| Index: src/mips/assembler-mips.cc
|
| diff --git a/src/mips/assembler-mips.cc b/src/mips/assembler-mips.cc
|
| index a3b316b14c4d84a9030f13593abb42f1da87fbe7..7d00da1f8135e0249efa0b0658c72693f26e6606 100644
|
| --- a/src/mips/assembler-mips.cc
|
| +++ b/src/mips/assembler-mips.cc
|
| @@ -40,82 +40,40 @@
|
| #include "mips/assembler-mips-inl.h"
|
| #include "serialize.h"
|
|
|
| -
|
| namespace v8 {
|
| namespace internal {
|
|
|
| +CpuFeatures::CpuFeatures()
|
| + : supported_(0),
|
| + enabled_(0),
|
| + found_by_runtime_probing_(0) {
|
| +}
|
|
|
| +void CpuFeatures::Probe(bool portable) {
|
| + // If the compiler is allowed to use fpu then we can use fpu too in our
|
| + // code generation.
|
| +#if !defined(__mips__)
|
| + // For the simulator=mips build, use FPU when FLAG_enable_fpu is enabled.
|
| + if (FLAG_enable_fpu) {
|
| + supported_ |= 1u << FPU;
|
| + }
|
| +#else
|
| + if (portable && Serializer::enabled()) {
|
| + supported_ |= OS::CpuFeaturesImpliedByPlatform();
|
| + return; // No features if we might serialize.
|
| + }
|
| +
|
| + if (OS::MipsCpuHasFeature(FPU)) {
|
| + // This implementation also sets the FPU flags if
|
| + // runtime detection of FPU returns true.
|
| + supported_ |= 1u << FPU;
|
| + found_by_runtime_probing_ |= 1u << FPU;
|
| + }
|
| +
|
| + if (!portable) found_by_runtime_probing_ = 0;
|
| +#endif
|
| +}
|
|
|
| -const Register no_reg = { -1 };
|
| -
|
| -const Register zero_reg = { 0 };
|
| -const Register at = { 1 };
|
| -const Register v0 = { 2 };
|
| -const Register v1 = { 3 };
|
| -const Register a0 = { 4 };
|
| -const Register a1 = { 5 };
|
| -const Register a2 = { 6 };
|
| -const Register a3 = { 7 };
|
| -const Register t0 = { 8 };
|
| -const Register t1 = { 9 };
|
| -const Register t2 = { 10 };
|
| -const Register t3 = { 11 };
|
| -const Register t4 = { 12 };
|
| -const Register t5 = { 13 };
|
| -const Register t6 = { 14 };
|
| -const Register t7 = { 15 };
|
| -const Register s0 = { 16 };
|
| -const Register s1 = { 17 };
|
| -const Register s2 = { 18 };
|
| -const Register s3 = { 19 };
|
| -const Register s4 = { 20 };
|
| -const Register s5 = { 21 };
|
| -const Register s6 = { 22 };
|
| -const Register s7 = { 23 };
|
| -const Register t8 = { 24 };
|
| -const Register t9 = { 25 };
|
| -const Register k0 = { 26 };
|
| -const Register k1 = { 27 };
|
| -const Register gp = { 28 };
|
| -const Register sp = { 29 };
|
| -const Register s8_fp = { 30 };
|
| -const Register ra = { 31 };
|
| -
|
| -
|
| -const FPURegister no_creg = { -1 };
|
| -
|
| -const FPURegister f0 = { 0 };
|
| -const FPURegister f1 = { 1 };
|
| -const FPURegister f2 = { 2 };
|
| -const FPURegister f3 = { 3 };
|
| -const FPURegister f4 = { 4 };
|
| -const FPURegister f5 = { 5 };
|
| -const FPURegister f6 = { 6 };
|
| -const FPURegister f7 = { 7 };
|
| -const FPURegister f8 = { 8 };
|
| -const FPURegister f9 = { 9 };
|
| -const FPURegister f10 = { 10 };
|
| -const FPURegister f11 = { 11 };
|
| -const FPURegister f12 = { 12 };
|
| -const FPURegister f13 = { 13 };
|
| -const FPURegister f14 = { 14 };
|
| -const FPURegister f15 = { 15 };
|
| -const FPURegister f16 = { 16 };
|
| -const FPURegister f17 = { 17 };
|
| -const FPURegister f18 = { 18 };
|
| -const FPURegister f19 = { 19 };
|
| -const FPURegister f20 = { 20 };
|
| -const FPURegister f21 = { 21 };
|
| -const FPURegister f22 = { 22 };
|
| -const FPURegister f23 = { 23 };
|
| -const FPURegister f24 = { 24 };
|
| -const FPURegister f25 = { 25 };
|
| -const FPURegister f26 = { 26 };
|
| -const FPURegister f27 = { 27 };
|
| -const FPURegister f28 = { 28 };
|
| -const FPURegister f29 = { 29 };
|
| -const FPURegister f30 = { 30 };
|
| -const FPURegister f31 = { 31 };
|
|
|
| int ToNumber(Register reg) {
|
| ASSERT(reg.is_valid());
|
| @@ -156,6 +114,7 @@ int ToNumber(Register reg) {
|
| return kNumbers[reg.code()];
|
| }
|
|
|
| +
|
| Register ToRegister(int num) {
|
| ASSERT(num >= 0 && num < kNumRegisters);
|
| const Register kRegisters[] = {
|
| @@ -181,6 +140,15 @@ Register ToRegister(int num) {
|
|
|
| const int RelocInfo::kApplyMask = 0;
|
|
|
| +
|
| +bool RelocInfo::IsCodedSpecially() {
|
| + // The deserializer needs to know whether a pointer is specially coded. Being
|
| + // specially coded on MIPS means that it is a lui/ori instruction, and that is
|
| + // always the case inside code objects.
|
| + return true;
|
| +}
|
| +
|
| +
|
| // Patch the code at the current address with the supplied instructions.
|
| void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
|
| Instr* pc = reinterpret_cast<Instr*>(pc_);
|
| @@ -210,7 +178,7 @@ Operand::Operand(Handle<Object> handle) {
|
| rm_ = no_reg;
|
| // Verify all Objects referred by code are NOT in new space.
|
| Object* obj = *handle;
|
| - ASSERT(!Heap::InNewSpace(obj));
|
| + ASSERT(!HEAP->InNewSpace(obj));
|
| if (obj->IsHeapObject()) {
|
| imm32_ = reinterpret_cast<intptr_t>(handle.location());
|
| rmode_ = RelocInfo::EMBEDDED_OBJECT;
|
| @@ -221,26 +189,66 @@ Operand::Operand(Handle<Object> handle) {
|
| }
|
| }
|
|
|
| -MemOperand::MemOperand(Register rm, int16_t offset) : Operand(rm) {
|
| +
|
| +MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) {
|
| offset_ = offset;
|
| }
|
|
|
|
|
| // -----------------------------------------------------------------------------
|
| -// Implementation of Assembler.
|
| -
|
| -static const int kMinimalBufferSize = 4*KB;
|
| -static byte* spare_buffer_ = NULL;
|
| -
|
| -Assembler::Assembler(void* buffer, int buffer_size) {
|
| +// Specific instructions, constants, and masks.
|
| +
|
| +static const int kNegOffset = 0x00008000;
|
| +// addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
|
| +// operations as post-increment of sp.
|
| +const Instr kPopInstruction = ADDIU | (sp.code() << kRsShift)
|
| + | (sp.code() << kRtShift) | (kPointerSize & kImm16Mask);
|
| +// addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
|
| +const Instr kPushInstruction = ADDIU | (sp.code() << kRsShift)
|
| + | (sp.code() << kRtShift) | (-kPointerSize & kImm16Mask);
|
| +// sw(r, MemOperand(sp, 0))
|
| +const Instr kPushRegPattern = SW | (sp.code() << kRsShift)
|
| + | (0 & kImm16Mask);
|
| +// lw(r, MemOperand(sp, 0))
|
| +const Instr kPopRegPattern = LW | (sp.code() << kRsShift)
|
| + | (0 & kImm16Mask);
|
| +
|
| +const Instr kLwRegFpOffsetPattern = LW | (s8_fp.code() << kRsShift)
|
| + | (0 & kImm16Mask);
|
| +
|
| +const Instr kSwRegFpOffsetPattern = SW | (s8_fp.code() << kRsShift)
|
| + | (0 & kImm16Mask);
|
| +
|
| +const Instr kLwRegFpNegOffsetPattern = LW | (s8_fp.code() << kRsShift)
|
| + | (kNegOffset & kImm16Mask);
|
| +
|
| +const Instr kSwRegFpNegOffsetPattern = SW | (s8_fp.code() << kRsShift)
|
| + | (kNegOffset & kImm16Mask);
|
| +// A mask for the Rt register for push, pop, lw, sw instructions.
|
| +const Instr kRtMask = kRtFieldMask;
|
| +const Instr kLwSwInstrTypeMask = 0xffe00000;
|
| +const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask;
|
| +const Instr kLwSwOffsetMask = kImm16Mask;
|
| +
|
| +
|
| +// Spare buffer.
|
| +static const int kMinimalBufferSize = 4 * KB;
|
| +
|
| +
|
| +Assembler::Assembler(void* buffer, int buffer_size)
|
| + : AssemblerBase(Isolate::Current()),
|
| + positions_recorder_(this),
|
| + allow_peephole_optimization_(false) {
|
| + // BUG(3245989): disable peephole optimization if crankshaft is enabled.
