Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(718)

Side by Side Diff: src/mips/macro-assembler-mips.h

Issue 6759025: Version 3.2.6 (Closed) Base URL: https://v8.googlecode.com/svn/trunk
Patch Set: Created 9 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/mips/lithium-mips.h ('k') | src/mips/macro-assembler-mips.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2010 the V8 project authors. All rights reserved. 1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without 2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are 3 // modification, are permitted provided that the following conditions are
4 // met: 4 // met:
5 // 5 //
6 // * Redistributions of source code must retain the above copyright 6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer. 7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above 8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following 9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided 10 // disclaimer in the documentation and/or other materials provided
(...skipping 18 matching lines...) Expand all
29 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_ 29 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
30 30
31 #include "assembler.h" 31 #include "assembler.h"
32 #include "mips/assembler-mips.h" 32 #include "mips/assembler-mips.h"
33 33
34 namespace v8 { 34 namespace v8 {
35 namespace internal { 35 namespace internal {
36 36
37 // Forward declaration. 37 // Forward declaration.
38 class JumpTarget; 38 class JumpTarget;
39 class PostCallGenerator;
39 40
40 // Register at is used for instruction generation. So it is not safe to use it 41 // Reserved Register Usage Summary.
41 // unless we know exactly what we do. 42 //
43 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
44 //
45 // The programmer should know that the MacroAssembler may clobber these three,
46 // but won't touch other registers except in special cases.
47 //
48 // Per the MIPS ABI, register t9 must be used for indirect function call
49 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
50 // trying to update gp register for position-independent-code. Whenever
51 // MIPS generated code calls C code, it must be via t9 register.
42 52
43 // Registers aliases 53 // Registers aliases
44 // cp is assumed to be a callee saved register. 54 // cp is assumed to be a callee saved register.
55 const Register roots = s6; // Roots array pointer.
45 const Register cp = s7; // JavaScript context pointer 56 const Register cp = s7; // JavaScript context pointer
46 const Register fp = s8_fp; // Alias fp 57 const Register fp = s8_fp; // Alias fp
58 // Register used for condition evaluation.
59 const Register condReg1 = s4;
60 const Register condReg2 = s5;
47 61
48 enum InvokeJSFlags { 62 enum InvokeJSFlags {
49 CALL_JS, 63 CALL_JS,
50 JUMP_JS 64 JUMP_JS
51 }; 65 };
52 66
67
68 // Flags used for the AllocateInNewSpace functions.
69 enum AllocationFlags {
70 // No special flags.
71 NO_ALLOCATION_FLAGS = 0,
72 // Return the pointer to the allocated already tagged as a heap object.
73 TAG_OBJECT = 1 << 0,
74 // The content of the result register already contains the allocation top in
75 // new space.
76 RESULT_CONTAINS_TOP = 1 << 1,
77 // Specify that the requested size of the space to allocate is specified in
78 // words instead of bytes.
79 SIZE_IN_WORDS = 1 << 2
80 };
81
82 // Flags used for the ObjectToDoubleFPURegister function.
83 enum ObjectToDoubleFlags {
84 // No special flags.
85 NO_OBJECT_TO_DOUBLE_FLAGS = 0,
86 // Object is known to be a non smi.
87 OBJECT_NOT_SMI = 1 << 0,
88 // Don't load NaNs or infinities, branch to the non number case instead.
89 AVOID_NANS_AND_INFINITIES = 1 << 1
90 };
91
92 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
93 enum BranchDelaySlot {
94 USE_DELAY_SLOT,
95 PROTECT
96 };
97
53 // MacroAssembler implements a collection of frequently used macros. 98 // MacroAssembler implements a collection of frequently used macros.
54 class MacroAssembler: public Assembler { 99 class MacroAssembler: public Assembler {
55 public: 100 public:
56 MacroAssembler(void* buffer, int size); 101 MacroAssembler(void* buffer, int size);
57 102
58 // Jump, Call, and Ret pseudo instructions implementing inter-working. 103 // Arguments macros
59 void Jump(const Operand& target, 104 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
60 Condition cond = cc_always, 105 #define COND_ARGS cond, r1, r2
61 Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg)); 106
62 void Call(const Operand& target, 107 // ** Prototypes
63 Condition cond = cc_always, 108
64 Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg)); 109 // * Prototypes for functions with no target (eg Ret()).
65 void Jump(Register target, 110 #define DECLARE_NOTARGET_PROTOTYPE(Name) \
66 Condition cond = cc_always, 111 void Name(BranchDelaySlot bd = PROTECT); \
67 Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg)); 112 void Name(COND_TYPED_ARGS, BranchDelaySlot bd = PROTECT); \
68 void Jump(byte* target, RelocInfo::Mode rmode, 113 inline void Name(BranchDelaySlot bd, COND_TYPED_ARGS) { \
69 Condition cond = cc_always, 114 Name(COND_ARGS, bd); \
70 Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg)); 115 }
71 void Jump(Handle<Code> code, RelocInfo::Mode rmode, 116
72 Condition cond = cc_always, 117 // * Prototypes for functions with a target.
73 Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg)); 118
74 void Call(Register target, 119 // Cases when relocation may be needed.
75 Condition cond = cc_always, 120 #define DECLARE_RELOC_PROTOTYPE(Name, target_type) \
76 Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg)); 121 void Name(target_type target, \
77 void Call(byte* target, RelocInfo::Mode rmode, 122 RelocInfo::Mode rmode, \
78 Condition cond = cc_always, 123 BranchDelaySlot bd = PROTECT); \
79 Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg)); 124 inline void Name(BranchDelaySlot bd, \
80 void Call(Handle<Code> code, RelocInfo::Mode rmode, 125 target_type target, \
81 Condition cond = cc_always, 126 RelocInfo::Mode rmode) { \
82 Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg)); 127 Name(target, rmode, bd); \
83 void Ret(Condition cond = cc_always, 128 } \
84 Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg)); 129 void Name(target_type target, \
85 void Branch(Condition cond, int16_t offset, Register rs = zero_reg, 130 RelocInfo::Mode rmode, \
86 const Operand& rt = Operand(zero_reg), Register scratch = at); 131 COND_TYPED_ARGS, \
87 void Branch(Condition cond, Label* L, Register rs = zero_reg, 132 BranchDelaySlot bd = PROTECT); \
88 const Operand& rt = Operand(zero_reg), Register scratch = at); 133 inline void Name(BranchDelaySlot bd, \
89 // conditionnal branch and link 134 target_type target, \
90 void BranchAndLink(Condition cond, int16_t offset, Register rs = zero_reg, 135 RelocInfo::Mode rmode, \
