OLD | NEW |
1 // Copyright 2010 the V8 project authors. All rights reserved. | 1 // Copyright 2011 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
11 // with the distribution. | 11 // with the distribution. |
12 // * Neither the name of Google Inc. nor the names of its | 12 // * Neither the name of Google Inc. nor the names of its |
13 // contributors may be used to endorse or promote products derived | 13 // contributors may be used to endorse or promote products derived |
14 // from this software without specific prior written permission. | 14 // from this software without specific prior written permission. |
15 // | 15 // |
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | 27 |
28 | 28 #include <limits.h> // For LONG_MIN, LONG_MAX |
29 | 29 |
30 #include "v8.h" | 30 #include "v8.h" |
31 | 31 |
32 #if defined(V8_TARGET_ARCH_MIPS) | 32 #if defined(V8_TARGET_ARCH_MIPS) |
33 | 33 |
34 #include "bootstrapper.h" | 34 #include "bootstrapper.h" |
35 #include "codegen-inl.h" | 35 #include "codegen-inl.h" |
36 #include "debug.h" | 36 #include "debug.h" |
37 #include "runtime.h" | 37 #include "runtime.h" |
38 | 38 |
39 namespace v8 { | 39 namespace v8 { |
40 namespace internal { | 40 namespace internal { |
41 | 41 |
42 MacroAssembler::MacroAssembler(void* buffer, int size) | 42 MacroAssembler::MacroAssembler(void* buffer, int size) |
43 : Assembler(buffer, size), | 43 : Assembler(buffer, size), |
44 unresolved_(0), | |
45 generating_stub_(false), | 44 generating_stub_(false), |
46 allow_stub_calls_(true), | 45 allow_stub_calls_(true), |
47 code_object_(Heap::undefined_value()) { | 46 code_object_(HEAP->undefined_value()) { |
48 } | 47 } |
49 | 48 |
50 | 49 |
| 50 // Arguments macros |
| 51 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2 |
| 52 #define COND_ARGS cond, r1, r2 |
51 | 53 |
52 void MacroAssembler::Jump(Register target, Condition cond, | 54 #define REGISTER_TARGET_BODY(Name) \ |
53 Register r1, const Operand& r2) { | 55 void MacroAssembler::Name(Register target, \ |
54 Jump(Operand(target), cond, r1, r2); | 56 BranchDelaySlot bd) { \ |
| 57 Name(Operand(target), bd); \ |
| 58 } \ |
| 59 void MacroAssembler::Name(Register target, COND_TYPED_ARGS, \ |
| 60 BranchDelaySlot bd) { \ |
| 61 Name(Operand(target), COND_ARGS, bd); \ |
55 } | 62 } |
56 | 63 |
57 | 64 |
58 void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, | 65 #define INT_PTR_TARGET_BODY(Name) \ |
59 Condition cond, Register r1, const Operand& r2) { | 66 void MacroAssembler::Name(intptr_t target, RelocInfo::Mode rmode, \ |
60 Jump(Operand(target, rmode), cond, r1, r2); | 67 BranchDelaySlot bd) { \ |
| 68 Name(Operand(target, rmode), bd); \ |
| 69 } \ |
| 70 void MacroAssembler::Name(intptr_t target, \ |
| 71 RelocInfo::Mode rmode, \ |
| 72 COND_TYPED_ARGS, \ |
| 73 BranchDelaySlot bd) { \ |
| 74 Name(Operand(target, rmode), COND_ARGS, bd); \ |
61 } | 75 } |
62 | 76 |
63 | 77 |
64 void MacroAssembler::Jump(byte* target, RelocInfo::Mode rmode, | 78 #define BYTE_PTR_TARGET_BODY(Name) \ |
65 Condition cond, Register r1, const Operand& r2) { | 79 void MacroAssembler::Name(byte* target, RelocInfo::Mode rmode, \ |
66 ASSERT(!RelocInfo::IsCodeTarget(rmode)); | 80 BranchDelaySlot bd) { \ |
67 Jump(reinterpret_cast<intptr_t>(target), rmode, cond, r1, r2); | 81 Name(reinterpret_cast<intptr_t>(target), rmode, bd); \ |
| 82 } \ |
| 83 void MacroAssembler::Name(byte* target, \ |
| 84 RelocInfo::Mode rmode, \ |
| 85 COND_TYPED_ARGS, \ |
| 86 BranchDelaySlot bd) { \ |
| 87 Name(reinterpret_cast<intptr_t>(target), rmode, COND_ARGS, bd); \ |
68 } | 88 } |
69 | 89 |
70 | 90 |
71 void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, | 91 #define CODE_TARGET_BODY(Name) \ |
72 Condition cond, Register r1, const Operand& r2) { | 92 void MacroAssembler::Name(Handle<Code> target, RelocInfo::Mode rmode, \ |
73 ASSERT(RelocInfo::IsCodeTarget(rmode)); | 93 BranchDelaySlot bd) { \ |
74 Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond); | 94 Name(reinterpret_cast<intptr_t>(target.location()), rmode, bd); \ |
| 95 } \ |
| 96 void MacroAssembler::Name(Handle<Code> target, \ |
| 97 RelocInfo::Mode rmode, \ |
| 98 COND_TYPED_ARGS, \ |
| 99 BranchDelaySlot bd) { \ |
| 100 Name(reinterpret_cast<intptr_t>(target.location()), rmode, COND_ARGS, bd); \ |
75 } | 101 } |
76 | 102 |
77 | 103 |
78 void MacroAssembler::Call(Register target, | 104 REGISTER_TARGET_BODY(Jump) |
79 Condition cond, Register r1, const Operand& r2) { | 105 REGISTER_TARGET_BODY(Call) |
80 Call(Operand(target), cond, r1, r2); | 106 INT_PTR_TARGET_BODY(Jump) |
| 107 INT_PTR_TARGET_BODY(Call) |
| 108 BYTE_PTR_TARGET_BODY(Jump) |
| 109 BYTE_PTR_TARGET_BODY(Call) |
| 110 CODE_TARGET_BODY(Jump) |
| 111 CODE_TARGET_BODY(Call) |
| 112 |
| 113 #undef COND_TYPED_ARGS |
| 114 #undef COND_ARGS |
| 115 #undef REGISTER_TARGET_BODY |
| 116 #undef BYTE_PTR_TARGET_BODY |
| 117 #undef CODE_TARGET_BODY |
| 118 |
| 119 |
| 120 void MacroAssembler::Ret(BranchDelaySlot bd) { |
| 121 Jump(Operand(ra), bd); |
81 } | 122 } |
82 | 123 |
83 | 124 |
84 void MacroAssembler::Call(intptr_t target, RelocInfo::Mode rmode, | 125 void MacroAssembler::Ret(Condition cond, Register r1, const Operand& r2, |
85 Condition cond, Register r1, const Operand& r2) { | 126 BranchDelaySlot bd) { |
86 Call(Operand(target, rmode), cond, r1, r2); | 127 Jump(Operand(ra), cond, r1, r2, bd); |
87 } | 128 } |
88 | 129 |
89 | 130 |
90 void MacroAssembler::Call(byte* target, RelocInfo::Mode rmode, | |
91 Condition cond, Register r1, const Operand& r2) { | |
92 ASSERT(!RelocInfo::IsCodeTarget(rmode)); | |
93 Call(reinterpret_cast<intptr_t>(target), rmode, cond, r1, r2); | |
94 } | |
95 | |
96 | |
97 void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, | |
98 Condition cond, Register r1, const Operand& r2) { | |
99 ASSERT(RelocInfo::IsCodeTarget(rmode)); | |
100 Call(reinterpret_cast<intptr_t>(code.location()), rmode, cond, r1, r2); | |
101 } | |
102 | |
103 | |
104 void MacroAssembler::Ret(Condition cond, Register r1, const Operand& r2) { | |
105 Jump(Operand(ra), cond, r1, r2); | |
106 } | |
107 | |
108 | |
109 void MacroAssembler::LoadRoot(Register destination, | 131 void MacroAssembler::LoadRoot(Register destination, |
110 Heap::RootListIndex index) { | 132 Heap::RootListIndex index) { |
111 lw(destination, MemOperand(s6, index << kPointerSizeLog2)); | 133 lw(destination, MemOperand(s6, index << kPointerSizeLog2)); |
112 } | 134 } |
113 | 135 |
| 136 |
114 void MacroAssembler::LoadRoot(Register destination, | 137 void MacroAssembler::LoadRoot(Register destination, |
115 Heap::RootListIndex index, | 138 Heap::RootListIndex index, |
116 Condition cond, | 139 Condition cond, |
117 Register src1, const Operand& src2) { | 140 Register src1, const Operand& src2) { |
118 Branch(NegateCondition(cond), 2, src1, src2); | 141 Branch(2, NegateCondition(cond), src1, src2); |
119 lw(destination, MemOperand(s6, index << kPointerSizeLog2)); | 142 lw(destination, MemOperand(s6, index << kPointerSizeLog2)); |
120 } | 143 } |
121 | 144 |
122 | 145 |
123 void MacroAssembler::RecordWrite(Register object, Register offset, | 146 void MacroAssembler::StoreRoot(Register source, |
| 147 Heap::RootListIndex index) { |
| 148 sw(source, MemOperand(s6, index << kPointerSizeLog2)); |
| 149 } |
| 150 |
| 151 |
| 152 void MacroAssembler::StoreRoot(Register source, |
| 153 Heap::RootListIndex index, |
| 154 Condition cond, |
| 155 Register src1, const Operand& src2) { |
| 156 Branch(2, NegateCondition(cond), src1, src2); |
| 157 sw(source, MemOperand(s6, index << kPointerSizeLog2)); |
| 158 } |
| 159 |
| 160 |
| 161 void MacroAssembler::RecordWriteHelper(Register object, |
| 162 Register address, |
| 163 Register scratch) { |
| 164 if (FLAG_debug_code) { |
| 165 // Check that the object is not in new space. |
| 166 Label not_in_new_space; |
| 167 InNewSpace(object, scratch, ne, ¬_in_new_space); |
| 168 Abort("new-space object passed to RecordWriteHelper"); |
| 169 bind(¬_in_new_space); |
| 170 } |
| 171 |
| 172 // Calculate page address: Clear bits from 0 to kPageSizeBits. |
| 173 if (mips32r2) { |
| 174 Ins(object, zero_reg, 0, kPageSizeBits); |
| 175 } else { |
| 176 // The Ins macro is slow on r1, so use shifts instead. |
| 177 srl(object, object, kPageSizeBits); |
| 178 sll(object, object, kPageSizeBits); |
| 179 } |
| 180 |
| 181 // Calculate region number. |
| 182 Ext(address, address, Page::kRegionSizeLog2, |
| 183 kPageSizeBits - Page::kRegionSizeLog2); |
| 184 |
| 185 // Mark region dirty. |
| 186 lw(scratch, MemOperand(object, Page::kDirtyFlagOffset)); |
| 187 li(at, Operand(1)); |
| 188 sllv(at, at, address); |
| 189 or_(scratch, scratch, at); |
| 190 sw(scratch, MemOperand(object, Page::kDirtyFlagOffset)); |
| 191 } |
| 192 |
| 193 |
| 194 void MacroAssembler::InNewSpace(Register object, |
| 195 Register scratch, |
| 196 Condition cc, |
| 197 Label* branch) { |
| 198 ASSERT(cc == eq || cc == ne); |
| 199 And(scratch, object, Operand(ExternalReference::new_space_mask(isolate()))); |
| 200 Branch(branch, cc, scratch, |
| 201 Operand(ExternalReference::new_space_start(isolate()))); |
| 202 } |
| 203 |
| 204 |
| 205 // Will clobber 4 registers: object, scratch0, scratch1, at. The |
| 206 // register 'object' contains a heap object pointer. The heap object |
| 207 // tag is shifted away. |
| 208 void MacroAssembler::RecordWrite(Register object, |
| 209 Operand offset, |
| 210 Register scratch0, |
| 211 Register scratch1) { |
| 212 // The compiled code assumes that record write doesn't change the |
| 213 // context register, so we check that none of the clobbered |
| 214 // registers are cp. |
| 215 ASSERT(!object.is(cp) && !scratch0.is(cp) && !scratch1.is(cp)); |
| 216 |
| 217 Label done; |
| 218 |
| 219 // First, test that the object is not in the new space. We cannot set |
| 220 // region marks for new space pages. |
| 221 InNewSpace(object, scratch0, eq, &done); |
| 222 |
| 223 // Add offset into the object. |
| 224 Addu(scratch0, object, offset); |
| 225 |
| 226 // Record the actual write. |
| 227 RecordWriteHelper(object, scratch0, scratch1); |
| 228 |
| 229 bind(&done); |
| 230 |
| 231 // Clobber all input registers when running with the debug-code flag |
| 232 // turned on to provoke errors. |
| 233 if (FLAG_debug_code) { |
| 234 li(object, Operand(BitCast<int32_t>(kZapValue))); |
| 235 li(scratch0, Operand(BitCast<int32_t>(kZapValue))); |
| 236 li(scratch1, Operand(BitCast<int32_t>(kZapValue))); |
| 237 } |
| 238 } |
| 239 |
| 240 |
| 241 // Will clobber 4 registers: object, address, scratch, ip. The |
| 242 // register 'object' contains a heap object pointer. The heap object |
| 243 // tag is shifted away. |
| 244 void MacroAssembler::RecordWrite(Register object, |
| 245 Register address, |
124 Register scratch) { | 246 Register scratch) { |
125 UNIMPLEMENTED_MIPS(); | 247 // The compiled code assumes that record write doesn't change the |
| 248 // context register, so we check that none of the clobbered |
| 249 // registers are cp. |
| 250 ASSERT(!object.is(cp) && !address.is(cp) && !scratch.is(cp)); |
| 251 |
| 252 Label done; |
| 253 |
| 254 // First, test that the object is not in the new space. We cannot set |
| 255 // region marks for new space pages. |
| 256 InNewSpace(object, scratch, eq, &done); |
| 257 |
| 258 // Record the actual write. |
| 259 RecordWriteHelper(object, address, scratch); |
| 260 |
| 261 bind(&done); |
| 262 |
| 263 // Clobber all input registers when running with the debug-code flag |
| 264 // turned on to provoke errors. |
| 265 if (FLAG_debug_code) { |
| 266 li(object, Operand(BitCast<int32_t>(kZapValue))); |
| 267 li(address, Operand(BitCast<int32_t>(kZapValue))); |
| 268 li(scratch, Operand(BitCast<int32_t>(kZapValue))); |
| 269 } |
| 270 } |
| 271 |
| 272 |
| 273 // ----------------------------------------------------------------------------- |
| 274 // Allocation support |
| 275 |
| 276 |
| 277 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, |
| 278 Register scratch, |
| 279 Label* miss) { |
| 280 Label same_contexts; |
| 281 |
| 282 ASSERT(!holder_reg.is(scratch)); |
| 283 ASSERT(!holder_reg.is(at)); |
| 284 ASSERT(!scratch.is(at)); |
| 285 |
| 286 // Load current lexical context from the stack frame. |
| 287 lw(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| 288 // In debug mode, make sure the lexical context is set. |
| 289 #ifdef DEBUG |
| 290 Check(ne, "we should not have an empty lexical context", |
| 291 scratch, Operand(zero_reg)); |
| 292 #endif |
| 293 |
| 294 // Load the global context of the current context. |
| 295 int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; |
| 296 lw(scratch, FieldMemOperand(scratch, offset)); |
| 297 lw(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset)); |
| 298 |
| 299 // Check the context is a global context. |
| 300 if (FLAG_debug_code) { |
| 301 // TODO(119): Avoid push(holder_reg)/pop(holder_reg). |
| 302 Push(holder_reg); // Temporarily save holder on the stack. |
| 303 // Read the first word and compare to the global_context_map. |
| 304 lw(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset)); |
| 305 LoadRoot(at, Heap::kGlobalContextMapRootIndex); |
| 306 Check(eq, "JSGlobalObject::global_context should be a global context.", |
| 307 holder_reg, Operand(at)); |
| 308 Pop(holder_reg); // Restore holder. |
| 309 } |
| 310 |
| 311 // Check if both contexts are the same. |
| 312 lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
| 313 Branch(&same_contexts, eq, scratch, Operand(at)); |
| 314 |
| 315 // Check the context is a global context. |
| 316 if (FLAG_debug_code) { |
| 317 // TODO(119): Avoid push(holder_reg)/pop(holder_reg). |
| 318 Push(holder_reg); // Temporarily save holder on the stack. |
| 319 mov(holder_reg, at); // Move at to its holding place. |
| 320 LoadRoot(at, Heap::kNullValueRootIndex); |
| 321 Check(ne, "JSGlobalProxy::context() should not be null.", |
| 322 holder_reg, Operand(at)); |
| 323 |
| 324 lw(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset)); |
| 325 LoadRoot(at, Heap::kGlobalContextMapRootIndex); |
| 326 Check(eq, "JSGlobalObject::global_context should be a global context.", |
| 327 holder_reg, Operand(at)); |
| 328 // Restore at is not needed. at is reloaded below. |
| 329 Pop(holder_reg); // Restore holder. |
| 330 // Restore at to holder's context. |
| 331 lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
| 332 } |
| 333 |
| 334 // Check that the security token in the calling global object is |
| 335 // compatible with the security token in the receiving global |
| 336 // object. |
| 337 int token_offset = Context::kHeaderSize + |
| 338 Context::SECURITY_TOKEN_INDEX * kPointerSize; |
| 339 |
| 340 lw(scratch, FieldMemOperand(scratch, token_offset)); |
| 341 lw(at, FieldMemOperand(at, token_offset)); |
| 342 Branch(miss, ne, scratch, Operand(at)); |
| 343 |
| 344 bind(&same_contexts); |
126 } | 345 } |
127 | 346 |
128 | 347 |
129 // --------------------------------------------------------------------------- | 348 // --------------------------------------------------------------------------- |
130 // Instruction macros | 349 // Instruction macros |
131 | 350 |
132 void MacroAssembler::Add(Register rd, Register rs, const Operand& rt) { | |
133 if (rt.is_reg()) { | |
134 add(rd, rs, rt.rm()); | |
135 } else { | |
136 if (is_int16(rt.imm32_) && !MustUseAt(rt.rmode_)) { | |
137 addi(rd, rs, rt.imm32_); | |
138 } else { | |
139 // li handles the relocation. | |
140 ASSERT(!rs.is(at)); | |
141 li(at, rt); | |
142 add(rd, rs, at); | |
143 } | |
144 } | |
145 } | |
146 | |
147 | |
148 void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) { | 351 void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) { |
149 if (rt.is_reg()) { | 352 if (rt.is_reg()) { |
150 addu(rd, rs, rt.rm()); | 353 addu(rd, rs, rt.rm()); |
151 } else { | 354 } else { |
152 if (is_int16(rt.imm32_) && !MustUseAt(rt.rmode_)) { | 355 if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { |
153 addiu(rd, rs, rt.imm32_); | 356 addiu(rd, rs, rt.imm32_); |
154 } else { | 357 } else { |
155 // li handles the relocation. | 358 // li handles the relocation. |
156 ASSERT(!rs.is(at)); | 359 ASSERT(!rs.is(at)); |
157 li(at, rt); | 360 li(at, rt); |
158 addu(rd, rs, at); | 361 addu(rd, rs, at); |
159 } | 362 } |
160 } | 363 } |
161 } | 364 } |
| 365 |
| 366 |
| 367 void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) { |
| 368 if (rt.is_reg()) { |
| 369 subu(rd, rs, rt.rm()); |
| 370 } else { |
| 371 if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { |
| 372 addiu(rd, rs, -rt.imm32_); // No subiu instr, use addiu(x, y, -imm). |
| 373 } else { |
| 374 // li handles the relocation. |
| 375 ASSERT(!rs.is(at)); |
| 376 li(at, rt); |
| 377 subu(rd, rs, at); |
| 378 } |
| 379 } |
| 380 } |
162 | 381 |
163 | 382 |
164 void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) { | 383 void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) { |
165 if (rt.is_reg()) { | 384 if (rt.is_reg()) { |
