OLD | NEW |
1 // Copyright 2010 the V8 project authors. All rights reserved. | 1 // Copyright 2010 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
(...skipping 19 matching lines...) Expand all Loading... |
30 // MIPS binary. This Simulator allows us to run and debug MIPS code generation | 30 // MIPS binary. This Simulator allows us to run and debug MIPS code generation |
31 // on regular desktop machines. | 31 // on regular desktop machines. |
32 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro, | 32 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro, |
33 // which will start execution in the Simulator or forwards to the real entry | 33 // which will start execution in the Simulator or forwards to the real entry |
34 // on a MIPS HW platform. | 34 // on a MIPS HW platform. |
35 | 35 |
36 #ifndef V8_MIPS_SIMULATOR_MIPS_H_ | 36 #ifndef V8_MIPS_SIMULATOR_MIPS_H_ |
37 #define V8_MIPS_SIMULATOR_MIPS_H_ | 37 #define V8_MIPS_SIMULATOR_MIPS_H_ |
38 | 38 |
39 #include "allocation.h" | 39 #include "allocation.h" |
| 40 #include "constants-mips.h" |
40 | 41 |
41 #if defined(__mips) && !defined(USE_SIMULATOR) | 42 #if !defined(USE_SIMULATOR) |
| 43 // Running without a simulator on a native mips platform. |
| 44 |
| 45 namespace v8 { |
| 46 namespace internal { |
42 | 47 |
43 // When running without a simulator we call the entry directly. | 48 // When running without a simulator we call the entry directly. |
44 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ | 49 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ |
45 entry(p0, p1, p2, p3, p4); | 50 entry(p0, p1, p2, p3, p4) |
| 51 |
| 52 typedef int (*mips_regexp_matcher)(String*, int, const byte*, const byte*, |
| 53 void*, int*, Address, int, Isolate*); |
| 54 |
| 55 // Call the generated regexp code directly. The code at the entry address |
| 56 // should act as a function matching the type arm_regexp_matcher. |
| 57 // The fifth argument is a dummy that reserves the space used for |
| 58 // the return address added by the ExitFrame in native calls. |
| 59 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \ |
| 60 (FUNCTION_CAST<mips_regexp_matcher>(entry)( \ |
| 61 p0, p1, p2, p3, NULL, p4, p5, p6, p7)) |
| 62 |
| 63 #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \ |
| 64 reinterpret_cast<TryCatch*>(try_catch_address) |
46 | 65 |
47 // The stack limit beyond which we will throw stack overflow errors in | 66 // The stack limit beyond which we will throw stack overflow errors in |
48 // generated code. Because generated code on mips uses the C stack, we | 67 // generated code. Because generated code on mips uses the C stack, we |
49 // just use the C stack limit. | 68 // just use the C stack limit. |
50 class SimulatorStack : public v8::internal::AllStatic { | 69 class SimulatorStack : public v8::internal::AllStatic { |
51 public: | 70 public: |
52 static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) { | 71 static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) { |
53 return c_limit; | 72 return c_limit; |
54 } | 73 } |
55 | 74 |
56 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { | 75 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { |
57 return try_catch_address; | 76 return try_catch_address; |
58 } | 77 } |
59 | 78 |
60 static inline void UnregisterCTryCatch() { } | 79 static inline void UnregisterCTryCatch() { } |
61 }; | 80 }; |
62 | 81 |
| 82 } } // namespace v8::internal |
| 83 |
63 // Calculated the stack limit beyond which we will throw stack overflow errors. | 84 // Calculated the stack limit beyond which we will throw stack overflow errors. |
64 // This macro must be called from a C++ method. It relies on being able to take | 85 // This macro must be called from a C++ method. It relies on being able to take |
65 // the address of "this" to get a value on the current execution stack and then | 86 // the address of "this" to get a value on the current execution stack and then |
66 // calculates the stack limit based on that value. | 87 // calculates the stack limit based on that value. |