91 const Operand& rt = Operand(zero_reg), 136 COND_TYPED_ARGS) { \
92 Register scratch = at); 137 Name(target, rmode, COND_ARGS, bd); \
93 void BranchAndLink(Condition cond, Label* L, Register rs = zero_reg, 138 }
94 const Operand& rt = Operand(zero_reg), 139
95 Register scratch = at); 140 // Cases when relocation is not needed.
141 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
142 void Name(target_type target, BranchDelaySlot bd = PROTECT); \
143 inline void Name(BranchDelaySlot bd, target_type target) { \
144 Name(target, bd); \
145 } \
146 void Name(target_type target, \
147 COND_TYPED_ARGS, \
148 BranchDelaySlot bd = PROTECT); \
149 inline void Name(BranchDelaySlot bd, \
150 target_type target, \
151 COND_TYPED_ARGS) { \
152 Name(target, COND_ARGS, bd); \
153 }
154
155 // ** Target prototypes.
156
157 #define DECLARE_JUMP_CALL_PROTOTYPES(Name) \
158 DECLARE_NORELOC_PROTOTYPE(Name, Register) \
159 DECLARE_NORELOC_PROTOTYPE(Name, const Operand&) \
160 DECLARE_RELOC_PROTOTYPE(Name, byte*) \
161 DECLARE_RELOC_PROTOTYPE(Name, Handle<Code>)
162
163 #define DECLARE_BRANCH_PROTOTYPES(Name) \
164 DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
165 DECLARE_NORELOC_PROTOTYPE(Name, int16_t)
166
167
168 DECLARE_JUMP_CALL_PROTOTYPES(Jump)
169 DECLARE_JUMP_CALL_PROTOTYPES(Call)
170
171 DECLARE_BRANCH_PROTOTYPES(Branch)
172 DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
173
174 DECLARE_NOTARGET_PROTOTYPE(Ret)
175
176 #undef COND_TYPED_ARGS
177 #undef COND_ARGS
178 #undef DECLARE_NOTARGET_PROTOTYPE
179 #undef DECLARE_NORELOC_PROTOTYPE
180 #undef DECLARE_RELOC_PROTOTYPE
181 #undef DECLARE_JUMP_CALL_PROTOTYPES
182 #undef DECLARE_BRANCH_PROTOTYPES
96 183
97 // Emit code to discard a non-negative number of pointer-sized elements 184 // Emit code to discard a non-negative number of pointer-sized elements
98 // from the stack, clobbering only the sp register. 185 // from the stack, clobbering only the sp register.
99 void Drop(int count, Condition cond = cc_always); 186 void Drop(int count,
187 Condition cond = cc_always,
188 Register reg = no_reg,
189 const Operand& op = Operand(no_reg));
190
191 void DropAndRet(int drop = 0,
192 Condition cond = cc_always,
193 Register reg = no_reg,
194 const Operand& op = Operand(no_reg));
195
196 // Swap two registers. If the scratch register is omitted then a slightly
197 // less efficient form using xor instead of mov is emitted.
198 void Swap(Register reg1, Register reg2, Register scratch = no_reg);
100 199
101 void Call(Label* target); 200 void Call(Label* target);
201 // May do nothing if the registers are identical.
202 void Move(Register dst, Register src);
203
102 204
103 // Jump unconditionally to given label. 205 // Jump unconditionally to given label.
104 // We NEED a nop in the branch delay slot, as it used by v8, for example in 206 // We NEED a nop in the branch delay slot, as it used by v8, for example in
105 // CodeGenerator::ProcessDeferred(). 207 // CodeGenerator::ProcessDeferred().
106 // Currently the branch delay slot is filled by the MacroAssembler. 208 // Currently the branch delay slot is filled by the MacroAssembler.
107 // Use rather b(Label) for code generation. 209 // Use rather b(Label) for code generation.
108 void jmp(Label* L) { 210 void jmp(Label* L) {
109 Branch(cc_always, L); 211 Branch(L);
110 } 212 }
111 213
112 // Load an object from the root table. 214 // Load an object from the root table.
113 void LoadRoot(Register destination, 215 void LoadRoot(Register destination,
114 Heap::RootListIndex index); 216 Heap::RootListIndex index);
115 void LoadRoot(Register destination, 217 void LoadRoot(Register destination,
116 Heap::RootListIndex index, 218 Heap::RootListIndex index,
117 Condition cond, Register src1, const Operand& src2); 219 Condition cond, Register src1, const Operand& src2);
118 220
119 // Load an external reference. 221 // Store an object to the root table.
120 void LoadExternalReference(Register reg, ExternalReference ext) { 222 void StoreRoot(Register source,
121 li(reg, Operand(ext)); 223 Heap::RootListIndex index);
224 void StoreRoot(Register source,
225 Heap::RootListIndex index,
226 Condition cond, Register src1, const Operand& src2);
227
228
229 // Check if object is in new space.
230 // scratch can be object itself, but it will be clobbered.
231 void InNewSpace(Register object,
232 Register scratch,
233 Condition cc, // eq for new space, ne otherwise.
234 Label* branch);
235
236
237 // For the page containing |object| mark the region covering [address]
238 // dirty. The object address must be in the first 8K of an allocated page.
239 void RecordWriteHelper(Register object,
240 Register address,
241 Register scratch);
242
243 // For the page containing |object| mark the region covering
244 // [object+offset] dirty. The object address must be in the first 8K
245 // of an allocated page. The 'scratch' registers are used in the
246 // implementation and all 3 registers are clobbered by the
247 // operation, as well as the 'at' register. RecordWrite updates the
248 // write barrier even when storing smis.
249 void RecordWrite(Register object,
250 Operand offset,
251 Register scratch0,
252 Register scratch1);
253
254 // For the page containing |object| mark the region covering
255 // [address] dirty. The object address must be in the first 8K of an
256 // allocated page. All 3 registers are clobbered by the operation,
257 // as well as the ip register. RecordWrite updates the write barrier
258 // even when storing smis.
259 void RecordWrite(Register object,
260 Register address,
261 Register scratch);
262
263
264 // ---------------------------------------------------------------------------
265 // Inline caching support
266
267 // Generate code for checking access rights - used for security checks
268 // on access to global objects across environments. The holder register
269 // is left untouched, whereas both scratch registers are clobbered.