166 mul(rd, rs, rt.rm()); | 385 mul(rd, rs, rt.rm()); |
167 } else { | 386 } else { |
168 // li handles the relocation. | 387 // li handles the relocation. |
169 ASSERT(!rs.is(at)); | 388 ASSERT(!rs.is(at)); |
170 li(at, rt); | 389 li(at, rt); |
171 mul(rd, rs, at); | 390 mul(rd, rs, at); |
(...skipping 46 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
218 li(at, rt); | 437 li(at, rt); |
219 divu(rs, at); | 438 divu(rs, at); |
220 } | 439 } |
221 } | 440 } |
222 | 441 |
223 | 442 |
224 void MacroAssembler::And(Register rd, Register rs, const Operand& rt) { | 443 void MacroAssembler::And(Register rd, Register rs, const Operand& rt) { |
225 if (rt.is_reg()) { | 444 if (rt.is_reg()) { |
226 and_(rd, rs, rt.rm()); | 445 and_(rd, rs, rt.rm()); |
227 } else { | 446 } else { |
228 if (is_int16(rt.imm32_) && !MustUseAt(rt.rmode_)) { | 447 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { |
229 andi(rd, rs, rt.imm32_); | 448 andi(rd, rs, rt.imm32_); |
230 } else { | 449 } else { |
231 // li handles the relocation. | 450 // li handles the relocation. |
232 ASSERT(!rs.is(at)); | 451 ASSERT(!rs.is(at)); |
233 li(at, rt); | 452 li(at, rt); |
234 and_(rd, rs, at); | 453 and_(rd, rs, at); |
235 } | 454 } |
236 } | 455 } |
237 } | 456 } |
238 | 457 |
239 | 458 |
240 void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) { | 459 void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) { |
241 if (rt.is_reg()) { | 460 if (rt.is_reg()) { |
242 or_(rd, rs, rt.rm()); | 461 or_(rd, rs, rt.rm()); |
243 } else { | 462 } else { |
244 if (is_int16(rt.imm32_) && !MustUseAt(rt.rmode_)) { | 463 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { |
245 ori(rd, rs, rt.imm32_); | 464 ori(rd, rs, rt.imm32_); |
246 } else { | 465 } else { |
247 // li handles the relocation. | 466 // li handles the relocation. |
248 ASSERT(!rs.is(at)); | 467 ASSERT(!rs.is(at)); |
249 li(at, rt); | 468 li(at, rt); |
250 or_(rd, rs, at); | 469 or_(rd, rs, at); |
251 } | 470 } |
252 } | 471 } |
253 } | 472 } |
254 | 473 |
255 | 474 |
256 void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) { | 475 void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) { |
257 if (rt.is_reg()) { | 476 if (rt.is_reg()) { |
258 xor_(rd, rs, rt.rm()); | 477 xor_(rd, rs, rt.rm()); |
259 } else { | 478 } else { |
260 if (is_int16(rt.imm32_) && !MustUseAt(rt.rmode_)) { | 479 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { |
261 xori(rd, rs, rt.imm32_); | 480 xori(rd, rs, rt.imm32_); |
262 } else { | 481 } else { |
263 // li handles the relocation. | 482 // li handles the relocation. |
264 ASSERT(!rs.is(at)); | 483 ASSERT(!rs.is(at)); |
265 li(at, rt); | 484 li(at, rt); |
266 xor_(rd, rs, at); | 485 xor_(rd, rs, at); |
267 } | 486 } |
268 } | 487 } |
269 } | 488 } |
270 | 489 |
271 | 490 |
272 void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) { | 491 void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) { |
273 if (rt.is_reg()) { | 492 if (rt.is_reg()) { |
274 nor(rd, rs, rt.rm()); | 493 nor(rd, rs, rt.rm()); |
275 } else { | 494 } else { |
276 // li handles the relocation. | 495 // li handles the relocation. |
277 ASSERT(!rs.is(at)); | 496 ASSERT(!rs.is(at)); |
278 li(at, rt); | 497 li(at, rt); |
279 nor(rd, rs, at); | 498 nor(rd, rs, at); |
280 } | 499 } |
281 } | 500 } |
282 | 501 |
283 | 502 |
284 void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) { | 503 void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) { |
285 if (rt.is_reg()) { | 504 if (rt.is_reg()) { |
286 slt(rd, rs, rt.rm()); | 505 slt(rd, rs, rt.rm()); |
287 } else { | 506 } else { |
288 if (is_int16(rt.imm32_) && !MustUseAt(rt.rmode_)) { | 507 if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { |
289 slti(rd, rs, rt.imm32_); | 508 slti(rd, rs, rt.imm32_); |
290 } else { | 509 } else { |
291 // li handles the relocation. | 510 // li handles the relocation. |
292 ASSERT(!rs.is(at)); | 511 ASSERT(!rs.is(at)); |
293 li(at, rt); | 512 li(at, rt); |
294 slt(rd, rs, at); | 513 slt(rd, rs, at); |
295 } | 514 } |
296 } | 515 } |
297 } | 516 } |
298 | 517 |
299 | 518 |
300 void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) { | 519 void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) { |
301 if (rt.is_reg()) { | 520 if (rt.is_reg()) { |
302 sltu(rd, rs, rt.rm()); | 521 sltu(rd, rs, rt.rm()); |
303 } else { | 522 } else { |
304 if (is_int16(rt.imm32_) && !MustUseAt(rt.rmode_)) { | 523 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { |
305 sltiu(rd, rs, rt.imm32_); | 524 sltiu(rd, rs, rt.imm32_); |
306 } else { | 525 } else { |
307 // li handles the relocation. | 526 // li handles the relocation. |
308 ASSERT(!rs.is(at)); | 527 ASSERT(!rs.is(at)); |
309 li(at, rt); | 528 li(at, rt); |
310 sltu(rd, rs, at); | 529 sltu(rd, rs, at); |
311 } | 530 } |
312 } | 531 } |
313 } | 532 } |
314 | 533 |
315 | 534 |
| 535 void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) { |
| 536 if (mips32r2) { |
| 537 if (rt.is_reg()) { |
| 538 rotrv(rd, rs, rt.rm()); |
| 539 } else { |
| 540 rotr(rd, rs, rt.imm32_); |
| 541 } |
| 542 } else { |
| 543 if (rt.is_reg()) { |
| 544 subu(at, zero_reg, rt.rm()); |
| 545 sllv(at, rs, at); |
| 546 srlv(rd, rs, rt.rm()); |
| 547 or_(rd, rd, at); |
| 548 } else { |
| 549 if (rt.imm32_ == 0) { |
| 550 srl(rd, rs, 0); |
| 551 } else { |
| 552 srl(at, rs, rt.imm32_); |
| 553 sll(rd, rs, (0x20 - rt.imm32_) & 0x1f); |
| 554 or_(rd, rd, at); |
| 555 } |
| 556 } |
| 557 } |
| 558 } |
| 559 |
| 560 |
316 //------------Pseudo-instructions------------- | 561 //------------Pseudo-instructions------------- |
317 | 562 |
318 void MacroAssembler::movn(Register rd, Register rt) { | |
319 addiu(at, zero_reg, -1); // Fill at with ones. | |
320 xor_(rd, rt, at); | |
321 } | |
322 | |
323 | |
324 void MacroAssembler::li(Register rd, Operand j, bool gen2instr) { | 563 void MacroAssembler::li(Register rd, Operand j, bool gen2instr) { |
325 ASSERT(!j.is_reg()); | 564 ASSERT(!j.is_reg()); |
326 | 565 BlockTrampolinePoolScope block_trampoline_pool(this); |
327 if (!MustUseAt(j.rmode_) && !gen2instr) { | 566 if (!MustUseReg(j.rmode_) && !gen2instr) { |
328 // Normal load of an immediate value which does not need Relocation Info. | 567 // Normal load of an immediate value which does not need Relocation Info. |
329 if (is_int16(j.imm32_)) { | 568 if (is_int16(j.imm32_)) { |
330 addiu(rd, zero_reg, j.imm32_); | 569 addiu(rd, zero_reg, j.imm32_); |
331 } else if (!(j.imm32_ & HIMask)) { | 570 } else if (!(j.imm32_ & kHiMask)) { |
332 ori(rd, zero_reg, j.imm32_); | 571 ori(rd, zero_reg, j.imm32_); |
333 } else if (!(j.imm32_ & LOMask)) { | 572 } else if (!(j.imm32_ & kImm16Mask)) { |
334 lui(rd, (HIMask & j.imm32_) >> 16); | 573 lui(rd, (j.imm32_ & kHiMask) >> kLuiShift); |
335 } else { | 574 } else { |
336 lui(rd, (HIMask & j.imm32_) >> 16); | 575 lui(rd, (j.imm32_ & kHiMask) >> kLuiShift); |
337 ori(rd, rd, (LOMask & j.imm32_)); | 576 ori(rd, rd, (j.imm32_ & kImm16Mask)); |
338 } | 577 } |
339 } else if (MustUseAt(j.rmode_) || gen2instr) { | 578 } else if (MustUseReg(j.rmode_) || gen2instr) { |
340 if (MustUseAt(j.rmode_)) { | 579 if (MustUseReg(j.rmode_)) { |
341 RecordRelocInfo(j.rmode_, j.imm32_); | 580 RecordRelocInfo(j.rmode_, j.imm32_); |
342 } | 581 } |
343 // We need always the same number of instructions as we may need to patch | 582 // We need always the same number of instructions as we may need to patch |
344 // this code to load another value which may need 2 instructions to load. | 583 // this code to load another value which may need 2 instructions to load. |
345 if (is_int16(j.imm32_)) { | 584 if (is_int16(j.imm32_)) { |
346 nop(); | 585 nop(); |
347 addiu(rd, zero_reg, j.imm32_); | 586 addiu(rd, zero_reg, j.imm32_); |
348 } else if (!(j.imm32_ & HIMask)) { | 587 } else if (!(j.imm32_ & kHiMask)) { |
349 nop(); | 588 nop(); |
350 ori(rd, zero_reg, j.imm32_); | 589 ori(rd, zero_reg, j.imm32_); |
351 } else if (!(j.imm32_ & LOMask)) { | 590 } else if (!(j.imm32_ & kImm16Mask)) { |
352 nop(); | 591 nop(); |
353 lui(rd, (HIMask & j.imm32_) >> 16); | 592 lui(rd, (j.imm32_ & kHiMask) >> kLuiShift); |
354 } else { | 593 } else { |
355 lui(rd, (HIMask & j.imm32_) >> 16); | 594 lui(rd, (j.imm32_ & kHiMask) >> kLuiShift); |
356 ori(rd, rd, (LOMask & j.imm32_)); | 595 ori(rd, rd, (j.imm32_ & kImm16Mask)); |
357 } | 596 } |
358 } | 597 } |
359 } | 598 } |
360 | 599 |
361 | 600 |
362 // Exception-generating instructions and debugging support | 601 // Exception-generating instructions and debugging support |
363 void MacroAssembler::stop(const char* msg) { | 602 void MacroAssembler::stop(const char* msg) { |
364 // TO_UPGRADE: Just a break for now. Maybe we could upgrade it. | 603 // TO_UPGRADE: Just a break for now. Maybe we could upgrade it. |
365 // We use the 0x54321 value to be able to find it easily when reading memory. | 604 // We use the 0x54321 value to be able to find it easily when reading memory. |
366 break_(0x54321); | 605 break_(0x54321); |
(...skipping 43 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
410 | 649 |
411 for (int16_t i = kNumRegisters; i > 0; i--) { | 650 for (int16_t i = kNumRegisters; i > 0; i--) { |
412 if ((regs & (1 << i)) != 0) { | 651 if ((regs & (1 << i)) != 0) { |
413 lw(ToRegister(i), MemOperand(sp, 4 * (NumSaved++))); | 652 lw(ToRegister(i), MemOperand(sp, 4 * (NumSaved++))); |
414 } | 653 } |
415 } | 654 } |
416 addiu(sp, sp, 4 * NumSaved); | 655 addiu(sp, sp, 4 * NumSaved); |
417 } | 656 } |
418 | 657 |
419 | 658 |
| 659 void MacroAssembler::Ext(Register rt, |
| 660 Register rs, |
| 661 uint16_t pos, |
| 662 uint16_t size) { |
| 663 ASSERT(pos < 32); |
| 664 ASSERT(pos + size < 32); |
| 665 |
| 666 if (mips32r2) { |
| 667 ext_(rt, rs, pos, size); |
| 668 } else { |
| 669 // Move rs to rt and shift it left then right to get the |
| 670 // desired bitfield on the right side and zeroes on the left. |
| 671 sll(rt, rs, 32 - (pos + size)); |
| 672 srl(rt, rt, 32 - size); |
| 673 } |
| 674 } |
| 675 |
| 676 |
| 677 void MacroAssembler::Ins(Register rt, |
| 678 Register rs, |
| 679 uint16_t pos, |
| 680 uint16_t size) { |
| 681 ASSERT(pos < 32); |
| 682 ASSERT(pos + size < 32); |
| 683 |
| 684 if (mips32r2) { |
| 685 ins_(rt, rs, pos, size); |
| 686 } else { |
| 687 ASSERT(!rt.is(t8) && !rs.is(t8)); |
| 688 |
| 689 srl(t8, rt, pos + size); |
| 690 // The left chunk from rt that needs to |
| 691 // be saved is on the right side of t8. |
| 692 sll(at, t8, pos + size); |
| 693 // The 'at' register now contains the left chunk on |
| 694 // the left (proper position) and zeroes. |
| 695 sll(t8, rt, 32 - pos); |
| 696 // t8 now contains the right chunk on the left and zeroes. |
| 697 srl(t8, t8, 32 - pos); |
| 698 // t8 now contains the right chunk on |
| 699 // the right (proper position) and zeroes. |
| 700 or_(rt, at, t8); |
| 701 // rt now contains the left and right chunks from the original rt |
| 702 // in their proper position and zeroes in the middle. |
| 703 sll(t8, rs, 32 - size); |
| 704 // t8 now contains the chunk from rs on the left and zeroes. |
| 705 srl(t8, t8, 32 - size - pos); |
| 706 // t8 now contains the original chunk from rs in |
| 707 // the middle (proper position). |
| 708 or_(rt, rt, t8); |
| 709 // rt now contains the result of the ins instruction in R2 mode. |
| 710 } |
| 711 } |
| 712 |
| 713 |
| 714 void MacroAssembler::Cvt_d_uw(FPURegister fd, FPURegister fs) { |
| 715 // Move the data from fs to t4. |
| 716 mfc1(t4, fs); |
| 717 return Cvt_d_uw(fd, t4); |
| 718 } |
| 719 |
| 720 |
| 721 void MacroAssembler::Cvt_d_uw(FPURegister fd, Register rs) { |
| 722 // Convert rs to a FP value in fd (and fd + 1). |
| 723 // We do this by converting rs minus the MSB to avoid sign conversion, |
| 724 // then adding 2^31-1 and 1 to the result. |
| 725 |
| 726 ASSERT(!fd.is(f20)); |
| 727 ASSERT(!rs.is(t9)); |
| 728 ASSERT(!rs.is(t8)); |
| 729 |
| 730 // Save rs's MSB to t8 |
| 731 And(t8, rs, 0x80000000); |
| 732 // Remove rs's MSB. |
| 733 And(t9, rs, 0x7FFFFFFF); |
| 734 // Move t9 to fd |
| 735 mtc1(t9, fd); |
| 736 |
| 737 // Convert fd to a real FP value. |
| 738 cvt_d_w(fd, fd); |
| 739 |
| 740 Label conversion_done; |
| 741 |
| 742 // If rs's MSB was 0, it's done. |
| 743 // Otherwise we need to add that to the FP register. |
| 744 Branch(&conversion_done, eq, t8, Operand(zero_reg)); |
| 745 |
| 746 // First load 2^31 - 1 into f20. |
| 747 Or(t9, zero_reg, 0x7FFFFFFF); |
| 748 mtc1(t9, f20); |
| 749 |
| 750 // Convert it to FP and add it to fd. |
| 751 cvt_d_w(f20, f20); |
| 752 add_d(fd, fd, f20); |
| 753 // Now add 1. |
| 754 Or(t9, zero_reg, 1); |
| 755 mtc1(t9, f20); |
| 756 |
| 757 cvt_d_w(f20, f20); |
| 758 add_d(fd, fd, f20); |
| 759 bind(&conversion_done); |
| 760 } |
| 761 |
| 762 |
| 763 void MacroAssembler::Trunc_uw_d(FPURegister fd, FPURegister fs) { |
| 764 Trunc_uw_d(fs, t4); |
| 765 mtc1(t4, fd); |
| 766 } |
| 767 |
| 768 |
| 769 void MacroAssembler::Trunc_uw_d(FPURegister fd, Register rs) { |
| 770 ASSERT(!fd.is(f22)); |
| 771 ASSERT(!rs.is(t6)); |
| 772 |
| 773 // Load 2^31 into f22. |
| 774 Or(t6, zero_reg, 0x80000000); |
| 775 Cvt_d_uw(f22, t6); |
| 776 |
| 777 // Test if f22 > fd. |
| 778 c(OLT, D, fd, f22); |
| 779 |
| 780 Label simple_convert; |
| 781 // If fd < 2^31 we can convert it normally. |
| 782 bc1t(&simple_convert); |
| 783 |
| 784 // First we subtract 2^31 from fd, then trunc it to rs |
| 785 // and add 2^31 to rs. |
| 786 |
| 787 sub_d(f22, fd, f22); |
| 788 trunc_w_d(f22, f22); |
| 789 mfc1(rs, f22); |
| 790 or_(rs, rs, t6); |
| 791 |
| 792 Label done; |
| 793 Branch(&done); |
| 794 // Simple conversion. |
| 795 bind(&simple_convert); |
| 796 trunc_w_d(f22, fd); |
| 797 mfc1(rs, f22); |
| 798 |
| 799 bind(&done); |
| 800 } |
| 801 |
| 802 |
| 803 // Tries to get a signed int32 out of a double precision floating point heap |
| 804 // number. Rounds towards 0. Branch to 'not_int32' if the double is out of the |
| 805 // 32bits signed integer range. |
| 806 // This method implementation differs from the ARM version for performance |
| 807 // reasons. |
| 808 void MacroAssembler::ConvertToInt32(Register source, |
| 809 Register dest, |
| 810 Register scratch, |
| 811 Register scratch2, |
| 812 FPURegister double_scratch, |
| 813 Label *not_int32) { |
| 814 Label right_exponent, done; |
| 815 // Get exponent word (ENDIAN issues). |
| 816 lw(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset)); |
| 817 // Get exponent alone in scratch2. |
| 818 And(scratch2, scratch, Operand(HeapNumber::kExponentMask)); |
| 819 // Load dest with zero. We use this either for the final shift or |
| 820 // for the answer. |
| 821 mov(dest, zero_reg); |
| 822 // Check whether the exponent matches a 32 bit signed int that is not a Smi. |
| 823 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is |
| 824 // the exponent that we are fastest at and also the highest exponent we can |
| 825 // handle here. |
| 826 const uint32_t non_smi_exponent = |
| 827 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
| 828 // If we have a match of the int32-but-not-Smi exponent then skip some logic. |
| 829 Branch(&right_exponent, eq, scratch2, Operand(non_smi_exponent)); |
| 830 // If the exponent is higher than that then go to not_int32 case. This |
| 831 // catches numbers that don't fit in a signed int32, infinities and NaNs. |
| 832 Branch(not_int32, gt, scratch2, Operand(non_smi_exponent)); |
| 833 |
| 834 // We know the exponent is smaller than 30 (biased). If it is less than |
| 835 // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie |
| 836 // it rounds to zero. |
| 837 const uint32_t zero_exponent = |
| 838 (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift; |
| 839 Subu(scratch2, scratch2, Operand(zero_exponent)); |
| 840 // Dest already has a Smi zero. |
| 841 Branch(&done, lt, scratch2, Operand(zero_reg)); |
| 842 if (!Isolate::Current()->cpu_features()->IsSupported(FPU)) { |
| 843 // We have a shifted exponent between 0 and 30 in scratch2. |
| 844 srl(dest, scratch2, HeapNumber::kExponentShift); |
| 845 // We now have the exponent in dest. Subtract from 30 to get |
| 846 // how much to shift down. |
| 847 li(at, Operand(30)); |
| 848 subu(dest, at, dest); |
| 849 } |
| 850 bind(&right_exponent); |
| 851 if (Isolate::Current()->cpu_features()->IsSupported(FPU)) { |
| 852 CpuFeatures::Scope scope(FPU); |
| 853 // MIPS FPU instructions implementing double precision to integer |
| 854 // conversion using round to zero. Since the FP value was qualified |
| 855 // above, the resulting integer should be a legal int32. |
| 856 // The original 'Exponent' word is still in scratch. |
| 857 lwc1(double_scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset)); |
| 858 mtc1(scratch, FPURegister::from_code(double_scratch.code() + 1)); |
| 859 trunc_w_d(double_scratch, double_scratch); |
| 860 mfc1(dest, double_scratch); |
| 861 } else { |
| 862 // On entry, dest has final downshift, scratch has original sign/exp/mant. |
| 863 // Save sign bit in top bit of dest. |
