is_valid() && rt.is_valid()); |
+ ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); |
+ Instr instr = |
+ opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func; |
emit(instr); |
} |
@@ -523,6 +714,7 @@ void Assembler::GenInstrImmediate(Opcode opcode, |
FPURegister ft, |
int32_t j) { |
ASSERT(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j))); |
+ ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); |
Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) |
| (j & kImm16Mask); |
emit(instr); |
@@ -532,26 +724,122 @@ void Assembler::GenInstrImmediate(Opcode opcode, |
// Registers are in the order of the instruction encoding, from left to right. |
void Assembler::GenInstrJump(Opcode opcode, |
uint32_t address) { |
+ BlockTrampolinePoolScope block_trampoline_pool(this); |
ASSERT(is_uint26(address)); |
Instr instr = opcode | address; |
emit(instr); |
+ BlockTrampolinePoolFor(1); // For associated delay slot. |
+} |
+ |
+ |
+// Returns the next free label entry from the next trampoline pool. |
+int32_t Assembler::get_label_entry(int32_t pos, bool next_pool) { |
+ int trampoline_count = trampolines_.length(); |
+ int32_t label_entry = 0; |
+ ASSERT(trampoline_count > 0); |
+ |
+ if (next_pool) { |
+ for (int i = 0; i < trampoline_count; i++) { |
+ if (trampolines_[i].start() > pos) { |
+ label_entry = trampolines_[i].take_label(); |
+ break; |
+ } |
+ } |
+ } else { // Caller needs a label entry from the previous pool. |
+ for (int i = trampoline_count-1; i >= 0; i--) { |
+ if (trampolines_[i].end() < pos) { |
+ label_entry = trampolines_[i].take_label(); |
+ break; |
+ } |
+ } |
+ } |
+ return label_entry; |
+} |
+ |
+ |
+// Returns the next free trampoline entry from the next trampoline pool. |
+int32_t Assembler::get_trampoline_entry(int32_t pos, bool next_pool) { |
+ int trampoline_count = trampolines_.length(); |
+ int32_t trampoline_entry = 0; |
+ ASSERT(trampoline_count > 0); |
+ |
+ if (next_pool) { |
+ for (int i = 0; i < trampoline_count; i++) { |
+ if (trampolines_[i].start() > pos) { |
+ trampoline_entry = trampolines_[i].take_slot(); |
+ break; |
+ } |
+ } |
+ } else { // Caller needs a trampoline entry from the previous pool. |
+ for (int i = trampoline_count-1; i >= 0; i--) { |
+ if (trampolines_[i].end() < pos) { |
+ trampoline_entry = trampolines_[i].take_slot(); |
+ break; |
+ } |
+ } |
+ } |
+ return trampoline_entry; |
} |
int32_t Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { |
int32_t target_pos; |
+ int32_t pc_offset_v = pc_offset(); |
+ |
if (L->is_bound()) { |
target_pos = L->pos(); |
+ int32_t dist = pc_offset_v - target_pos; |
+ if (dist > kMaxBranchOffset) { |
+ do { |
+ int32_t trampoline_pos = get_trampoline_entry(target_pos); |
+ ASSERT((trampoline_pos - target_pos) > 0); |
+ ASSERT((trampoline_pos - target_pos) <= kMaxBranchOffset); |
+ target_at_put(trampoline_pos, target_pos); |
+ target_pos = trampoline_pos; |
+ dist = pc_offset_v - target_pos; |
+ } while (dist > kMaxBranchOffset); |
+ } else if (dist < -kMaxBranchOffset) { |
+ do { |
+ int32_t trampoline_pos = get_trampoline_entry(target_pos, false); |
+ ASSERT((target_pos - trampoline_pos) > 0); |
+ ASSERT((target_pos - trampoline_pos) <= kMaxBranchOffset); |
+ target_at_put(trampoline_pos, target_pos); |
+ target_pos = trampoline_pos; |
+ dist = pc_offset_v - target_pos; |
+ } while (dist < -kMaxBranchOffset); |
+ } |
} else { |
if (L->is_linked()) { |
- target_pos = L->pos(); // L's link |
+ target_pos = L->pos(); // L's link. |
+ int32_t dist = pc_offset_v - target_pos; |
+ if (dist > kMaxBranchOffset) { |
+ do { |
+ int32_t label_pos = get_label_entry(target_pos); |
+ ASSERT((label_pos - target_pos) < kMaxBranchOffset); |
+ label_at_put(L, label_pos); |
+ target_pos = label_pos; |
+ dist = pc_offset_v - target_pos; |
+ } while (dist > kMaxBranchOffset); |
+ } else if (dist < -kMaxBranchOffset) { |
+ do { |
+ int32_t label_pos = get_label_entry(target_pos, false); |
+ ASSERT((label_pos - target_pos) > -kMaxBranchOffset); |
+ label_at_put(L, label_pos); |
+ target_pos = label_pos; |
+ dist = pc_offset_v - target_pos; |
+ } while (dist < -kMaxBranchOffset); |
+ } |
+ L->link_to(pc_offset()); |
} else { |
- target_pos = kEndOfChain; |
+ L->link_to(pc_offset()); |
+ return kEndOfChain; |
} |
- L->link_to(pc_offset()); |
} |
int32_t offset = target_pos - (pc_offset() + kBranchPCOffset); |
+ ASSERT((offset & 3) == 0); |
+ ASSERT(is_int16(offset >> 2)); |
+ |
return offset; |
} |
@@ -560,14 +848,20 @@ void Assembler::label_at_put(Label* L, int at_offset) { |
int target_pos; |
if (L->is_bound()) { |
target_pos = L->pos(); |
+ instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
} else { |
if (L->is_linked()) { |
- target_pos = L->pos(); // L's link |
+ target_pos = L->pos(); // L's link. |