270 void CheckAccessGlobalProxy(Register holder_reg,
271 Register scratch,
272 Label* miss);
273
274 inline void MarkCode(NopMarkerTypes type) {
275 nop(type);
122 } 276 }
123 277
124 // Sets the remembered set bit for [address+offset]. 278 // Check if the given instruction is a 'type' marker.
125 void RecordWrite(Register object, Register offset, Register scratch); 279 // ie. check if it is a sll zero_reg, zero_reg, <type> (referenced as
280 // nop(type)). These instructions are generated to mark special location in
281 // the code, like some special IC code.
282 static inline bool IsMarkedCode(Instr instr, int type) {
283 ASSERT((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
284 return IsNop(instr, type);
285 }
126 286
127 287
288 static inline int GetCodeMarker(Instr instr) {
289 uint32_t opcode = ((instr & kOpcodeMask));
290 uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
291 uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
292 uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
293
294 // Return <n> if we have a sll zero_reg, zero_reg, n
295 // else return -1.
296 bool sllzz = (opcode == SLL &&
297 rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
298 rs == static_cast<uint32_t>(ToNumber(zero_reg)));
299 int type =
300 (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
301 ASSERT((type == -1) ||
302 ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
303 return type;
304 }
305
306
307
308 // ---------------------------------------------------------------------------
309 // Allocation support
310
311 // Allocate an object in new space. The object_size is specified
312 // either in bytes or in words if the allocation flag SIZE_IN_WORDS
313 // is passed. If the new space is exhausted control continues at the
314 // gc_required label. The allocated object is returned in result. If
315 // the flag tag_allocated_object is true the result is tagged as as
316 // a heap object. All registers are clobbered also when control
317 // continues at the gc_required label.
318 void AllocateInNewSpace(int object_size,
319 Register result,
320 Register scratch1,
321 Register scratch2,
322 Label* gc_required,
323 AllocationFlags flags);
324 void AllocateInNewSpace(Register object_size,
325 Register result,
326 Register scratch1,
327 Register scratch2,
328 Label* gc_required,
329 AllocationFlags flags);
330
331 // Undo allocation in new space. The object passed and objects allocated after
332 // it will no longer be allocated. The caller must make sure that no pointers
333 // are left to the object(s) no longer allocated as they would be invalid when
334 // allocation is undone.
335 void UndoAllocationInNewSpace(Register object, Register scratch);
336
337
338 void AllocateTwoByteString(Register result,
339 Register length,
340 Register scratch1,
341 Register scratch2,
342 Register scratch3,
343 Label* gc_required);
344 void AllocateAsciiString(Register result,
345 Register length,
346 Register scratch1,
347 Register scratch2,
348 Register scratch3,
349 Label* gc_required);
350 void AllocateTwoByteConsString(Register result,
351 Register length,
352 Register scratch1,
353 Register scratch2,
354 Label* gc_required);
355 void AllocateAsciiConsString(Register result,
356 Register length,
357 Register scratch1,
358 Register scratch2,
359 Label* gc_required);
360
361 // Allocates a heap number or jumps to the gc_required label if the young
362 // space is full and a scavenge is needed. All registers are clobbered also
363 // when control continues at the gc_required label.
364 void AllocateHeapNumber(Register result,
365 Register scratch1,
366 Register scratch2,
367 Register heap_number_map,
368 Label* gc_required);
369 void AllocateHeapNumberWithValue(Register result,
370 FPURegister value,
371 Register scratch1,
372 Register scratch2,
373 Label* gc_required);
374
128 // --------------------------------------------------------------------------- 375 // ---------------------------------------------------------------------------
129 // Instruction macros 376 // Instruction macros
130 377
131 #define DEFINE_INSTRUCTION(instr) \ 378 #define DEFINE_INSTRUCTION(instr) \
132 void instr(Register rd, Register rs, const Operand& rt); \ 379 void instr(Register rd, Register rs, const Operand& rt); \
133 void instr(Register rd, Register rs, Register rt) { \ 380 void instr(Register rd, Register rs, Register rt) { \
134 instr(rd, rs, Operand(rt)); \ 381 instr(rd, rs, Operand(rt)); \
135 } \ 382 } \
136 void instr(Register rs, Register rt, int32_t j) { \ 383 void instr(Register rs, Register rt, int32_t j) { \
137 instr(rs, rt, Operand(j)); \ 384 instr(rs, rt, Operand(j)); \
138 } 385 }
139 386
140 #define DEFINE_INSTRUCTION2(instr) \ 387 #define DEFINE_INSTRUCTION2(instr) \
141 void instr(Register rs, const Operand& rt); \ 388 void instr(Register rs, const Operand& rt); \
142 void instr(Register rs, Register rt) { \ 389 void instr(Register rs, Register rt) { \
143 instr(rs, Operand(rt)); \ 390 instr(rs, Operand(rt)); \
144 } \ 391 } \
145 void instr(Register rs, int32_t j) { \ 392 void instr(Register rs, int32_t j) { \
146 instr(rs, Operand(j)); \ 393 instr(rs, Operand(j)); \
147 } 394 }
148 395
149 DEFINE_INSTRUCTION(Add);
150 DEFINE_INSTRUCTION(Addu); 396 DEFINE_INSTRUCTION(Addu);
397 DEFINE_INSTRUCTION(Subu);
151 DEFINE_INSTRUCTION(Mul); 398 DEFINE_INSTRUCTION(Mul);
152 DEFINE_INSTRUCTION2(Mult); 399 DEFINE_INSTRUCTION2(Mult);
153 DEFINE_INSTRUCTION2(Multu); 400 DEFINE_INSTRUCTION2(Multu);
154 DEFINE_INSTRUCTION2(Div); 401 DEFINE_INSTRUCTION2(Div);
155 DEFINE_INSTRUCTION2(Divu); 402 DEFINE_INSTRUCTION2(Divu);
156 403
157 DEFINE_INSTRUCTION(And); 404 DEFINE_INSTRUCTION(And);
158 DEFINE_INSTRUCTION(Or); 405 DEFINE_INSTRUCTION(Or);
159 DEFINE_INSTRUCTION(Xor); 406 DEFINE_INSTRUCTION(Xor);
160 DEFINE_INSTRUCTION(Nor); 407 DEFINE_INSTRUCTION(Nor);
161 408
162 DEFINE_INSTRUCTION(Slt); 409 DEFINE_INSTRUCTION(Slt);
163 DEFINE_INSTRUCTION(Sltu); 410 DEFINE_INSTRUCTION(Sltu);
164 411
412 // MIPS32 R2 instruction macro.