67 // NOTE: The check for overflow is not safe as there is no guarantee that the | 88 // NOTE: The check for overflow is not safe as there is no guarantee that the |
68 // running thread has its stack in all memory up to address 0x00000000. | 89 // running thread has its stack in all memory up to address 0x00000000. |
69 #define GENERATED_CODE_STACK_LIMIT(limit) \ | 90 #define GENERATED_CODE_STACK_LIMIT(limit) \ |
70 (reinterpret_cast<uintptr_t>(this) >= limit ? \ | 91 (reinterpret_cast<uintptr_t>(this) >= limit ? \ |
71 reinterpret_cast<uintptr_t>(this) - limit : 0) | 92 reinterpret_cast<uintptr_t>(this) - limit : 0) |
72 | 93 |
73 // Call the generated regexp code directly. The entry function pointer should | 94 #else // !defined(USE_SIMULATOR) |
74 // expect seven int/pointer sized arguments and return an int. | 95 // Running with a simulator. |
75 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \ | |
76 entry(p0, p1, p2, p3, p4, p5, p6) | |
77 | 96 |
78 #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \ | 97 #include "hashmap.h" |
79 reinterpret_cast<TryCatch*>(try_catch_address) | |
80 | 98 |
| 99 namespace v8 { |
| 100 namespace internal { |
81 | 101 |
82 #else // #if !defined(__mips) || defined(USE_SIMULATOR) | 102 // ----------------------------------------------------------------------------- |
| 103 // Utility functions |
83 | 104 |
84 // When running with the simulator transition into simulated execution at this | 105 class CachePage { |
85 // point. | 106 public: |
86 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ | 107 static const int LINE_VALID = 0; |
87 reinterpret_cast<Object*>(\ | 108 static const int LINE_INVALID = 1; |
88 assembler::mips::Simulator::current()->Call(FUNCTION_ADDR(entry), 5, \ | |
89 p0, p1, p2, p3, p4)) | |
90 | 109 |
91 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \ | 110 static const int kPageShift = 12; |
92 assembler::mips::Simulator::current()->Call(\ | 111 static const int kPageSize = 1 << kPageShift; |
93 FUNCTION_ADDR(entry), 7, p0, p1, p2, p3, p4, p5, p6) | 112 static const int kPageMask = kPageSize - 1; |
| 113 static const int kLineShift = 2; // The cache line is only 4 bytes right now. |
| 114 static const int kLineLength = 1 << kLineShift; |
| 115 static const int kLineMask = kLineLength - 1; |
94 | 116 |
95 #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \ | 117 CachePage() { |
96 try_catch_address == NULL ? \ | 118 memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); |
97 NULL : *(reinterpret_cast<TryCatch**>(try_catch_address)) | 119 } |
98 | 120 |
| 121 char* ValidityByte(int offset) { |
| 122 return &validity_map_[offset >> kLineShift]; |
| 123 } |
99 | 124 |
100 namespace assembler { | 125 char* CachedData(int offset) { |
101 namespace mips { | 126 return &data_[offset]; |
| 127 } |
| 128 |
| 129 private: |
| 130 char data_[kPageSize]; // The cached data. |
| 131 static const int kValidityMapSize = kPageSize >> kLineShift; |
| 132 char validity_map_[kValidityMapSize]; // One byte per line. |
| 133 }; |
102 | 134 |
103 class Simulator { | 135 class Simulator { |
104 public: | 136 public: |
105 friend class Debugger; | 137 friend class MipsDebugger; |
106 | 138 |
107 // Registers are declared in order. See SMRL chapter 2. | 139 // Registers are declared in order. See SMRL chapter 2. |
108 enum Register { | 140 enum Register { |
109 no_reg = -1, | 141 no_reg = -1, |
110 zero_reg = 0, | 142 zero_reg = 0, |
111 at, | 143 at, |
112 v0, v1, | 144 v0, v1, |
113 a0, a1, a2, a3, | 145 a0, a1, a2, a3, |
114 t0, t1, t2, t3, t4, t5, t6, t7, | 146 t0, t1, t2, t3, t4, t5, t6, t7, |
115 s0, s1, s2, s3, s4, s5, s6, s7, | 147 s0, s1, s2, s3, s4, s5, s6, s7, |
(...skipping 20 matching lines...) Expand all Loading... |
136 f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, | 168 f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, |
137 f26, f27, f28, f29, f30, f31, | 169 f26, f27, f28, f29, f30, f31, |
138 kNumFPURegisters | 170 kNumFPURegisters |
139 }; | 171 }; |
140 | 172 |
141 Simulator(); | 173 Simulator(); |
142 ~Simulator(); | 174 ~Simulator(); |
143 | 175 |
144 // The currently executing Simulator instance. Potentially there can be one | 176 // The currently executing Simulator instance. Potentially there can be one |