|
| + allow_peephole_optimization_ = FLAG_peephole_optimization;
|
| if (buffer == NULL) {
|
| // Do our own buffer management.
|
| if (buffer_size <= kMinimalBufferSize) {
|
| buffer_size = kMinimalBufferSize;
|
|
|
| - if (spare_buffer_ != NULL) {
|
| - buffer = spare_buffer_;
|
| - spare_buffer_ = NULL;
|
| + if (isolate()->assembler_spare_buffer() != NULL) {
|
| + buffer = isolate()->assembler_spare_buffer();
|
| + isolate()->set_assembler_spare_buffer(NULL);
|
| }
|
| }
|
| if (buffer == NULL) {
|
| @@ -263,17 +271,19 @@ Assembler::Assembler(void* buffer, int buffer_size) {
|
| ASSERT(buffer_ != NULL);
|
| pc_ = buffer_;
|
| reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
|
| - current_statement_position_ = RelocInfo::kNoPosition;
|
| - current_position_ = RelocInfo::kNoPosition;
|
| - written_statement_position_ = current_statement_position_;
|
| - written_position_ = current_position_;
|
| +
|
| + last_trampoline_pool_end_ = 0;
|
| + no_trampoline_pool_before_ = 0;
|
| + trampoline_pool_blocked_nesting_ = 0;
|
| + next_buffer_check_ = kMaxBranchOffset - kTrampolineSize;
|
| }
|
|
|
|
|
| Assembler::~Assembler() {
|
| if (own_buffer_) {
|
| - if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
|
| - spare_buffer_ = buffer_;
|
| + if (isolate()->assembler_spare_buffer() == NULL &&
|
| + buffer_size_ == kMinimalBufferSize) {
|
| + isolate()->set_assembler_spare_buffer(buffer_);
|
| } else {
|
| DeleteArray(buffer_);
|
| }
|
| @@ -282,7 +292,7 @@ Assembler::~Assembler() {
|
|
|
|
|
| void Assembler::GetCode(CodeDesc* desc) {
|
| - ASSERT(pc_ <= reloc_info_writer.pos()); // no overlap
|
| + ASSERT(pc_ <= reloc_info_writer.pos()); // No overlap.
|
| // Setup code descriptor.
|
| desc->buffer = buffer_;
|
| desc->buffer_size = buffer_size_;
|
| @@ -291,6 +301,60 @@ void Assembler::GetCode(CodeDesc* desc) {
|
| }
|
|
|
|
|
| +void Assembler::Align(int m) {
|
| + ASSERT(m >= 4 && IsPowerOf2(m));
|
| + while ((pc_offset() & (m - 1)) != 0) {
|
| + nop();
|
| + }
|
| +}
|
| +
|
| +
|
| +void Assembler::CodeTargetAlign() {
|
| + // No advantage to aligning branch/call targets to more than
|
| + // single instruction, that I am aware of.
|
| + Align(4);
|
| +}
|
| +
|
| +
|
| +Register Assembler::GetRt(Instr instr) {
|
| + Register rt;
|
| + rt.code_ = (instr & kRtMask) >> kRtShift;
|
| + return rt;
|
| +}
|
| +
|
| +
|
| +bool Assembler::IsPop(Instr instr) {
|
| + return (instr & ~kRtMask) == kPopRegPattern;
|
| +}
|
| +
|
| +
|
| +bool Assembler::IsPush(Instr instr) {
|
| + return (instr & ~kRtMask) == kPushRegPattern;
|
| +}
|
| +
|
| +
|
| +bool Assembler::IsSwRegFpOffset(Instr instr) {
|
| + return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern);
|
| +}
|
| +
|
| +
|
| +bool Assembler::IsLwRegFpOffset(Instr instr) {
|
| + return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern);
|
| +}
|
| +
|
| +
|
| +bool Assembler::IsSwRegFpNegOffset(Instr instr) {
|
| + return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
|
| + kSwRegFpNegOffsetPattern);
|
| +}
|
| +
|
| +
|
| +bool Assembler::IsLwRegFpNegOffset(Instr instr) {
|
| + return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
|
| + kLwRegFpNegOffsetPattern);
|
| +}
|
| +
|
| +
|
| // Labels refer to positions in the (to be) generated code.
|
| // There are bound, linked, and unused labels.
|
| //
|
| @@ -301,14 +365,19 @@ void Assembler::GetCode(CodeDesc* desc) {
|
| // to be generated; pos() is the position of the last
|
| // instruction using the label.
|
|
|
| +// The link chain is terminated by a value in the instruction of -1,
|
| +// which is an otherwise illegal value (branch -1 is inf loop).
|
| +// The instruction 16-bit offset field addresses 32-bit words, but in
|
| +// code is conv to an 18-bit value addressing bytes, hence the -4 value.
|
|
|
| -// The link chain is terminated by a negative code position (must be aligned).
|
| const int kEndOfChain = -4;
|
|
|
| -bool Assembler::is_branch(Instr instr) {
|
| +
|
| +bool Assembler::IsBranch(Instr instr) {
|
| uint32_t opcode = ((instr & kOpcodeMask));
|
| uint32_t rt_field = ((instr & kRtFieldMask));
|
| uint32_t rs_field = ((instr & kRsFieldMask));
|
| + uint32_t label_constant = (instr & ~kImm16Mask);
|
| // Checks if the instruction is a branch.
|
| return opcode == BEQ ||
|
| opcode == BNE ||
|
| @@ -320,7 +389,79 @@ bool Assembler::is_branch(Instr instr) {
|
| opcode == BGTZL||
|
| (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ ||
|
| rt_field == BLTZAL || rt_field == BGEZAL)) ||
|
| - (opcode == COP1 && rs_field == BC1); // Coprocessor branch.
|
| + (opcode == COP1 && rs_field == BC1) || // Coprocessor branch.
|
| + label_constant == 0; // Emitted label const in reg-exp engine.
|
| +}
|
| +
|
| +
|
| +bool Assembler::IsNop(Instr instr, unsigned int type) {
|
| + // See Assembler::nop(type).
|
| + ASSERT(type < 32);
|
| + uint32_t opcode = ((instr & kOpcodeMask));
|
| + uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
|
| + uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
|
| + uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
|
| +
|
| + // nop(type) == sll(zero_reg, zero_reg, type);
|
| + // Technically all these values will be 0 but
|
| + // this makes more sense to the reader.
|
| +
|
| + bool ret = (opcode == SLL &&
|
| + rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
|
| + rs == static_cast<uint32_t>(ToNumber(zero_reg)) &&
|
| + sa == type);
|
| +
|
| + return ret;
|
| +}
|
| +
|
| +
|
| +int32_t Assembler::GetBranchOffset(Instr instr) {
|
| + ASSERT(IsBranch(instr));
|
| + return ((int16_t)(instr & kImm16Mask)) << 2;
|
| +}
|
| +
|
| +
|
| +bool Assembler::IsLw(Instr instr) {
|
| + return ((instr & kOpcodeMask) == LW);
|
| +}
|
| +
|
| +
|
| +int16_t Assembler::GetLwOffset(Instr instr) {
|
| + ASSERT(IsLw(instr));
|
| + return ((instr & kImm16Mask));
|
| +}
|
| +
|
| +
|
| +Instr Assembler::SetLwOffset(Instr instr, int16_t offset) {
|
| + ASSERT(IsLw(instr));
|
| +
|
| + // We actually create a new lw instruction based on the original one.
|
| + Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask)
|
| + | (offset & kImm16Mask);
|
| +
|
| + return temp_instr;
|
| +}
|
| +
|
| +
|
| +bool Assembler::IsSw(Instr instr) {
|
| + return ((instr & kOpcodeMask) == SW);
|
| +}
|
| +
|
| +
|
| +Instr Assembler::SetSwOffset(Instr instr, int16_t offset) {
|
| + ASSERT(IsSw(instr));
|
| + return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
|
| +}
|
| +
|
| +
|
| +bool Assembler::IsAddImmediate(Instr instr) {
|
| + return ((instr & kOpcodeMask) == ADDIU);
|
| +}
|
| +
|
| +
|
| +Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) {
|
| + ASSERT(IsAddImmediate(instr));
|
| + return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
|
| }
|
|
|
|
|
| @@ -328,16 +469,25 @@ int Assembler::target_at(int32_t pos) {
|
| Instr instr = instr_at(pos);
|
| if ((instr & ~kImm16Mask) == 0) {
|
| // Emitted label constant, not part of a branch.
|
| - return instr - (Code::kHeaderSize - kHeapObjectTag);
|
| + if (instr == 0) {
|
| + return kEndOfChain;
|
| + } else {
|
| + int32_t imm18 =((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
|
| + return (imm18 + pos);
|
| + }
|
| }
|
| // Check we have a branch instruction.
|
| - ASSERT(is_branch(instr));
|
| + ASSERT(IsBranch(instr));
|
| // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
|
| // the compiler uses arithmectic shifts for signed integers.
|
| - int32_t imm18 = ((instr &
|
| - static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
|
| + int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
|
|
|
| - return pos + kBranchPCOffset + imm18;
|
| + if (imm18 == kEndOfChain) {
|
| + // EndOfChain sentinel is returned directly, not relative to pc or pos.