413 DEFINE_INSTRUCTION(Ror);
414
165 #undef DEFINE_INSTRUCTION 415 #undef DEFINE_INSTRUCTION
166 #undef DEFINE_INSTRUCTION2 416 #undef DEFINE_INSTRUCTION2
167 417
168 418
169 //------------Pseudo-instructions------------- 419 //------------Pseudo-instructions-------------
170 420
171 void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); } 421 void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
172 // Move the logical ones complement of source to dest.
173 void movn(Register rd, Register rt);
174 422
175 423
176 // load int32 in the rd register 424 // load int32 in the rd register
177 void li(Register rd, Operand j, bool gen2instr = false); 425 void li(Register rd, Operand j, bool gen2instr = false);
178 inline void li(Register rd, int32_t j, bool gen2instr = false) { 426 inline void li(Register rd, int32_t j, bool gen2instr = false) {
179 li(rd, Operand(j), gen2instr); 427 li(rd, Operand(j), gen2instr);
180 } 428 }
429 inline void li(Register dst, Handle<Object> value, bool gen2instr = false) {
430 li(dst, Operand(value), gen2instr);
431 }
181 432
182 // Exception-generating instructions and debugging support 433 // Exception-generating instructions and debugging support
183 void stop(const char* msg); 434 void stop(const char* msg);
184 435
185 436
186 // Push multiple registers on the stack. 437 // Push multiple registers on the stack.
187 // Registers are saved in numerical order, with higher numbered registers 438 // Registers are saved in numerical order, with higher numbered registers
188 // saved in higher memory addresses 439 // saved in higher memory addresses
189 void MultiPush(RegList regs); 440 void MultiPush(RegList regs);
190 void MultiPushReversed(RegList regs); 441 void MultiPushReversed(RegList regs);
442
191 void Push(Register src) { 443 void Push(Register src) {
192 Addu(sp, sp, Operand(-kPointerSize)); 444 Addu(sp, sp, Operand(-kPointerSize));
193 sw(src, MemOperand(sp, 0)); 445 sw(src, MemOperand(sp, 0));
194 } 446 }
447
448 // Push two registers. Pushes leftmost register first (to highest address).
449 void Push(Register src1, Register src2, Condition cond = al) {
450 ASSERT(cond == al); // Do not support conditional versions yet.
451 Subu(sp, sp, Operand(2 * kPointerSize));
452 sw(src1, MemOperand(sp, 1 * kPointerSize));
453 sw(src2, MemOperand(sp, 0 * kPointerSize));
454 }
455
456 // Push three registers. Pushes leftmost register first (to highest address).
457 void Push(Register src1, Register src2, Register src3, Condition cond = al) {
458 ASSERT(cond == al); // Do not support conditional versions yet.
459 Addu(sp, sp, Operand(3 * -kPointerSize));
460 sw(src1, MemOperand(sp, 2 * kPointerSize));
461 sw(src2, MemOperand(sp, 1 * kPointerSize));
462 sw(src3, MemOperand(sp, 0 * kPointerSize));
463 }
464
465 // Push four registers. Pushes leftmost register first (to highest address).
466 void Push(Register src1, Register src2,
467 Register src3, Register src4, Condition cond = al) {
468 ASSERT(cond == al); // Do not support conditional versions yet.
469 Addu(sp, sp, Operand(4 * -kPointerSize));
470 sw(src1, MemOperand(sp, 3 * kPointerSize));
471 sw(src2, MemOperand(sp, 2 * kPointerSize));
472 sw(src3, MemOperand(sp, 1 * kPointerSize));
473 sw(src4, MemOperand(sp, 0 * kPointerSize));
474 }
475
195 inline void push(Register src) { Push(src); } 476 inline void push(Register src) { Push(src); }
477 inline void pop(Register src) { Pop(src); }
196 478
197 void Push(Register src, Condition cond, Register tst1, Register tst2) { 479 void Push(Register src, Condition cond, Register tst1, Register tst2) {
198 // Since we don't have conditionnal execution we use a Branch. 480 // Since we don't have conditionnal execution we use a Branch.
199 Branch(cond, 3, tst1, Operand(tst2)); 481 Branch(3, cond, tst1, Operand(tst2));
200 Addu(sp, sp, Operand(-kPointerSize)); 482 Addu(sp, sp, Operand(-kPointerSize));
201 sw(src, MemOperand(sp, 0)); 483 sw(src, MemOperand(sp, 0));
202 } 484 }
203 485
486
204 // Pops multiple values from the stack and load them in the 487 // Pops multiple values from the stack and load them in the
205 // registers specified in regs. Pop order is the opposite as in MultiPush. 488 // registers specified in regs. Pop order is the opposite as in MultiPush.
206 void MultiPop(RegList regs); 489 void MultiPop(RegList regs);
207 void MultiPopReversed(RegList regs); 490 void MultiPopReversed(RegList regs);
208 void Pop(Register dst) { 491 void Pop(Register dst) {
209 lw(dst, MemOperand(sp, 0)); 492 lw(dst, MemOperand(sp, 0));
210 Addu(sp, sp, Operand(kPointerSize)); 493 Addu(sp, sp, Operand(kPointerSize));
211 } 494 }
212 void Pop() { 495 void Pop(uint32_t count = 1) {
213 Add(sp, sp, Operand(kPointerSize)); 496 Addu(sp, sp, Operand(count * kPointerSize));
214 } 497 }
215 498
499 // ---------------------------------------------------------------------------
500 // These functions are only used by crankshaft, so they are currently
501 // unimplemented.
502
503 // Push and pop the registers that can hold pointers, as defined by the
504 // RegList constant kSafepointSavedRegisters.
505 void PushSafepointRegisters() {
506 UNIMPLEMENTED_MIPS();
507 }
508
509 void PopSafepointRegisters() {
510 UNIMPLEMENTED_MIPS();
511 }
512
513 void PushSafepointRegistersAndDoubles() {
514 UNIMPLEMENTED_MIPS();
515 }
516
517 void PopSafepointRegistersAndDoubles() {
518 UNIMPLEMENTED_MIPS();
519 }
520
521 static int SafepointRegisterStackIndex(int reg_code) {
522 UNIMPLEMENTED_MIPS();
523 return 0;
524 }
216 525
217 // --------------------------------------------------------------------------- 526 // ---------------------------------------------------------------------------
527
528 // MIPS32 R2 instruction macro.
529 void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
530 void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
531
532 // Convert unsigned word to double.
533 void Cvt_d_uw(FPURegister fd, FPURegister fs);
534 void Cvt_d_uw(FPURegister fd, Register rs);
535
536 // Convert double to unsigned word.