+ int32_t imm18 = target_pos - at_offset; |
+ ASSERT((imm18 & 3) == 0); |
+ int32_t imm16 = imm18 >> 2; |
+ ASSERT(is_int16(imm16)); |
+ instr_at_put(at_offset, (imm16 & kImm16Mask)); |
} else { |
target_pos = kEndOfChain; |
+ instr_at_put(at_offset, 0); |
} |
L->link_to(at_offset); |
- instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
} |
} |
@@ -580,47 +874,66 @@ void Assembler::b(int16_t offset) { |
void Assembler::bal(int16_t offset) { |
+ positions_recorder()->WriteRecordedPositions(); |
bgezal(zero_reg, offset); |
} |
void Assembler::beq(Register rs, Register rt, int16_t offset) { |
+ BlockTrampolinePoolScope block_trampoline_pool(this); |
GenInstrImmediate(BEQ, rs, rt, offset); |
+ BlockTrampolinePoolFor(1); // For associated delay slot. |
} |
void Assembler::bgez(Register rs, int16_t offset) { |
+ BlockTrampolinePoolScope block_trampoline_pool(this); |
GenInstrImmediate(REGIMM, rs, BGEZ, offset); |
+ BlockTrampolinePoolFor(1); // For associated delay slot. |
} |
void Assembler::bgezal(Register rs, int16_t offset) { |
+ BlockTrampolinePoolScope block_trampoline_pool(this); |
+ positions_recorder()->WriteRecordedPositions(); |
GenInstrImmediate(REGIMM, rs, BGEZAL, offset); |
+ BlockTrampolinePoolFor(1); // For associated delay slot. |
} |
void Assembler::bgtz(Register rs, int16_t offset) { |
+ BlockTrampolinePoolScope block_trampoline_pool(this); |
GenInstrImmediate(BGTZ, rs, zero_reg, offset); |
+ BlockTrampolinePoolFor(1); // For associated delay slot. |
} |
void Assembler::blez(Register rs, int16_t offset) { |
+ BlockTrampolinePoolScope block_trampoline_pool(this); |
GenInstrImmediate(BLEZ, rs, zero_reg, offset); |
+ BlockTrampolinePoolFor(1); // For associated delay slot. |
} |
void Assembler::bltz(Register rs, int16_t offset) { |
+ BlockTrampolinePoolScope block_trampoline_pool(this); |
GenInstrImmediate(REGIMM, rs, BLTZ, offset); |
+ BlockTrampolinePoolFor(1); // For associated delay slot. |
} |
void Assembler::bltzal(Register rs, int16_t offset) { |
+ BlockTrampolinePoolScope block_trampoline_pool(this); |
+ positions_recorder()->WriteRecordedPositions(); |
GenInstrImmediate(REGIMM, rs, BLTZAL, offset); |
+ BlockTrampolinePoolFor(1); // For associated delay slot. |
} |
void Assembler::bne(Register rs, Register rt, int16_t offset) { |
+ BlockTrampolinePoolScope block_trampoline_pool(this); |
GenInstrImmediate(BNE, rs, rt, offset); |
+ BlockTrampolinePoolFor(1); // For associated delay slot. |
} |
@@ -631,18 +944,27 @@ void Assembler::j(int32_t target) { |
void Assembler::jr(Register rs) { |
+ BlockTrampolinePoolScope block_trampoline_pool(this); |
+ if (rs.is(ra)) { |
+ positions_recorder()->WriteRecordedPositions(); |
+ } |
GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR); |
+ BlockTrampolinePoolFor(1); // For associated delay slot. |
} |
void Assembler::jal(int32_t target) { |
+ positions_recorder()->WriteRecordedPositions(); |
ASSERT(is_uint28(target) && ((target & 3) == 0)); |
GenInstrJump(JAL, target >> 2); |
} |
void Assembler::jalr(Register rs, Register rd) { |
+ BlockTrampolinePoolScope block_trampoline_pool(this); |
+ positions_recorder()->WriteRecordedPositions(); |
GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR); |
+ BlockTrampolinePoolFor(1); // For associated delay slot. |
} |
@@ -650,28 +972,164 @@ void Assembler::jalr(Register rs, Register rd) { |
// Arithmetic. |
-void Assembler::add(Register rd, Register rs, Register rt) { |
- GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADD); |
-} |
- |
- |
void Assembler::addu(Register rd, Register rs, Register rt) { |
GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU); |
} |
-void Assembler::addi(Register rd, Register rs, int32_t j) { |
- GenInstrImmediate(ADDI, rs, rd, j); |
-} |
- |
- |
void Assembler::addiu(Register rd, Register rs, int32_t j) { |
GenInstrImmediate(ADDIU, rs, rd, j); |
-} |
+ // Eliminate pattern: push(r), pop(). |
+ // addiu(sp, sp, Operand(-kPointerSize)); |
+ // sw(src, MemOperand(sp, 0); |
+ // addiu(sp, sp, Operand(kPointerSize)); |
+ // Both instructions can be eliminated. |
+ if (can_peephole_optimize(3) && |
+ // Pattern. |
+ instr_at(pc_ - 1 * kInstrSize) == kPopInstruction && |
+ (instr_at(pc_ - 2 * kInstrSize) & ~kRtMask) == kPushRegPattern && |
+ (instr_at(pc_ - 3 * kInstrSize)) == kPushInstruction) { |
+ pc_ -= 3 * kInstrSize; |
+ if (FLAG_print_peephole_optimization) { |
+ PrintF("%x push(reg)/pop() eliminated\n", pc_offset()); |
+ } |
+ } |
+ |
+ // Eliminate pattern: push(ry), pop(rx). |
+ // addiu(sp, sp, -kPointerSize) |
+ // sw(ry, MemOperand(sp, 0) |
+ // lw(rx, MemOperand(sp, 0) |
+ // addiu(sp, sp, kPointerSize); |
+ // Both instructions can be eliminated if ry = rx. |
+ // If ry != rx, a register copy from ry to rx is inserted |