| 864 And(scratch2, scratch, Operand(0x80000000)); |
| 865 Or(dest, dest, Operand(scratch2)); |
| 866 // Put back the implicit 1, just above mantissa field. |
| 867 Or(scratch, scratch, Operand(1 << HeapNumber::kExponentShift)); |
| 868 |
| 869 // Shift up the mantissa bits to take up the space the exponent used to |
| 870 // take. We just orred in the implicit bit so that took care of one and |
| 871 // we want to leave the sign bit 0 so we subtract 2 bits from the shift |
| 872 // distance. But we want to clear the sign-bit so shift one more bit |
| 873 // left, then shift right one bit. |
| 874 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
| 875 sll(scratch, scratch, shift_distance + 1); |
| 876 srl(scratch, scratch, 1); |
| 877 |
| 878 // Get the second half of the double. For some exponents we don't |
| 879 // actually need this because the bits get shifted out again, but |
| 880 // it's probably slower to test than just to do it. |
| 881 lw(scratch2, FieldMemOperand(source, HeapNumber::kMantissaOffset)); |
| 882 // Extract the top 10 bits, and insert those bottom 10 bits of scratch. |
| 883 // The width of the field here is the same as the shift amount above. |
| 884 const int field_width = shift_distance; |
| 885 Ext(scratch2, scratch2, 32-shift_distance, field_width); |
| 886 Ins(scratch, scratch2, 0, field_width); |
| 887 // Move down according to the exponent. |
| 888 srlv(scratch, scratch, dest); |
| 889 // Prepare the negative version of our integer. |
| 890 subu(scratch2, zero_reg, scratch); |
| 891 // Trick to check sign bit (msb) held in dest, count leading zero. |
| 892 // 0 indicates negative, save negative version with conditional move. |
| 893 clz(dest, dest); |
| 894 movz(scratch, scratch2, dest); |
| 895 mov(dest, scratch); |
| 896 } |
| 897 bind(&done); |
| 898 } |
| 899 |
| 900 |
420 // Emulated condtional branches do not emit a nop in the branch delay slot. | 901 // Emulated condtional branches do not emit a nop in the branch delay slot. |
421 | 902 // |
422 // Trashes the at register if no scratch register is provided. | 903 // BRANCH_ARGS_CHECK checks that conditional jump arguments are correct. |
423 void MacroAssembler::Branch(Condition cond, int16_t offset, Register rs, | 904 #define BRANCH_ARGS_CHECK(cond, rs, rt) ASSERT( \ |
424 const Operand& rt, Register scratch) { | 905 (cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) || \ |
| 906 (cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg)))) |
| 907 |
| 908 |
| 909 void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) { |
| 910 b(offset); |
| 911 |
| 912 // Emit a nop in the branch delay slot if required. |
| 913 if (bdslot == PROTECT) |
| 914 nop(); |
| 915 } |
| 916 |
| 917 |
| 918 void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs, |
| 919 const Operand& rt, |
| 920 BranchDelaySlot bdslot) { |
| 921 BRANCH_ARGS_CHECK(cond, rs, rt); |
| 922 ASSERT(!rs.is(zero_reg)); |
425 Register r2 = no_reg; | 923 Register r2 = no_reg; |
| 924 Register scratch = at; |
| 925 |
426 if (rt.is_reg()) { | 926 if (rt.is_reg()) { |
427 // We don't want any other register but scratch clobbered. | 927 // We don't want any other register but scratch clobbered. |
428 ASSERT(!scratch.is(rs) && !scratch.is(rt.rm_)); | 928 ASSERT(!scratch.is(rs) && !scratch.is(rt.rm_)); |
429 r2 = rt.rm_; | 929 r2 = rt.rm_; |
430 } else if (cond != cc_always) { | 930 switch (cond) { |
431 // We don't want any other register but scratch clobbered. | 931 case cc_always: |
432 ASSERT(!scratch.is(rs)); | 932 b(offset); |
433 r2 = scratch; | 933 break; |
434 li(r2, rt); | 934 case eq: |
| 935 beq(rs, r2, offset); |
| 936 break; |
| 937 case ne: |
| 938 bne(rs, r2, offset); |
| 939 break; |
| 940 // Signed comparison |
| 941 case greater: |
| 942 if (r2.is(zero_reg)) { |
| 943 bgtz(rs, offset); |
| 944 } else { |
| 945 slt(scratch, r2, rs); |
| 946 bne(scratch, zero_reg, offset); |
| 947 } |
| 948 break; |
| 949 case greater_equal: |
| 950 if (r2.is(zero_reg)) { |
| 951 bgez(rs, offset); |
| 952 } else { |
| 953 slt(scratch, rs, r2); |
| 954 beq(scratch, zero_reg, offset); |
| 955 } |
| 956 break; |
| 957 case less: |
| 958 if (r2.is(zero_reg)) { |
| 959 bltz(rs, offset); |
| 960 } else { |
| 961 slt(scratch, rs, r2); |
| 962 bne(scratch, zero_reg, offset); |
| 963 } |
| 964 break; |
| 965 case less_equal: |
| 966 if (r2.is(zero_reg)) { |
| 967 blez(rs, offset); |
| 968 } else { |
| 969 slt(scratch, r2, rs); |
| 970 beq(scratch, zero_reg, offset); |
| 971 } |
| 972 break; |
| 973 // Unsigned comparison. |
| 974 case Ugreater: |
| 975 if (r2.is(zero_reg)) { |
| 976 bgtz(rs, offset); |
| 977 } else { |
| 978 sltu(scratch, r2, rs); |
| 979 bne(scratch, zero_reg, offset); |
| 980 } |
| 981 break; |
| 982 case Ugreater_equal: |
| 983 if (r2.is(zero_reg)) { |
| 984 bgez(rs, offset); |
| 985 } else { |
| 986 sltu(scratch, rs, r2); |
| 987 beq(scratch, zero_reg, offset); |
| 988 } |
| 989 break; |
| 990 case Uless: |
| 991 if (r2.is(zero_reg)) { |
| 992 b(offset); |
| 993 } else { |
| 994 sltu(scratch, rs, r2); |
| 995 bne(scratch, zero_reg, offset); |
| 996 } |
| 997 break; |
| 998 case Uless_equal: |
| 999 if (r2.is(zero_reg)) { |
| 1000 b(offset); |
| 1001 } else { |
| 1002 sltu(scratch, r2, rs); |
| 1003 beq(scratch, zero_reg, offset); |
| 1004 } |
| 1005 break; |
| 1006 default: |
| 1007 UNREACHABLE(); |
| 1008 } |
| 1009 } else { |
| 1010 // Be careful to always use shifted_branch_offset only just before the |
| 1011 // branch instruction, as the location will be remember for patching the |
| 1012 // target. |
| 1013 switch (cond) { |
| 1014 case cc_always: |
| 1015 b(offset); |
| 1016 break; |
| 1017 case eq: |
| 1018 // We don't want any other register but scratch clobbered. |
| 1019 ASSERT(!scratch.is(rs)); |
| 1020 r2 = scratch; |
| 1021 li(r2, rt); |
| 1022 beq(rs, r2, offset); |
| 1023 break; |
| 1024 case ne: |
| 1025 // We don't want any other register but scratch clobbered. |
| 1026 ASSERT(!scratch.is(rs)); |
| 1027 r2 = scratch; |
| 1028 li(r2, rt); |
| 1029 bne(rs, r2, offset); |
| 1030 break; |
| 1031 // Signed comparison |
| 1032 case greater: |
| 1033 if (rt.imm32_ == 0) { |
| 1034 bgtz(rs, offset); |
| 1035 } else { |
| 1036 r2 = scratch; |
| 1037 li(r2, rt); |
| 1038 slt(scratch, r2, rs); |
| 1039 bne(scratch, zero_reg, offset); |
| 1040 } |
| 1041 break; |
| 1042 case greater_equal: |
| 1043 if (rt.imm32_ == 0) { |
| 1044 bgez(rs, offset); |
| 1045 } else if (is_int16(rt.imm32_)) { |
| 1046 slti(scratch, rs, rt.imm32_); |
| 1047 beq(scratch, zero_reg, offset); |
| 1048 } else { |
| 1049 r2 = scratch; |
| 1050 li(r2, rt); |
| 1051 sltu(scratch, rs, r2); |
| 1052 beq(scratch, zero_reg, offset); |
| 1053 } |
| 1054 break; |
| 1055 case less: |
| 1056 if (rt.imm32_ == 0) { |
| 1057 bltz(rs, offset); |
| 1058 } else if (is_int16(rt.imm32_)) { |
| 1059 slti(scratch, rs, rt.imm32_); |
| 1060 bne(scratch, zero_reg, offset); |
| 1061 } else { |
| 1062 r2 = scratch; |
| 1063 li(r2, rt); |
| 1064 slt(scratch, rs, r2); |
| 1065 bne(scratch, zero_reg, offset); |
| 1066 } |
| 1067 break; |
| 1068 case less_equal: |
| 1069 if (rt.imm32_ == 0) { |
| 1070 blez(rs, offset); |
| 1071 } else { |
| 1072 r2 = scratch; |
| 1073 li(r2, rt); |
| 1074 slt(scratch, r2, rs); |
| 1075 beq(scratch, zero_reg, offset); |
| 1076 } |
| 1077 break; |
| 1078 // Unsigned comparison. |
| 1079 case Ugreater: |
| 1080 if (rt.imm32_ == 0) { |
| 1081 bgtz(rs, offset); |
| 1082 } else { |
| 1083 r2 = scratch; |
| 1084 li(r2, rt); |
| 1085 sltu(scratch, r2, rs); |
| 1086 bne(scratch, zero_reg, offset); |
| 1087 } |
| 1088 break; |
| 1089 case Ugreater_equal: |
| 1090 if (rt.imm32_ == 0) { |
| 1091 bgez(rs, offset); |
| 1092 } else if (is_int16(rt.imm32_)) { |
| 1093 sltiu(scratch, rs, rt.imm32_); |
| 1094 beq(scratch, zero_reg, offset); |
| 1095 } else { |
| 1096 r2 = scratch; |
| 1097 li(r2, rt); |
| 1098 sltu(scratch, rs, r2); |
| 1099 beq(scratch, zero_reg, offset); |
| 1100 } |
| 1101 break; |
| 1102 case Uless: |
| 1103 if (rt.imm32_ == 0) { |
| 1104 b(offset); |
| 1105 } else if (is_int16(rt.imm32_)) { |
| 1106 sltiu(scratch, rs, rt.imm32_); |
| 1107 bne(scratch, zero_reg, offset); |
| 1108 } else { |
| 1109 r2 = scratch; |
| 1110 li(r2, rt); |
| 1111 sltu(scratch, rs, r2); |
| 1112 bne(scratch, zero_reg, offset); |
| 1113 } |
| 1114 break; |
| 1115 case Uless_equal: |
| 1116 if (rt.imm32_ == 0) { |
| 1117 b(offset); |
| 1118 } else { |
| 1119 r2 = scratch; |
| 1120 li(r2, rt); |
| 1121 sltu(scratch, r2, rs); |
| 1122 beq(scratch, zero_reg, offset); |
| 1123 } |
| 1124 break; |
| 1125 default: |
| 1126 UNREACHABLE(); |
| 1127 } |
435 } | 1128 } |
436 | 1129 // Emit a nop in the branch delay slot if required. |
437 switch (cond) { | 1130 if (bdslot == PROTECT) |
438 case cc_always: | 1131 nop(); |
439 b(offset); | 1132 } |
440 break; | 1133 |
441 case eq: | 1134 |
442 beq(rs, r2, offset); | 1135 void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) { |
443 break; | 1136 // We use branch_offset as an argument for the branch instructions to be sure |
444 case ne: | 1137 // it is called just before generating the branch instruction, as needed. |
445 bne(rs, r2, offset); | 1138 |
446 break; | 1139 b(shifted_branch_offset(L, false)); |
447 | 1140 |
| 1141 // Emit a nop in the branch delay slot if required. |
| 1142 if (bdslot == PROTECT) |
| 1143 nop(); |
| 1144 } |
| 1145 |
| 1146 |
| 1147 void MacroAssembler::Branch(Label* L, Condition cond, Register rs, |
| 1148 const Operand& rt, |
| 1149 BranchDelaySlot bdslot) { |
| 1150 BRANCH_ARGS_CHECK(cond, rs, rt); |
| 1151 |
| 1152 int32_t offset; |
| 1153 Register r2 = no_reg; |
| 1154 Register scratch = at; |
| 1155 if (rt.is_reg()) { |
| 1156 r2 = rt.rm_; |
| 1157 // Be careful to always use shifted_branch_offset only just before the |
| 1158 // branch instruction, as the location will be remember for patching the |
| 1159 // target. |
| 1160 switch (cond) { |
| 1161 case cc_always: |
| 1162 offset = shifted_branch_offset(L, false); |
| 1163 b(offset); |
| 1164 break; |
| 1165 case eq: |
| 1166 offset = shifted_branch_offset(L, false); |
| 1167 beq(rs, r2, offset); |
| 1168 break; |
| 1169 case ne: |
| 1170 offset = shifted_branch_offset(L, false); |
| 1171 bne(rs, r2, offset); |
| 1172 break; |
448 // Signed comparison | 1173 // Signed comparison |
449 case greater: | 1174 case greater: |
450 slt(scratch, r2, rs); | 1175 if (r2.is(zero_reg)) { |
451 bne(scratch, zero_reg, offset); | 1176 offset = shifted_branch_offset(L, false); |
452 break; | 1177 bgtz(rs, offset); |
453 case greater_equal: | 1178 } else { |
454 slt(scratch, rs, r2); | 1179 slt(scratch, r2, rs); |
455 beq(scratch, zero_reg, offset); | 1180 offset = shifted_branch_offset(L, false); |
456 break; | 1181 bne(scratch, zero_reg, offset); |
457 case less: | 1182 } |
458 slt(scratch, rs, r2); | 1183 break; |
459 bne(scratch, zero_reg, offset); | 1184 case greater_equal: |
460 break; | 1185 if (r2.is(zero_reg)) { |
461 case less_equal: | 1186 offset = shifted_branch_offset(L, false); |
462 slt(scratch, r2, rs); | 1187 bgez(rs, offset); |
463 beq(scratch, zero_reg, offset); | 1188 } else { |
464 break; | 1189 slt(scratch, rs, r2); |
465 | 1190 offset = shifted_branch_offset(L, false); |
| 1191 beq(scratch, zero_reg, offset); |
| 1192 } |
| 1193 break; |
| 1194 case less: |
| 1195 if (r2.is(zero_reg)) { |
| 1196 offset = shifted_branch_offset(L, false); |
| 1197 bltz(rs, offset); |
| 1198 } else { |
| 1199 slt(scratch, rs, r2); |
| 1200 offset = shifted_branch_offset(L, false); |
| 1201 bne(scratch, zero_reg, offset); |
| 1202 } |
| 1203 break; |
| 1204 case less_equal: |
| 1205 if (r2.is(zero_reg)) { |
| 1206 offset = shifted_branch_offset(L, false); |
| 1207 blez(rs, offset); |
| 1208 } else { |
| 1209 slt(scratch, r2, rs); |
| 1210 offset = shifted_branch_offset(L, false); |
| 1211 beq(scratch, zero_reg, offset); |
| 1212 } |
| 1213 break; |
466 // Unsigned comparison. | 1214 // Unsigned comparison. |
467 case Ugreater: | 1215 case Ugreater: |
468 sltu(scratch, r2, rs); | 1216 if (r2.is(zero_reg)) { |
469 bne(scratch, zero_reg, offset); | 1217 offset = shifted_branch_offset(L, false); |
470 break; | 1218 bgtz(rs, offset); |
471 case Ugreater_equal: | 1219 } else { |
472 sltu(scratch, rs, r2); | 1220 sltu(scratch, r2, rs); |
473 beq(scratch, zero_reg, offset); | 1221 offset = shifted_branch_offset(L, false); |
474 break; | 1222 bne(scratch, zero_reg, offset); |
475 case Uless: | 1223 } |
476 sltu(scratch, rs, r2); | 1224 break; |
477 bne(scratch, zero_reg, offset); | 1225 case Ugreater_equal: |
478 break; | 1226 if (r2.is(zero_reg)) { |
479 case Uless_equal: | 1227 offset = shifted_branch_offset(L, false); |
480 sltu(scratch, r2, rs); | 1228 bgez(rs, offset); |
481 beq(scratch, zero_reg, offset); | 1229 } else { |
482 break; | 1230 sltu(scratch, rs, r2); |
483 | 1231 offset = shifted_branch_offset(L, false); |
484 default: | 1232 beq(scratch, zero_reg, offset); |
485 UNREACHABLE(); | 1233 } |
| 1234 break; |
| 1235 case Uless: |
| 1236 if (r2.is(zero_reg)) { |
| 1237 offset = shifted_branch_offset(L, false); |
| 1238 b(offset); |
| 1239 } else { |
| 1240 sltu(scratch, rs, r2); |
| 1241 offset = shifted_branch_offset(L, false); |
| 1242 bne(scratch, zero_reg, offset); |
| 1243 } |
| 1244 break; |
| 1245 case Uless_equal: |
| 1246 if (r2.is(zero_reg)) { |
| 1247 offset = shifted_branch_offset(L, false); |
| 1248 b(offset); |
| 1249 } else { |
| 1250 sltu(scratch, r2, rs); |
| 1251 offset = shifted_branch_offset(L, false); |
| 1252 beq(scratch, zero_reg, offset); |
| 1253 } |
| 1254 break; |
| 1255 default: |
| 1256 UNREACHABLE(); |
| 1257 } |
| 1258 } else { |
| 1259 // Be careful to always use shifted_branch_offset only just before the |
| 1260 // branch instruction, as the location will be remember for patching the |
| 1261 // target. |
| 1262 switch (cond) { |
| 1263 case cc_always: |
| 1264 offset = shifted_branch_offset(L, false); |
| 1265 b(offset); |
| 1266 break; |
| 1267 case eq: |
| 1268 r2 = scratch; |
| 1269 li(r2, rt); |
| 1270 offset = shifted_branch_offset(L, false); |
| 1271 beq(rs, r2, offset); |
| 1272 break; |
| 1273 case ne: |
| 1274 r2 = scratch; |
| 1275 li(r2, rt); |
| 1276 offset = shifted_branch_offset(L, false); |
| 1277 bne(rs, r2, offset); |
| 1278 break; |
| 1279 // Signed comparison |
| 1280 case greater: |
| 1281 if (rt.imm32_ == 0) { |
| 1282 offset = shifted_branch_offset(L, false); |
| 1283 bgtz(rs, offset); |
| 1284 } else { |
| 1285 r2 = scratch; |
| 1286 li(r2, rt); |
| 1287 slt(scratch, r2, rs); |
| 1288 offset = shifted_branch_offset(L, false); |
| 1289 bne(scratch, zero_reg, offset); |
| 1290 } |
| 1291 break; |
| 1292 case greater_equal: |
| 1293 if (rt.imm32_ == 0) { |
| 1294 offset = shifted_branch_offset(L, false); |
| 1295 bgez(rs, offset); |
| 1296 } else if (is_int16(rt.imm32_)) { |
| 1297 slti(scratch, rs, rt.imm32_); |
| 1298 offset = shifted_branch_offset(L, false); |
| 1299 beq(scratch, zero_reg, offset); |
| 1300 } else { |
| 1301 r2 = scratch; |
| 1302 li(r2, rt); |
| 1303 sltu(scratch, rs, r2); |
| 1304 offset = shifted_branch_offset(L, false); |
| 1305 beq(scratch, zero_reg, offset); |
| 1306 } |
| 1307 break; |
| 1308 case less: |
| 1309 if (rt.imm32_ == 0) { |
| 1310 offset = shifted_branch_offset(L, false); |
| 1311 bltz(rs, offset); |
| 1312 } else if (is_int16(rt.imm32_)) { |
| 1313 slti(scratch, rs, rt.imm32_); |
| 1314 offset = shifted_branch_offset(L, false); |
| 1315 bne(scratch, zero_reg, offset); |
| 1316 } else { |
| 1317 r2 = scratch; |
| 1318 li(r2, rt); |
| 1319 slt(scratch, rs, r2); |
| 1320 offset = shifted_branch_offset(L, false); |
| 1321 bne(scratch, zero_reg, offset); |
| 1322 } |
| 1323 break; |
| 1324 case less_equal: |
| 1325 if (rt.imm32_ == 0) { |
| 1326 offset = shifted_branch_offset(L, false); |
| 1327 blez(rs, offset); |
| 1328 } else { |
| 1329 r2 = scratch; |
| 1330 li(r2, rt); |
| 1331 slt(scratch, r2, rs); |
| 1332 offset = shifted_branch_offset(L, false); |
| 1333 beq(scratch, zero_reg, offset); |
| 1334 } |
| 1335 break; |
| 1336 // Unsigned comparison. |
| 1337 case Ugreater: |
| 1338 if (rt.imm32_ == 0) { |
| 1339 offset = shifted_branch_offset(L, false); |
| 1340 bgtz(rs, offset); |
| 1341 } else { |
| 1342 r2 = scratch; |
| 1343 li(r2, rt); |
| 1344 sltu(scratch, r2, rs); |
| 1345 offset = shifted_branch_offset(L, false); |
| 1346 bne(scratch, zero_reg, offset); |
| 1347 } |
| 1348 break; |
| 1349 case Ugreater_equal: |
| 1350 if (rt.imm32_ == 0) { |
| 1351 offset = shifted_branch_offset(L, false); |
| 1352 bgez(rs, offset); |
| 1353 } else if (is_int16(rt.imm32_)) { |
| 1354 sltiu(scratch, rs, rt.imm32_); |
| 1355 offset = shifted_branch_offset(L, false); |
| 1356 beq(scratch, zero_reg, offset); |
| 1357 } else { |
| 1358 r2 = scratch; |
| 1359 li(r2, rt); |
| 1360 sltu(scratch, rs, r2); |
| 1361 offset = shifted_branch_offset(L, false); |
| 1362 beq(scratch, zero_reg, offset); |
| 1363 } |
| 1364 break; |
| 1365 case Uless: |
| 1366 if (rt.imm32_ == 0) { |