537 void Trunc_uw_d(FPURegister fd, FPURegister fs);
538 void Trunc_uw_d(FPURegister fd, Register rs);
539
540 // Convert the HeapNumber pointed to by source to a 32bits signed integer
541 // dest. If the HeapNumber does not fit into a 32bits signed integer branch
542 // to not_int32 label. If FPU is available double_scratch is used but not
543 // scratch2.
544 void ConvertToInt32(Register source,
545 Register dest,
546 Register scratch,
547 Register scratch2,
548 FPURegister double_scratch,
549 Label *not_int32);
550
551 // -------------------------------------------------------------------------
218 // Activation frames 552 // Activation frames
219 553
220 void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); } 554 void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); }
221 void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); } 555 void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); }
222 556
223 // Enter specific kind of exit frame; either EXIT or 557 void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); }
224 // EXIT_DEBUG. Expects the number of arguments in register a0 and 558 void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); }
559
560 // Enter exit frame.
561 // Expects the number of arguments in register a0 and
225 // the builtin function to call in register a1. 562 // the builtin function to call in register a1.
226 // On output hold_argc, hold_function, and hold_argv are setup. 563 // On output hold_argc, hold_function, and hold_argv are setup.
227 void EnterExitFrame(ExitFrame::Mode mode, 564 void EnterExitFrame(Register hold_argc,
228 Register hold_argc,
229 Register hold_argv, 565 Register hold_argv,
230 Register hold_function); 566 Register hold_function,
567 bool save_doubles);
231 568
232 // Leave the current exit frame. Expects the return value in v0. 569 // Leave the current exit frame. Expects the return value in v0.
233 void LeaveExitFrame(ExitFrame::Mode mode); 570 void LeaveExitFrame(bool save_doubles);
234 571
235 // Align the stack by optionally pushing a Smi zero. 572 // Align the stack by optionally pushing a Smi zero.
236 void AlignStack(int offset); 573 void AlignStack(int offset); // TODO(mips) : remove this function.
237 574
238 void SetupAlignedCall(Register scratch, int arg_count = 0); 575 // Get the actual activation frame alignment for target environment.
239 void ReturnFromAlignedCall(); 576 static int ActivationFrameAlignment();
240 577
578 void LoadContext(Register dst, int context_chain_length);
241 579
242 // --------------------------------------------------------------------------- 580 void LoadGlobalFunction(int index, Register function);
581
582 // Load the initial map from the global function. The registers
583 // function and map can be the same, function is then overwritten.
584 void LoadGlobalFunctionInitialMap(Register function,
585 Register map,
586 Register scratch);
587
588 // -------------------------------------------------------------------------
243 // JavaScript invokes 589 // JavaScript invokes
244 590
245 // Invoke the JavaScript function code by either calling or jumping. 591 // Invoke the JavaScript function code by either calling or jumping.
246 void InvokeCode(Register code, 592 void InvokeCode(Register code,
247 const ParameterCount& expected, 593 const ParameterCount& expected,
248 const ParameterCount& actual, 594 const ParameterCount& actual,
249 InvokeFlag flag); 595 InvokeFlag flag,
596 PostCallGenerator* post_call_generator = NULL);
250 597
251 void InvokeCode(Handle<Code> code, 598 void InvokeCode(Handle<Code> code,
252 const ParameterCount& expected, 599 const ParameterCount& expected,
253 const ParameterCount& actual, 600 const ParameterCount& actual,
254 RelocInfo::Mode rmode, 601 RelocInfo::Mode rmode,
255 InvokeFlag flag); 602 InvokeFlag flag);
256 603
257 // Invoke the JavaScript function in the given register. Changes the 604 // Invoke the JavaScript function in the given register. Changes the
258 // current context to the context in the function before invoking. 605 // current context to the context in the function before invoking.
259 void InvokeFunction(Register function, 606 void InvokeFunction(Register function,
260 const ParameterCount& actual, 607 const ParameterCount& actual,
608 InvokeFlag flag,
609 PostCallGenerator* post_call_generator = NULL);
610
611 void InvokeFunction(JSFunction* function,
612 const ParameterCount& actual,
261 InvokeFlag flag); 613 InvokeFlag flag);
262 614
263 615
616 void IsObjectJSObjectType(Register heap_object,
617 Register map,
618 Register scratch,
619 Label* fail);
620
621 void IsInstanceJSObjectType(Register map,
622 Register scratch,
623 Label* fail);
624
625 void IsObjectJSStringType(Register object,
626 Register scratch,
627 Label* fail);
628
264 #ifdef ENABLE_DEBUGGER_SUPPORT 629 #ifdef ENABLE_DEBUGGER_SUPPORT
265 // --------------------------------------------------------------------------- 630 // -------------------------------------------------------------------------
266 // Debugger Support 631 // Debugger Support
267 632
268 void SaveRegistersToMemory(RegList regs);
269 void RestoreRegistersFromMemory(RegList regs);
270 void CopyRegistersFromMemoryToStack(Register base, RegList regs);
271 void CopyRegistersFromStackToMemory(Register base,
272 Register scratch,
273 RegList regs);
274 void DebugBreak(); 633 void DebugBreak();
275 #endif 634 #endif
276 635
277 636
278 // --------------------------------------------------------------------------- 637 // -------------------------------------------------------------------------
279 // Exception handling 638 // Exception handling
280 639
281 // Push a new try handler and link into try handler chain. 640 // Push a new try handler and link into try handler chain.
282 // The return address must be passed in register ra. 641 // The return address must be passed in register ra.
642 // Clobber t0, t1, t2.
283 void PushTryHandler(CodeLocation try_location, HandlerType type); 643 void PushTryHandler(CodeLocation try_location, HandlerType type);
284 644
285 // Unlink the stack handler on top of the stack from the try handler chain. 645 // Unlink the stack handler on top of the stack from the try handler chain.
286 // Must preserve the result register. 646 // Must preserve the result register.
287 void PopTryHandler(); 647 void PopTryHandler();
288 648
649 // Copies a fixed number of fields of heap objects from src to dst.
650 void CopyFields(Register dst, Register src, RegList temps, int field_count);
289 651
290 // --------------------------------------------------------------------------- 652 // -------------------------------------------------------------------------
291 // Support functions. 653 // Support functions.
292 654
655 // Try to get function prototype of a function and puts the value in
656 // the result register. Checks that the function really is a
657 // function and jumps to the miss label if the fast checks fail. The
658 // function register will be untouched; the other registers may be
659 // clobbered.