145 // for each native thread. | 177 // for each native thread. |
146 static Simulator* current(); | 178 static Simulator* current(v8::internal::Isolate* isolate); |
147 | 179 |
148 // Accessors for register state. Reading the pc value adheres to the MIPS | 180 // Accessors for register state. Reading the pc value adheres to the MIPS |
149 // architecture specification and is off by a 8 from the currently executing | 181 // architecture specification and is off by a 8 from the currently executing |
150 // instruction. | 182 // instruction. |
151 void set_register(int reg, int32_t value); | 183 void set_register(int reg, int32_t value); |
152 int32_t get_register(int reg) const; | 184 int32_t get_register(int reg) const; |
153 // Same for FPURegisters | 185 // Same for FPURegisters |
154 void set_fpu_register(int fpureg, int32_t value); | 186 void set_fpu_register(int fpureg, int32_t value); |
| 187 void set_fpu_register_float(int fpureg, float value); |
155 void set_fpu_register_double(int fpureg, double value); | 188 void set_fpu_register_double(int fpureg, double value); |
156 int32_t get_fpu_register(int fpureg) const; | 189 int32_t get_fpu_register(int fpureg) const; |
| 190 int64_t get_fpu_register_long(int fpureg) const; |
| 191 float get_fpu_register_float(int fpureg) const; |
157 double get_fpu_register_double(int fpureg) const; | 192 double get_fpu_register_double(int fpureg) const; |
| 193 void set_fcsr_bit(uint32_t cc, bool value); |
| 194 bool test_fcsr_bit(uint32_t cc); |
| 195 bool set_fcsr_round_error(double original, double rounded); |
158 | 196 |
159 // Special case of set_register and get_register to access the raw PC value. | 197 // Special case of set_register and get_register to access the raw PC value. |
160 void set_pc(int32_t value); | 198 void set_pc(int32_t value); |
161 int32_t get_pc() const; | 199 int32_t get_pc() const; |
162 | 200 |
163 // Accessor to the internal simulator stack area. | 201 // Accessor to the internal simulator stack area. |
164 uintptr_t StackLimit() const; | 202 uintptr_t StackLimit() const; |
165 | 203 |
166 // Executes MIPS instructions until the PC reaches end_sim_pc. | 204 // Executes MIPS instructions until the PC reaches end_sim_pc. |
167 void Execute(); | 205 void Execute(); |
168 | 206 |
169 // Call on program start. | 207 // Call on program start. |
170 static void Initialize(); | 208 static void Initialize(); |
171 | 209 |
172 // V8 generally calls into generated JS code with 5 parameters and into | 210 // V8 generally calls into generated JS code with 5 parameters and into |
173 // generated RegExp code with 7 parameters. This is a convenience function, | 211 // generated RegExp code with 7 parameters. This is a convenience function, |
174 // which sets up the simulator state and grabs the result on return. | 212 // which sets up the simulator state and grabs the result on return. |
175 int32_t Call(byte_* entry, int argument_count, ...); | 213 int32_t Call(byte* entry, int argument_count, ...); |
176 | 214 |
177 // Push an address onto the JS stack. | 215 // Push an address onto the JS stack. |
178 uintptr_t PushAddress(uintptr_t address); | 216 uintptr_t PushAddress(uintptr_t address); |
179 | 217 |
180 // Pop an address from the JS stack. | 218 // Pop an address from the JS stack. |
181 uintptr_t PopAddress(); | 219 uintptr_t PopAddress(); |
182 | 220 |
| 221 // ICache checking. |
| 222 static void FlushICache(v8::internal::HashMap* i_cache, void* start, |
| 223 size_t size); |
| 224 |
| 225 // Returns true if pc register contains one of the 'special_values' defined |
| 226 // below (bad_ra, end_sim_pc). |
| 227 bool has_bad_pc() const; |
| 228 |
183 private: | 229 private: |
184 enum special_values { | 230 enum special_values { |
185 // Known bad pc value to ensure that the simulator does not execute | 231 // Known bad pc value to ensure that the simulator does not execute |
186 // without being properly setup. | 232 // without being properly setup. |
187 bad_ra = -1, | 233 bad_ra = -1, |