+ // after eliminating the push and the pop instructions. |
+ if (can_peephole_optimize(4)) { |
+ Instr pre_push_sp_set = instr_at(pc_ - 4 * kInstrSize); |
+ Instr push_instr = instr_at(pc_ - 3 * kInstrSize); |
+ Instr pop_instr = instr_at(pc_ - 2 * kInstrSize); |
+ Instr post_pop_sp_set = instr_at(pc_ - 1 * kInstrSize); |
+ |
+ if (IsPush(push_instr) && |
+ IsPop(pop_instr) && pre_push_sp_set == kPushInstruction && |
+ post_pop_sp_set == kPopInstruction) { |
+ if ((pop_instr & kRtMask) != (push_instr & kRtMask)) { |
+ // For consecutive push and pop on different registers, |
+ // we delete both the push & pop and insert a register move. |
+ // push ry, pop rx --> mov rx, ry. |
+ Register reg_pushed, reg_popped; |
+ reg_pushed = GetRt(push_instr); |
+ reg_popped = GetRt(pop_instr); |
+ pc_ -= 4 * kInstrSize; |
+ // Insert a mov instruction, which is better than a pair of push & pop. |
+ or_(reg_popped, reg_pushed, zero_reg); |
+ if (FLAG_print_peephole_optimization) { |
+ PrintF("%x push/pop (diff reg) replaced by a reg move\n", |
+ pc_offset()); |
+ } |
+ } else { |
+ // For consecutive push and pop on the same register, |
+ // both the push and the pop can be deleted. |
+ pc_ -= 4 * kInstrSize; |
+ if (FLAG_print_peephole_optimization) { |
+ PrintF("%x push/pop (same reg) eliminated\n", pc_offset()); |
+ } |
+ } |
+ } |
+ } |
-void Assembler::sub(Register rd, Register rs, Register rt) { |
- GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUB); |
+ if (can_peephole_optimize(5)) { |
+ Instr pre_push_sp_set = instr_at(pc_ - 5 * kInstrSize); |
+ Instr mem_write_instr = instr_at(pc_ - 4 * kInstrSize); |
+ Instr lw_instr = instr_at(pc_ - 3 * kInstrSize); |
+ Instr mem_read_instr = instr_at(pc_ - 2 * kInstrSize); |
+ Instr post_pop_sp_set = instr_at(pc_ - 1 * kInstrSize); |
+ |
+ if (IsPush(mem_write_instr) && |
+ pre_push_sp_set == kPushInstruction && |
+ IsPop(mem_read_instr) && |
+ post_pop_sp_set == kPopInstruction) { |
+ if ((IsLwRegFpOffset(lw_instr) || |
+ IsLwRegFpNegOffset(lw_instr))) { |
+ if ((mem_write_instr & kRtMask) == |
+ (mem_read_instr & kRtMask)) { |
+ // Pattern: push & pop from/to same register, |
+ // with a fp+offset lw in between. |
+ // |
+ // The following: |
+ // addiu sp, sp, -4 |
+ // sw rx, [sp, #0]! |
+ // lw rz, [fp, #-24] |
+ // lw rx, [sp, 0], |
+ // addiu sp, sp, 4 |
+ // |
+ // Becomes: |
+ // if(rx == rz) |
+ // delete all |
+ // else |
+ // lw rz, [fp, #-24] |
+ |
+ if ((mem_write_instr & kRtMask) == (lw_instr & kRtMask)) { |
+ pc_ -= 5 * kInstrSize; |
+ } else { |
+ pc_ -= 5 * kInstrSize; |
+ // Reinsert back the lw rz. |
+ emit(lw_instr); |
+ } |
+ if (FLAG_print_peephole_optimization) { |
+ PrintF("%x push/pop -dead ldr fp+offset in middle\n", pc_offset()); |
+ } |
+ } else { |
+ // Pattern: push & pop from/to different registers |
+ // with a fp + offset lw in between. |
+ // |
+ // The following: |
+ // addiu sp, sp ,-4 |
+ // sw rx, [sp, 0] |
+ // lw rz, [fp, #-24] |
+ // lw ry, [sp, 0] |
+ // addiu sp, sp, 4 |
+ // |
+ // Becomes: |
+ // if(ry == rz) |
+ // mov ry, rx; |
+ // else if(rx != rz) |
+ // lw rz, [fp, #-24] |
+ // mov ry, rx |
+ // else if((ry != rz) || (rx == rz)) becomes: |
+ // mov ry, rx |
+ // lw rz, [fp, #-24] |
+ |
+ Register reg_pushed, reg_popped; |
+ if ((mem_read_instr & kRtMask) == (lw_instr & kRtMask)) { |
+ reg_pushed = GetRt(mem_write_instr); |
+ reg_popped = GetRt(mem_read_instr); |
+ pc_ -= 5 * kInstrSize; |
+ or_(reg_popped, reg_pushed, zero_reg); // Move instruction. |
+ } else if ((mem_write_instr & kRtMask) |
+ != (lw_instr & kRtMask)) { |
+ reg_pushed = GetRt(mem_write_instr); |
+ reg_popped = GetRt(mem_read_instr); |
+ pc_ -= 5 * kInstrSize; |
+ emit(lw_instr); |
+ or_(reg_popped, reg_pushed, zero_reg); // Move instruction. |
+ } else if (((mem_read_instr & kRtMask) |
+ != (lw_instr & kRtMask)) || |
+ ((mem_write_instr & kRtMask) |
+ == (lw_instr & kRtMask)) ) { |
+ reg_pushed = GetRt(mem_write_instr); |
+ reg_popped = GetRt(mem_read_instr); |
+ pc_ -= 5 * kInstrSize; |
+ or_(reg_popped, reg_pushed, zero_reg); // Move instruction. |
+ emit(lw_instr); |
+ } |
+ if (FLAG_print_peephole_optimization) { |
+ PrintF("%x push/pop (ldr fp+off in middle)\n", pc_offset()); |
+ } |
+ } |
+ } |
+ } |
+ } |
} |
@@ -743,7 +1201,15 @@ void Assembler::nor(Register rd, Register rs, Register rt) { |
// Shifts. |
-void Assembler::sll(Register rd, Register rt, uint16_t sa) { |
+void Assembler::sll(Register rd, |
+ Register rt, |
+ uint16_t sa, |
+ bool coming_from_nop) { |
+ // Don't allow nop instructions in the form sll zero_reg, zero_reg to be |
+ // generated using the sll instruction. They must be generated using |
+ // nop(int/NopMarkerTypes) or MarkCode(int/NopMarkerTypes) pseudo |
+ // instructions. |
+ ASSERT(coming_from_nop || !(rd.is(zero_reg) && rt.is(zero_reg))); |