|
| + return kEndOfChain;
|
| + } else {
|
| + return pos + kBranchPCOffset + imm18;
|
| + }
|
| }
|
|
|
|
|
| @@ -351,7 +501,7 @@ void Assembler::target_at_put(int32_t pos, int32_t target_pos) {
|
| return;
|
| }
|
|
|
| - ASSERT(is_branch(instr));
|
| + ASSERT(IsBranch(instr));
|
| int32_t imm18 = target_pos - (pos + kBranchPCOffset);
|
| ASSERT((imm18 & 3) == 0);
|
|
|
| @@ -388,10 +538,28 @@ void Assembler::print(Label* L) {
|
|
|
|
|
| void Assembler::bind_to(Label* L, int pos) {
|
| - ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position
|
| + ASSERT(0 <= pos && pos <= pc_offset()); // Must have valid binding position.
|
| while (L->is_linked()) {
|
| int32_t fixup_pos = L->pos();
|
| - next(L); // call next before overwriting link with target at fixup_pos
|
| + int32_t dist = pos - fixup_pos;
|
| + next(L); // Call next before overwriting link with target at fixup_pos.
|
| + if (dist > kMaxBranchOffset) {
|
| + do {
|
| + int32_t trampoline_pos = get_trampoline_entry(fixup_pos);
|
| + ASSERT((trampoline_pos - fixup_pos) <= kMaxBranchOffset);
|
| + target_at_put(fixup_pos, trampoline_pos);
|
| + fixup_pos = trampoline_pos;
|
| + dist = pos - fixup_pos;
|
| + } while (dist > kMaxBranchOffset);
|
| + } else if (dist < -kMaxBranchOffset) {
|
| + do {
|
| + int32_t trampoline_pos = get_trampoline_entry(fixup_pos, false);
|
| + ASSERT((trampoline_pos - fixup_pos) >= -kMaxBranchOffset);
|
| + target_at_put(fixup_pos, trampoline_pos);
|
| + fixup_pos = trampoline_pos;
|
| + dist = pos - fixup_pos;
|
| + } while (dist < -kMaxBranchOffset);
|
| + };
|
| target_at_put(fixup_pos, pos);
|
| }
|
| L->bind_to(pos);
|
| @@ -416,16 +584,16 @@ void Assembler::link_to(Label* L, Label* appendix) {
|
| ASSERT(link == kEndOfChain);
|
| target_at_put(fixup_pos, appendix->pos());
|
| } else {
|
| - // L is empty, simply use appendix
|
| + // L is empty, simply use appendix.
|
| *L = *appendix;
|
| }
|
| }
|
| - appendix->Unuse(); // appendix should not be used anymore
|
| + appendix->Unuse(); // Appendix should not be used anymore.
|
| }
|
|
|
|
|
| void Assembler::bind(Label* L) {
|
| - ASSERT(!L->is_bound()); // label can only be bound once
|
| + ASSERT(!L->is_bound()); // Label can only be bound once.
|
| bind_to(L, pc_offset());
|
| }
|
|
|
| @@ -433,11 +601,11 @@ void Assembler::bind(Label* L) {
|
| void Assembler::next(Label* L) {
|
| ASSERT(L->is_linked());
|
| int link = target_at(L->pos());
|
| - if (link > 0) {
|
| - L->link_to(link);
|
| - } else {
|
| - ASSERT(link == kEndOfChain);
|
| + ASSERT(link > 0 || link == kEndOfChain);
|
| + if (link == kEndOfChain) {
|
| L->Unuse();
|
| + } else if (link > 0) {
|
| + L->link_to(link);
|
| }
|
| }
|
|
|
| @@ -446,13 +614,8 @@ void Assembler::next(Label* L) {
|
| // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
|
| // space. There is no guarantee that the relocated location can be similarly
|
| // encoded.
|
| -bool Assembler::MustUseAt(RelocInfo::Mode rmode) {
|
| - if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
|
| - return Serializer::enabled();
|
| - } else if (rmode == RelocInfo::NONE) {
|
| - return false;
|
| - }
|
| - return true;
|
| +bool Assembler::MustUseReg(RelocInfo::Mode rmode) {
|
| + return rmode != RelocInfo::NONE;
|
| }
|
|
|
|
|
| @@ -470,14 +633,28 @@ void Assembler::GenInstrRegister(Opcode opcode,
|
|
|
|
|
| void Assembler::GenInstrRegister(Opcode opcode,
|
| + Register rs,
|
| + Register rt,
|
| + uint16_t msb,
|
| + uint16_t lsb,
|
| + SecondaryField func) {
|
| + ASSERT(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
|
| + Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
|
| + | (msb << kRdShift) | (lsb << kSaShift) | func;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::GenInstrRegister(Opcode opcode,
|
| SecondaryField fmt,
|
| FPURegister ft,
|
| FPURegister fs,
|
| FPURegister fd,
|
| SecondaryField func) {
|
| ASSERT(fd.is_valid() && fs.is_valid() && ft.is_valid());
|
| - Instr instr = opcode | fmt | (ft.code() << 16) | (fs.code() << kFsShift)
|
| - | (fd.code() << 6) | func;
|
| + ASSERT(isolate()->cpu_features()->IsEnabled(FPU));
|
| + Instr instr = opcode | fmt | (ft.code() << kFtShift) | (fs.code() << kFsShift)
|
| + | (fd.code() << kFdShift) | func;
|
| emit(instr);
|
| }
|
|
|
| @@ -489,8 +666,22 @@ void Assembler::GenInstrRegister(Opcode opcode,
|
| FPURegister fd,
|
| SecondaryField func) {
|
| ASSERT(fd.is_valid() && fs.is_valid() && rt.is_valid());
|
| + ASSERT(isolate()->cpu_features()->IsEnabled(FPU));
|
| Instr instr = opcode | fmt | (rt.code() << kRtShift)
|
| - | (fs.code() << kFsShift) | (fd.code() << 6) | func;
|
| + | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::GenInstrRegister(Opcode opcode,
|
| + SecondaryField fmt,
|
| + Register rt,
|
| + FPUControlRegister fs,
|
| + SecondaryField func) {
|
| + ASSERT(fs.is_valid() && rt.is_valid());
|
| + ASSERT(isolate()->cpu_features()->IsEnabled(FPU));
|
| + Instr instr =
|
| + opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func;
|
| emit(instr);
|
| }
|
|
|
| @@ -523,6 +714,7 @@ void Assembler::GenInstrImmediate(Opcode opcode,
|
| FPURegister ft,
|
| int32_t j) {
|
| ASSERT(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
|
| + ASSERT(isolate()->cpu_features()->IsEnabled(FPU));
|
| Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift)
|
| | (j & kImm16Mask);
|
| emit(instr);
|
| @@ -532,26 +724,122 @@ void Assembler::GenInstrImmediate(Opcode opcode,
|
| // Registers are in the order of the instruction encoding, from left to right.
|
| void Assembler::GenInstrJump(Opcode opcode,
|
| uint32_t address) {
|
| + BlockTrampolinePoolScope block_trampoline_pool(this);
|
| ASSERT(is_uint26(address));
|
| Instr instr = opcode | address;
|
| emit(instr);
|
| + BlockTrampolinePoolFor(1); // For associated delay slot.
|
| +}
|
| +
|
| +
|
| +// Returns the next free label entry from the next trampoline pool.
|
| +int32_t Assembler::get_label_entry(int32_t pos, bool next_pool) {
|
| + int trampoline_count = trampolines_.length();
|
| + int32_t label_entry = 0;
|
| + ASSERT(trampoline_count > 0);
|
| +
|
| + if (next_pool) {
|
| + for (int i = 0; i < trampoline_count; i++) {
|
| + if (trampolines_[i].start() > pos) {
|
| + label_entry = trampolines_[i].take_label();
|
| + break;
|
| + }
|
| + }
|
| + } else { // Caller needs a label entry from the previous pool.
|
| + for (int i = trampoline_count-1; i >= 0; i--) {
|
| + if (trampolines_[i].end() < pos) {
|
| + label_entry = trampolines_[i].take_label();
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + return label_entry;
|
| +}
|
| +
|
| +
|
| +// Returns the next free trampoline entry from the next trampoline pool.
|
| +int32_t Assembler::get_trampoline_entry(int32_t pos, bool next_pool) {
|
| + int trampoline_count = trampolines_.length();
|
| + int32_t trampoline_entry = 0;
|
| + ASSERT(trampoline_count > 0);
|
| +
|
| + if (next_pool) {
|
| + for (int i = 0; i < trampoline_count; i++) {
|
| + if (trampolines_[i].start() > pos) {
|
| + trampoline_entry = trampolines_[i].take_slot();
|
| + break;
|
| + }
|
| + }
|
| + } else { // Caller needs a trampoline entry from the previous pool.