| 1367 offset = shifted_branch_offset(L, false); |
| 1368 b(offset); |
| 1369 } else if (is_int16(rt.imm32_)) { |
| 1370 sltiu(scratch, rs, rt.imm32_); |
| 1371 offset = shifted_branch_offset(L, false); |
| 1372 bne(scratch, zero_reg, offset); |
| 1373 } else { |
| 1374 r2 = scratch; |
| 1375 li(r2, rt); |
| 1376 sltu(scratch, rs, r2); |
| 1377 offset = shifted_branch_offset(L, false); |
| 1378 bne(scratch, zero_reg, offset); |
| 1379 } |
| 1380 break; |
| 1381 case Uless_equal: |
| 1382 if (rt.imm32_ == 0) { |
| 1383 offset = shifted_branch_offset(L, false); |
| 1384 b(offset); |
| 1385 } else { |
| 1386 r2 = scratch; |
| 1387 li(r2, rt); |
| 1388 sltu(scratch, r2, rs); |
| 1389 offset = shifted_branch_offset(L, false); |
| 1390 beq(scratch, zero_reg, offset); |
| 1391 } |
| 1392 break; |
| 1393 default: |
| 1394 UNREACHABLE(); |
| 1395 } |
486 } | 1396 } |
487 // Emit a nop in the branch delay slot. | 1397 // Check that offset could actually hold on an int16_t. |
488 nop(); | 1398 ASSERT(is_int16(offset)); |
489 } | 1399 // Emit a nop in the branch delay slot if required. |
490 | 1400 if (bdslot == PROTECT) |
491 | 1401 nop(); |
492 void MacroAssembler::Branch(Condition cond, Label* L, Register rs, | 1402 } |
493 const Operand& rt, Register scratch) { | 1403 |
| 1404 |
| 1405 // We need to use a bgezal or bltzal, but they can't be used directly with the |
| 1406 // slt instructions. We could use sub or add instead but we would miss overflow |
| 1407 // cases, so we keep slt and add an intermediate third instruction. |
| 1408 void MacroAssembler::BranchAndLink(int16_t offset, |
| 1409 BranchDelaySlot bdslot) { |
| 1410 bal(offset); |
| 1411 |
| 1412 // Emit a nop in the branch delay slot if required. |
| 1413 if (bdslot == PROTECT) |
| 1414 nop(); |
| 1415 } |
| 1416 |
| 1417 |
| 1418 void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs, |
| 1419 const Operand& rt, |
| 1420 BranchDelaySlot bdslot) { |
| 1421 BRANCH_ARGS_CHECK(cond, rs, rt); |
494 Register r2 = no_reg; | 1422 Register r2 = no_reg; |
| 1423 Register scratch = at; |
| 1424 |
495 if (rt.is_reg()) { | 1425 if (rt.is_reg()) { |
496 r2 = rt.rm_; | 1426 r2 = rt.rm_; |
497 } else if (cond != cc_always) { | 1427 } else if (cond != cc_always) { |
498 r2 = scratch; | |
499 li(r2, rt); | |
500 } | |
501 | |
502 // We use branch_offset as an argument for the branch instructions to be sure | |
503 // it is called just before generating the branch instruction, as needed. | |
504 | |
505 switch (cond) { | |
506 case cc_always: | |
507 b(shifted_branch_offset(L, false)); | |
508 break; | |
509 case eq: | |
510 beq(rs, r2, shifted_branch_offset(L, false)); | |
511 break; | |
512 case ne: | |
513 bne(rs, r2, shifted_branch_offset(L, false)); | |
514 break; | |
515 | |
516 // Signed comparison | |
517 case greater: | |
518 slt(scratch, r2, rs); | |
519 bne(scratch, zero_reg, shifted_branch_offset(L, false)); | |
520 break; | |
521 case greater_equal: | |
522 slt(scratch, rs, r2); | |
523 beq(scratch, zero_reg, shifted_branch_offset(L, false)); | |
524 break; | |
525 case less: | |
526 slt(scratch, rs, r2); | |
527 bne(scratch, zero_reg, shifted_branch_offset(L, false)); | |
528 break; | |
529 case less_equal: | |
530 slt(scratch, r2, rs); | |
531 beq(scratch, zero_reg, shifted_branch_offset(L, false)); | |
532 break; | |
533 | |
534 // Unsigned comparison. | |
535 case Ugreater: | |
536 sltu(scratch, r2, rs); | |
537 bne(scratch, zero_reg, shifted_branch_offset(L, false)); | |
538 break; | |
539 case Ugreater_equal: | |
540 sltu(scratch, rs, r2); | |
541 beq(scratch, zero_reg, shifted_branch_offset(L, false)); | |
542 break; | |
543 case Uless: | |
544 sltu(scratch, rs, r2); | |
545 bne(scratch, zero_reg, shifted_branch_offset(L, false)); | |
546 break; | |
547 case Uless_equal: | |
548 sltu(scratch, r2, rs); | |
549 beq(scratch, zero_reg, shifted_branch_offset(L, false)); | |
550 break; | |
551 | |
552 default: | |
553 UNREACHABLE(); | |
554 } | |
555 // Emit a nop in the branch delay slot. | |
556 nop(); | |
557 } | |
558 | |
559 | |
560 // Trashes the at register if no scratch register is provided. | |
561 // We need to use a bgezal or bltzal, but they can't be used directly with the | |
562 // slt instructions. We could use sub or add instead but we would miss overflow | |
563 // cases, so we keep slt and add an intermediate third instruction. | |
564 void MacroAssembler::BranchAndLink(Condition cond, int16_t offset, Register rs, | |
565 const Operand& rt, Register scratch) { | |
566 Register r2 = no_reg; | |
567 if (rt.is_reg()) { | |
568 r2 = rt.rm_; | |
569 } else if (cond != cc_always) { | |
570 r2 = scratch; | 1428 r2 = scratch; |
571 li(r2, rt); | 1429 li(r2, rt); |
572 } | 1430 } |
573 | 1431 |
574 switch (cond) { | 1432 switch (cond) { |
575 case cc_always: | 1433 case cc_always: |
576 bal(offset); | 1434 bal(offset); |
577 break; | 1435 break; |
578 case eq: | 1436 case eq: |
579 bne(rs, r2, 2); | 1437 bne(rs, r2, 2); |
(...skipping 46 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
626 break; | 1484 break; |
627 case Uless_equal: | 1485 case Uless_equal: |
628 sltu(scratch, r2, rs); | 1486 sltu(scratch, r2, rs); |
629 addiu(scratch, scratch, -1); | 1487 addiu(scratch, scratch, -1); |
630 bltzal(scratch, offset); | 1488 bltzal(scratch, offset); |
631 break; | 1489 break; |
632 | 1490 |
633 default: | 1491 default: |
634 UNREACHABLE(); | 1492 UNREACHABLE(); |
635 } | 1493 } |
636 // Emit a nop in the branch delay slot. | 1494 // Emit a nop in the branch delay slot if required. |
637 nop(); | 1495 if (bdslot == PROTECT) |
| 1496 nop(); |
638 } | 1497 } |
639 | 1498 |
640 | 1499 |
641 void MacroAssembler::BranchAndLink(Condition cond, Label* L, Register rs, | 1500 void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) { |
642 const Operand& rt, Register scratch) { | 1501 bal(shifted_branch_offset(L, false)); |
| 1502 |
| 1503 // Emit a nop in the branch delay slot if required. |
| 1504 if (bdslot == PROTECT) |
| 1505 nop(); |
| 1506 } |
| 1507 |
| 1508 |
| 1509 void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs, |
| 1510 const Operand& rt, |
| 1511 BranchDelaySlot bdslot) { |
| 1512 BRANCH_ARGS_CHECK(cond, rs, rt); |
| 1513 |
| 1514 int32_t offset; |
643 Register r2 = no_reg; | 1515 Register r2 = no_reg; |
| 1516 Register scratch = at; |
644 if (rt.is_reg()) { | 1517 if (rt.is_reg()) { |
645 r2 = rt.rm_; | 1518 r2 = rt.rm_; |
646 } else if (cond != cc_always) { | 1519 } else if (cond != cc_always) { |
647 r2 = scratch; | 1520 r2 = scratch; |
648 li(r2, rt); | 1521 li(r2, rt); |
649 } | 1522 } |
650 | 1523 |
651 switch (cond) { | 1524 switch (cond) { |
652 case cc_always: | 1525 case cc_always: |
653 bal(shifted_branch_offset(L, false)); | 1526 offset = shifted_branch_offset(L, false); |
| 1527 bal(offset); |
654 break; | 1528 break; |
655 case eq: | 1529 case eq: |
656 bne(rs, r2, 2); | 1530 bne(rs, r2, 2); |
657 nop(); | 1531 nop(); |
658 bal(shifted_branch_offset(L, false)); | 1532 offset = shifted_branch_offset(L, false); |
| 1533 bal(offset); |
659 break; | 1534 break; |
660 case ne: | 1535 case ne: |
661 beq(rs, r2, 2); | 1536 beq(rs, r2, 2); |
662 nop(); | 1537 nop(); |
663 bal(shifted_branch_offset(L, false)); | 1538 offset = shifted_branch_offset(L, false); |
| 1539 bal(offset); |
664 break; | 1540 break; |
665 | 1541 |
666 // Signed comparison | 1542 // Signed comparison |
667 case greater: | 1543 case greater: |
668 slt(scratch, r2, rs); | 1544 slt(scratch, r2, rs); |
669 addiu(scratch, scratch, -1); | 1545 addiu(scratch, scratch, -1); |
670 bgezal(scratch, shifted_branch_offset(L, false)); | 1546 offset = shifted_branch_offset(L, false); |
| 1547 bgezal(scratch, offset); |
671 break; | 1548 break; |
672 case greater_equal: | 1549 case greater_equal: |
673 slt(scratch, rs, r2); | 1550 slt(scratch, rs, r2); |
674 addiu(scratch, scratch, -1); | 1551 addiu(scratch, scratch, -1); |
675 bltzal(scratch, shifted_branch_offset(L, false)); | 1552 offset = shifted_branch_offset(L, false); |
| 1553 bltzal(scratch, offset); |
676 break; | 1554 break; |
677 case less: | 1555 case less: |
678 slt(scratch, rs, r2); | 1556 slt(scratch, rs, r2); |
679 addiu(scratch, scratch, -1); | 1557 addiu(scratch, scratch, -1); |
680 bgezal(scratch, shifted_branch_offset(L, false)); | 1558 offset = shifted_branch_offset(L, false); |
| 1559 bgezal(scratch, offset); |
681 break; | 1560 break; |
682 case less_equal: | 1561 case less_equal: |
683 slt(scratch, r2, rs); | 1562 slt(scratch, r2, rs); |
684 addiu(scratch, scratch, -1); | 1563 addiu(scratch, scratch, -1); |
685 bltzal(scratch, shifted_branch_offset(L, false)); | 1564 offset = shifted_branch_offset(L, false); |
| 1565 bltzal(scratch, offset); |
686 break; | 1566 break; |
687 | 1567 |
688 // Unsigned comparison. | 1568 // Unsigned comparison. |
689 case Ugreater: | 1569 case Ugreater: |
690 sltu(scratch, r2, rs); | 1570 sltu(scratch, r2, rs); |
691 addiu(scratch, scratch, -1); | 1571 addiu(scratch, scratch, -1); |
692 bgezal(scratch, shifted_branch_offset(L, false)); | 1572 offset = shifted_branch_offset(L, false); |
| 1573 bgezal(scratch, offset); |
693 break; | 1574 break; |
694 case Ugreater_equal: | 1575 case Ugreater_equal: |
695 sltu(scratch, rs, r2); | 1576 sltu(scratch, rs, r2); |
696 addiu(scratch, scratch, -1); | 1577 addiu(scratch, scratch, -1); |
697 bltzal(scratch, shifted_branch_offset(L, false)); | 1578 offset = shifted_branch_offset(L, false); |
| 1579 bltzal(scratch, offset); |
698 break; | 1580 break; |
699 case Uless: | 1581 case Uless: |
700 sltu(scratch, rs, r2); | 1582 sltu(scratch, rs, r2); |
701 addiu(scratch, scratch, -1); | 1583 addiu(scratch, scratch, -1); |
702 bgezal(scratch, shifted_branch_offset(L, false)); | 1584 offset = shifted_branch_offset(L, false); |
| 1585 bgezal(scratch, offset); |
703 break; | 1586 break; |
704 case Uless_equal: | 1587 case Uless_equal: |
705 sltu(scratch, r2, rs); | 1588 sltu(scratch, r2, rs); |
706 addiu(scratch, scratch, -1); | 1589 addiu(scratch, scratch, -1); |
707 bltzal(scratch, shifted_branch_offset(L, false)); | 1590 offset = shifted_branch_offset(L, false); |
| 1591 bltzal(scratch, offset); |
708 break; | 1592 break; |
709 | 1593 |
710 default: | 1594 default: |
711 UNREACHABLE(); | 1595 UNREACHABLE(); |
712 } | 1596 } |
713 // Emit a nop in the branch delay slot. | 1597 |
714 nop(); | 1598 // Check that offset could actually hold on an int16_t. |
| 1599 ASSERT(is_int16(offset)); |
| 1600 |
| 1601 // Emit a nop in the branch delay slot if required. |
| 1602 if (bdslot == PROTECT) |
| 1603 nop(); |
| 1604 } |
| 1605 |
| 1606 |
| 1607 void MacroAssembler::Jump(const Operand& target, BranchDelaySlot bdslot) { |
| 1608 BlockTrampolinePoolScope block_trampoline_pool(this); |
| 1609 if (target.is_reg()) { |
| 1610 jr(target.rm()); |
| 1611 } else { |
| 1612 if (!MustUseReg(target.rmode_)) { |
| 1613 j(target.imm32_); |
| 1614 } else { |
| 1615 li(t9, target); |
| 1616 jr(t9); |
| 1617 } |
| 1618 } |
| 1619 // Emit a nop in the branch delay slot if required. |
| 1620 if (bdslot == PROTECT) |
| 1621 nop(); |
715 } | 1622 } |
716 | 1623 |
717 | 1624 |
718 void MacroAssembler::Jump(const Operand& target, | 1625 void MacroAssembler::Jump(const Operand& target, |
719 Condition cond, Register rs, const Operand& rt) { | 1626 Condition cond, Register rs, const Operand& rt, |
| 1627 BranchDelaySlot bdslot) { |
| 1628 BlockTrampolinePoolScope block_trampoline_pool(this); |
| 1629 BRANCH_ARGS_CHECK(cond, rs, rt); |
720 if (target.is_reg()) { | 1630 if (target.is_reg()) { |
721 if (cond == cc_always) { | 1631 if (cond == cc_always) { |
722 jr(target.rm()); | 1632 jr(target.rm()); |
723 } else { | 1633 } else { |
724 Branch(NegateCondition(cond), 2, rs, rt); | 1634 Branch(2, NegateCondition(cond), rs, rt); |
725 jr(target.rm()); | 1635 jr(target.rm()); |
726 } | 1636 } |
| 1637 } else { // Not register target. |
| 1638 if (!MustUseReg(target.rmode_)) { |
| 1639 if (cond == cc_always) { |
| 1640 j(target.imm32_); |
| 1641 } else { |
| 1642 Branch(2, NegateCondition(cond), rs, rt); |
| 1643 j(target.imm32_); // Will generate only one instruction. |
| 1644 } |
| 1645 } else { // MustUseReg(target) |
| 1646 li(t9, target); |
| 1647 if (cond == cc_always) { |
| 1648 jr(t9); |
| 1649 } else { |
| 1650 Branch(2, NegateCondition(cond), rs, rt); |
| 1651 jr(t9); // Will generate only one instruction. |
| 1652 } |
| 1653 } |
| 1654 } |
| 1655 // Emit a nop in the branch delay slot if required. |
| 1656 if (bdslot == PROTECT) |
| 1657 nop(); |
| 1658 } |
| 1659 |
| 1660 |
| 1661 // Note: To call gcc-compiled C code on mips, you must call thru t9. |
| 1662 void MacroAssembler::Call(const Operand& target, BranchDelaySlot bdslot) { |
| 1663 BlockTrampolinePoolScope block_trampoline_pool(this); |
| 1664 if (target.is_reg()) { |
| 1665 jalr(target.rm()); |
727 } else { // !target.is_reg() | 1666 } else { // !target.is_reg() |
728 if (!MustUseAt(target.rmode_)) { | 1667 if (!MustUseReg(target.rmode_)) { |
729 if (cond == cc_always) { | 1668 jal(target.imm32_); |
730 j(target.imm32_); | 1669 } else { // MustUseReg(target) |
731 } else { | 1670 li(t9, target); |
732 Branch(NegateCondition(cond), 2, rs, rt); | 1671 jalr(t9); |
733 j(target.imm32_); // Will generate only one instruction. | 1672 } |
734 } | 1673 } |
735 } else { // MustUseAt(target) | 1674 // Emit a nop in the branch delay slot if required. |
736 li(at, target); | 1675 if (bdslot == PROTECT) |
737 if (cond == cc_always) { | 1676 nop(); |
738 jr(at); | 1677 } |
739 } else { | 1678 |
740 Branch(NegateCondition(cond), 2, rs, rt); | 1679 |
741 jr(at); // Will generate only one instruction. | 1680 // Note: To call gcc-compiled C code on mips, you must call thru t9. |
742 } | |
743 } | |
744 } | |
745 // Emit a nop in the branch delay slot. | |
746 nop(); | |
747 } | |
748 | |
749 | |
750 void MacroAssembler::Call(const Operand& target, | 1681 void MacroAssembler::Call(const Operand& target, |
751 Condition cond, Register rs, const Operand& rt) { | 1682 Condition cond, Register rs, const Operand& rt, |
| 1683 BranchDelaySlot bdslot) { |
| 1684 BlockTrampolinePoolScope block_trampoline_pool(this); |
| 1685 BRANCH_ARGS_CHECK(cond, rs, rt); |
752 if (target.is_reg()) { | 1686 if (target.is_reg()) { |
753 if (cond == cc_always) { | 1687 if (cond == cc_always) { |
754 jalr(target.rm()); | 1688 jalr(target.rm()); |
755 } else { | 1689 } else { |
756 Branch(NegateCondition(cond), 2, rs, rt); | 1690 Branch(2, NegateCondition(cond), rs, rt); |
757 jalr(target.rm()); | 1691 jalr(target.rm()); |
758 } | 1692 } |
759 } else { // !target.is_reg() | 1693 } else { // !target.is_reg() |
760 if (!MustUseAt(target.rmode_)) { | 1694 if (!MustUseReg(target.rmode_)) { |
761 if (cond == cc_always) { | 1695 if (cond == cc_always) { |
762 jal(target.imm32_); | 1696 jal(target.imm32_); |
763 } else { | 1697 } else { |
764 Branch(NegateCondition(cond), 2, rs, rt); | 1698 Branch(2, NegateCondition(cond), rs, rt); |
765 jal(target.imm32_); // Will generate only one instruction. | 1699 jal(target.imm32_); // Will generate only one instruction. |
766 } | 1700 } |
767 } else { // MustUseAt(target) | 1701 } else { // MustUseReg(target) |
768 li(at, target); | 1702 li(t9, target); |
769 if (cond == cc_always) { | 1703 if (cond == cc_always) { |
770 jalr(at); | 1704 jalr(t9); |
771 } else { | 1705 } else { |
772 Branch(NegateCondition(cond), 2, rs, rt); | 1706 Branch(2, NegateCondition(cond), rs, rt); |
773 jalr(at); // Will generate only one instruction. | 1707 jalr(t9); // Will generate only one instruction. |
774 } | 1708 } |
775 } | 1709 } |
776 } | 1710 } |
777 // Emit a nop in the branch delay slot. | 1711 // Emit a nop in the branch delay slot if required. |
778 nop(); | 1712 if (bdslot == PROTECT) |
779 } | 1713 nop(); |
780 | 1714 } |
781 void MacroAssembler::StackLimitCheck(Label* on_stack_overflow) { | 1715 |
782 UNIMPLEMENTED_MIPS(); | 1716 |
783 } | 1717 void MacroAssembler::Drop(int count, |
784 | 1718 Condition cond, |
785 | 1719 Register reg, |
786 void MacroAssembler::Drop(int count, Condition cond) { | 1720 const Operand& op) { |
787 UNIMPLEMENTED_MIPS(); | 1721 if (count <= 0) { |
| 1722 return; |
| 1723 } |
| 1724 |
| 1725 Label skip; |
| 1726 |
| 1727 if (cond != al) { |
| 1728 Branch(&skip, NegateCondition(cond), reg, op); |
| 1729 } |
| 1730 |
| 1731 if (count > 0) { |
| 1732 addiu(sp, sp, count * kPointerSize); |
| 1733 } |
| 1734 |
| 1735 if (cond != al) { |
| 1736 bind(&skip); |
| 1737 } |
| 1738 } |
| 1739 |
| 1740 |
| 1741 void MacroAssembler::DropAndRet(int drop, |
| 1742 Condition cond, |
| 1743 Register r1, |
| 1744 const Operand& r2) { |
| 1745 // This is a workaround to make sure only one branch instruction is |
| 1746 // generated. It relies on Drop and Ret not creating branches if |
| 1747 // cond == cc_always. |
| 1748 Label skip; |
| 1749 if (cond != cc_always) { |
| 1750 Branch(&skip, NegateCondition(cond), r1, r2); |
| 1751 } |
| 1752 |
| 1753 Drop(drop); |
| 1754 Ret(); |
| 1755 |
| 1756 if (cond != cc_always) { |