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SLL); |
} |
@@ -773,30 +1239,199 @@ void Assembler::srav(Register rd, Register rt, Register rs) { |
} |
+void Assembler::rotr(Register rd, Register rt, uint16_t sa) { |
+ // Should be called via MacroAssembler::Ror. |
+ ASSERT(rd.is_valid() && rt.is_valid() && is_uint5(sa)); |
+ ASSERT(mips32r2); |
+ Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
+ | (rd.code() << kRdShift) | (sa << kSaShift) | SRL; |
+ emit(instr); |
+} |
+ |
+ |
+void Assembler::rotrv(Register rd, Register rt, Register rs) { |
+ // Should be called via MacroAssembler::Ror. |
+ ASSERT(rd.is_valid() && rt.is_valid() && rs.is_valid() ); |
+ ASSERT(mips32r2); |
+ Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
+ | (rd.code() << kRdShift) | (1 << kSaShift) | SRLV; |
+ emit(instr); |
+} |
+ |
+ |
//------------Memory-instructions------------- |
+// Helper for base-reg + offset, when offset is larger than int16. |
+void Assembler::LoadRegPlusOffsetToAt(const MemOperand& src) { |
+ ASSERT(!src.rm().is(at)); |
+ lui(at, src.offset_ >> kLuiShift); |
+ ori(at, at, src.offset_ & kImm16Mask); // Load 32-bit offset. |
+ addu(at, at, src.rm()); // Add base register. |
+} |
+ |
+ |
void Assembler::lb(Register rd, const MemOperand& rs) { |
- GenInstrImmediate(LB, rs.rm(), rd, rs.offset_); |
+ if (is_int16(rs.offset_)) { |
+ GenInstrImmediate(LB, rs.rm(), rd, rs.offset_); |
+ } else { // Offset > 16 bits, use multiple instructions to load. |
+ LoadRegPlusOffsetToAt(rs); |
+ GenInstrImmediate(LB, at, rd, 0); // Equiv to lb(rd, MemOperand(at, 0)); |
+ } |
} |
void Assembler::lbu(Register rd, const MemOperand& rs) { |
- GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_); |
+ if (is_int16(rs.offset_)) { |
+ GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_); |
+ } else { // Offset > 16 bits, use multiple instructions to load. |
+ LoadRegPlusOffsetToAt(rs); |
+ GenInstrImmediate(LBU, at, rd, 0); // Equiv to lbu(rd, MemOperand(at, 0)); |
+ } |
+} |
+ |
+ |
+void Assembler::lh(Register rd, const MemOperand& rs) { |
+ if (is_int16(rs.offset_)) { |
+ GenInstrImmediate(LH, rs.rm(), rd, rs.offset_); |
+ } else { // Offset > 16 bits, use multiple instructions to load. |
+ LoadRegPlusOffsetToAt(rs); |
+ GenInstrImmediate(LH, at, rd, 0); // Equiv to lh(rd, MemOperand(at, 0)); |
+ } |
+} |
+ |
+ |
+void Assembler::lhu(Register rd, const MemOperand& rs) { |
+ if (is_int16(rs.offset_)) { |
+ GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_); |
+ } else { // Offset > 16 bits, use multiple instructions to load. |
+ LoadRegPlusOffsetToAt(rs); |
+ GenInstrImmediate(LHU, at, rd, 0); // Equiv to lhu(rd, MemOperand(at, 0)); |
+ } |
} |
void Assembler::lw(Register rd, const MemOperand& rs) { |
- GenInstrImmediate(LW, rs.rm(), rd, rs.offset_); |
+ if (is_int16(rs.offset_)) { |
+ GenInstrImmediate(LW, rs.rm(), rd, rs.offset_); |
+ } else { // Offset > 16 bits, use multiple instructions to load. |
+ LoadRegPlusOffsetToAt(rs); |
+ GenInstrImmediate(LW, at, rd, 0); // Equiv to lw(rd, MemOperand(at, 0)); |
+ } |
+ |
+ if (can_peephole_optimize(2)) { |
+ Instr sw_instr = instr_at(pc_ - 2 * kInstrSize); |
+ Instr lw_instr = instr_at(pc_ - 1 * kInstrSize); |
+ |
+ if ((IsSwRegFpOffset(sw_instr) && |
+ IsLwRegFpOffset(lw_instr)) || |
+ (IsSwRegFpNegOffset(sw_instr) && |
+ IsLwRegFpNegOffset(lw_instr))) { |
+ if ((lw_instr & kLwSwInstrArgumentMask) == |
+ (sw_instr & kLwSwInstrArgumentMask)) { |
+ // Pattern: Lw/sw same fp+offset, same register. |
+ // |
+ // The following: |
+ // sw rx, [fp, #-12] |
+ // lw rx, [fp, #-12] |
+ // |
+ // Becomes: |
+ // sw rx, [fp, #-12] |
+ |
+ pc_ -= 1 * kInstrSize; |
+ if (FLAG_print_peephole_optimization) { |
+ PrintF("%x sw/lw (fp + same offset), same reg\n", pc_offset()); |
+ } |
+ } else if ((lw_instr & kLwSwOffsetMask) == |
+ (sw_instr & kLwSwOffsetMask)) { |
+ // Pattern: Lw/sw same fp+offset, different register. |
+ // |
+ // The following: |
+ // sw rx, [fp, #-12] |
+ // lw ry, [fp, #-12] |
+ // |
+ // Becomes: |
+ // sw rx, [fp, #-12] |
+ // mov ry, rx |
+ |
+ Register reg_stored, reg_loaded; |
+ reg_stored = GetRt(sw_instr); |
+ reg_loaded = GetRt(lw_instr); |
+ pc_ -= 1 * kInstrSize; |
+ // Insert a mov instruction, which is better than lw. |
+ or_(reg_loaded, reg_stored, zero_reg); // Move instruction. |
+ if (FLAG_print_peephole_optimization) { |
+ PrintF("%x sw/lw (fp + same offset), diff reg \n", pc_offset()); |
+ } |
+ } |
+ } |
+ } |
+} |
+ |
+ |
+void Assembler::lwl(Register rd, const MemOperand& rs) { |
+ GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_); |
+} |
+ |
+ |
+void Assembler::lwr(Register rd, const MemOperand& rs) { |
+ GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_); |
} |