|
| + for (int i = trampoline_count-1; i >= 0; i--) {
|
| + if (trampolines_[i].end() < pos) {
|
| + trampoline_entry = trampolines_[i].take_slot();
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + return trampoline_entry;
|
| }
|
|
|
|
|
| int32_t Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
|
| int32_t target_pos;
|
| + int32_t pc_offset_v = pc_offset();
|
| +
|
| if (L->is_bound()) {
|
| target_pos = L->pos();
|
| + int32_t dist = pc_offset_v - target_pos;
|
| + if (dist > kMaxBranchOffset) {
|
| + do {
|
| + int32_t trampoline_pos = get_trampoline_entry(target_pos);
|
| + ASSERT((trampoline_pos - target_pos) > 0);
|
| + ASSERT((trampoline_pos - target_pos) <= kMaxBranchOffset);
|
| + target_at_put(trampoline_pos, target_pos);
|
| + target_pos = trampoline_pos;
|
| + dist = pc_offset_v - target_pos;
|
| + } while (dist > kMaxBranchOffset);
|
| + } else if (dist < -kMaxBranchOffset) {
|
| + do {
|
| + int32_t trampoline_pos = get_trampoline_entry(target_pos, false);
|
| + ASSERT((target_pos - trampoline_pos) > 0);
|
| + ASSERT((target_pos - trampoline_pos) <= kMaxBranchOffset);
|
| + target_at_put(trampoline_pos, target_pos);
|
| + target_pos = trampoline_pos;
|
| + dist = pc_offset_v - target_pos;
|
| + } while (dist < -kMaxBranchOffset);
|
| + }
|
| } else {
|
| if (L->is_linked()) {
|
| - target_pos = L->pos(); // L's link
|
| + target_pos = L->pos(); // L's link.
|
| + int32_t dist = pc_offset_v - target_pos;
|
| + if (dist > kMaxBranchOffset) {
|
| + do {
|
| + int32_t label_pos = get_label_entry(target_pos);
|
| + ASSERT((label_pos - target_pos) < kMaxBranchOffset);
|
| + label_at_put(L, label_pos);
|
| + target_pos = label_pos;
|
| + dist = pc_offset_v - target_pos;
|
| + } while (dist > kMaxBranchOffset);
|
| + } else if (dist < -kMaxBranchOffset) {
|
| + do {
|
| + int32_t label_pos = get_label_entry(target_pos, false);
|
| + ASSERT((label_pos - target_pos) > -kMaxBranchOffset);
|
| + label_at_put(L, label_pos);
|
| + target_pos = label_pos;
|
| + dist = pc_offset_v - target_pos;
|
| + } while (dist < -kMaxBranchOffset);
|
| + }
|
| + L->link_to(pc_offset());
|
| } else {
|
| - target_pos = kEndOfChain;
|
| + L->link_to(pc_offset());
|
| + return kEndOfChain;
|
| }
|
| - L->link_to(pc_offset());
|
| }
|
|
|
| int32_t offset = target_pos - (pc_offset() + kBranchPCOffset);
|
| + ASSERT((offset & 3) == 0);
|
| + ASSERT(is_int16(offset >> 2));
|
| +
|
| return offset;
|
| }
|
|
|
| @@ -560,14 +848,20 @@ void Assembler::label_at_put(Label* L, int at_offset) {
|
| int target_pos;
|
| if (L->is_bound()) {
|
| target_pos = L->pos();
|
| + instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
|
| } else {
|
| if (L->is_linked()) {
|
| - target_pos = L->pos(); // L's link
|
| + target_pos = L->pos(); // L's link.
|
| + int32_t imm18 = target_pos - at_offset;
|
| + ASSERT((imm18 & 3) == 0);
|
| + int32_t imm16 = imm18 >> 2;
|
| + ASSERT(is_int16(imm16));
|
| + instr_at_put(at_offset, (imm16 & kImm16Mask));
|
| } else {
|
| target_pos = kEndOfChain;
|
| + instr_at_put(at_offset, 0);
|
| }
|
| L->link_to(at_offset);
|
| - instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
|
| }
|
| }
|
|
|
| @@ -580,47 +874,66 @@ void Assembler::b(int16_t offset) {
|
|
|
|
|
| void Assembler::bal(int16_t offset) {
|
| + positions_recorder()->WriteRecordedPositions();
|
| bgezal(zero_reg, offset);
|
| }
|
|
|
|
|
| void Assembler::beq(Register rs, Register rt, int16_t offset) {
|
| + BlockTrampolinePoolScope block_trampoline_pool(this);
|
| GenInstrImmediate(BEQ, rs, rt, offset);
|
| + BlockTrampolinePoolFor(1); // For associated delay slot.
|
| }
|
|
|
|
|
| void Assembler::bgez(Register rs, int16_t offset) {
|
| + BlockTrampolinePoolScope block_trampoline_pool(this);
|
| GenInstrImmediate(REGIMM, rs, BGEZ, offset);
|
| + BlockTrampolinePoolFor(1); // For associated delay slot.
|
| }
|
|
|
|
|
| void Assembler::bgezal(Register rs, int16_t offset) {
|
| + BlockTrampolinePoolScope block_trampoline_pool(this);
|
| + positions_recorder()->WriteRecordedPositions();
|
| GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
|
| + BlockTrampolinePoolFor(1); // For associated delay slot.
|
| }
|
|
|
|
|
| void Assembler::bgtz(Register rs, int16_t offset) {
|
| + BlockTrampolinePoolScope block_trampoline_pool(this);
|
| GenInstrImmediate(BGTZ, rs, zero_reg, offset);
|
| + BlockTrampolinePoolFor(1); // For associated delay slot.
|
| }
|
|
|
|
|
| void Assembler::blez(Register rs, int16_t offset) {
|
| + BlockTrampolinePoolScope block_trampoline_pool(this);
|
| GenInstrImmediate(BLEZ, rs, zero_reg, offset);
|
| + BlockTrampolinePoolFor(1); // For associated delay slot.
|
| }
|
|
|
|
|
| void Assembler::bltz(Register rs, int16_t offset) {
|
| + BlockTrampolinePoolScope block_trampoline_pool(this);
|
| GenInstrImmediate(REGIMM, rs, BLTZ, offset);
|
| + BlockTrampolinePoolFor(1); // For associated delay slot.
|
| }
|
|
|
|
|
| void Assembler::bltzal(Register rs, int16_t offset) {
|
| + BlockTrampolinePoolScope block_trampoline_pool(this);
|
| + positions_recorder()->WriteRecordedPositions();
|
| GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
|
| + BlockTrampolinePoolFor(1); // For associated delay slot.
|
| }
|
|
|
|
|
| void Assembler::bne(Register rs, Register rt, int16_t offset) {
|
| + BlockTrampolinePoolScope block_trampoline_pool(this);
|
| GenInstrImmediate(BNE, rs, rt, offset);
|
| + BlockTrampolinePoolFor(1); // For associated delay slot.
|
| }
|
|
|
|
|
| @@ -631,18 +944,27 @@ void Assembler::j(int32_t target) {
|
|
|
|
|
| void Assembler::jr(Register rs) {
|
| + BlockTrampolinePoolScope block_trampoline_pool(this);
|
| + if (rs.is(ra)) {
|
| + positions_recorder()->WriteRecordedPositions();
|
| + }
|
| GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
|
| + BlockTrampolinePoolFor(1); // For associated delay slot.
|
| }
|
|
|
|
|
| void Assembler::jal(int32_t target) {
|
| + positions_recorder()->WriteRecordedPositions();
|
| ASSERT(is_uint28(target) && ((target & 3) == 0));
|
| GenInstrJump(JAL, target >> 2);
|
| }
|
|
|
|
|
| void Assembler::jalr(Register rs, Register rd) {
|
| + BlockTrampolinePoolScope block_trampoline_pool(this);
|
| + positions_recorder()->WriteRecordedPositions();
|
| GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
|
| + BlockTrampolinePoolFor(1); // For associated delay slot.
|
| }
|
|
|
|
|
| @@ -650,28 +972,164 @@ void Assembler::jalr(Register rs, Register rd) {
|
|
|
| // Arithmetic.
|
|
|
| -void Assembler::add(Register rd, Register rs, Register rt) {
|
| - GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADD);
|
| -}
|
| -
|
| -
|
| void Assembler::addu(Register rd, Register rs, Register rt) {
|
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
|
| }
|
|
|
|
|
| -void Assembler::addi(Register rd, Register rs, int32_t j) {
|
| - GenInstrImmediate(ADDI, rs, rd, j);
|
| -}
|
| -
|
| -
|
| void Assembler::addiu(Register rd, Register rs, int32_t j) {
|
| GenInstrImmediate(ADDIU, rs, rd, j);
|
| -}
|
|
|
| + // Eliminate pattern: push(r), pop().
|
| + // addiu(sp, sp, Operand(-kPointerSize));
|
| + // sw(src, MemOperand(sp, 0);
|
| + // addiu(sp, sp, Operand(kPointerSize));
|
| + // Both instructions can be eliminated.
|
| + if (can_peephole_optimize(3) &&
|
| + // Pattern.
|
| + instr_at(pc_ - 1 * kInstrSize) == kPopInstruction &&
|
| + (instr_at(pc_ - 2 * kInstrSize) & ~kRtMask) == kPushRegPattern &&
|
| + (instr_at(pc_ - 3 * kInstrSize)) == kPushInstruction) {
|
| + pc_ -= 3 * kInstrSize;
|
| + if (FLAG_print_peephole_optimization) {
|
| + PrintF("%x push(reg)/pop() eliminated\n", pc_offset());
|
| + }
|
| + }
|
| +
|
| + // Eliminate pattern: push(ry), pop(rx).