188 // A pc value used to signal the simulator to stop execution. Generally | 234 // A pc value used to signal the simulator to stop execution. Generally |
189 // the ra is set to this value on transition from native C code to | 235 // the ra is set to this value on transition from native C code to |
190 // simulated execution, so that the simulator can "return" to the native | 236 // simulated execution, so that the simulator can "return" to the native |
191 // C code. | 237 // C code. |
192 end_sim_pc = -2, | 238 end_sim_pc = -2, |
(...skipping 23 matching lines...) Expand all Loading... |
216 inline void WriteD(int32_t addr, double value, Instruction* instr); | 262 inline void WriteD(int32_t addr, double value, Instruction* instr); |
217 | 263 |
218 // Operations depending on endianness. | 264 // Operations depending on endianness. |
219 // Get Double Higher / Lower word. | 265 // Get Double Higher / Lower word. |
220 inline int32_t GetDoubleHIW(double* addr); | 266 inline int32_t GetDoubleHIW(double* addr); |
221 inline int32_t GetDoubleLOW(double* addr); | 267 inline int32_t GetDoubleLOW(double* addr); |
222 // Set Double Higher / Lower word. | 268 // Set Double Higher / Lower word. |
223 inline int32_t SetDoubleHIW(double* addr); | 269 inline int32_t SetDoubleHIW(double* addr); |
224 inline int32_t SetDoubleLOW(double* addr); | 270 inline int32_t SetDoubleLOW(double* addr); |
225 | 271 |
226 | |
227 // Executing is handled based on the instruction type. | 272 // Executing is handled based on the instruction type. |
228 void DecodeTypeRegister(Instruction* instr); | 273 void DecodeTypeRegister(Instruction* instr); |
| 274 |
| 275 // Helper function for DecodeTypeRegister. |
| 276 void ConfigureTypeRegister(Instruction* instr, |
| 277 int32_t& alu_out, |
| 278 int64_t& i64hilo, |
| 279 uint64_t& u64hilo, |
| 280 int32_t& next_pc, |
| 281 bool& do_interrupt); |
| 282 |
229 void DecodeTypeImmediate(Instruction* instr); | 283 void DecodeTypeImmediate(Instruction* instr); |
230 void DecodeTypeJump(Instruction* instr); | 284 void DecodeTypeJump(Instruction* instr); |
231 | 285 |
232 // Used for breakpoints and traps. | 286 // Used for breakpoints and traps. |
233 void SoftwareInterrupt(Instruction* instr); | 287 void SoftwareInterrupt(Instruction* instr); |
234 | 288 |
235 // Executes one instruction. | 289 // Executes one instruction. |
236 void InstructionDecode(Instruction* instr); | 290 void InstructionDecode(Instruction* instr); |
237 // Execute one instruction placed in a branch delay slot. | 291 // Execute one instruction placed in a branch delay slot. |
238 void BranchDelayInstructionDecode(Instruction* instr) { | 292 void BranchDelayInstructionDecode(Instruction* instr) { |
239 if (instr->IsForbiddenInBranchDelay()) { | 293 if (instr->IsForbiddenInBranchDelay()) { |
240 V8_Fatal(__FILE__, __LINE__, | 294 V8_Fatal(__FILE__, __LINE__, |
241 "Eror:Unexpected %i opcode in a branch delay slot.", | 295 "Eror:Unexpected %i opcode in a branch delay slot.", |
242 instr->OpcodeField()); | 296 instr->OpcodeValue()); |
243 } | 297 } |
244 InstructionDecode(instr); | 298 InstructionDecode(instr); |
245 } | 299 } |
246 | 300 |
| 301 // ICache. |
| 302 static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr); |
| 303 static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start, |
| 304 int size); |
| 305 static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page); |
| 306 |
| 307 |
247 enum Exception { | 308 enum Exception { |
248 none, | 309 none, |
249 kIntegerOverflow, | 310 kIntegerOverflow, |
250 kIntegerUnderflow, | 311 kIntegerUnderflow, |
251 kDivideByZero, | 312 kDivideByZero, |
252 kNumExceptions | 313 kNumExceptions |
253 }; | 314 }; |
254 int16_t exceptions[kNumExceptions]; | 315 int16_t exceptions[kNumExceptions]; |
255 | 316 |
256 // Exceptions. | 317 // Exceptions. |
257 void SignalExceptions(); | 318 void SignalExceptions(); |
258 | 319 |
259 // Runtime call support. | 320 // Runtime call support. |
260 static void* RedirectExternalReference(void* external_function, | 321 static void* RedirectExternalReference(void* external_function, |
261 bool fp_return); | 322 ExternalReference::Type type); |
262 | 323 |