void Assembler::sb(Register rd, const MemOperand& rs) { |
- GenInstrImmediate(SB, rs.rm(), rd, rs.offset_); |
+ if (is_int16(rs.offset_)) { |
+ GenInstrImmediate(SB, rs.rm(), rd, rs.offset_); |
+ } else { // Offset > 16 bits, use multiple instructions to store. |
+ LoadRegPlusOffsetToAt(rs); |
+ GenInstrImmediate(SB, at, rd, 0); // Equiv to sb(rd, MemOperand(at, 0)); |
+ } |
+} |
+ |
+ |
+void Assembler::sh(Register rd, const MemOperand& rs) { |
+ if (is_int16(rs.offset_)) { |
+ GenInstrImmediate(SH, rs.rm(), rd, rs.offset_); |
+ } else { // Offset > 16 bits, use multiple instructions to store. |
+ LoadRegPlusOffsetToAt(rs); |
+ GenInstrImmediate(SH, at, rd, 0); // Equiv to sh(rd, MemOperand(at, 0)); |
+ } |
} |
void Assembler::sw(Register rd, const MemOperand& rs) { |
- GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); |
+ if (is_int16(rs.offset_)) { |
+ GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); |
+ } else { // Offset > 16 bits, use multiple instructions to store. |
+ LoadRegPlusOffsetToAt(rs); |
+ GenInstrImmediate(SW, at, rd, 0); // Equiv to sw(rd, MemOperand(at, 0)); |
+ } |
+ |
+ // Eliminate pattern: pop(), push(r). |
+ // addiu sp, sp, Operand(kPointerSize); |
+ // addiu sp, sp, Operand(-kPointerSize); |
+ // -> sw r, MemOpernad(sp, 0); |
+ if (can_peephole_optimize(3) && |
+ // Pattern. |
+ instr_at(pc_ - 1 * kInstrSize) == |
+ (kPushRegPattern | (rd.code() << kRtShift)) && |
+ instr_at(pc_ - 2 * kInstrSize) == kPushInstruction && |
+ instr_at(pc_ - 3 * kInstrSize) == kPopInstruction) { |
+ pc_ -= 3 * kInstrSize; |
+ GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); |
+ if (FLAG_print_peephole_optimization) { |
+ PrintF("%x pop()/push(reg) eliminated\n", pc_offset()); |
+ } |
+ } |
+} |
+ |
+ |
+void Assembler::swl(Register rd, const MemOperand& rs) { |
+ GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_); |
+} |
+ |
+ |
+void Assembler::swr(Register rd, const MemOperand& rs) { |
+ GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_); |
} |
@@ -841,7 +1476,8 @@ void Assembler::tlt(Register rs, Register rt, uint16_t code) { |
void Assembler::tltu(Register rs, Register rt, uint16_t code) { |
ASSERT(is_uint10(code)); |
- Instr instr = SPECIAL | TLTU | rs.code() << kRsShift |
+ Instr instr = |
+ SPECIAL | TLTU | rs.code() << kRsShift |
| rt.code() << kRtShift | code << 6; |
emit(instr); |
} |
@@ -896,6 +1532,54 @@ void Assembler::sltiu(Register rt, Register rs, int32_t j) { |
} |
+// Conditional move. |
+void Assembler::movz(Register rd, Register rs, Register rt) { |
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ); |
+} |
+ |
+ |
+void Assembler::movn(Register rd, Register rs, Register rt) { |
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN); |
+} |
+ |
+ |
+void Assembler::movt(Register rd, Register rs, uint16_t cc) { |
+ Register rt; |
+ rt.code_ = (cc & 0x0003) << 2 | 1; |
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); |
+} |
+ |
+ |
+void Assembler::movf(Register rd, Register rs, uint16_t cc) { |
+ Register rt; |
+ rt.code_ = (cc & 0x0003) << 2 | 0; |
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); |
+} |
+ |
+ |
+// Bit twiddling. |
+void Assembler::clz(Register rd, Register rs) { |
+ // Clz instr requires same GPR number in 'rd' and 'rt' fields. |
+ GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ); |
+} |
+ |
+ |
+void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) { |
+ // Should be called via MacroAssembler::Ins. |
+ // Ins instr has 'rt' field as dest, and two uint5: msb, lsb. |
+ ASSERT(mips32r2); |
+ GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS); |
+} |
+ |
+ |
+void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) { |
+ // Should be called via MacroAssembler::Ext. |
+ // Ext instr has 'rt' field as dest, and two uint5: msb, lsb. |
+ ASSERT(mips32r2); |
+ GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT); |
+} |
+ |
+ |
//--------Coprocessor-instructions---------------- |
// Load, store, move. |
@@ -905,7 +1589,12 @@ void Assembler::lwc1(FPURegister fd, const MemOperand& src) { |
void Assembler::ldc1(FPURegister fd, const MemOperand& src) { |
- GenInstrImmediate(LDC1, src.rm(), fd, src.offset_); |
+ // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit |
+ // load to two 32-bit loads. |
+ GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); |
+ FPURegister nextfpreg; |
+ nextfpreg.setcode(fd.code() + 1); |
+ GenInstrImmediate(LWC1, src.rm(), nextfpreg, src.offset_ + 4); |
} |
@@ -915,27 +1604,74 @@ void Assembler::swc1(FPURegister fd, const MemOperand& src) { |
void Assembler::sdc1(FPURegister fd, const MemOperand& src) { |
- GenInstrImmediate(SDC1, src.rm(), fd, src.offset_); |
+ // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit |
+ // store to two 32-bit stores. |