|
| + // addiu(sp, sp, -kPointerSize)
|
| + // sw(ry, MemOperand(sp, 0)
|
| + // lw(rx, MemOperand(sp, 0)
|
| + // addiu(sp, sp, kPointerSize);
|
| + // Both instructions can be eliminated if ry = rx.
|
| + // If ry != rx, a register copy from ry to rx is inserted
|
| + // after eliminating the push and the pop instructions.
|
| + if (can_peephole_optimize(4)) {
|
| + Instr pre_push_sp_set = instr_at(pc_ - 4 * kInstrSize);
|
| + Instr push_instr = instr_at(pc_ - 3 * kInstrSize);
|
| + Instr pop_instr = instr_at(pc_ - 2 * kInstrSize);
|
| + Instr post_pop_sp_set = instr_at(pc_ - 1 * kInstrSize);
|
| +
|
| + if (IsPush(push_instr) &&
|
| + IsPop(pop_instr) && pre_push_sp_set == kPushInstruction &&
|
| + post_pop_sp_set == kPopInstruction) {
|
| + if ((pop_instr & kRtMask) != (push_instr & kRtMask)) {
|
| + // For consecutive push and pop on different registers,
|
| + // we delete both the push & pop and insert a register move.
|
| + // push ry, pop rx --> mov rx, ry.
|
| + Register reg_pushed, reg_popped;
|
| + reg_pushed = GetRt(push_instr);
|
| + reg_popped = GetRt(pop_instr);
|
| + pc_ -= 4 * kInstrSize;
|
| + // Insert a mov instruction, which is better than a pair of push & pop.
|
| + or_(reg_popped, reg_pushed, zero_reg);
|
| + if (FLAG_print_peephole_optimization) {
|
| + PrintF("%x push/pop (diff reg) replaced by a reg move\n",
|
| + pc_offset());
|
| + }
|
| + } else {
|
| + // For consecutive push and pop on the same register,
|
| + // both the push and the pop can be deleted.
|
| + pc_ -= 4 * kInstrSize;
|
| + if (FLAG_print_peephole_optimization) {
|
| + PrintF("%x push/pop (same reg) eliminated\n", pc_offset());
|
| + }
|
| + }
|
| + }
|
| + }
|
|
|
| -void Assembler::sub(Register rd, Register rs, Register rt) {
|
| - GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUB);
|
| + if (can_peephole_optimize(5)) {
|
| + Instr pre_push_sp_set = instr_at(pc_ - 5 * kInstrSize);
|
| + Instr mem_write_instr = instr_at(pc_ - 4 * kInstrSize);
|
| + Instr lw_instr = instr_at(pc_ - 3 * kInstrSize);
|
| + Instr mem_read_instr = instr_at(pc_ - 2 * kInstrSize);
|
| + Instr post_pop_sp_set = instr_at(pc_ - 1 * kInstrSize);
|
| +
|
| + if (IsPush(mem_write_instr) &&
|
| + pre_push_sp_set == kPushInstruction &&
|
| + IsPop(mem_read_instr) &&
|
| + post_pop_sp_set == kPopInstruction) {
|
| + if ((IsLwRegFpOffset(lw_instr) ||
|
| + IsLwRegFpNegOffset(lw_instr))) {
|
| + if ((mem_write_instr & kRtMask) ==
|
| + (mem_read_instr & kRtMask)) {
|
| + // Pattern: push & pop from/to same register,
|
| + // with a fp+offset lw in between.
|
| + //
|
| + // The following:
|
| + // addiu sp, sp, -4
|
| + // sw rx, [sp, #0]!
|
| + // lw rz, [fp, #-24]
|
| + // lw rx, [sp, 0],
|
| + // addiu sp, sp, 4
|
| + //
|
| + // Becomes:
|
| + // if(rx == rz)
|
| + // delete all
|
| + // else
|
| + // lw rz, [fp, #-24]
|
| +
|
| + if ((mem_write_instr & kRtMask) == (lw_instr & kRtMask)) {
|
| + pc_ -= 5 * kInstrSize;
|
| + } else {
|
| + pc_ -= 5 * kInstrSize;
|
| + // Reinsert back the lw rz.
|
| + emit(lw_instr);
|
| + }
|
| + if (FLAG_print_peephole_optimization) {
|
| + PrintF("%x push/pop -dead ldr fp+offset in middle\n", pc_offset());
|
| + }
|
| + } else {
|
| + // Pattern: push & pop from/to different registers
|
| + // with a fp + offset lw in between.
|
| + //
|
| + // The following:
|
| + // addiu sp, sp ,-4
|
| + // sw rx, [sp, 0]
|
| + // lw rz, [fp, #-24]
|
| + // lw ry, [sp, 0]
|
| + // addiu sp, sp, 4
|
| + //
|
| + // Becomes:
|
| + // if(ry == rz)
|
| + // mov ry, rx;
|
| + // else if(rx != rz)
|
| + // lw rz, [fp, #-24]
|
| + // mov ry, rx
|
| + // else if((ry != rz) || (rx == rz)) becomes:
|
| + // mov ry, rx
|
| + // lw rz, [fp, #-24]
|
| +
|
| + Register reg_pushed, reg_popped;
|
| + if ((mem_read_instr & kRtMask) == (lw_instr & kRtMask)) {
|
| + reg_pushed = GetRt(mem_write_instr);
|
| + reg_popped = GetRt(mem_read_instr);
|
| + pc_ -= 5 * kInstrSize;
|
| + or_(reg_popped, reg_pushed, zero_reg); // Move instruction.
|
| + } else if ((mem_write_instr & kRtMask)
|
| + != (lw_instr & kRtMask)) {
|
| + reg_pushed = GetRt(mem_write_instr);
|
| + reg_popped = GetRt(mem_read_instr);
|
| + pc_ -= 5 * kInstrSize;
|
| + emit(lw_instr);
|
| + or_(reg_popped, reg_pushed, zero_reg); // Move instruction.
|
| + } else if (((mem_read_instr & kRtMask)
|
| + != (lw_instr & kRtMask)) ||
|
| + ((mem_write_instr & kRtMask)
|
| + == (lw_instr & kRtMask)) ) {
|
| + reg_pushed = GetRt(mem_write_instr);
|
| + reg_popped = GetRt(mem_read_instr);
|
| + pc_ -= 5 * kInstrSize;
|
| + or_(reg_popped, reg_pushed, zero_reg); // Move instruction.
|
| + emit(lw_instr);
|
| + }
|
| + if (FLAG_print_peephole_optimization) {
|
| + PrintF("%x push/pop (ldr fp+off in middle)\n", pc_offset());
|
| + }
|
| + }
|
| + }
|
| + }
|
| + }
|
| }
|
|
|
|
|
| @@ -743,7 +1201,15 @@ void Assembler::nor(Register rd, Register rs, Register rt) {
|
|
|
|
|
| // Shifts.
|
| -void Assembler::sll(Register rd, Register rt, uint16_t sa) {
|
| +void Assembler::sll(Register rd,
|
| + Register rt,
|
| + uint16_t sa,
|
| + bool coming_from_nop) {
|
| + // Don't allow nop instructions in the form sll zero_reg, zero_reg to be
|
| + // generated using the sll instruction. They must be generated using
|
| + // nop(int/NopMarkerTypes) or MarkCode(int/NopMarkerTypes) pseudo
|
| + // instructions.
|
| + ASSERT(coming_from_nop || !(rd.is(zero_reg) && rt.is(zero_reg)));
|
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SLL);
|
| }
|
|
|
| @@ -773,30 +1239,199 @@ void Assembler::srav(Register rd, Register rt, Register rs) {
|
| }
|
|
|
|
|
| +void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
|
| + // Should be called via MacroAssembler::Ror.
|
| + ASSERT(rd.is_valid() && rt.is_valid() && is_uint5(sa));
|
| + ASSERT(mips32r2);
|
| + Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift)
|
| + | (rd.code() << kRdShift) | (sa << kSaShift) | SRL;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::rotrv(Register rd, Register rt, Register rs) {
|
| + // Should be called via MacroAssembler::Ror.
|
| + ASSERT(rd.is_valid() && rt.is_valid() && rs.is_valid() );
|
| + ASSERT(mips32r2);
|
| + Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift)
|
| + | (rd.code() << kRdShift) | (1 << kSaShift) | SRLV;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| //------------Memory-instructions-------------
|
|
|
| +// Helper for base-reg + offset, when offset is larger than int16.
|
| +void Assembler::LoadRegPlusOffsetToAt(const MemOperand& src) {
|
| + ASSERT(!src.rm().is(at));
|
| + lui(at, src.offset_ >> kLuiShift);
|
| + ori(at, at, src.offset_ & kImm16Mask); // Load 32-bit offset.
|
| + addu(at, at, src.rm()); // Add base register.
|
| +}
|
| +
|
| +
|
| void Assembler::lb(Register rd, const MemOperand& rs) {
|
| - GenInstrImmediate(LB, rs.rm(), rd, rs.offset_);
|
| + if (is_int16(rs.offset_)) {
|
| + GenInstrImmediate(LB, rs.rm(), rd, rs.offset_);
|
| + } else { // Offset > 16 bits, use multiple instructions to load.