660 void TryGetFunctionPrototype(Register function,
661 Register result,
662 Register scratch,
663 Label* miss);
664
293 void GetObjectType(Register function, 665 void GetObjectType(Register function,
294 Register map, 666 Register map,
295 Register type_reg); 667 Register type_reg);
296 668
297 inline void BranchOnSmi(Register value, Label* smi_label, 669 // Check if the map of an object is equal to a specified map (either
298 Register scratch = at) { 670 // given directly or as an index into the root list) and branch to
299 ASSERT_EQ(0, kSmiTag); 671 // label if not. Skip the smi check if not required (object is known
300 andi(scratch, value, kSmiTagMask); 672 // to be a heap object)
301 Branch(eq, smi_label, scratch, Operand(zero_reg)); 673 void CheckMap(Register obj,
302 } 674 Register scratch,
675 Handle<Map> map,
676 Label* fail,
677 bool is_heap_object);
303 678
304 679 void CheckMap(Register obj,
305 inline void BranchOnNotSmi(Register value, Label* not_smi_label, 680 Register scratch,
306 Register scratch = at) { 681 Heap::RootListIndex index,
307 ASSERT_EQ(0, kSmiTag); 682 Label* fail,
308 andi(scratch, value, kSmiTagMask); 683 bool is_heap_object);
309 Branch(ne, not_smi_label, scratch, Operand(zero_reg));
310 }
311
312 void CallBuiltin(ExternalReference builtin_entry);
313 void CallBuiltin(Register target);
314 void JumpToBuiltin(ExternalReference builtin_entry);
315 void JumpToBuiltin(Register target);
316 684
317 // Generates code for reporting that an illegal operation has 685 // Generates code for reporting that an illegal operation has
318 // occurred. 686 // occurred.
319 void IllegalOperation(int num_arguments); 687 void IllegalOperation(int num_arguments);
320 688
689 // Picks out an array index from the hash field.
690 // Register use:
691 // hash - holds the index's hash. Clobbered.
692 // index - holds the overwritten index on exit.
693 void IndexFromHash(Register hash, Register index);
321 694
322 // --------------------------------------------------------------------------- 695 // Load the value of a number object into a FPU double register. If the
696 // object is not a number a jump to the label not_number is performed
697 // and the FPU double register is unchanged.
698 void ObjectToDoubleFPURegister(
699 Register object,
700 FPURegister value,
701 Register scratch1,
702 Register scratch2,
703 Register heap_number_map,
704 Label* not_number,
705 ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
706
707 // Load the value of a smi object into a FPU double register. The register
708 // scratch1 can be the same register as smi in which case smi will hold the
709 // untagged value afterwards.
710 void SmiToDoubleFPURegister(Register smi,
711 FPURegister value,
712 Register scratch1);
713
714 // -------------------------------------------------------------------------
323 // Runtime calls 715 // Runtime calls
324 716
325 // Call a code stub. 717 // Call a code stub.
326 void CallStub(CodeStub* stub, Condition cond = cc_always, 718 void CallStub(CodeStub* stub, Condition cond = cc_always,
327 Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg)); 719 Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
720
721 // Tail call a code stub (jump).
722 void TailCallStub(CodeStub* stub);
723
328 void CallJSExitStub(CodeStub* stub); 724 void CallJSExitStub(CodeStub* stub);
329 725
330 // Return from a code stub after popping its arguments.
331 void StubReturn(int argc);
332
333 // Call a runtime routine. 726 // Call a runtime routine.
334 void CallRuntime(Runtime::Function* f, int num_arguments); 727 void CallRuntime(const Runtime::Function* f, int num_arguments);
728 void CallRuntimeSaveDoubles(Runtime::FunctionId id);
335 729
336 // Convenience function: Same as above, but takes the fid instead. 730 // Convenience function: Same as above, but takes the fid instead.
337 void CallRuntime(Runtime::FunctionId fid, int num_arguments); 731 void CallRuntime(Runtime::FunctionId fid, int num_arguments);
338 732
733 // Convenience function: call an external reference.
734 void CallExternalReference(const ExternalReference& ext,
735 int num_arguments);
736
339 // Tail call of a runtime routine (jump). 737 // Tail call of a runtime routine (jump).
340 // Like JumpToExternalReference, but also takes care of passing the number 738 // Like JumpToExternalReference, but also takes care of passing the number
341 // of parameters. 739 // of parameters.
342 void TailCallExternalReference(const ExternalReference& ext, 740 void TailCallExternalReference(const ExternalReference& ext,
343 int num_arguments, 741 int num_arguments,
344 int result_size); 742 int result_size);
345 743
346 // Convenience function: tail call a runtime routine (jump). 744 // Convenience function: tail call a runtime routine (jump).
347 void TailCallRuntime(Runtime::FunctionId fid, 745 void TailCallRuntime(Runtime::FunctionId fid,
348 int num_arguments, 746 int num_arguments,
349 int result_size); 747 int result_size);
350 748
749 // Before calling a C-function from generated code, align arguments on stack
750 // and add space for the four mips argument slots.
751 // After aligning the frame, non-register arguments must be stored on the
752 // stack, after the argument-slots using helper: CFunctionArgumentOperand().
753 // The argument count assumes all arguments are word sized.
754 // Some compilers/platforms require the stack to be aligned when calling
755 // C++ code.
756 // Needs a scratch register to do some arithmetic. This register will be
757 // trashed.
758 void PrepareCallCFunction(int num_arguments, Register scratch);
759
760 // Arguments 1-4 are placed in registers a0 thru a3 respectively.
761 // Arguments 5..n are stored to stack using following:
762 // sw(t0, CFunctionArgumentOperand(5));
763
764 // Calls a C function and cleans up the space for arguments allocated
765 // by PrepareCallCFunction. The called function is not allowed to trigger a
766 // garbage collection, since that might move the code and invalidate the
767 // return address (unless this is somehow accounted for by the called
768 // function).
769 void CallCFunction(ExternalReference function, int num_arguments);
770 void CallCFunction(Register function, Register scratch, int num_arguments);
771
351 // Jump to the builtin routine. 772 // Jump to the builtin routine.
352 void JumpToExternalReference(const ExternalReference& builtin); 773 void JumpToExternalReference(const ExternalReference& builtin);
353 774
354 // Invoke specified builtin JavaScript function. Adds an entry to 775 // Invoke specified builtin JavaScript function. Adds an entry to
355 // the unresolved list if the name does not resolve. 776 // the unresolved list if the name does not resolve.