+ GenInstrImmediate(SWC1, src.rm(), fd, src.offset_); |
+ FPURegister nextfpreg; |
+ nextfpreg.setcode(fd.code() + 1); |
+ GenInstrImmediate(SWC1, src.rm(), nextfpreg, src.offset_ + 4); |
} |
-void Assembler::mtc1(FPURegister fs, Register rt) { |
+void Assembler::mtc1(Register rt, FPURegister fs) { |
GenInstrRegister(COP1, MTC1, rt, fs, f0); |
} |
-void Assembler::mthc1(FPURegister fs, Register rt) { |
- GenInstrRegister(COP1, MTHC1, rt, fs, f0); |
+void Assembler::mfc1(Register rt, FPURegister fs) { |
+ GenInstrRegister(COP1, MFC1, rt, fs, f0); |
} |
-void Assembler::mfc1(FPURegister fs, Register rt) { |
- GenInstrRegister(COP1, MFC1, rt, fs, f0); |
+void Assembler::ctc1(Register rt, FPUControlRegister fs) { |
+ GenInstrRegister(COP1, CTC1, rt, fs); |
+} |
+ |
+ |
+void Assembler::cfc1(Register rt, FPUControlRegister fs) { |
+ GenInstrRegister(COP1, CFC1, rt, fs); |
+} |
+ |
+ |
+// Arithmetic. |
+ |
+void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) { |
+ GenInstrRegister(COP1, D, ft, fs, fd, ADD_D); |
+} |
+ |
+ |
+void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) { |
+ GenInstrRegister(COP1, D, ft, fs, fd, SUB_D); |
+} |
+ |
+ |
+void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) { |
+ GenInstrRegister(COP1, D, ft, fs, fd, MUL_D); |
+} |
+ |
+ |
+void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) { |
+ GenInstrRegister(COP1, D, ft, fs, fd, DIV_D); |
+} |
+ |
+ |
+void Assembler::abs_d(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, D, f0, fs, fd, ABS_D); |
} |
-void Assembler::mfhc1(FPURegister fs, Register rt) { |
- GenInstrRegister(COP1, MFHC1, rt, fs, f0); |
+void Assembler::mov_d(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, D, f0, fs, fd, MOV_D); |
+} |
+ |
+ |
+void Assembler::neg_d(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, D, f0, fs, fd, NEG_D); |
+} |
+ |
+ |
+void Assembler::sqrt_d(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D); |
} |
@@ -951,22 +1687,107 @@ void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) { |
} |
+void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S); |
+} |
+ |
+ |
+void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D); |
+} |
+ |
+ |
+void Assembler::round_w_s(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S); |
+} |
+ |
+ |
+void Assembler::round_w_d(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D); |
+} |
+ |
+ |
+void Assembler::floor_w_s(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S); |
+} |
+ |
+ |
+void Assembler::floor_w_d(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D); |
+} |
+ |
+ |
+void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S); |
+} |
+ |
+ |
+void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D); |
+} |
+ |
+ |
void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) { |
+ ASSERT(mips32r2); |
GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S); |
} |
void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) { |
+ ASSERT(mips32r2); |
GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D); |
} |
+void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) { |
+ ASSERT(mips32r2); |
+ GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S); |
+} |
+ |
+ |
+void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) { |
+ ASSERT(mips32r2); |
+ GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D); |
+} |
+ |
+ |
+void Assembler::round_l_s(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S); |
+} |
+ |
+ |
+void Assembler::round_l_d(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D); |
+} |
+ |
+ |
+void Assembler::floor_l_s(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S); |
+} |
+ |
+ |
+void Assembler::floor_l_d(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D); |
+} |
+ |
+ |
+void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S); |
+} |
+ |
+ |
+void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) { |
+ GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D); |
+} |
+ |
+ |
void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) { |
GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W); |
} |
void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) { |
+ ASSERT(mips32r2); |
GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L); |
} |
@@ -982,6 +1803,7 @@ void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) { |
void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) { |
+ ASSERT(mips32r2); |
GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L); |
} |
@@ -993,7 +1815,8 @@ void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) { |
// Conditions. |
void Assembler::c(FPUCondition cond, SecondaryField fmt, |
- FPURegister ft, FPURegister fs, uint16_t cc) { |
+ FPURegister fs, FPURegister ft, uint16_t cc) { |
+ ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); |