263 // Used for real time calls that takes two double values as arguments and | 324 // Used for real time calls that takes two double values as arguments and |
264 // returns a double. | 325 // returns a double. |
265 void SetFpResult(double result); | 326 void SetFpResult(double result); |
266 | 327 |
267 // Architecture state. | 328 // Architecture state. |
268 // Registers. | 329 // Registers. |
269 int32_t registers_[kNumSimuRegisters]; | 330 int32_t registers_[kNumSimuRegisters]; |
270 // Coprocessor Registers. | 331 // Coprocessor Registers. |
271 int32_t FPUregisters_[kNumFPURegisters]; | 332 int32_t FPUregisters_[kNumFPURegisters]; |
| 333 // FPU control register. |
| 334 uint32_t FCSR_; |
272 | 335 |
273 // Simulator support. | 336 // Simulator support. |
274 char* stack_; | 337 char* stack_; |
| 338 size_t stack_size_; |
275 bool pc_modified_; | 339 bool pc_modified_; |
276 int icount_; | 340 int icount_; |
277 static bool initialized_; | 341 int break_count_; |
| 342 |
| 343 // Icache simulation |
| 344 v8::internal::HashMap* i_cache_; |
278 | 345 |
279 // Registered breakpoints. | 346 // Registered breakpoints. |
280 Instruction* break_pc_; | 347 Instruction* break_pc_; |
281 Instr break_instr_; | 348 Instr break_instr_; |
| 349 |
| 350 v8::internal::Isolate* isolate_; |
282 }; | 351 }; |
283 | 352 |
284 } } // namespace assembler::mips | 353 |
| 354 // When running with the simulator transition into simulated execution at this |
| 355 // point. |
| 356 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ |
| 357 reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \ |
| 358 FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4)) |
| 359 |
| 360 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \ |
| 361 Simulator::current(Isolate::Current())->Call( \ |
| 362 entry, 9, p0, p1, p2, p3, NULL, p4, p5, p6, p7) |
| 363 |
| 364 #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \ |
| 365 try_catch_address == NULL ? \ |
| 366 NULL : *(reinterpret_cast<TryCatch**>(try_catch_address)) |
285 | 367 |
286 | 368 |
287 // The simulator has its own stack. Thus it has a different stack limit from | 369 // The simulator has its own stack. Thus it has a different stack limit from |
288 // the C-based native code. Setting the c_limit to indicate a very small | 370 // the C-based native code. Setting the c_limit to indicate a very small |
289 // stack cause stack overflow errors, since the simulator ignores the input. | 371 // stack cause stack overflow errors, since the simulator ignores the input. |
290 // This is unlikely to be an issue in practice, though it might cause testing | 372 // This is unlikely to be an issue in practice, though it might cause testing |
291 // trouble down the line. | 373 // trouble down the line. |
292 class SimulatorStack : public v8::internal::AllStatic { | 374 class SimulatorStack : public v8::internal::AllStatic { |
293 public: | 375 public: |
294 static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) { | 376 static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) { |
295 return assembler::mips::Simulator::current()->StackLimit(); | 377 return Simulator::current(Isolate::Current())->StackLimit(); |
296 } | 378 } |
297 | 379 |
298 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { | 380 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { |
299 assembler::mips::Simulator* sim = assembler::mips::Simulator::current(); | 381 Simulator* sim = Simulator::current(Isolate::Current()); |
300 return sim->PushAddress(try_catch_address); | 382 return sim->PushAddress(try_catch_address); |
301 } | 383 } |
302 | 384 |
303 static inline void UnregisterCTryCatch() { | 385 static inline void UnregisterCTryCatch() { |
304 assembler::mips::Simulator::current()->PopAddress(); | 386 Simulator::current(Isolate::Current())->PopAddress(); |
305 } | 387 } |
306 }; | 388 }; |
307 | 389 |
308 #endif // !defined(__mips) || defined(USE_SIMULATOR) | 390 } } // namespace v8::internal |
309 | 391 |
| 392 #endif // !defined(USE_SIMULATOR) |
310 #endif // V8_MIPS_SIMULATOR_MIPS_H_ | 393 #endif // V8_MIPS_SIMULATOR_MIPS_H_ |
311 | 394 |
OLD | NEW |