356 void InvokeBuiltin(Builtins::JavaScript id, InvokeJSFlags flags); 777 void InvokeBuiltin(Builtins::JavaScript id,
778 InvokeJSFlags flags,
779 PostCallGenerator* post_call_generator = NULL);
357 780
358 // Store the code object for the given builtin in the target register and 781 // Store the code object for the given builtin in the target register and
359 // setup the function in r1. 782 // setup the function in a1.
360 void GetBuiltinEntry(Register target, Builtins::JavaScript id); 783 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
361 784
785 // Store the function for the given builtin in the target register.
786 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
787
362 struct Unresolved { 788 struct Unresolved {
363 int pc; 789 int pc;
364 uint32_t flags; // see Bootstrapper::FixupFlags decoders/encoders. 790 uint32_t flags; // see Bootstrapper::FixupFlags decoders/encoders.
365 const char* name; 791 const char* name;
366 }; 792 };
367 List<Unresolved>* unresolved() { return &unresolved_; }
368 793
369 Handle<Object> CodeObject() { return code_object_; } 794 Handle<Object> CodeObject() { return code_object_; }
370 795
371 796 // -------------------------------------------------------------------------
372 // ---------------------------------------------------------------------------
373 // Stack limit support
374
375 void StackLimitCheck(Label* on_stack_limit_hit);
376
377
378 // ---------------------------------------------------------------------------
379 // StatsCounter support 797 // StatsCounter support
380 798
381 void SetCounter(StatsCounter* counter, int value, 799 void SetCounter(StatsCounter* counter, int value,
382 Register scratch1, Register scratch2); 800 Register scratch1, Register scratch2);
383 void IncrementCounter(StatsCounter* counter, int value, 801 void IncrementCounter(StatsCounter* counter, int value,
384 Register scratch1, Register scratch2); 802 Register scratch1, Register scratch2);
385 void DecrementCounter(StatsCounter* counter, int value, 803 void DecrementCounter(StatsCounter* counter, int value,
386 Register scratch1, Register scratch2); 804 Register scratch1, Register scratch2);
387 805
388 806
389 // --------------------------------------------------------------------------- 807 // -------------------------------------------------------------------------
390 // Debugging 808 // Debugging
391 809
392 // Calls Abort(msg) if the condition cc is not satisfied. 810 // Calls Abort(msg) if the condition cc is not satisfied.
393 // Use --debug_code to enable. 811 // Use --debug_code to enable.
394 void Assert(Condition cc, const char* msg, Register rs, Operand rt); 812 void Assert(Condition cc, const char* msg, Register rs, Operand rt);
813 void AssertRegisterIsRoot(Register reg, Heap::RootListIndex index);
814 void AssertFastElements(Register elements);
395 815
396 // Like Assert(), but always enabled. 816 // Like Assert(), but always enabled.
397 void Check(Condition cc, const char* msg, Register rs, Operand rt); 817 void Check(Condition cc, const char* msg, Register rs, Operand rt);
398 818
399 // Print a message to stdout and abort execution. 819 // Print a message to stdout and abort execution.
400 void Abort(const char* msg); 820 void Abort(const char* msg);
401 821
402 // Verify restrictions about code generated in stubs. 822 // Verify restrictions about code generated in stubs.
403 void set_generating_stub(bool value) { generating_stub_ = value; } 823 void set_generating_stub(bool value) { generating_stub_ = value; }
404 bool generating_stub() { return generating_stub_; } 824 bool generating_stub() { return generating_stub_; }
405 void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; } 825 void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
406 bool allow_stub_calls() { return allow_stub_calls_; } 826 bool allow_stub_calls() { return allow_stub_calls_; }
407 827
828 // ---------------------------------------------------------------------------
829 // Number utilities
830
831 // Check whether the value of reg is a power of two and not zero. If not
832 // control continues at the label not_power_of_two. If reg is a power of two
833 // the register scratch contains the value of (reg - 1) when control falls
834 // through.
835 void JumpIfNotPowerOfTwoOrZero(Register reg,
836 Register scratch,
837 Label* not_power_of_two_or_zero);
838
839 // -------------------------------------------------------------------------
840 // Smi utilities
841
842 // Try to convert int32 to smi. If the value is to large, preserve
843 // the original value and jump to not_a_smi. Destroys scratch and
844 // sets flags.
845 // This is only used by crankshaft atm so it is unimplemented on MIPS.
846 void TrySmiTag(Register reg, Label* not_a_smi, Register scratch) {
847 UNIMPLEMENTED_MIPS();
848 }
849
850 void SmiTag(Register reg) {
851 Addu(reg, reg, reg);
852 }
853
854 void SmiTag(Register dst, Register src) {
855 Addu(dst, src, src);
856 }
857
858 void SmiUntag(Register reg) {
859 sra(reg, reg, kSmiTagSize);
860 }
861
862 void SmiUntag(Register dst, Register src) {
863 sra(dst, src, kSmiTagSize);
864 }
865
866 // Jump the register contains a smi.
867 inline void JumpIfSmi(Register value, Label* smi_label,
868 Register scratch = at) {
869 ASSERT_EQ(0, kSmiTag);
870 andi(scratch, value, kSmiTagMask);
871 Branch(smi_label, eq, scratch, Operand(zero_reg));
872 }
873
874 // Jump if the register contains a non-smi.
875 inline void JumpIfNotSmi(Register value, Label* not_smi_label,
876 Register scratch = at) {
877 ASSERT_EQ(0, kSmiTag);
878 andi(scratch, value, kSmiTagMask);
879 Branch(not_smi_label, ne, scratch, Operand(zero_reg));
880 }
881
882 // Jump if either of the registers contain a non-smi.
883 void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
884 // Jump if either of the registers contain a smi.
885 void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
886
887 // Abort execution if argument is a smi. Used in debug code.
888 void AbortIfSmi(Register object);
889 void AbortIfNotSmi(Register object);
890
891 // Abort execution if argument is not the root value with the given index.
892 void AbortIfNotRootValue(Register src,
893 Heap::RootListIndex root_value_index,
894 const char* message);
895
896 // ---------------------------------------------------------------------------
897 // HeapNumber utilities
898
899 void JumpIfNotHeapNumber(Register object,
900 Register heap_number_map,
901 Register scratch,
902 Label* on_not_heap_number);
903
904 // -------------------------------------------------------------------------
905 // String utilities
906
907 // Checks if both instance types are sequential ASCII strings and jumps to
908 // label if either is not.