ASSERT(is_uint3(cc)); |
ASSERT((fmt & ~(31 << kRsShift)) == 0); |
Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift |
@@ -1002,7 +1825,18 @@ void Assembler::c(FPUCondition cond, SecondaryField fmt, |
} |
+void Assembler::fcmp(FPURegister src1, const double src2, |
+ FPUCondition cond) { |
+ ASSERT(isolate()->cpu_features()->IsSupported(FPU)); |
+ ASSERT(src2 == 0.0); |
+ mtc1(zero_reg, f14); |
+ cvt_d_w(f14, f14); |
+ c(cond, D, src1, f14, 0); |
+} |
+ |
+ |
void Assembler::bc1f(int16_t offset, uint16_t cc) { |
+ ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); |
ASSERT(is_uint3(cc)); |
Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask); |
emit(instr); |
@@ -1010,6 +1844,7 @@ void Assembler::bc1f(int16_t offset, uint16_t cc) { |
void Assembler::bc1t(int16_t offset, uint16_t cc) { |
+ ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); |
ASSERT(is_uint3(cc)); |
Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask); |
emit(instr); |
@@ -1018,58 +1853,24 @@ void Assembler::bc1t(int16_t offset, uint16_t cc) { |
// Debugging. |
void Assembler::RecordJSReturn() { |
- WriteRecordedPositions(); |
+ positions_recorder()->WriteRecordedPositions(); |
CheckBuffer(); |
RecordRelocInfo(RelocInfo::JS_RETURN); |
} |
-void Assembler::RecordComment(const char* msg) { |
- if (FLAG_debug_code) { |
- CheckBuffer(); |
- RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); |
- } |
-} |
- |
- |
-void Assembler::RecordPosition(int pos) { |
- if (pos == RelocInfo::kNoPosition) return; |
- ASSERT(pos >= 0); |
- current_position_ = pos; |
-} |
- |
- |
-void Assembler::RecordStatementPosition(int pos) { |
- if (pos == RelocInfo::kNoPosition) return; |
- ASSERT(pos >= 0); |
- current_statement_position_ = pos; |
+void Assembler::RecordDebugBreakSlot() { |
+ positions_recorder()->WriteRecordedPositions(); |
+ CheckBuffer(); |
+ RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT); |
} |
-bool Assembler::WriteRecordedPositions() { |
- bool written = false; |
- |
- // Write the statement position if it is different from what was written last |
- // time. |
- if (current_statement_position_ != written_statement_position_) { |
- CheckBuffer(); |
- RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_); |
- written_statement_position_ = current_statement_position_; |
- written = true; |
- } |
- |
- // Write the position if it is different from what was written last time and |
- // also different from the written statement position. |
- if (current_position_ != written_position_ && |
- current_position_ != written_statement_position_) { |
+void Assembler::RecordComment(const char* msg) { |
+ if (FLAG_code_comments) { |
CheckBuffer(); |
- RecordRelocInfo(RelocInfo::POSITION, current_position_); |
- written_position_ = current_position_; |
- written = true; |
+ RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); |
} |
- |
- // Return whether something was written. |
- return written; |
} |
@@ -1077,7 +1878,7 @@ void Assembler::GrowBuffer() { |
if (!own_buffer_) FATAL("external code buffer is too small"); |
// Compute new buffer size. |
- CodeDesc desc; // the new buffer |
+ CodeDesc desc; // The new buffer. |
if (buffer_size_ < 4*KB) { |
desc.buffer_size = 4*KB; |
} else if (buffer_size_ < 1*MB) { |
@@ -1085,7 +1886,7 @@ void Assembler::GrowBuffer() { |
} else { |
desc.buffer_size = buffer_size_ + 1*MB; |
} |
- CHECK_GT(desc.buffer_size, 0); // no overflow |
+ CHECK_GT(desc.buffer_size, 0); // No overflow. |
// Setup new buffer. |
desc.buffer = NewArray<byte>(desc.buffer_size); |
@@ -1108,7 +1909,6 @@ void Assembler::GrowBuffer() { |
reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, |
reloc_info_writer.last_pc() + pc_delta); |
- |
// On ia32 and ARM pc relative addressing is used, and we thus need to apply a |
// shift by pc_delta. But on MIPS the target address it directly loaded, so |
// we do not need to relocate here. |
@@ -1117,11 +1917,26 @@ void Assembler::GrowBuffer() { |
} |
+void Assembler::db(uint8_t data) { |
+ CheckBuffer(); |
+ *reinterpret_cast<uint8_t*>(pc_) = data; |
+ pc_ += sizeof(uint8_t); |
+} |
+ |
+ |
+void Assembler::dd(uint32_t data) { |
+ CheckBuffer(); |
+ *reinterpret_cast<uint32_t*>(pc_) = data; |
+ pc_ += sizeof(uint32_t); |
+} |
+ |
+ |
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { |
- RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants |
- if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) { |
+ RelocInfo rinfo(pc_, rmode, data); // We do not try to reuse pool constants. |
+ if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) { |
// Adjust code for new modes. |
- ASSERT(RelocInfo::IsJSReturn(rmode) |
+ ASSERT(RelocInfo::IsDebugBreakSlot(rmode) |
+ || RelocInfo::IsJSReturn(rmode) |
|| RelocInfo::IsComment(rmode) |