| 1757 bind(&skip); |
| 1758 } |
| 1759 } |
| 1760 |
| 1761 |
| 1762 void MacroAssembler::Swap(Register reg1, |
| 1763 Register reg2, |
| 1764 Register scratch) { |
| 1765 if (scratch.is(no_reg)) { |
| 1766 Xor(reg1, reg1, Operand(reg2)); |
| 1767 Xor(reg2, reg2, Operand(reg1)); |
| 1768 Xor(reg1, reg1, Operand(reg2)); |
| 1769 } else { |
| 1770 mov(scratch, reg1); |
| 1771 mov(reg1, reg2); |
| 1772 mov(reg2, scratch); |
| 1773 } |
788 } | 1774 } |
789 | 1775 |
790 | 1776 |
791 void MacroAssembler::Call(Label* target) { | 1777 void MacroAssembler::Call(Label* target) { |
792 UNIMPLEMENTED_MIPS(); | 1778 BranchAndLink(target); |
| 1779 } |
| 1780 |
| 1781 |
| 1782 void MacroAssembler::Move(Register dst, Register src) { |
| 1783 if (!dst.is(src)) { |
| 1784 mov(dst, src); |
| 1785 } |
793 } | 1786 } |
794 | 1787 |
795 | 1788 |
796 #ifdef ENABLE_DEBUGGER_SUPPORT | 1789 #ifdef ENABLE_DEBUGGER_SUPPORT |
797 // --------------------------------------------------------------------------- | 1790 |
798 // Debugger Support | 1791 void MacroAssembler::DebugBreak() { |
799 | 1792 ASSERT(allow_stub_calls()); |
800 void MacroAssembler::DebugBreak() { | 1793 mov(a0, zero_reg); |
801 UNIMPLEMENTED_MIPS(); | 1794 li(a1, Operand(ExternalReference(Runtime::kDebugBreak, isolate()))); |
802 } | 1795 CEntryStub ces(1); |
803 #endif | 1796 Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); |
| 1797 } |
| 1798 |
| 1799 #endif // ENABLE_DEBUGGER_SUPPORT |
804 | 1800 |
805 | 1801 |
806 // --------------------------------------------------------------------------- | 1802 // --------------------------------------------------------------------------- |
807 // Exception handling | 1803 // Exception handling |
808 | 1804 |
809 void MacroAssembler::PushTryHandler(CodeLocation try_location, | 1805 void MacroAssembler::PushTryHandler(CodeLocation try_location, |
810 HandlerType type) { | 1806 HandlerType type) { |
811 // Adjust this code if not the case. | 1807 // Adjust this code if not the case. |
812 ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); | 1808 ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
813 // The return address is passed in register ra. | 1809 // The return address is passed in register ra. |
814 if (try_location == IN_JAVASCRIPT) { | 1810 if (try_location == IN_JAVASCRIPT) { |
815 if (type == TRY_CATCH_HANDLER) { | 1811 if (type == TRY_CATCH_HANDLER) { |
816 li(t0, Operand(StackHandler::TRY_CATCH)); | 1812 li(t0, Operand(StackHandler::TRY_CATCH)); |
817 } else { | 1813 } else { |
818 li(t0, Operand(StackHandler::TRY_FINALLY)); | 1814 li(t0, Operand(StackHandler::TRY_FINALLY)); |
819 } | 1815 } |
820 ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize | 1816 ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize |
821 && StackHandlerConstants::kFPOffset == 2 * kPointerSize | 1817 && StackHandlerConstants::kFPOffset == 2 * kPointerSize |
822 && StackHandlerConstants::kPCOffset == 3 * kPointerSize | 1818 && StackHandlerConstants::kPCOffset == 3 * kPointerSize |
823 && StackHandlerConstants::kNextOffset == 0 * kPointerSize); | 1819 && StackHandlerConstants::kNextOffset == 0 * kPointerSize); |
824 // Save the current handler as the next handler. | 1820 // Save the current handler as the next handler. |
825 LoadExternalReference(t2, ExternalReference(Isolate::k_handler_address)); | 1821 li(t2, Operand(ExternalReference(Isolate::k_handler_address, isolate()))); |
826 lw(t1, MemOperand(t2)); | 1822 lw(t1, MemOperand(t2)); |
827 | 1823 |
828 addiu(sp, sp, -StackHandlerConstants::kSize); | 1824 addiu(sp, sp, -StackHandlerConstants::kSize); |
829 sw(ra, MemOperand(sp, 12)); | 1825 sw(ra, MemOperand(sp, 12)); |
830 sw(fp, MemOperand(sp, 8)); | 1826 sw(fp, MemOperand(sp, 8)); |
831 sw(t0, MemOperand(sp, 4)); | 1827 sw(t0, MemOperand(sp, 4)); |
832 sw(t1, MemOperand(sp, 0)); | 1828 sw(t1, MemOperand(sp, 0)); |
833 | 1829 |
834 // Link this handler as the new current one. | 1830 // Link this handler as the new current one. |
835 sw(sp, MemOperand(t2)); | 1831 sw(sp, MemOperand(t2)); |
836 | 1832 |
837 } else { | 1833 } else { |
838 // Must preserve a0-a3, and s0 (argv). | 1834 // Must preserve a0-a3, and s0 (argv). |
839 ASSERT(try_location == IN_JS_ENTRY); | 1835 ASSERT(try_location == IN_JS_ENTRY); |
840 ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize | 1836 ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize |
841 && StackHandlerConstants::kFPOffset == 2 * kPointerSize | 1837 && StackHandlerConstants::kFPOffset == 2 * kPointerSize |
842 && StackHandlerConstants::kPCOffset == 3 * kPointerSize | 1838 && StackHandlerConstants::kPCOffset == 3 * kPointerSize |
843 && StackHandlerConstants::kNextOffset == 0 * kPointerSize); | 1839 && StackHandlerConstants::kNextOffset == 0 * kPointerSize); |
844 | 1840 |
845 // The frame pointer does not point to a JS frame so we save NULL | 1841 // The frame pointer does not point to a JS frame so we save NULL |
846 // for fp. We expect the code throwing an exception to check fp | 1842 // for fp. We expect the code throwing an exception to check fp |
847 // before dereferencing it to restore the context. | 1843 // before dereferencing it to restore the context. |
848 li(t0, Operand(StackHandler::ENTRY)); | 1844 li(t0, Operand(StackHandler::ENTRY)); |
849 | 1845 |
850 // Save the current handler as the next handler. | 1846 // Save the current handler as the next handler. |
851 LoadExternalReference(t2, ExternalReference(Isolate::k_handler_address)); | 1847 li(t2, Operand(ExternalReference(Isolate::k_handler_address, isolate()))); |
852 lw(t1, MemOperand(t2)); | 1848 lw(t1, MemOperand(t2)); |
853 | 1849 |
854 addiu(sp, sp, -StackHandlerConstants::kSize); | 1850 addiu(sp, sp, -StackHandlerConstants::kSize); |
855 sw(ra, MemOperand(sp, 12)); | 1851 sw(ra, MemOperand(sp, 12)); |
856 sw(zero_reg, MemOperand(sp, 8)); | 1852 sw(zero_reg, MemOperand(sp, 8)); |
857 sw(t0, MemOperand(sp, 4)); | 1853 sw(t0, MemOperand(sp, 4)); |
858 sw(t1, MemOperand(sp, 0)); | 1854 sw(t1, MemOperand(sp, 0)); |
859 | 1855 |
860 // Link this handler as the new current one. | 1856 // Link this handler as the new current one. |
861 sw(sp, MemOperand(t2)); | 1857 sw(sp, MemOperand(t2)); |
862 } | 1858 } |
863 } | 1859 } |
864 | 1860 |
865 | 1861 |
866 void MacroAssembler::PopTryHandler() { | 1862 void MacroAssembler::PopTryHandler() { |
867 UNIMPLEMENTED_MIPS(); | 1863 ASSERT_EQ(0, StackHandlerConstants::kNextOffset); |
868 } | 1864 pop(a1); |
869 | 1865 Addu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); |
870 | 1866 li(at, Operand(ExternalReference(Isolate::k_handler_address, isolate()))); |
871 | 1867 sw(a1, MemOperand(at)); |
872 // ----------------------------------------------------------------------------- | 1868 } |
873 // Activation frames | 1869 |
874 | 1870 |
875 void MacroAssembler::SetupAlignedCall(Register scratch, int arg_count) { | 1871 void MacroAssembler::AllocateInNewSpace(int object_size, |
876 Label extra_push, end; | 1872 Register result, |
877 | 1873 Register scratch1, |
878 andi(scratch, sp, 7); | 1874 Register scratch2, |
879 | 1875 Label* gc_required, |
880 // We check for args and receiver size on the stack, all of them word sized. | 1876 AllocationFlags flags) { |
881 // We add one for sp, that we also want to store on the stack. | 1877 if (!FLAG_inline_new) { |
882 if (((arg_count + 1) % kPointerSizeLog2) == 0) { | 1878 if (FLAG_debug_code) { |
883 Branch(ne, &extra_push, at, Operand(zero_reg)); | 1879 // Trash the registers to simulate an allocation failure. |
884 } else { // ((arg_count + 1) % 2) == 1 | 1880 li(result, 0x7091); |
885 Branch(eq, &extra_push, at, Operand(zero_reg)); | 1881 li(scratch1, 0x7191); |
886 } | 1882 li(scratch2, 0x7291); |
887 | 1883 } |
888 // Save sp on the stack. | 1884 jmp(gc_required); |
889 mov(scratch, sp); | 1885 return; |
890 Push(scratch); | 1886 } |
891 b(&end); | 1887 |
892 | 1888 ASSERT(!result.is(scratch1)); |
893 // Align before saving sp on the stack. | 1889 ASSERT(!result.is(scratch2)); |
894 bind(&extra_push); | 1890 ASSERT(!scratch1.is(scratch2)); |
895 mov(scratch, sp); | 1891 ASSERT(!scratch1.is(t9)); |
896 addiu(sp, sp, -8); | 1892 ASSERT(!scratch2.is(t9)); |
897 sw(scratch, MemOperand(sp)); | 1893 ASSERT(!result.is(t9)); |
898 | 1894 |
899 // The stack is aligned and sp is stored on the top. | 1895 // Make object size into bytes. |
900 bind(&end); | 1896 if ((flags & SIZE_IN_WORDS) != 0) { |
901 } | 1897 object_size *= kPointerSize; |
902 | 1898 } |
903 | 1899 ASSERT_EQ(0, object_size & kObjectAlignmentMask); |
904 void MacroAssembler::ReturnFromAlignedCall() { | 1900 |
905 lw(sp, MemOperand(sp)); | 1901 // Check relative positions of allocation top and limit addresses. |
906 } | 1902 // ARM adds additional checks to make sure the ldm instruction can be |
907 | 1903 // used. On MIPS we don't have ldm so we don't need additional checks either. |
908 | 1904 ExternalReference new_space_allocation_top = |
| 1905 ExternalReference::new_space_allocation_top_address(isolate()); |
| 1906 ExternalReference new_space_allocation_limit = |
| 1907 ExternalReference::new_space_allocation_limit_address(isolate()); |
| 1908 intptr_t top = |
| 1909 reinterpret_cast<intptr_t>(new_space_allocation_top.address()); |
| 1910 intptr_t limit = |
| 1911 reinterpret_cast<intptr_t>(new_space_allocation_limit.address()); |
| 1912 ASSERT((limit - top) == kPointerSize); |
| 1913 |
| 1914 // Set up allocation top address and object size registers. |
| 1915 Register topaddr = scratch1; |
| 1916 Register obj_size_reg = scratch2; |
| 1917 li(topaddr, Operand(new_space_allocation_top)); |
| 1918 li(obj_size_reg, Operand(object_size)); |
| 1919 |
| 1920 // This code stores a temporary value in t9. |
| 1921 if ((flags & RESULT_CONTAINS_TOP) == 0) { |
| 1922 // Load allocation top into result and allocation limit into t9. |
| 1923 lw(result, MemOperand(topaddr)); |
| 1924 lw(t9, MemOperand(topaddr, kPointerSize)); |
| 1925 } else { |
| 1926 if (FLAG_debug_code) { |
| 1927 // Assert that result actually contains top on entry. t9 is used |
| 1928 // immediately below so this use of t9 does not cause difference with |
| 1929 // respect to register content between debug and release mode. |
| 1930 lw(t9, MemOperand(topaddr)); |
| 1931 Check(eq, "Unexpected allocation top", result, Operand(t9)); |
| 1932 } |
| 1933 // Load allocation limit into t9. Result already contains allocation top. |
| 1934 lw(t9, MemOperand(topaddr, limit - top)); |
| 1935 } |
| 1936 |
| 1937 // Calculate new top and bail out if new space is exhausted. Use result |
| 1938 // to calculate the new top. |
| 1939 Addu(scratch2, result, Operand(obj_size_reg)); |
| 1940 Branch(gc_required, Ugreater, scratch2, Operand(t9)); |
| 1941 sw(scratch2, MemOperand(topaddr)); |
| 1942 |
| 1943 // Tag object if requested. |
| 1944 if ((flags & TAG_OBJECT) != 0) { |
| 1945 Addu(result, result, Operand(kHeapObjectTag)); |
| 1946 } |
| 1947 } |
| 1948 |
| 1949 |
| 1950 void MacroAssembler::AllocateInNewSpace(Register object_size, |
| 1951 Register result, |
| 1952 Register scratch1, |
| 1953 Register scratch2, |
| 1954 Label* gc_required, |
| 1955 AllocationFlags flags) { |
| 1956 if (!FLAG_inline_new) { |
| 1957 if (FLAG_debug_code) { |
| 1958 // Trash the registers to simulate an allocation failure. |
| 1959 li(result, 0x7091); |
| 1960 li(scratch1, 0x7191); |
| 1961 li(scratch2, 0x7291); |
| 1962 } |
| 1963 jmp(gc_required); |
| 1964 return; |
| 1965 } |
| 1966 |
| 1967 ASSERT(!result.is(scratch1)); |
| 1968 ASSERT(!result.is(scratch2)); |
| 1969 ASSERT(!scratch1.is(scratch2)); |
| 1970 ASSERT(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9)); |
| 1971 |
| 1972 // Check relative positions of allocation top and limit addresses. |
| 1973 // ARM adds additional checks to make sure the ldm instruction can be |
| 1974 // used. On MIPS we don't have ldm so we don't need additional checks either. |
| 1975 ExternalReference new_space_allocation_top = |
| 1976 ExternalReference::new_space_allocation_top_address(isolate()); |
| 1977 ExternalReference new_space_allocation_limit = |
| 1978 ExternalReference::new_space_allocation_limit_address(isolate()); |
| 1979 intptr_t top = |
| 1980 reinterpret_cast<intptr_t>(new_space_allocation_top.address()); |
| 1981 intptr_t limit = |
| 1982 reinterpret_cast<intptr_t>(new_space_allocation_limit.address()); |
| 1983 ASSERT((limit - top) == kPointerSize); |
| 1984 |
| 1985 // Set up allocation top address and object size registers. |
| 1986 Register topaddr = scratch1; |
| 1987 li(topaddr, Operand(new_space_allocation_top)); |
| 1988 |
| 1989 // This code stores a temporary value in t9. |
| 1990 if ((flags & RESULT_CONTAINS_TOP) == 0) { |
| 1991 // Load allocation top into result and allocation limit into t9. |
| 1992 lw(result, MemOperand(topaddr)); |
| 1993 lw(t9, MemOperand(topaddr, kPointerSize)); |
| 1994 } else { |
| 1995 if (FLAG_debug_code) { |
| 1996 // Assert that result actually contains top on entry. t9 is used |
| 1997 // immediately below so this use of t9 does not cause difference with |
| 1998 // respect to register content between debug and release mode. |
| 1999 lw(t9, MemOperand(topaddr)); |
| 2000 Check(eq, "Unexpected allocation top", result, Operand(t9)); |
| 2001 } |
| 2002 // Load allocation limit into t9. Result already contains allocation top. |
| 2003 lw(t9, MemOperand(topaddr, limit - top)); |
| 2004 } |
| 2005 |
| 2006 // Calculate new top and bail out if new space is exhausted. Use result |
| 2007 // to calculate the new top. Object size may be in words so a shift is |
| 2008 // required to get the number of bytes. |
| 2009 if ((flags & SIZE_IN_WORDS) != 0) { |
| 2010 sll(scratch2, object_size, kPointerSizeLog2); |
| 2011 Addu(scratch2, result, scratch2); |
| 2012 } else { |
| 2013 Addu(scratch2, result, Operand(object_size)); |
| 2014 } |
| 2015 Branch(gc_required, Ugreater, scratch2, Operand(t9)); |
| 2016 |
| 2017 // Update allocation top. result temporarily holds the new top. |
| 2018 if (FLAG_debug_code) { |
| 2019 And(t9, scratch2, Operand(kObjectAlignmentMask)); |
| 2020 Check(eq, "Unaligned allocation in new space", t9, Operand(zero_reg)); |
| 2021 } |
| 2022 sw(scratch2, MemOperand(topaddr)); |
| 2023 |
| 2024 // Tag object if requested. |
| 2025 if ((flags & TAG_OBJECT) != 0) { |
| 2026 Addu(result, result, Operand(kHeapObjectTag)); |
| 2027 } |
| 2028 } |
| 2029 |
| 2030 |
| 2031 void MacroAssembler::UndoAllocationInNewSpace(Register object, |
| 2032 Register scratch) { |
| 2033 ExternalReference new_space_allocation_top = |
| 2034 ExternalReference::new_space_allocation_top_address(isolate()); |
| 2035 |
| 2036 // Make sure the object has no tag before resetting top. |
| 2037 And(object, object, Operand(~kHeapObjectTagMask)); |
| 2038 #ifdef DEBUG |
| 2039 // Check that the object un-allocated is below the current top. |
| 2040 li(scratch, Operand(new_space_allocation_top)); |
| 2041 lw(scratch, MemOperand(scratch)); |
| 2042 Check(less, "Undo allocation of non allocated memory", |
| 2043 object, Operand(scratch)); |
| 2044 #endif |
| 2045 // Write the address of the object to un-allocate as the current top. |
| 2046 li(scratch, Operand(new_space_allocation_top)); |
| 2047 sw(object, MemOperand(scratch)); |
| 2048 } |
| 2049 |
| 2050 |
| 2051 void MacroAssembler::AllocateTwoByteString(Register result, |
| 2052 Register length, |
| 2053 Register scratch1, |
| 2054 Register scratch2, |
| 2055 Register scratch3, |
| 2056 Label* gc_required) { |
| 2057 // Calculate the number of bytes needed for the characters in the string while |
| 2058 // observing object alignment. |
| 2059 ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
| 2060 sll(scratch1, length, 1); // Length in bytes, not chars. |
| 2061 addiu(scratch1, scratch1, |
| 2062 kObjectAlignmentMask + SeqTwoByteString::kHeaderSize); |
| 2063 And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); |
| 2064 |
| 2065 // Allocate two-byte string in new space. |
| 2066 AllocateInNewSpace(scratch1, |
| 2067 result, |
| 2068 scratch2, |
| 2069 scratch3, |
| 2070 gc_required, |
| 2071 TAG_OBJECT); |
| 2072 |
| 2073 // Set the map, length and hash field. |
| 2074 InitializeNewString(result, |
| 2075 length, |
| 2076 Heap::kStringMapRootIndex, |
| 2077 scratch1, |
| 2078 scratch2); |
| 2079 } |
| 2080 |
| 2081 |
| 2082 void MacroAssembler::AllocateAsciiString(Register result, |
| 2083 Register length, |
| 2084 Register scratch1, |
| 2085 Register scratch2, |
| 2086 Register scratch3, |
| 2087 Label* gc_required) { |
| 2088 // Calculate the number of bytes needed for the characters in the string |
| 2089 // while observing object alignment. |
| 2090 ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); |
| 2091 ASSERT(kCharSize == 1); |
| 2092 addiu(scratch1, length, kObjectAlignmentMask + SeqAsciiString::kHeaderSize); |
| 2093 And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); |
| 2094 |
| 2095 // Allocate ASCII string in new space. |
| 2096 AllocateInNewSpace(scratch1, |