|
| + LoadRegPlusOffsetToAt(rs);
|
| + GenInstrImmediate(LB, at, rd, 0); // Equiv to lb(rd, MemOperand(at, 0));
|
| + }
|
| }
|
|
|
|
|
| void Assembler::lbu(Register rd, const MemOperand& rs) {
|
| - GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_);
|
| + if (is_int16(rs.offset_)) {
|
| + GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_);
|
| + } else { // Offset > 16 bits, use multiple instructions to load.
|
| + LoadRegPlusOffsetToAt(rs);
|
| + GenInstrImmediate(LBU, at, rd, 0); // Equiv to lbu(rd, MemOperand(at, 0));
|
| + }
|
| +}
|
| +
|
| +
|
| +void Assembler::lh(Register rd, const MemOperand& rs) {
|
| + if (is_int16(rs.offset_)) {
|
| + GenInstrImmediate(LH, rs.rm(), rd, rs.offset_);
|
| + } else { // Offset > 16 bits, use multiple instructions to load.
|
| + LoadRegPlusOffsetToAt(rs);
|
| + GenInstrImmediate(LH, at, rd, 0); // Equiv to lh(rd, MemOperand(at, 0));
|
| + }
|
| +}
|
| +
|
| +
|
| +void Assembler::lhu(Register rd, const MemOperand& rs) {
|
| + if (is_int16(rs.offset_)) {
|
| + GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_);
|
| + } else { // Offset > 16 bits, use multiple instructions to load.
|
| + LoadRegPlusOffsetToAt(rs);
|
| + GenInstrImmediate(LHU, at, rd, 0); // Equiv to lhu(rd, MemOperand(at, 0));
|
| + }
|
| }
|
|
|
|
|
| void Assembler::lw(Register rd, const MemOperand& rs) {
|
| - GenInstrImmediate(LW, rs.rm(), rd, rs.offset_);
|
| + if (is_int16(rs.offset_)) {
|
| + GenInstrImmediate(LW, rs.rm(), rd, rs.offset_);
|
| + } else { // Offset > 16 bits, use multiple instructions to load.
|
| + LoadRegPlusOffsetToAt(rs);
|
| + GenInstrImmediate(LW, at, rd, 0); // Equiv to lw(rd, MemOperand(at, 0));
|
| + }
|
| +
|
| + if (can_peephole_optimize(2)) {
|
| + Instr sw_instr = instr_at(pc_ - 2 * kInstrSize);
|
| + Instr lw_instr = instr_at(pc_ - 1 * kInstrSize);
|
| +
|
| + if ((IsSwRegFpOffset(sw_instr) &&
|
| + IsLwRegFpOffset(lw_instr)) ||
|
| + (IsSwRegFpNegOffset(sw_instr) &&
|
| + IsLwRegFpNegOffset(lw_instr))) {
|
| + if ((lw_instr & kLwSwInstrArgumentMask) ==
|
| + (sw_instr & kLwSwInstrArgumentMask)) {
|
| + // Pattern: Lw/sw same fp+offset, same register.
|
| + //
|
| + // The following:
|
| + // sw rx, [fp, #-12]
|
| + // lw rx, [fp, #-12]
|
| + //
|
| + // Becomes:
|
| + // sw rx, [fp, #-12]
|
| +
|
| + pc_ -= 1 * kInstrSize;
|
| + if (FLAG_print_peephole_optimization) {
|
| + PrintF("%x sw/lw (fp + same offset), same reg\n", pc_offset());
|
| + }
|
| + } else if ((lw_instr & kLwSwOffsetMask) ==
|
| + (sw_instr & kLwSwOffsetMask)) {
|
| + // Pattern: Lw/sw same fp+offset, different register.
|
| + //
|
| + // The following:
|
| + // sw rx, [fp, #-12]
|
| + // lw ry, [fp, #-12]
|
| + //
|
| + // Becomes:
|
| + // sw rx, [fp, #-12]
|
| + // mov ry, rx
|
| +
|
| + Register reg_stored, reg_loaded;
|
| + reg_stored = GetRt(sw_instr);
|
| + reg_loaded = GetRt(lw_instr);
|
| + pc_ -= 1 * kInstrSize;
|
| + // Insert a mov instruction, which is better than lw.
|
| + or_(reg_loaded, reg_stored, zero_reg); // Move instruction.
|
| + if (FLAG_print_peephole_optimization) {
|
| + PrintF("%x sw/lw (fp + same offset), diff reg \n", pc_offset());
|
| + }
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void Assembler::lwl(Register rd, const MemOperand& rs) {
|
| + GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_);
|
| +}
|
| +
|
| +
|
| +void Assembler::lwr(Register rd, const MemOperand& rs) {
|
| + GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_);
|
| }
|
|
|
|
|
| void Assembler::sb(Register rd, const MemOperand& rs) {
|
| - GenInstrImmediate(SB, rs.rm(), rd, rs.offset_);
|
| + if (is_int16(rs.offset_)) {
|
| + GenInstrImmediate(SB, rs.rm(), rd, rs.offset_);
|
| + } else { // Offset > 16 bits, use multiple instructions to store.
|
| + LoadRegPlusOffsetToAt(rs);
|
| + GenInstrImmediate(SB, at, rd, 0); // Equiv to sb(rd, MemOperand(at, 0));
|
| + }
|
| +}
|
| +
|
| +
|
| +void Assembler::sh(Register rd, const MemOperand& rs) {
|
| + if (is_int16(rs.offset_)) {
|
| + GenInstrImmediate(SH, rs.rm(), rd, rs.offset_);
|
| + } else { // Offset > 16 bits, use multiple instructions to store.
|
| + LoadRegPlusOffsetToAt(rs);
|
| + GenInstrImmediate(SH, at, rd, 0); // Equiv to sh(rd, MemOperand(at, 0));
|
| + }
|
| }
|
|
|
|
|
| void Assembler::sw(Register rd, const MemOperand& rs) {
|
| - GenInstrImmediate(SW, rs.rm(), rd, rs.offset_);
|
| + if (is_int16(rs.offset_)) {
|
| + GenInstrImmediate(SW, rs.rm(), rd, rs.offset_);
|
| + } else { // Offset > 16 bits, use multiple instructions to store.
|
| + LoadRegPlusOffsetToAt(rs);
|
| + GenInstrImmediate(SW, at, rd, 0); // Equiv to sw(rd, MemOperand(at, 0));
|
| + }
|
| +
|
| + // Eliminate pattern: pop(), push(r).
|
| + // addiu sp, sp, Operand(kPointerSize);
|
| + // addiu sp, sp, Operand(-kPointerSize);
|
| + // -> sw r, MemOpernad(sp, 0);
|
| + if (can_peephole_optimize(3) &&
|
| + // Pattern.
|
| + instr_at(pc_ - 1 * kInstrSize) ==
|
| + (kPushRegPattern | (rd.code() << kRtShift)) &&
|
| + instr_at(pc_ - 2 * kInstrSize) == kPushInstruction &&
|
| + instr_at(pc_ - 3 * kInstrSize) == kPopInstruction) {
|
| + pc_ -= 3 * kInstrSize;
|
| + GenInstrImmediate(SW, rs.rm(), rd, rs.offset_);
|
| + if (FLAG_print_peephole_optimization) {
|
| + PrintF("%x pop()/push(reg) eliminated\n", pc_offset());
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void Assembler::swl(Register rd, const MemOperand& rs) {
|
| + GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_);
|
| +}
|
| +
|
| +
|
| +void Assembler::swr(Register rd, const MemOperand& rs) {
|
| + GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_);
|
| }
|
|
|
|
|
| @@ -841,7 +1476,8 @@ void Assembler::tlt(Register rs, Register rt, uint16_t code) {
|
|
|
| void Assembler::tltu(Register rs, Register rt, uint16_t code) {
|
| ASSERT(is_uint10(code));
|
| - Instr instr = SPECIAL | TLTU | rs.code() << kRsShift
|
| + Instr instr =
|
| + SPECIAL | TLTU | rs.code() << kRsShift
|
| | rt.code() << kRtShift | code << 6;
|
| emit(instr);
|
| }
|
| @@ -896,6 +1532,54 @@ void Assembler::sltiu(Register rt, Register rs, int32_t j) {
|
| }
|
|
|
|
|
| +// Conditional move.
|
| +void Assembler::movz(Register rd, Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ);
|
| +}
|
| +
|
| +
|
| +void Assembler::movn(Register rd, Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN);
|
| +}
|
| +
|
| +
|
| +void Assembler::movt(Register rd, Register rs, uint16_t cc) {
|
| + Register rt;
|
| + rt.code_ = (cc & 0x0003) << 2 | 1;
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
|
| +}
|
| +
|
| +
|
| +void Assembler::movf(Register rd, Register rs, uint16_t cc) {
|
| + Register rt;
|
| + rt.code_ = (cc & 0x0003) << 2 | 0;
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
|
| +}
|
| +
|
| +
|
| +// Bit twiddling.
|
| +void Assembler::clz(Register rd, Register rs) {
|
| + // Clz instr requires same GPR number in 'rd' and 'rt' fields.
|
| + GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ);
|
| +}
|
| +
|
| +
|
| +void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
|
| + // Should be called via MacroAssembler::Ins.
|
| + // Ins instr has 'rt' field as dest, and two uint5: msb, lsb.
|
| + ASSERT(mips32r2);
|
| + GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS);
|
| +}
|
| +
|
| +
|
| +void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
|
| + // Should be called via MacroAssembler::Ext.
|
| + // Ext instr has 'rt' field as dest, and two uint5: msb, lsb.