|| RelocInfo::IsPosition(rmode)); |
// These modes do not need an entry in the constant pool. |
@@ -1133,12 +1948,72 @@ void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { |
!FLAG_debug_code) { |
return; |
} |
- ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here |
+ ASSERT(buffer_space() >= kMaxRelocSize); // Too late to grow buffer here. |
reloc_info_writer.Write(&rinfo); |
} |
} |
+void Assembler::BlockTrampolinePoolFor(int instructions) { |
+ BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize); |
+} |
+ |
+ |
+void Assembler::CheckTrampolinePool(bool force_emit) { |
+ // Calculate the offset of the next check. |
+ next_buffer_check_ = pc_offset() + kCheckConstInterval; |
+ |
+ int dist = pc_offset() - last_trampoline_pool_end_; |
+ |
+ if (dist <= kMaxDistBetweenPools && !force_emit) { |
+ return; |
+ } |
+ |
+ // Some small sequences of instructions must not be broken up by the |
+ // insertion of a trampoline pool; such sequences are protected by setting |
+ // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_, |
+ // which are both checked here. Also, recursive calls to CheckTrampolinePool |
+ // are blocked by trampoline_pool_blocked_nesting_. |
+ if ((trampoline_pool_blocked_nesting_ > 0) || |
+ (pc_offset() < no_trampoline_pool_before_)) { |
+ // Emission is currently blocked; make sure we try again as soon as |
+ // possible. |
+ if (trampoline_pool_blocked_nesting_ > 0) { |
+ next_buffer_check_ = pc_offset() + kInstrSize; |
+ } else { |
+ next_buffer_check_ = no_trampoline_pool_before_; |
+ } |
+ return; |
+ } |
+ |
+ // First we emit jump (2 instructions), then we emit trampoline pool. |
+ { BlockTrampolinePoolScope block_trampoline_pool(this); |
+ Label after_pool; |
+ b(&after_pool); |
+ nop(); |
+ |
+ int pool_start = pc_offset(); |
+ for (int i = 0; i < kSlotsPerTrampoline; i++) { |
+ b(&after_pool); |
+ nop(); |
+ } |
+ for (int i = 0; i < kLabelsPerTrampoline; i++) { |
+ emit(0); |
+ } |
+ last_trampoline_pool_end_ = pc_offset() - kInstrSize; |
+ bind(&after_pool); |
+ trampolines_.Add(Trampoline(pool_start, |
+ kSlotsPerTrampoline, |
+ kLabelsPerTrampoline)); |
+ |
+ // Since a trampoline pool was just emitted, |
+ // move the check offset forward by the standard interval. |
+ next_buffer_check_ = last_trampoline_pool_end_ + kMaxDistBetweenPools; |
+ } |
+ return; |
+} |
+ |
+ |
Address Assembler::target_address_at(Address pc) { |
Instr instr1 = instr_at(pc); |
Instr instr2 = instr_at(pc + kInstrSize); |
@@ -1157,7 +2032,7 @@ Address Assembler::target_address_at(Address pc) { |
return reinterpret_cast<Address>((instr2 & kImm16Mask) << 16); |
} |
} else if ((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) { |
- // 32 bits value. |
+ // 32 bit value. |
return reinterpret_cast<Address>( |
(instr1 & kImm16Mask) << 16 | (instr2 & kImm16Mask)); |
} |
@@ -1176,38 +2051,37 @@ void Assembler::set_target_address_at(Address pc, Address target) { |
#ifdef DEBUG |
Instr instr1 = instr_at(pc); |
- // Check we have indeed the result from a li with MustUseAt true. |
+ // Check we have indeed the result from a li with MustUseReg true. |
CHECK(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) || |
((instr1 == 0) && ((instr2 & kOpcodeMask)== ADDIU || |
(instr2 & kOpcodeMask)== ORI || |
(instr2 & kOpcodeMask)== LUI))); |
#endif |
- |
uint32_t rt_code = (instr2 & kRtFieldMask); |
uint32_t* p = reinterpret_cast<uint32_t*>(pc); |
uint32_t itarget = reinterpret_cast<uint32_t>(target); |
if (is_int16(itarget)) { |
- // nop |
- // addiu rt zero_reg j |
+ // nop. |
+ // addiu rt zero_reg j. |
*p = nopInstr; |
- *(p+1) = ADDIU | rt_code | (itarget & LOMask); |
- } else if (!(itarget & HIMask)) { |
- // nop |
- // ori rt zero_reg j |
+ *(p+1) = ADDIU | rt_code | (itarget & kImm16Mask); |
+ } else if (!(itarget & kHiMask)) { |
+ // nop. |
+ // ori rt zero_reg j. |
*p = nopInstr; |
- *(p+1) = ORI | rt_code | (itarget & LOMask); |
- } else if (!(itarget & LOMask)) { |
- // nop |
- // lui rt (HIMask & itarget)>>16 |
+ *(p+1) = ORI | rt_code | (itarget & kImm16Mask); |
+ } else if (!(itarget & kImm16Mask)) { |
+ // nop. |
+ // lui rt (kHiMask & itarget) >> kLuiShift. |
*p = nopInstr; |
- *(p+1) = LUI | rt_code | ((itarget & HIMask)>>16); |
+ *(p+1) = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift); |
} else { |
- // lui rt (HIMask & itarget)>>16 |
- // ori rt rt, (LOMask & itarget) |
- *p = LUI | rt_code | ((itarget & HIMask)>>16); |
- *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & LOMask); |
+ // lui rt (kHiMask & itarget) >> kLuiShift. |
+ // ori rt rt, (kImm16Mask & itarget). |
+ *p = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift); |
+ *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & kImm16Mask); |
} |
CPU::FlushICache(pc, 2 * sizeof(int32_t)); |