| 2097 result, |
| 2098 scratch2, |
| 2099 scratch3, |
| 2100 gc_required, |
| 2101 TAG_OBJECT); |
| 2102 |
| 2103 // Set the map, length and hash field. |
| 2104 InitializeNewString(result, |
| 2105 length, |
| 2106 Heap::kAsciiStringMapRootIndex, |
| 2107 scratch1, |
| 2108 scratch2); |
| 2109 } |
| 2110 |
| 2111 |
| 2112 void MacroAssembler::AllocateTwoByteConsString(Register result, |
| 2113 Register length, |
| 2114 Register scratch1, |
| 2115 Register scratch2, |
| 2116 Label* gc_required) { |
| 2117 AllocateInNewSpace(ConsString::kSize, |
| 2118 result, |
| 2119 scratch1, |
| 2120 scratch2, |
| 2121 gc_required, |
| 2122 TAG_OBJECT); |
| 2123 InitializeNewString(result, |
| 2124 length, |
| 2125 Heap::kConsStringMapRootIndex, |
| 2126 scratch1, |
| 2127 scratch2); |
| 2128 } |
| 2129 |
| 2130 |
| 2131 void MacroAssembler::AllocateAsciiConsString(Register result, |
| 2132 Register length, |
| 2133 Register scratch1, |
| 2134 Register scratch2, |
| 2135 Label* gc_required) { |
| 2136 AllocateInNewSpace(ConsString::kSize, |
| 2137 result, |
| 2138 scratch1, |
| 2139 scratch2, |
| 2140 gc_required, |
| 2141 TAG_OBJECT); |
| 2142 InitializeNewString(result, |
| 2143 length, |
| 2144 Heap::kConsAsciiStringMapRootIndex, |
| 2145 scratch1, |
| 2146 scratch2); |
| 2147 } |
| 2148 |
| 2149 |
| 2150 // Allocates a heap number or jumps to the label if the young space is full and |
| 2151 // a scavenge is needed. |
| 2152 void MacroAssembler::AllocateHeapNumber(Register result, |
| 2153 Register scratch1, |
| 2154 Register scratch2, |
| 2155 Register heap_number_map, |
| 2156 Label* need_gc) { |
| 2157 // Allocate an object in the heap for the heap number and tag it as a heap |
| 2158 // object. |
| 2159 AllocateInNewSpace(HeapNumber::kSize, |
| 2160 result, |
| 2161 scratch1, |
| 2162 scratch2, |
| 2163 need_gc, |
| 2164 TAG_OBJECT); |
| 2165 |
| 2166 // Store heap number map in the allocated object. |
| 2167 AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| 2168 sw(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset)); |
| 2169 } |
| 2170 |
| 2171 |
| 2172 void MacroAssembler::AllocateHeapNumberWithValue(Register result, |
| 2173 FPURegister value, |
| 2174 Register scratch1, |
| 2175 Register scratch2, |
| 2176 Label* gc_required) { |
| 2177 LoadRoot(t6, Heap::kHeapNumberMapRootIndex); |
| 2178 AllocateHeapNumber(result, scratch1, scratch2, t6, gc_required); |
| 2179 sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset)); |
| 2180 } |
| 2181 |
| 2182 |
| 2183 // Copies a fixed number of fields of heap objects from src to dst. |
| 2184 void MacroAssembler::CopyFields(Register dst, |
| 2185 Register src, |
| 2186 RegList temps, |
| 2187 int field_count) { |
| 2188 ASSERT((temps & dst.bit()) == 0); |
| 2189 ASSERT((temps & src.bit()) == 0); |
| 2190 // Primitive implementation using only one temporary register. |
| 2191 |
| 2192 Register tmp = no_reg; |
| 2193 // Find a temp register in temps list. |
| 2194 for (int i = 0; i < kNumRegisters; i++) { |
| 2195 if ((temps & (1 << i)) != 0) { |
| 2196 tmp.code_ = i; |
| 2197 break; |
| 2198 } |
| 2199 } |
| 2200 ASSERT(!tmp.is(no_reg)); |
| 2201 |
| 2202 for (int i = 0; i < field_count; i++) { |
| 2203 lw(tmp, FieldMemOperand(src, i * kPointerSize)); |
| 2204 sw(tmp, FieldMemOperand(dst, i * kPointerSize)); |
| 2205 } |
| 2206 } |
| 2207 |
| 2208 |
| 2209 void MacroAssembler::CheckMap(Register obj, |
| 2210 Register scratch, |
| 2211 Handle<Map> map, |
| 2212 Label* fail, |
| 2213 bool is_heap_object) { |
| 2214 if (!is_heap_object) { |
| 2215 JumpIfSmi(obj, fail); |
| 2216 } |
| 2217 lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
| 2218 li(at, Operand(map)); |
| 2219 Branch(fail, ne, scratch, Operand(at)); |
| 2220 } |
| 2221 |
| 2222 |
| 2223 void MacroAssembler::CheckMap(Register obj, |
| 2224 Register scratch, |
| 2225 Heap::RootListIndex index, |
| 2226 Label* fail, |
| 2227 bool is_heap_object) { |
| 2228 if (!is_heap_object) { |
| 2229 JumpIfSmi(obj, fail); |
| 2230 } |
| 2231 lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
| 2232 LoadRoot(at, index); |
| 2233 Branch(fail, ne, scratch, Operand(at)); |
| 2234 } |
| 2235 |
| 2236 |
909 // ----------------------------------------------------------------------------- | 2237 // ----------------------------------------------------------------------------- |
910 // JavaScript invokes | 2238 // JavaScript invokes |
911 | 2239 |
912 void MacroAssembler::InvokePrologue(const ParameterCount& expected, | 2240 void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
913 const ParameterCount& actual, | 2241 const ParameterCount& actual, |
914 Handle<Code> code_constant, | 2242 Handle<Code> code_constant, |
915 Register code_reg, | 2243 Register code_reg, |
916 Label* done, | 2244 Label* done, |
917 InvokeFlag flag) { | 2245 InvokeFlag flag, |
| 2246 PostCallGenerator* post_call_generator) { |
918 bool definitely_matches = false; | 2247 bool definitely_matches = false; |
919 Label regular_invoke; | 2248 Label regular_invoke; |
920 | 2249 |
921 // Check whether the expected and actual arguments count match. If not, | 2250 // Check whether the expected and actual arguments count match. If not, |
922 // setup registers according to contract with ArgumentsAdaptorTrampoline: | 2251 // setup registers according to contract with ArgumentsAdaptorTrampoline: |
923 // a0: actual arguments count | 2252 // a0: actual arguments count |
924 // a1: function (passed through to callee) | 2253 // a1: function (passed through to callee) |
925 // a2: expected arguments count | 2254 // a2: expected arguments count |
926 // a3: callee code entry | 2255 // a3: callee code entry |
927 | 2256 |
(...skipping 14 matching lines...) Expand all Loading... |
942 if (expected.immediate() == sentinel) { | 2271 if (expected.immediate() == sentinel) { |
943 // Don't worry about adapting arguments for builtins that | 2272 // Don't worry about adapting arguments for builtins that |
944 // don't want that done. Skip adaption code by making it look | 2273 // don't want that done. Skip adaption code by making it look |
945 // like we have a match between expected and actual number of | 2274 // like we have a match between expected and actual number of |
946 // arguments. | 2275 // arguments. |
947 definitely_matches = true; | 2276 definitely_matches = true; |
948 } else { | 2277 } else { |
949 li(a2, Operand(expected.immediate())); | 2278 li(a2, Operand(expected.immediate())); |
950 } | 2279 } |
951 } | 2280 } |
952 } else if (actual.is_immediate()) { | |
953 Branch(eq, ®ular_invoke, expected.reg(), Operand(actual.immediate())); | |
954 li(a0, Operand(actual.immediate())); | |
955 } else { | 2281 } else { |
956 Branch(eq, ®ular_invoke, expected.reg(), Operand(actual.reg())); | 2282 if (actual.is_immediate()) { |
| 2283 Branch(®ular_invoke, eq, expected.reg(), Operand(actual.immediate())); |
| 2284 li(a0, Operand(actual.immediate())); |
| 2285 } else { |
| 2286 Branch(®ular_invoke, eq, expected.reg(), Operand(actual.reg())); |
| 2287 } |
957 } | 2288 } |
958 | 2289 |
959 if (!definitely_matches) { | 2290 if (!definitely_matches) { |
960 if (!code_constant.is_null()) { | 2291 if (!code_constant.is_null()) { |
961 li(a3, Operand(code_constant)); | 2292 li(a3, Operand(code_constant)); |
962 addiu(a3, a3, Code::kHeaderSize - kHeapObjectTag); | 2293 addiu(a3, a3, Code::kHeaderSize - kHeapObjectTag); |
963 } | 2294 } |
964 | 2295 |
965 ExternalReference adaptor(Builtins::ArgumentsAdaptorTrampoline); | 2296 Handle<Code> adaptor = |
| 2297 isolate()->builtins()->ArgumentsAdaptorTrampoline(); |
966 if (flag == CALL_FUNCTION) { | 2298 if (flag == CALL_FUNCTION) { |
967 CallBuiltin(adaptor); | 2299 Call(adaptor, RelocInfo::CODE_TARGET); |
968 b(done); | 2300 if (post_call_generator != NULL) post_call_generator->Generate(); |
969 nop(); | 2301 jmp(done); |
970 } else { | 2302 } else { |
971 JumpToBuiltin(adaptor); | 2303 Jump(adaptor, RelocInfo::CODE_TARGET); |
972 } | 2304 } |
973 bind(®ular_invoke); | 2305 bind(®ular_invoke); |
974 } | 2306 } |
975 } | 2307 } |
976 | 2308 |
| 2309 |
977 void MacroAssembler::InvokeCode(Register code, | 2310 void MacroAssembler::InvokeCode(Register code, |
978 const ParameterCount& expected, | 2311 const ParameterCount& expected, |
979 const ParameterCount& actual, | 2312 const ParameterCount& actual, |
980 InvokeFlag flag) { | 2313 InvokeFlag flag, |
| 2314 PostCallGenerator* post_call_generator) { |
981 Label done; | 2315 Label done; |
982 | 2316 |
983 InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag); | 2317 InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag, |
| 2318 post_call_generator); |
984 if (flag == CALL_FUNCTION) { | 2319 if (flag == CALL_FUNCTION) { |
985 Call(code); | 2320 Call(code); |
986 } else { | 2321 } else { |
987 ASSERT(flag == JUMP_FUNCTION); | 2322 ASSERT(flag == JUMP_FUNCTION); |
988 Jump(code); | 2323 Jump(code); |
989 } | 2324 } |
990 // Continue here if InvokePrologue does handle the invocation due to | 2325 // Continue here if InvokePrologue does handle the invocation due to |
991 // mismatched parameter counts. | 2326 // mismatched parameter counts. |
992 bind(&done); | 2327 bind(&done); |
993 } | 2328 } |
(...skipping 13 matching lines...) Expand all Loading... |
1007 Jump(code, rmode); | 2342 Jump(code, rmode); |
1008 } | 2343 } |
1009 // Continue here if InvokePrologue does handle the invocation due to | 2344 // Continue here if InvokePrologue does handle the invocation due to |
1010 // mismatched parameter counts. | 2345 // mismatched parameter counts. |
1011 bind(&done); | 2346 bind(&done); |
1012 } | 2347 } |
1013 | 2348 |
1014 | 2349 |
1015 void MacroAssembler::InvokeFunction(Register function, | 2350 void MacroAssembler::InvokeFunction(Register function, |
1016 const ParameterCount& actual, | 2351 const ParameterCount& actual, |
1017 InvokeFlag flag) { | 2352 InvokeFlag flag, |
| 2353 PostCallGenerator* post_call_generator) { |
1018 // Contract with called JS functions requires that function is passed in a1. | 2354 // Contract with called JS functions requires that function is passed in a1. |
1019 ASSERT(function.is(a1)); | 2355 ASSERT(function.is(a1)); |
1020 Register expected_reg = a2; | 2356 Register expected_reg = a2; |
1021 Register code_reg = a3; | 2357 Register code_reg = a3; |
1022 | 2358 |
1023 lw(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); | 2359 lw(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); |
1024 lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); | 2360 lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); |
1025 lw(expected_reg, | 2361 lw(expected_reg, |
1026 FieldMemOperand(code_reg, | 2362 FieldMemOperand(code_reg, |
1027 SharedFunctionInfo::kFormalParameterCountOffset)); | 2363 SharedFunctionInfo::kFormalParameterCountOffset)); |
1028 lw(code_reg, | 2364 sra(expected_reg, expected_reg, kSmiTagSize); |
1029 MemOperand(code_reg, SharedFunctionInfo::kCodeOffset - kHeapObjectTag)); | 2365 lw(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); |
1030 addiu(code_reg, code_reg, Code::kHeaderSize - kHeapObjectTag); | |
1031 | 2366 |
1032 ParameterCount expected(expected_reg); | 2367 ParameterCount expected(expected_reg); |
1033 InvokeCode(code_reg, expected, actual, flag); | 2368 InvokeCode(code_reg, expected, actual, flag, post_call_generator); |
| 2369 } |
| 2370 |
| 2371 |
| 2372 void MacroAssembler::InvokeFunction(JSFunction* function, |
| 2373 const ParameterCount& actual, |
| 2374 InvokeFlag flag) { |
| 2375 ASSERT(function->is_compiled()); |
| 2376 |
| 2377 // Get the function and setup the context. |
| 2378 li(a1, Operand(Handle<JSFunction>(function))); |
| 2379 lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); |
| 2380 |
| 2381 // Invoke the cached code. |
| 2382 Handle<Code> code(function->code()); |
| 2383 ParameterCount expected(function->shared()->formal_parameter_count()); |
| 2384 if (V8::UseCrankshaft()) { |
| 2385 UNIMPLEMENTED_MIPS(); |
| 2386 } else { |
| 2387 InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag); |
| 2388 } |
| 2389 } |
| 2390 |
| 2391 |
| 2392 void MacroAssembler::IsObjectJSObjectType(Register heap_object, |
| 2393 Register map, |
| 2394 Register scratch, |
| 2395 Label* fail) { |
| 2396 lw(map, FieldMemOperand(heap_object, HeapObject::kMapOffset)); |
| 2397 IsInstanceJSObjectType(map, scratch, fail); |
| 2398 } |
| 2399 |
| 2400 |
| 2401 void MacroAssembler::IsInstanceJSObjectType(Register map, |
| 2402 Register scratch, |
| 2403 Label* fail) { |
| 2404 lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| 2405 Branch(fail, lt, scratch, Operand(FIRST_JS_OBJECT_TYPE)); |
| 2406 Branch(fail, gt, scratch, Operand(LAST_JS_OBJECT_TYPE)); |
| 2407 } |
| 2408 |
| 2409 |
| 2410 void MacroAssembler::IsObjectJSStringType(Register object, |
| 2411 Register scratch, |
| 2412 Label* fail) { |
| 2413 ASSERT(kNotStringTag != 0); |
| 2414 |
| 2415 lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); |
| 2416 lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| 2417 And(scratch, scratch, Operand(kIsNotStringMask)); |
| 2418 Branch(fail, ne, scratch, Operand(zero_reg)); |
1034 } | 2419 } |
1035 | 2420 |
1036 | 2421 |
1037 // --------------------------------------------------------------------------- | 2422 // --------------------------------------------------------------------------- |
1038 // Support functions. | 2423 // Support functions. |
1039 | 2424 |
1040 void MacroAssembler::GetObjectType(Register function, | 2425 |
1041 Register map, | 2426 void MacroAssembler::TryGetFunctionPrototype(Register function, |
1042 Register type_reg) { | 2427 Register result, |
1043 lw(map, FieldMemOperand(function, HeapObject::kMapOffset)); | 2428 Register scratch, |
1044 lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); | 2429 Label* miss) { |
1045 } | 2430 // Check that the receiver isn't a smi. |
| 2431 JumpIfSmi(function, miss); |
| 2432 |
| 2433 // Check that the function really is a function. Load map into result reg. |
| 2434 GetObjectType(function, result, scratch); |
| 2435 Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE)); |
| 2436 |
| 2437 // Make sure that the function has an instance prototype. |
| 2438 Label non_instance; |
| 2439 lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); |
| 2440 And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype)); |
| 2441 Branch(&non_instance, ne, scratch, Operand(zero_reg)); |
| 2442 |
| 2443 // Get the prototype or initial map from the function. |
| 2444 lw(result, |
| 2445 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| 2446 |
| 2447 // If the prototype or initial map is the hole, don't return it and |
| 2448 // simply miss the cache instead. This will allow us to allocate a |
| 2449 // prototype object on-demand in the runtime system. |
| 2450 LoadRoot(t8, Heap::kTheHoleValueRootIndex); |
| 2451 Branch(miss, eq, result, Operand(t8)); |
| 2452 |
| 2453 // If the function does not have an initial map, we're done. |
| 2454 Label done; |
| 2455 GetObjectType(result, scratch, scratch); |
| 2456 Branch(&done, ne, scratch, Operand(MAP_TYPE)); |
| 2457 |
| 2458 // Get the prototype from the initial map. |
| 2459 lw(result, FieldMemOperand(result, Map::kPrototypeOffset)); |
| 2460 jmp(&done); |
| 2461 |
| 2462 // Non-instance prototype: Fetch prototype from constructor field |
| 2463 // in initial map. |
| 2464 bind(&non_instance); |
| 2465 lw(result, FieldMemOperand(result, Map::kConstructorOffset)); |
| 2466 |
| 2467 // All done. |
| 2468 bind(&done); |
| 2469 } |
1046 | 2470 |
1047 | 2471 |
1048 void MacroAssembler::CallBuiltin(ExternalReference builtin_entry) { | 2472 void MacroAssembler::GetObjectType(Register object, |
1049 // Load builtin address. | 2473 Register map, |
1050 LoadExternalReference(t9, builtin_entry); | 2474 Register type_reg) { |
1051 lw(t9, MemOperand(t9)); // Deref address. | 2475 lw(map, FieldMemOperand(object, HeapObject::kMapOffset)); |
1052 addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag); | 2476 lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
1053 // Call and allocate arguments slots. | 2477 } |
1054 jalr(t9); | |
1055 // Use the branch delay slot to allocated argument slots. | |
1056 addiu(sp, sp, -StandardFrameConstants::kRArgsSlotsSize); | |
1057 addiu(sp, sp, StandardFrameConstants::kRArgsSlotsSize); | |
1058 } | |
1059 | |
1060 | |
1061 void MacroAssembler::CallBuiltin(Register target) { | |
1062 // Target already holds target address. | |
1063 // Call and allocate arguments slots. | |
1064 jalr(target); | |
1065 // Use the branch delay slot to allocated argument slots. | |
1066 addiu(sp, sp, -StandardFrameConstants::kRArgsSlotsSize); | |
1067 addiu(sp, sp, StandardFrameConstants::kRArgsSlotsSize); | |
1068 } | |
1069 | |
1070 | |
1071 void MacroAssembler::JumpToBuiltin(ExternalReference builtin_entry) { | |
1072 // Load builtin address. | |
1073 LoadExternalReference(t9, builtin_entry); | |
1074 lw(t9, MemOperand(t9)); // Deref address. | |