909 void JumpIfBothInstanceTypesAreNotSequentialAscii(
910 Register first_object_instance_type,
911 Register second_object_instance_type,
912 Register scratch1,
913 Register scratch2,
914 Label* failure);
915
916 // Check if instance type is sequential ASCII string and jump to label if
917 // it is not.
918 void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
919 Register scratch,
920 Label* failure);
921
922 // Test that both first and second are sequential ASCII strings.
923 // Assume that they are non-smis.
924 void JumpIfNonSmisNotBothSequentialAsciiStrings(Register first,
925 Register second,
926 Register scratch1,
927 Register scratch2,
928 Label* failure);
929
930 // Test that both first and second are sequential ASCII strings.
931 // Check that they are non-smis.
932 void JumpIfNotBothSequentialAsciiStrings(Register first,
933 Register second,
934 Register scratch1,
935 Register scratch2,
936 Label* failure);
937
408 private: 938 private:
409 List<Unresolved> unresolved_; 939 void CallCFunctionHelper(Register function,
410 bool generating_stub_; 940 ExternalReference function_reference,
411 bool allow_stub_calls_; 941 Register scratch,
412 // This handle will be patched with the code object on installation. 942 int num_arguments);
413 Handle<Object> code_object_;
414 943
944 void Jump(intptr_t target, RelocInfo::Mode rmode,
945 BranchDelaySlot bd = PROTECT);
415 void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = cc_always, 946 void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = cc_always,
416 Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg)); 947 Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg),
948 BranchDelaySlot bd = PROTECT);
949 void Call(intptr_t target, RelocInfo::Mode rmode,
950 BranchDelaySlot bd = PROTECT);
417 void Call(intptr_t target, RelocInfo::Mode rmode, Condition cond = cc_always, 951 void Call(intptr_t target, RelocInfo::Mode rmode, Condition cond = cc_always,
418 Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg)); 952 Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg),
953 BranchDelaySlot bd = PROTECT);
419 954
420 // Helper functions for generating invokes. 955 // Helper functions for generating invokes.
421 void InvokePrologue(const ParameterCount& expected, 956 void InvokePrologue(const ParameterCount& expected,
422 const ParameterCount& actual, 957 const ParameterCount& actual,
423 Handle<Code> code_constant, 958 Handle<Code> code_constant,
424 Register code_reg, 959 Register code_reg,
425 Label* done, 960 Label* done,
426 InvokeFlag flag); 961 InvokeFlag flag,
962 PostCallGenerator* post_call_generator = NULL);
427 963
428 // Get the code for the given builtin. Returns if able to resolve 964 // Get the code for the given builtin. Returns if able to resolve
429 // the function in the 'resolved' flag. 965 // the function in the 'resolved' flag.
430 Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved); 966 Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);
431 967
432 // Activation support. 968 // Activation support.
433 // EnterFrame clobbers t0 and t1.
434 void EnterFrame(StackFrame::Type type); 969 void EnterFrame(StackFrame::Type type);
435 void LeaveFrame(StackFrame::Type type); 970 void LeaveFrame(StackFrame::Type type);
971
972 void InitializeNewString(Register string,
973 Register length,
974 Heap::RootListIndex map_index,
975 Register scratch1,
976 Register scratch2);
977
978
979 bool generating_stub_;
980 bool allow_stub_calls_;
981 // This handle will be patched with the code object on installation.
982 Handle<Object> code_object_;
983 };
984
985
986 #ifdef ENABLE_DEBUGGER_SUPPORT
987 // The code patcher is used to patch (typically) small parts of code e.g. for
988 // debugging and other types of instrumentation. When using the code patcher
989 // the exact number of bytes specified must be emitted. It is not legal to emit
990 // relocation information. If any of these constraints are violated it causes
991 // an assertion to fail.
992 class CodePatcher {
993 public:
994 CodePatcher(byte* address, int instructions);
995 virtual ~CodePatcher();
996
997 // Macro assembler to emit code.
998 MacroAssembler* masm() { return &masm_; }
999
1000 // Emit an instruction directly.
1001 void Emit(Instr x);
1002
1003 // Emit an address directly.
1004 void Emit(Address addr);
1005
1006 private:
1007 byte* address_; // The address of the code being patched.
1008 int instructions_; // Number of instructions of the expected patch size.
1009 int size_; // Number of bytes of the expected patch size.
1010 MacroAssembler masm_; // Macro assembler used to generate the code.
1011 };
1012 #endif // ENABLE_DEBUGGER_SUPPORT
1013
1014
1015 // Helper class for generating code or data associated with the code
1016 // right after a call instruction. As an example this can be used to
1017 // generate safepoint data after calls for crankshaft.
1018 class PostCallGenerator {
1019 public:
1020 PostCallGenerator() { }
1021 virtual ~PostCallGenerator() { }
1022 virtual void Generate() = 0;
436 }; 1023 };
437 1024
438 1025
439 // ----------------------------------------------------------------------------- 1026 // -----------------------------------------------------------------------------
440 // Static helper functions. 1027 // Static helper functions.
441 1028
1029 static MemOperand ContextOperand(Register context, int index) {
1030 return MemOperand(context, Context::SlotOffset(index));
1031 }
1032
1033
1034 static inline MemOperand GlobalObjectOperand() {
1035 return ContextOperand(cp, Context::GLOBAL_INDEX);
1036 }
1037
1038
442 // Generate a MemOperand for loading a field from an object. 1039 // Generate a MemOperand for loading a field from an object.
443 static inline MemOperand FieldMemOperand(Register object, int offset) { 1040 static inline MemOperand FieldMemOperand(Register object, int offset) {
444 return MemOperand(object, offset - kHeapObjectTag); 1041 return MemOperand(object, offset - kHeapObjectTag);
445 } 1042 }
446 1043
447 1044
448 1045
449 #ifdef GENERATED_CODE_COVERAGE 1046 #ifdef GENERATED_CODE_COVERAGE
450 #define CODE_COVERAGE_STRINGIFY(x) #x 1047 #define CODE_COVERAGE_STRINGIFY(x) #x
451 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) 1048 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
452 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) 1049 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
453 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm-> 1050 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
454 #else 1051 #else
455 #define ACCESS_MASM(masm) masm-> 1052 #define ACCESS_MASM(masm) masm->
456 #endif 1053 #endif
457 1054
458 } } // namespace v8::internal 1055 } } // namespace v8::internal
459 1056
460 #endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_ 1057 #endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
461 1058
OLDNEW
« no previous file with comments | « src/mips/lithium-mips.h ('k') | src/mips/macro-assembler-mips.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698