|
| + ASSERT(mips32r2);
|
| + GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT);
|
| +}
|
| +
|
| +
|
| //--------Coprocessor-instructions----------------
|
|
|
| // Load, store, move.
|
| @@ -905,7 +1589,12 @@ void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
|
|
|
|
|
| void Assembler::ldc1(FPURegister fd, const MemOperand& src) {
|
| - GenInstrImmediate(LDC1, src.rm(), fd, src.offset_);
|
| + // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit
|
| + // load to two 32-bit loads.
|
| + GenInstrImmediate(LWC1, src.rm(), fd, src.offset_);
|
| + FPURegister nextfpreg;
|
| + nextfpreg.setcode(fd.code() + 1);
|
| + GenInstrImmediate(LWC1, src.rm(), nextfpreg, src.offset_ + 4);
|
| }
|
|
|
|
|
| @@ -915,27 +1604,74 @@ void Assembler::swc1(FPURegister fd, const MemOperand& src) {
|
|
|
|
|
| void Assembler::sdc1(FPURegister fd, const MemOperand& src) {
|
| - GenInstrImmediate(SDC1, src.rm(), fd, src.offset_);
|
| + // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit
|
| + // store to two 32-bit stores.
|
| + GenInstrImmediate(SWC1, src.rm(), fd, src.offset_);
|
| + FPURegister nextfpreg;
|
| + nextfpreg.setcode(fd.code() + 1);
|
| + GenInstrImmediate(SWC1, src.rm(), nextfpreg, src.offset_ + 4);
|
| }
|
|
|
|
|
| -void Assembler::mtc1(FPURegister fs, Register rt) {
|
| +void Assembler::mtc1(Register rt, FPURegister fs) {
|
| GenInstrRegister(COP1, MTC1, rt, fs, f0);
|
| }
|
|
|
|
|
| -void Assembler::mthc1(FPURegister fs, Register rt) {
|
| - GenInstrRegister(COP1, MTHC1, rt, fs, f0);
|
| +void Assembler::mfc1(Register rt, FPURegister fs) {
|
| + GenInstrRegister(COP1, MFC1, rt, fs, f0);
|
| }
|
|
|
|
|
| -void Assembler::mfc1(FPURegister fs, Register rt) {
|
| - GenInstrRegister(COP1, MFC1, rt, fs, f0);
|
| +void Assembler::ctc1(Register rt, FPUControlRegister fs) {
|
| + GenInstrRegister(COP1, CTC1, rt, fs);
|
| +}
|
| +
|
| +
|
| +void Assembler::cfc1(Register rt, FPUControlRegister fs) {
|
| + GenInstrRegister(COP1, CFC1, rt, fs);
|
| +}
|
| +
|
| +
|
| +// Arithmetic.
|
| +
|
| +void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) {
|
| + GenInstrRegister(COP1, D, ft, fs, fd, ADD_D);
|
| +}
|
| +
|
| +
|
| +void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) {
|
| + GenInstrRegister(COP1, D, ft, fs, fd, SUB_D);
|
| +}
|
| +
|
| +
|
| +void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) {
|
| + GenInstrRegister(COP1, D, ft, fs, fd, MUL_D);
|
| +}
|
| +
|
| +
|
| +void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) {
|
| + GenInstrRegister(COP1, D, ft, fs, fd, DIV_D);
|
| +}
|
| +
|
| +
|
| +void Assembler::abs_d(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, D, f0, fs, fd, ABS_D);
|
| }
|
|
|
|
|
| -void Assembler::mfhc1(FPURegister fs, Register rt) {
|
| - GenInstrRegister(COP1, MFHC1, rt, fs, f0);
|
| +void Assembler::mov_d(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, D, f0, fs, fd, MOV_D);
|
| +}
|
| +
|
| +
|
| +void Assembler::neg_d(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, D, f0, fs, fd, NEG_D);
|
| +}
|
| +
|
| +
|
| +void Assembler::sqrt_d(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D);
|
| }
|
|
|
|
|
| @@ -951,22 +1687,107 @@ void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) {
|
| }
|
|
|
|
|
| +void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S);
|
| +}
|
| +
|
| +
|
| +void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D);
|
| +}
|
| +
|
| +
|
| +void Assembler::round_w_s(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S);
|
| +}
|
| +
|
| +
|
| +void Assembler::round_w_d(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D);
|
| +}
|
| +
|
| +
|
| +void Assembler::floor_w_s(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S);
|
| +}
|
| +
|
| +
|
| +void Assembler::floor_w_d(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D);
|
| +}
|
| +
|
| +
|
| +void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S);
|
| +}
|
| +
|
| +
|
| +void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D);
|
| +}
|
| +
|
| +
|
| void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
|
| + ASSERT(mips32r2);
|
| GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
|
| }
|
|
|
|
|
| void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
|
| + ASSERT(mips32r2);
|
| GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
|
| }
|
|
|
|
|
| +void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) {
|
| + ASSERT(mips32r2);
|
| + GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S);
|
| +}
|
| +
|
| +
|
| +void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) {
|
| + ASSERT(mips32r2);
|
| + GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D);
|
| +}
|
| +
|
| +
|
| +void Assembler::round_l_s(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S);
|
| +}
|
| +
|
| +
|
| +void Assembler::round_l_d(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D);
|
| +}
|
| +
|
| +
|
| +void Assembler::floor_l_s(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S);
|
| +}
|
| +
|
| +
|
| +void Assembler::floor_l_d(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D);
|
| +}
|
| +
|
| +
|
| +void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S);
|
| +}
|
| +
|
| +
|
| +void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) {
|
| + GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D);
|
| +}
|
| +
|
| +
|
| void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
|
| GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W);
|
| }
|
|
|
|
|
| void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
|
| + ASSERT(mips32r2);
|
| GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
|
| }
|
|
|
| @@ -982,6 +1803,7 @@ void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
|
|
|
|
|
| void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
|
| + ASSERT(mips32r2);
|
| GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
|
| }
|
|
|
| @@ -993,7 +1815,8 @@ void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) {
|
|
|
| // Conditions.
|
| void Assembler::c(FPUCondition cond, SecondaryField fmt,
|
| - FPURegister ft, FPURegister fs, uint16_t cc) {
|
| + FPURegister fs, FPURegister ft, uint16_t cc) {
|
| + ASSERT(isolate()->cpu_features()->IsEnabled(FPU));
|
| ASSERT(is_uint3(cc));
|
| ASSERT((fmt & ~(31 << kRsShift)) == 0);
|
| Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift
|
| @@ -1002,7 +1825,18 @@ void Assembler::c(FPUCondition cond, SecondaryField fmt,
|
| }
|
|
|
|
|
| +void Assembler::fcmp(FPURegister src1, const double src2,
|
| + FPUCondition cond) {
|
| + ASSERT(isolate()->cpu_features()->IsSupported(FPU));
|
| + ASSERT(src2 == 0.0);
|
| + mtc1(zero_reg, f14);
|
| + cvt_d_w(f14, f14);
|
| + c(cond, D, src1, f14, 0);
|
| +}
|
| +
|
| +
|
| void Assembler::bc1f(int16_t offset, uint16_t cc) {
|
| + ASSERT(isolate()->cpu_features()->IsEnabled(FPU));
|
| ASSERT(is_uint3(cc));
|
| Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask);
|
| emit(instr);
|
| @@ -1010,6 +1844,7 @@ void Assembler::bc1f(int16_t offset, uint16_t cc) {
|
|
|
|
|
| void Assembler::bc1t(int16_t offset, uint16_t cc) {
|
| + ASSERT(isolate()->cpu_features()->IsEnabled(FPU));
|
| ASSERT(is_uint3(cc));
|
| Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask);
|
| emit(instr);
|
| @@ -1018,58 +1853,24 @@ void Assembler::bc1t(int16_t offset, uint16_t cc) {
|
|
|
| // Debugging.
|
| void Assembler::RecordJSReturn() {
|
| - WriteRecordedPositions();
|
| + positions_recorder()->WriteRecordedPositions();
|
| CheckBuffer();
|
| RecordRelocInfo(RelocInfo::JS_RETURN);
|
| }
|
|
|
|
|
| -void Assembler::RecordComment(const char* msg) {
|
| - if (FLAG_debug_code) {
|
| - CheckBuffer();
|
| - RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
|
| - }
|
| -}
|
| -
|
| -
|
| -void Assembler::RecordPosition(int pos) {
|
| - if (pos == RelocInfo::kNoPosition) return;
|
| - ASSERT(pos >= 0);
|
| - current_position_ = pos;
|
| -}
|
| -
|
| -
|
| -void Assembler::RecordStatementPosition(int pos) {
|
| - if (pos == RelocInfo::kNoPosition) return;
|
| - ASSERT(pos >= 0);
|
| - current_statement_position_ = pos;
|
| +void Assembler::RecordDebugBreakSlot() {
|
| + positions_recorder()->WriteRecordedPositions();
|
| + CheckBuffer();
|
| + RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
|
| }
|
|
|
|
|
| -bool Assembler::WriteRecordedPositions() {
|
| - bool written = false;
|
| -
|
| - // Write the statement position if it is different from what was written last
|
| - // time.