1075 addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag); | |
1076 // Call and allocate arguments slots. | |
1077 jr(t9); | |
1078 // Use the branch delay slot to allocated argument slots. | |
1079 addiu(sp, sp, -StandardFrameConstants::kRArgsSlotsSize); | |
1080 } | |
1081 | |
1082 | |
1083 void MacroAssembler::JumpToBuiltin(Register target) { | |
1084 // t9 already holds target address. | |
1085 // Call and allocate arguments slots. | |
1086 jr(t9); | |
1087 // Use the branch delay slot to allocated argument slots. | |
1088 addiu(sp, sp, -StandardFrameConstants::kRArgsSlotsSize); | |
1089 } | |
1090 | 2478 |
1091 | 2479 |
1092 // ----------------------------------------------------------------------------- | 2480 // ----------------------------------------------------------------------------- |
1093 // Runtime calls | 2481 // Runtime calls |
1094 | 2482 |
1095 void MacroAssembler::CallStub(CodeStub* stub, Condition cond, | 2483 void MacroAssembler::CallStub(CodeStub* stub, Condition cond, |
1096 Register r1, const Operand& r2) { | 2484 Register r1, const Operand& r2) { |
1097 ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs. | 2485 ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs. |
1098 Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2); | 2486 Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2); |
1099 } | 2487 } |
1100 | 2488 |
1101 | 2489 |
1102 void MacroAssembler::StubReturn(int argc) { | 2490 void MacroAssembler::TailCallStub(CodeStub* stub) { |
1103 UNIMPLEMENTED_MIPS(); | 2491 ASSERT(allow_stub_calls()); // stub calls are not allowed in some stubs |
| 2492 Jump(stub->GetCode(), RelocInfo::CODE_TARGET); |
1104 } | 2493 } |
1105 | 2494 |
1106 | 2495 |
1107 void MacroAssembler::IllegalOperation(int num_arguments) { | 2496 void MacroAssembler::IllegalOperation(int num_arguments) { |
1108 if (num_arguments > 0) { | 2497 if (num_arguments > 0) { |
1109 addiu(sp, sp, num_arguments * kPointerSize); | 2498 addiu(sp, sp, num_arguments * kPointerSize); |
1110 } | 2499 } |
1111 LoadRoot(v0, Heap::kUndefinedValueRootIndex); | 2500 LoadRoot(v0, Heap::kUndefinedValueRootIndex); |
1112 } | 2501 } |
1113 | 2502 |
1114 | 2503 |
1115 void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) { | 2504 void MacroAssembler::IndexFromHash(Register hash, |
| 2505 Register index) { |
| 2506 // If the hash field contains an array index pick it out. The assert checks |
| 2507 // that the constants for the maximum number of digits for an array index |
| 2508 // cached in the hash field and the number of bits reserved for it does not |
| 2509 // conflict. |
| 2510 ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < |
| 2511 (1 << String::kArrayIndexValueBits)); |
| 2512 // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in |
| 2513 // the low kHashShift bits. |
| 2514 STATIC_ASSERT(kSmiTag == 0); |
| 2515 Ext(hash, hash, String::kHashShift, String::kArrayIndexValueBits); |
| 2516 sll(index, hash, kSmiTagSize); |
| 2517 } |
| 2518 |
| 2519 |
| 2520 void MacroAssembler::ObjectToDoubleFPURegister(Register object, |
| 2521 FPURegister result, |
| 2522 Register scratch1, |
| 2523 Register scratch2, |
| 2524 Register heap_number_map, |
| 2525 Label* not_number, |
| 2526 ObjectToDoubleFlags flags) { |
| 2527 Label done; |
| 2528 if ((flags & OBJECT_NOT_SMI) == 0) { |
| 2529 Label not_smi; |
| 2530 JumpIfNotSmi(object, ¬_smi); |
| 2531 // Remove smi tag and convert to double. |
| 2532 sra(scratch1, object, kSmiTagSize); |
| 2533 mtc1(scratch1, result); |
| 2534 cvt_d_w(result, result); |
| 2535 Branch(&done); |
| 2536 bind(¬_smi); |
| 2537 } |
| 2538 // Check for heap number and load double value from it. |
| 2539 lw(scratch1, FieldMemOperand(object, HeapObject::kMapOffset)); |
| 2540 Branch(not_number, ne, scratch1, Operand(heap_number_map)); |
| 2541 |
| 2542 if ((flags & AVOID_NANS_AND_INFINITIES) != 0) { |
| 2543 // If exponent is all ones the number is either a NaN or +/-Infinity. |
| 2544 Register exponent = scratch1; |
| 2545 Register mask_reg = scratch2; |
| 2546 lw(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
| 2547 li(mask_reg, HeapNumber::kExponentMask); |
| 2548 |
| 2549 And(exponent, exponent, mask_reg); |
| 2550 Branch(not_number, eq, exponent, Operand(mask_reg)); |
| 2551 } |
| 2552 ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset)); |
| 2553 bind(&done); |
| 2554 } |
| 2555 |
| 2556 |
| 2557 |
| 2558 void MacroAssembler::SmiToDoubleFPURegister(Register smi, |
| 2559 FPURegister value, |
| 2560 Register scratch1) { |
| 2561 sra(scratch1, smi, kSmiTagSize); |
| 2562 mtc1(scratch1, value); |
| 2563 cvt_d_w(value, value); |
| 2564 } |
| 2565 |
| 2566 |
| 2567 void MacroAssembler::CallRuntime(const Runtime::Function* f, |
| 2568 int num_arguments) { |
1116 // All parameters are on the stack. v0 has the return value after call. | 2569 // All parameters are on the stack. v0 has the return value after call. |
1117 | 2570 |
1118 // If the expected number of arguments of the runtime function is | 2571 // If the expected number of arguments of the runtime function is |
1119 // constant, we check that the actual number of arguments match the | 2572 // constant, we check that the actual number of arguments match the |
1120 // expectation. | 2573 // expectation. |
1121 if (f->nargs >= 0 && f->nargs != num_arguments) { | 2574 if (f->nargs >= 0 && f->nargs != num_arguments) { |
1122 IllegalOperation(num_arguments); | 2575 IllegalOperation(num_arguments); |
1123 return; | 2576 return; |
1124 } | 2577 } |
1125 | 2578 |
1126 // TODO(1236192): Most runtime routines don't need the number of | 2579 // TODO(1236192): Most runtime routines don't need the number of |
1127 // arguments passed in because it is constant. At some point we | 2580 // arguments passed in because it is constant. At some point we |
1128 // should remove this need and make the runtime routine entry code | 2581 // should remove this need and make the runtime routine entry code |
1129 // smarter. | 2582 // smarter. |
1130 li(a0, num_arguments); | 2583 li(a0, num_arguments); |
1131 LoadExternalReference(a1, ExternalReference(f)); | 2584 li(a1, Operand(ExternalReference(f, isolate()))); |
1132 CEntryStub stub(1); | 2585 CEntryStub stub(1); |
1133 CallStub(&stub); | 2586 CallStub(&stub); |
1134 } | 2587 } |
1135 | 2588 |
1136 | 2589 |
| 2590 void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) { |
| 2591 const Runtime::Function* function = Runtime::FunctionForId(id); |
| 2592 li(a0, Operand(function->nargs)); |
| 2593 li(a1, Operand(ExternalReference(function, isolate()))); |
| 2594 CEntryStub stub(1); |
| 2595 stub.SaveDoubles(); |
| 2596 CallStub(&stub); |
| 2597 } |
| 2598 |
| 2599 |
1137 void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) { | 2600 void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) { |
1138 CallRuntime(Runtime::FunctionForId(fid), num_arguments); | 2601 CallRuntime(Runtime::FunctionForId(fid), num_arguments); |
1139 } | 2602 } |
1140 | 2603 |
1141 | 2604 |
| 2605 void MacroAssembler::CallExternalReference(const ExternalReference& ext, |
| 2606 int num_arguments) { |
| 2607 li(a0, Operand(num_arguments)); |
| 2608 li(a1, Operand(ext)); |
| 2609 |
| 2610 CEntryStub stub(1); |
| 2611 CallStub(&stub); |
| 2612 } |
| 2613 |
| 2614 |
1142 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, | 2615 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, |
1143 int num_arguments, | 2616 int num_arguments, |
1144 int result_size) { | 2617 int result_size) { |
1145 UNIMPLEMENTED_MIPS(); | 2618 // TODO(1236192): Most runtime routines don't need the number of |
| 2619 // arguments passed in because it is constant. At some point we |
| 2620 // should remove this need and make the runtime routine entry code |
| 2621 // smarter. |
| 2622 li(a0, Operand(num_arguments)); |
| 2623 JumpToExternalReference(ext); |
1146 } | 2624 } |
1147 | 2625 |
1148 | 2626 |
1149 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, | 2627 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, |
1150 int num_arguments, | 2628 int num_arguments, |
1151 int result_size) { | 2629 int result_size) { |
1152 TailCallExternalReference(ExternalReference(fid), num_arguments, result_size); | 2630 TailCallExternalReference(ExternalReference(fid, isolate()), |
| 2631 num_arguments, |
| 2632 result_size); |
1153 } | 2633 } |
1154 | 2634 |
1155 | 2635 |
1156 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) { | 2636 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) { |
1157 UNIMPLEMENTED_MIPS(); | 2637 li(a1, Operand(builtin)); |
1158 } | 2638 CEntryStub stub(1); |
1159 | 2639 Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
1160 | |
1161 Handle<Code> MacroAssembler::ResolveBuiltin(Builtins::JavaScript id, | |
1162 bool* resolved) { | |
1163 UNIMPLEMENTED_MIPS(); | |
1164 return Handle<Code>(reinterpret_cast<Code*>(NULL)); // UNIMPLEMENTED RETURN | |
1165 } | 2640 } |
1166 | 2641 |
1167 | 2642 |
1168 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, | 2643 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, |
1169 InvokeJSFlags flags) { | 2644 InvokeJSFlags flags, |
1170 UNIMPLEMENTED_MIPS(); | 2645 PostCallGenerator* post_call_generator) { |
| 2646 GetBuiltinEntry(t9, id); |
| 2647 if (flags == CALL_JS) { |
| 2648 Call(t9); |
| 2649 if (post_call_generator != NULL) post_call_generator->Generate(); |
| 2650 } else { |
| 2651 ASSERT(flags == JUMP_JS); |
| 2652 Jump(t9); |
| 2653 } |
| 2654 } |
| 2655 |
| 2656 |
| 2657 void MacroAssembler::GetBuiltinFunction(Register target, |
| 2658 Builtins::JavaScript id) { |
| 2659 // Load the builtins object into target register. |
| 2660 lw(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| 2661 lw(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset)); |
| 2662 // Load the JavaScript builtin function from the builtins object. |
| 2663 lw(target, FieldMemOperand(target, |
| 2664 JSBuiltinsObject::OffsetOfFunctionWithId(id))); |
1171 } | 2665 } |
1172 | 2666 |
1173 | 2667 |
1174 void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { | 2668 void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { |
1175 UNIMPLEMENTED_MIPS(); | 2669 ASSERT(!target.is(a1)); |
| 2670 GetBuiltinFunction(a1, id); |
| 2671 // Load the code entry point from the builtins object. |
| 2672 lw(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); |
1176 } | 2673 } |
1177 | 2674 |
1178 | 2675 |
1179 void MacroAssembler::SetCounter(StatsCounter* counter, int value, | 2676 void MacroAssembler::SetCounter(StatsCounter* counter, int value, |
1180 Register scratch1, Register scratch2) { | 2677 Register scratch1, Register scratch2) { |
1181 UNIMPLEMENTED_MIPS(); | 2678 if (FLAG_native_code_counters && counter->Enabled()) { |
| 2679 li(scratch1, Operand(value)); |
| 2680 li(scratch2, Operand(ExternalReference(counter))); |
| 2681 sw(scratch1, MemOperand(scratch2)); |
| 2682 } |
1182 } | 2683 } |
1183 | 2684 |
1184 | 2685 |
1185 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, | 2686 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, |
1186 Register scratch1, Register scratch2) { | 2687 Register scratch1, Register scratch2) { |
1187 UNIMPLEMENTED_MIPS(); | 2688 ASSERT(value > 0); |
| 2689 if (FLAG_native_code_counters && counter->Enabled()) { |
| 2690 li(scratch2, Operand(ExternalReference(counter))); |
| 2691 lw(scratch1, MemOperand(scratch2)); |
| 2692 Addu(scratch1, scratch1, Operand(value)); |
| 2693 sw(scratch1, MemOperand(scratch2)); |
| 2694 } |
1188 } | 2695 } |
1189 | 2696 |
1190 | 2697 |
1191 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, | 2698 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, |
1192 Register scratch1, Register scratch2) { | 2699 Register scratch1, Register scratch2) { |
1193 UNIMPLEMENTED_MIPS(); | 2700 ASSERT(value > 0); |
| 2701 if (FLAG_native_code_counters && counter->Enabled()) { |
| 2702 li(scratch2, Operand(ExternalReference(counter))); |
| 2703 lw(scratch1, MemOperand(scratch2)); |
| 2704 Subu(scratch1, scratch1, Operand(value)); |
| 2705 sw(scratch1, MemOperand(scratch2)); |
| 2706 } |
1194 } | 2707 } |
1195 | 2708 |
1196 | 2709 |
1197 // ----------------------------------------------------------------------------- | 2710 // ----------------------------------------------------------------------------- |
1198 // Debugging | 2711 // Debugging |
1199 | 2712 |
1200 void MacroAssembler::Assert(Condition cc, const char* msg, | 2713 void MacroAssembler::Assert(Condition cc, const char* msg, |
1201 Register rs, Operand rt) { | 2714 Register rs, Operand rt) { |
1202 UNIMPLEMENTED_MIPS(); | 2715 if (FLAG_debug_code) |
| 2716 Check(cc, msg, rs, rt); |
| 2717 } |
| 2718 |
| 2719 |
| 2720 void MacroAssembler::AssertRegisterIsRoot(Register reg, |
| 2721 Heap::RootListIndex index) { |
| 2722 if (FLAG_debug_code) { |
| 2723 LoadRoot(at, index); |
| 2724 Check(eq, "Register did not match expected root", reg, Operand(at)); |
| 2725 } |
| 2726 } |
| 2727 |
| 2728 |
| 2729 void MacroAssembler::AssertFastElements(Register elements) { |
| 2730 if (FLAG_debug_code) { |
| 2731 ASSERT(!elements.is(at)); |
| 2732 Label ok; |
| 2733 Push(elements); |
| 2734 lw(elements, FieldMemOperand(elements, HeapObject::kMapOffset)); |
| 2735 LoadRoot(at, Heap::kFixedArrayMapRootIndex); |
| 2736 Branch(&ok, eq, elements, Operand(at)); |
| 2737 LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex); |
| 2738 Branch(&ok, eq, elements, Operand(at)); |
| 2739 Abort("JSObject with fast elements map has slow elements"); |
| 2740 bind(&ok); |
| 2741 Pop(elements); |
| 2742 } |
1203 } | 2743 } |
1204 | 2744 |
1205 | 2745 |
1206 void MacroAssembler::Check(Condition cc, const char* msg, | 2746 void MacroAssembler::Check(Condition cc, const char* msg, |
1207 Register rs, Operand rt) { | 2747 Register rs, Operand rt) { |
1208 UNIMPLEMENTED_MIPS(); | 2748 Label L; |
| 2749 Branch(&L, cc, rs, rt); |
| 2750 Abort(msg); |
| 2751 // will not return here |
| 2752 bind(&L); |
1209 } | 2753 } |
1210 | 2754 |
1211 | 2755 |
1212 void MacroAssembler::Abort(const char* msg) { | 2756 void MacroAssembler::Abort(const char* msg) { |
1213 UNIMPLEMENTED_MIPS(); | 2757 Label abort_start; |
| 2758 bind(&abort_start); |
| 2759 // We want to pass the msg string like a smi to avoid GC |
| 2760 // problems, however msg is not guaranteed to be aligned |
| 2761 // properly. Instead, we pass an aligned pointer that is |
| 2762 // a proper v8 smi, but also pass the alignment difference |
| 2763 // from the real pointer as a smi. |
| 2764 intptr_t p1 = reinterpret_cast<intptr_t>(msg); |
| 2765 intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; |
| 2766 ASSERT(reinterpret_cast<Object*>(p0)->IsSmi()); |
| 2767 #ifdef DEBUG |
| 2768 if (msg != NULL) { |
| 2769 RecordComment("Abort message: "); |
| 2770 RecordComment(msg); |
| 2771 } |
| 2772 #endif |
| 2773 // Disable stub call restrictions to always allow calls to abort. |
| 2774 AllowStubCallsScope allow_scope(this, true); |
| 2775 |
| 2776 li(a0, Operand(p0)); |
| 2777 Push(a0); |
| 2778 li(a0, Operand(Smi::FromInt(p1 - p0))); |
| 2779 Push(a0); |
| 2780 CallRuntime(Runtime::kAbort, 2); |
| 2781 // will not return here |
| 2782 if (is_trampoline_pool_blocked()) { |
| 2783 // If the calling code cares about the exact number of |
| 2784 // instructions generated, we insert padding here to keep the size |
| 2785 // of the Abort macro constant. |
| 2786 // Currently in debug mode with debug_code enabled the number of |
| 2787 // generated instructions is 14, so we use this as a maximum value. |
| 2788 static const int kExpectedAbortInstructions = 14; |
| 2789 int abort_instructions = InstructionsGeneratedSince(&abort_start); |
| 2790 ASSERT(abort_instructions <= kExpectedAbortInstructions); |
| 2791 while (abort_instructions++ < kExpectedAbortInstructions) { |
| 2792 nop(); |
| 2793 } |
| 2794 } |
| 2795 } |
| 2796 |
| 2797 |
| 2798 void MacroAssembler::LoadContext(Register dst, int context_chain_length) { |
| 2799 if (context_chain_length > 0) { |
| 2800 // Move up the chain of contexts to the context containing the slot. |
| 2801 lw(dst, MemOperand(cp, Context::SlotOffset(Context::CLOSURE_INDEX))); |
| 2802 // Load the function context (which is the incoming, outer context). |
| 2803 lw(dst, FieldMemOperand(dst, JSFunction::kContextOffset)); |
| 2804 for (int i = 1; i < context_chain_length; i++) { |
| 2805 lw(dst, MemOperand(dst, Context::SlotOffset(Context::CLOSURE_INDEX))); |
| 2806 lw(dst, FieldMemOperand(dst, JSFunction::kContextOffset)); |
| 2807 } |
| 2808 // The context may be an intermediate context, not a function context. |
| 2809 lw(dst, MemOperand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX))); |
| 2810 } else { // Slot is in the current function context. |
| 2811 // The context may be an intermediate context, not a function context. |
| 2812 lw(dst, MemOperand(cp, Context::SlotOffset(Context::FCONTEXT_INDEX))); |
| 2813 } |
| 2814 } |
| 2815 |
| 2816 |
| 2817 void MacroAssembler::LoadGlobalFunction(int index, Register function) { |