|
| - if (current_statement_position_ != written_statement_position_) {
|
| - CheckBuffer();
|
| - RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_);
|
| - written_statement_position_ = current_statement_position_;
|
| - written = true;
|
| - }
|
| -
|
| - // Write the position if it is different from what was written last time and
|
| - // also different from the written statement position.
|
| - if (current_position_ != written_position_ &&
|
| - current_position_ != written_statement_position_) {
|
| +void Assembler::RecordComment(const char* msg) {
|
| + if (FLAG_code_comments) {
|
| CheckBuffer();
|
| - RecordRelocInfo(RelocInfo::POSITION, current_position_);
|
| - written_position_ = current_position_;
|
| - written = true;
|
| + RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
|
| }
|
| -
|
| - // Return whether something was written.
|
| - return written;
|
| }
|
|
|
|
|
| @@ -1077,7 +1878,7 @@ void Assembler::GrowBuffer() {
|
| if (!own_buffer_) FATAL("external code buffer is too small");
|
|
|
| // Compute new buffer size.
|
| - CodeDesc desc; // the new buffer
|
| + CodeDesc desc; // The new buffer.
|
| if (buffer_size_ < 4*KB) {
|
| desc.buffer_size = 4*KB;
|
| } else if (buffer_size_ < 1*MB) {
|
| @@ -1085,7 +1886,7 @@ void Assembler::GrowBuffer() {
|
| } else {
|
| desc.buffer_size = buffer_size_ + 1*MB;
|
| }
|
| - CHECK_GT(desc.buffer_size, 0); // no overflow
|
| + CHECK_GT(desc.buffer_size, 0); // No overflow.
|
|
|
| // Setup new buffer.
|
| desc.buffer = NewArray<byte>(desc.buffer_size);
|
| @@ -1108,7 +1909,6 @@ void Assembler::GrowBuffer() {
|
| reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
|
| reloc_info_writer.last_pc() + pc_delta);
|
|
|
| -
|
| // On ia32 and ARM pc relative addressing is used, and we thus need to apply a
|
| // shift by pc_delta. But on MIPS the target address it directly loaded, so
|
| // we do not need to relocate here.
|
| @@ -1117,11 +1917,26 @@ void Assembler::GrowBuffer() {
|
| }
|
|
|
|
|
| +void Assembler::db(uint8_t data) {
|
| + CheckBuffer();
|
| + *reinterpret_cast<uint8_t*>(pc_) = data;
|
| + pc_ += sizeof(uint8_t);
|
| +}
|
| +
|
| +
|
| +void Assembler::dd(uint32_t data) {
|
| + CheckBuffer();
|
| + *reinterpret_cast<uint32_t*>(pc_) = data;
|
| + pc_ += sizeof(uint32_t);
|
| +}
|
| +
|
| +
|
| void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
|
| - RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants
|
| - if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) {
|
| + RelocInfo rinfo(pc_, rmode, data); // We do not try to reuse pool constants.
|
| + if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) {
|
| // Adjust code for new modes.
|
| - ASSERT(RelocInfo::IsJSReturn(rmode)
|
| + ASSERT(RelocInfo::IsDebugBreakSlot(rmode)
|
| + || RelocInfo::IsJSReturn(rmode)
|
| || RelocInfo::IsComment(rmode)
|
| || RelocInfo::IsPosition(rmode));
|
| // These modes do not need an entry in the constant pool.
|
| @@ -1133,12 +1948,72 @@ void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
|
| !FLAG_debug_code) {
|
| return;
|
| }
|
| - ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
|
| + ASSERT(buffer_space() >= kMaxRelocSize); // Too late to grow buffer here.
|
| reloc_info_writer.Write(&rinfo);
|
| }
|
| }
|
|
|
|
|
| +void Assembler::BlockTrampolinePoolFor(int instructions) {
|
| + BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
|
| +}
|
| +
|
| +
|
| +void Assembler::CheckTrampolinePool(bool force_emit) {
|
| + // Calculate the offset of the next check.
|
| + next_buffer_check_ = pc_offset() + kCheckConstInterval;
|
| +
|
| + int dist = pc_offset() - last_trampoline_pool_end_;
|
| +
|
| + if (dist <= kMaxDistBetweenPools && !force_emit) {
|
| + return;
|
| + }
|
| +
|
| + // Some small sequences of instructions must not be broken up by the
|
| + // insertion of a trampoline pool; such sequences are protected by setting
|
| + // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
|
| + // which are both checked here. Also, recursive calls to CheckTrampolinePool
|
| + // are blocked by trampoline_pool_blocked_nesting_.
|
| + if ((trampoline_pool_blocked_nesting_ > 0) ||
|
| + (pc_offset() < no_trampoline_pool_before_)) {
|
| + // Emission is currently blocked; make sure we try again as soon as
|
| + // possible.
|
| + if (trampoline_pool_blocked_nesting_ > 0) {
|
| + next_buffer_check_ = pc_offset() + kInstrSize;
|
| + } else {
|
| + next_buffer_check_ = no_trampoline_pool_before_;
|
| + }
|
| + return;
|
| + }
|
| +
|
| + // First we emit jump (2 instructions), then we emit trampoline pool.
|
| + { BlockTrampolinePoolScope block_trampoline_pool(this);
|
| + Label after_pool;
|
| + b(&after_pool);
|
| + nop();
|
| +
|
| + int pool_start = pc_offset();
|
| + for (int i = 0; i < kSlotsPerTrampoline; i++) {
|
| + b(&after_pool);
|
| + nop();
|
| + }
|
| + for (int i = 0; i < kLabelsPerTrampoline; i++) {
|
| + emit(0);
|
| + }
|
| + last_trampoline_pool_end_ = pc_offset() - kInstrSize;
|
| + bind(&after_pool);
|
| + trampolines_.Add(Trampoline(pool_start,
|
| + kSlotsPerTrampoline,
|
| + kLabelsPerTrampoline));
|
| +
|
| + // Since a trampoline pool was just emitted,
|
| + // move the check offset forward by the standard interval.
|
| + next_buffer_check_ = last_trampoline_pool_end_ + kMaxDistBetweenPools;
|
| + }
|
| + return;
|
| +}
|
| +
|
| +
|
| Address Assembler::target_address_at(Address pc) {
|
| Instr instr1 = instr_at(pc);
|
| Instr instr2 = instr_at(pc + kInstrSize);
|
| @@ -1157,7 +2032,7 @@ Address Assembler::target_address_at(Address pc) {
|
| return reinterpret_cast<Address>((instr2 & kImm16Mask) << 16);
|
| }
|
| } else if ((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) {
|
| - // 32 bits value.
|
| + // 32 bit value.
|
| return reinterpret_cast<Address>(
|
| (instr1 & kImm16Mask) << 16 | (instr2 & kImm16Mask));
|
| }
|
| @@ -1176,38 +2051,37 @@ void Assembler::set_target_address_at(Address pc, Address target) {
|
| #ifdef DEBUG
|
| Instr instr1 = instr_at(pc);
|
|
|
| - // Check we have indeed the result from a li with MustUseAt true.
|
| + // Check we have indeed the result from a li with MustUseReg true.
|
| CHECK(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) ||
|
| ((instr1 == 0) && ((instr2 & kOpcodeMask)== ADDIU ||
|
| (instr2 & kOpcodeMask)== ORI ||
|
| (instr2 & kOpcodeMask)== LUI)));
|
| #endif
|
|
|
| -
|
| uint32_t rt_code = (instr2 & kRtFieldMask);
|
| uint32_t* p = reinterpret_cast<uint32_t*>(pc);
|
| uint32_t itarget = reinterpret_cast<uint32_t>(target);
|
|
|
| if (is_int16(itarget)) {
|
| - // nop
|
| - // addiu rt zero_reg j
|
| + // nop.
|
| + // addiu rt zero_reg j.
|
| *p = nopInstr;
|
| - *(p+1) = ADDIU | rt_code | (itarget & LOMask);
|
| - } else if (!(itarget & HIMask)) {
|
| - // nop
|
| - // ori rt zero_reg j
|
| + *(p+1) = ADDIU | rt_code | (itarget & kImm16Mask);
|
| + } else if (!(itarget & kHiMask)) {
|
| + // nop.
|
| + // ori rt zero_reg j.
|
| *p = nopInstr;
|
| - *(p+1) = ORI | rt_code | (itarget & LOMask);
|
| - } else if (!(itarget & LOMask)) {
|
| - // nop
|
| - // lui rt (HIMask & itarget)>>16
|
| + *(p+1) = ORI | rt_code | (itarget & kImm16Mask);
|
| + } else if (!(itarget & kImm16Mask)) {
|
| + // nop.
|
| + // lui rt (kHiMask & itarget) >> kLuiShift.
|
| *p = nopInstr;
|
| - *(p+1) = LUI | rt_code | ((itarget & HIMask)>>16);
|
| + *(p+1) = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift);
|
| } else {
|
| - // lui rt (HIMask & itarget)>>16
|
| - // ori rt rt, (LOMask & itarget)
|
| - *p = LUI | rt_code | ((itarget & HIMask)>>16);
|
| - *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & LOMask);
|
| + // lui rt (kHiMask & itarget) >> kLuiShift.
|
| + // ori rt rt, (kImm16Mask & itarget).
|
| + *p = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift);
|
| + *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & kImm16Mask);
|
| }
|
|
|
| CPU::FlushICache(pc, 2 * sizeof(int32_t));
|
|
|