| 2818 // Load the global or builtins object from the current context. |
| 2819 lw(function, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| 2820 // Load the global context from the global or builtins object. |
| 2821 lw(function, FieldMemOperand(function, |
| 2822 GlobalObject::kGlobalContextOffset)); |
| 2823 // Load the function from the global context. |
| 2824 lw(function, MemOperand(function, Context::SlotOffset(index))); |
| 2825 } |
| 2826 |
| 2827 |
| 2828 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, |
| 2829 Register map, |
| 2830 Register scratch) { |
| 2831 // Load the initial map. The global functions all have initial maps. |
| 2832 lw(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| 2833 if (FLAG_debug_code) { |
| 2834 Label ok, fail; |
| 2835 CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, false); |
| 2836 Branch(&ok); |
| 2837 bind(&fail); |
| 2838 Abort("Global functions must have initial map"); |
| 2839 bind(&ok); |
| 2840 } |
1214 } | 2841 } |
1215 | 2842 |
1216 | 2843 |
1217 void MacroAssembler::EnterFrame(StackFrame::Type type) { | 2844 void MacroAssembler::EnterFrame(StackFrame::Type type) { |
1218 addiu(sp, sp, -5 * kPointerSize); | 2845 addiu(sp, sp, -5 * kPointerSize); |
1219 li(t0, Operand(Smi::FromInt(type))); | 2846 li(t8, Operand(Smi::FromInt(type))); |
1220 li(t1, Operand(CodeObject())); | 2847 li(t9, Operand(CodeObject())); |
1221 sw(ra, MemOperand(sp, 4 * kPointerSize)); | 2848 sw(ra, MemOperand(sp, 4 * kPointerSize)); |
1222 sw(fp, MemOperand(sp, 3 * kPointerSize)); | 2849 sw(fp, MemOperand(sp, 3 * kPointerSize)); |
1223 sw(cp, MemOperand(sp, 2 * kPointerSize)); | 2850 sw(cp, MemOperand(sp, 2 * kPointerSize)); |
1224 sw(t0, MemOperand(sp, 1 * kPointerSize)); | 2851 sw(t8, MemOperand(sp, 1 * kPointerSize)); |
1225 sw(t1, MemOperand(sp, 0 * kPointerSize)); | 2852 sw(t9, MemOperand(sp, 0 * kPointerSize)); |
1226 addiu(fp, sp, 3 * kPointerSize); | 2853 addiu(fp, sp, 3 * kPointerSize); |
1227 } | 2854 } |
1228 | 2855 |
1229 | 2856 |
1230 void MacroAssembler::LeaveFrame(StackFrame::Type type) { | 2857 void MacroAssembler::LeaveFrame(StackFrame::Type type) { |
1231 mov(sp, fp); | 2858 mov(sp, fp); |
1232 lw(fp, MemOperand(sp, 0 * kPointerSize)); | 2859 lw(fp, MemOperand(sp, 0 * kPointerSize)); |
1233 lw(ra, MemOperand(sp, 1 * kPointerSize)); | 2860 lw(ra, MemOperand(sp, 1 * kPointerSize)); |
1234 addiu(sp, sp, 2 * kPointerSize); | 2861 addiu(sp, sp, 2 * kPointerSize); |
1235 } | 2862 } |
1236 | 2863 |
1237 | 2864 |
1238 void MacroAssembler::EnterExitFrame(ExitFrame::Mode mode, | 2865 void MacroAssembler::EnterExitFrame(Register hold_argc, |
1239 Register hold_argc, | |
1240 Register hold_argv, | 2866 Register hold_argv, |
1241 Register hold_function) { | 2867 Register hold_function, |
1242 // Compute the argv pointer and keep it in a callee-saved register. | 2868 bool save_doubles) { |
1243 // a0 is argc. | 2869 // a0 is argc. |
1244 sll(t0, a0, kPointerSizeLog2); | 2870 sll(t8, a0, kPointerSizeLog2); |
1245 add(hold_argv, sp, t0); | 2871 addu(hold_argv, sp, t8); |
1246 addi(hold_argv, hold_argv, -kPointerSize); | 2872 addiu(hold_argv, hold_argv, -kPointerSize); |
1247 | 2873 |
1248 // Compute callee's stack pointer before making changes and save it as | 2874 // Compute callee's stack pointer before making changes and save it as |
1249 // t1 register so that it is restored as sp register on exit, thereby | 2875 // t9 register so that it is restored as sp register on exit, thereby |
1250 // popping the args. | 2876 // popping the args. |
1251 // t1 = sp + kPointerSize * #args | 2877 // t9 = sp + kPointerSize * #args |
1252 add(t1, sp, t0); | 2878 addu(t9, sp, t8); |
| 2879 |
| 2880 // Compute the argv pointer and keep it in a callee-saved register. |
| 2881 // This only seems to be needed for crankshaft and may cause problems |
| 2882 // so it's disabled for now. |
| 2883 // Subu(s6, t9, Operand(kPointerSize)); |
1253 | 2884 |
1254 // Align the stack at this point. | 2885 // Align the stack at this point. |
1255 AlignStack(0); | 2886 AlignStack(0); |
1256 | 2887 |
1257 // Save registers. | 2888 // Save registers. |
1258 addiu(sp, sp, -12); | 2889 addiu(sp, sp, -12); |
1259 sw(t1, MemOperand(sp, 8)); | 2890 sw(t9, MemOperand(sp, 8)); |
1260 sw(ra, MemOperand(sp, 4)); | 2891 sw(ra, MemOperand(sp, 4)); |
1261 sw(fp, MemOperand(sp, 0)); | 2892 sw(fp, MemOperand(sp, 0)); |
1262 mov(fp, sp); // Setup new frame pointer. | 2893 mov(fp, sp); // Setup new frame pointer. |
1263 | 2894 |
1264 // Push debug marker. | 2895 li(t8, Operand(CodeObject())); |
1265 if (mode == ExitFrame::MODE_DEBUG) { | 2896 Push(t8); // Accessed from ExitFrame::code_slot. |
1266 Push(zero_reg); | |
1267 } else { | |
1268 li(t0, Operand(CodeObject())); | |
1269 Push(t0); | |
1270 } | |
1271 | 2897 |
1272 // Save the frame pointer and the context in top. | 2898 // Save the frame pointer and the context in top. |
1273 LoadExternalReference(t0, ExternalReference(Isolate::k_c_entry_fp_address)); | 2899 li(t8, Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate()))); |
1274 sw(fp, MemOperand(t0)); | 2900 sw(fp, MemOperand(t8)); |
1275 LoadExternalReference(t0, ExternalReference(Isolate::k_context_address)); | 2901 li(t8, Operand(ExternalReference(Isolate::k_context_address, isolate()))); |
1276 sw(cp, MemOperand(t0)); | 2902 sw(cp, MemOperand(t8)); |
1277 | 2903 |
1278 // Setup argc and the builtin function in callee-saved registers. | 2904 // Setup argc and the builtin function in callee-saved registers. |
1279 mov(hold_argc, a0); | 2905 mov(hold_argc, a0); |
1280 mov(hold_function, a1); | 2906 mov(hold_function, a1); |
| 2907 |
| 2908 // Optionally save all double registers. |
| 2909 if (save_doubles) { |
| 2910 #ifdef DEBUG |
| 2911 int frame_alignment = ActivationFrameAlignment(); |
| 2912 #endif |
| 2913 // The stack alignment code above made sp unaligned, so add space for one |
| 2914 // more double register and use aligned addresses. |
| 2915 ASSERT(kDoubleSize == frame_alignment); |
| 2916 // Mark the frame as containing doubles by pushing a non-valid return |
| 2917 // address, i.e. 0. |
| 2918 ASSERT(ExitFrameConstants::kMarkerOffset == -2 * kPointerSize); |
| 2919 push(zero_reg); // Marker and alignment word. |
| 2920 int space = FPURegister::kNumRegisters * kDoubleSize + kPointerSize; |
| 2921 Subu(sp, sp, Operand(space)); |
| 2922 // Remember: we only need to save every 2nd double FPU value. |
| 2923 for (int i = 0; i < FPURegister::kNumRegisters; i+=2) { |
| 2924 FPURegister reg = FPURegister::from_code(i); |
| 2925 sdc1(reg, MemOperand(sp, i * kDoubleSize + kPointerSize)); |
| 2926 } |
| 2927 // Note that f0 will be accessible at fp - 2*kPointerSize - |
| 2928 // FPURegister::kNumRegisters * kDoubleSize, since the code slot and the |
| 2929 // alignment word were pushed after the fp. |
| 2930 } |
1281 } | 2931 } |
1282 | 2932 |
1283 | 2933 |
1284 void MacroAssembler::LeaveExitFrame(ExitFrame::Mode mode) { | 2934 void MacroAssembler::LeaveExitFrame(bool save_doubles) { |
| 2935 // Optionally restore all double registers. |
| 2936 if (save_doubles) { |
| 2937 // TODO(regis): Use vldrm instruction. |
| 2938 // Remember: we only need to restore every 2nd double FPU value. |
| 2939 for (int i = 0; i < FPURegister::kNumRegisters; i+=2) { |
| 2940 FPURegister reg = FPURegister::from_code(i); |
| 2941 // Register f30-f31 is just below the marker. |
| 2942 const int offset = ExitFrameConstants::kMarkerOffset; |
| 2943 ldc1(reg, MemOperand(fp, |
| 2944 (i - FPURegister::kNumRegisters) * kDoubleSize + offset)); |
| 2945 } |
| 2946 } |
| 2947 |
1285 // Clear top frame. | 2948 // Clear top frame. |
1286 LoadExternalReference(t0, ExternalReference(Isolate::k_c_entry_fp_address)); | 2949 li(t8, Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate()))); |
1287 sw(zero_reg, MemOperand(t0)); | 2950 sw(zero_reg, MemOperand(t8)); |
1288 | 2951 |
1289 // Restore current context from top and clear it in debug mode. | 2952 // Restore current context from top and clear it in debug mode. |
1290 LoadExternalReference(t0, ExternalReference(Isolate::k_context_address)); | 2953 li(t8, Operand(ExternalReference(Isolate::k_context_address, isolate()))); |
1291 lw(cp, MemOperand(t0)); | 2954 lw(cp, MemOperand(t8)); |
1292 #ifdef DEBUG | 2955 #ifdef DEBUG |
1293 sw(a3, MemOperand(t0)); | 2956 sw(a3, MemOperand(t8)); |
1294 #endif | 2957 #endif |
1295 | 2958 |
1296 // Pop the arguments, restore registers, and return. | 2959 // Pop the arguments, restore registers, and return. |
1297 mov(sp, fp); // Respect ABI stack constraint. | 2960 mov(sp, fp); // Respect ABI stack constraint. |
1298 lw(fp, MemOperand(sp, 0)); | 2961 lw(fp, MemOperand(sp, 0)); |
1299 lw(ra, MemOperand(sp, 4)); | 2962 lw(ra, MemOperand(sp, 4)); |
1300 lw(sp, MemOperand(sp, 8)); | 2963 lw(sp, MemOperand(sp, 8)); |
1301 jr(ra); | 2964 jr(ra); |
1302 nop(); // Branch delay slot nop. | 2965 nop(); // Branch delay slot nop. |
1303 } | 2966 } |
1304 | 2967 |
1305 | 2968 |
| 2969 void MacroAssembler::InitializeNewString(Register string, |
| 2970 Register length, |
| 2971 Heap::RootListIndex map_index, |
| 2972 Register scratch1, |
| 2973 Register scratch2) { |
| 2974 sll(scratch1, length, kSmiTagSize); |
| 2975 LoadRoot(scratch2, map_index); |
| 2976 sw(scratch1, FieldMemOperand(string, String::kLengthOffset)); |
| 2977 li(scratch1, Operand(String::kEmptyHashField)); |
| 2978 sw(scratch2, FieldMemOperand(string, HeapObject::kMapOffset)); |
| 2979 sw(scratch1, FieldMemOperand(string, String::kHashFieldOffset)); |
| 2980 } |
| 2981 |
| 2982 |
| 2983 int MacroAssembler::ActivationFrameAlignment() { |
| 2984 #if defined(V8_HOST_ARCH_MIPS) |
| 2985 // Running on the real platform. Use the alignment as mandated by the local |
| 2986 // environment. |
| 2987 // Note: This will break if we ever start generating snapshots on one Mips |
| 2988 // platform for another Mips platform with a different alignment. |
| 2989 return OS::ActivationFrameAlignment(); |
| 2990 #else // defined(V8_HOST_ARCH_MIPS) |
| 2991 // If we are using the simulator then we should always align to the expected |
| 2992 // alignment. As the simulator is used to generate snapshots we do not know |
| 2993 // if the target platform will need alignment, so this is controlled from a |
| 2994 // flag. |
| 2995 return FLAG_sim_stack_alignment; |
| 2996 #endif // defined(V8_HOST_ARCH_MIPS) |
| 2997 } |
| 2998 |
| 2999 |
1306 void MacroAssembler::AlignStack(int offset) { | 3000 void MacroAssembler::AlignStack(int offset) { |
1307 // On MIPS an offset of 0 aligns to 0 modulo 8 bytes, | 3001 // On MIPS an offset of 0 aligns to 0 modulo 8 bytes, |
1308 // and an offset of 1 aligns to 4 modulo 8 bytes. | 3002 // and an offset of 1 aligns to 4 modulo 8 bytes. |
| 3003 #if defined(V8_HOST_ARCH_MIPS) |
| 3004 // Running on the real platform. Use the alignment as mandated by the local |
| 3005 // environment. |
| 3006 // Note: This will break if we ever start generating snapshots on one MIPS |
| 3007 // platform for another MIPS platform with a different alignment. |
1309 int activation_frame_alignment = OS::ActivationFrameAlignment(); | 3008 int activation_frame_alignment = OS::ActivationFrameAlignment(); |
| 3009 #else // defined(V8_HOST_ARCH_MIPS) |
| 3010 // If we are using the simulator then we should always align to the expected |
| 3011 // alignment. As the simulator is used to generate snapshots we do not know |
| 3012 // if the target platform will need alignment, so we will always align at |
| 3013 // this point here. |
| 3014 int activation_frame_alignment = 2 * kPointerSize; |
| 3015 #endif // defined(V8_HOST_ARCH_MIPS) |
1310 if (activation_frame_alignment != kPointerSize) { | 3016 if (activation_frame_alignment != kPointerSize) { |
1311 // This code needs to be made more general if this assert doesn't hold. | 3017 // This code needs to be made more general if this assert doesn't hold. |
1312 ASSERT(activation_frame_alignment == 2 * kPointerSize); | 3018 ASSERT(activation_frame_alignment == 2 * kPointerSize); |
1313 if (offset == 0) { | 3019 if (offset == 0) { |
1314 andi(t0, sp, activation_frame_alignment - 1); | 3020 andi(t8, sp, activation_frame_alignment - 1); |
1315 Push(zero_reg, eq, t0, zero_reg); | 3021 Push(zero_reg, eq, t8, zero_reg); |
1316 } else { | 3022 } else { |
1317 andi(t0, sp, activation_frame_alignment - 1); | 3023 andi(t8, sp, activation_frame_alignment - 1); |
1318 addiu(t0, t0, -4); | 3024 addiu(t8, t8, -4); |
1319 Push(zero_reg, eq, t0, zero_reg); | 3025 Push(zero_reg, eq, t8, zero_reg); |
1320 } | 3026 } |
1321 } | 3027 } |
1322 } | 3028 } |
1323 | 3029 |
| 3030 |
| 3031 |
| 3032 void MacroAssembler::JumpIfNotPowerOfTwoOrZero( |
| 3033 Register reg, |
| 3034 Register scratch, |
| 3035 Label* not_power_of_two_or_zero) { |
| 3036 Subu(scratch, reg, Operand(1)); |
| 3037 Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt, |
| 3038 scratch, Operand(zero_reg)); |
| 3039 and_(at, scratch, reg); // In the delay slot. |
| 3040 Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg)); |
| 3041 } |
| 3042 |
| 3043 |
| 3044 void MacroAssembler::JumpIfNotBothSmi(Register reg1, |
| 3045 Register reg2, |
| 3046 Label* on_not_both_smi) { |
| 3047 STATIC_ASSERT(kSmiTag == 0); |
| 3048 ASSERT_EQ(1, kSmiTagMask); |
| 3049 or_(at, reg1, reg2); |
| 3050 andi(at, at, kSmiTagMask); |
| 3051 Branch(on_not_both_smi, ne, at, Operand(zero_reg)); |
| 3052 } |
| 3053 |
| 3054 |
| 3055 void MacroAssembler::JumpIfEitherSmi(Register reg1, |
| 3056 Register reg2, |
| 3057 Label* on_either_smi) { |
| 3058 STATIC_ASSERT(kSmiTag == 0); |
| 3059 ASSERT_EQ(1, kSmiTagMask); |
| 3060 // Both Smi tags must be 1 (not Smi). |
| 3061 and_(at, reg1, reg2); |
| 3062 andi(at, at, kSmiTagMask); |
| 3063 Branch(on_either_smi, eq, at, Operand(zero_reg)); |
| 3064 } |
| 3065 |
| 3066 |
| 3067 void MacroAssembler::AbortIfSmi(Register object) { |
| 3068 STATIC_ASSERT(kSmiTag == 0); |
| 3069 andi(at, object, kSmiTagMask); |
| 3070 Assert(ne, "Operand is a smi", at, Operand(zero_reg)); |
| 3071 } |
| 3072 |
| 3073 |
| 3074 void MacroAssembler::AbortIfNotSmi(Register object) { |
| 3075 STATIC_ASSERT(kSmiTag == 0); |
| 3076 andi(at, object, kSmiTagMask); |
| 3077 Assert(eq, "Operand is a smi", at, Operand(zero_reg)); |
| 3078 } |
| 3079 |
| 3080 |
| 3081 void MacroAssembler::AbortIfNotRootValue(Register src, |
| 3082 Heap::RootListIndex root_value_index, |
| 3083 const char* message) { |
| 3084 ASSERT(!src.is(at)); |
| 3085 LoadRoot(at, root_value_index); |
| 3086 Assert(eq, message, src, Operand(at)); |
| 3087 } |
| 3088 |
| 3089 |
| 3090 void MacroAssembler::JumpIfNotHeapNumber(Register object, |
| 3091 Register heap_number_map, |
| 3092 Register scratch, |
| 3093 Label* on_not_heap_number) { |
| 3094 lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); |
| 3095 AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| 3096 Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map)); |
| 3097 } |
| 3098 |
| 3099 |
| 3100 void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings( |
| 3101 Register first, |
| 3102 Register second, |
| 3103 Register scratch1, |
| 3104 Register scratch2, |
| 3105 Label* failure) { |
| 3106 // Test that both first and second are sequential ASCII strings. |
| 3107 // Assume that they are non-smis. |
| 3108 lw(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); |
| 3109 lw(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); |
| 3110 lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); |
| 3111 lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); |
| 3112 |
| 3113 JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1, |
| 3114 scratch2, |
| 3115 scratch1, |
| 3116 scratch2, |
| 3117 failure); |
| 3118 } |
| 3119 |
| 3120 |
| 3121 void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first, |
| 3122 Register second, |
| 3123 Register scratch1, |
| 3124 Register scratch2, |
| 3125 Label* failure) { |
| 3126 // Check that neither is a smi. |
| 3127 STATIC_ASSERT(kSmiTag == 0); |
| 3128 And(scratch1, first, Operand(second)); |
| 3129 And(scratch1, scratch1, Operand(kSmiTagMask)); |
| 3130 Branch(failure, eq, scratch1, Operand(zero_reg)); |
| 3131 JumpIfNonSmisNotBothSequentialAsciiStrings(first, |
| 3132 second, |
| 3133 scratch1, |
| 3134 scratch2, |
| 3135 failure); |
| 3136 } |
| 3137 |
| 3138 |
| 3139 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii( |
| 3140 Register first, |
| 3141 Register second, |
| 3142 Register scratch1, |
| 3143 Register scratch2, |
| 3144 Label* failure) { |
| 3145 int kFlatAsciiStringMask = |
| 3146 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; |
| 3147 int kFlatAsciiStringTag = ASCII_STRING_TYPE; |
| 3148 ASSERT(kFlatAsciiStringTag <= 0xffff); // Ensure this fits 16-bit immed. |
| 3149 andi(scratch1, first, kFlatAsciiStringMask); |
| 3150 Branch(failure, ne, scratch1, Operand(kFlatAsciiStringTag)); |
| 3151 andi(scratch2, second, kFlatAsciiStringMask); |
| 3152 Branch(failure, ne, scratch2, Operand(kFlatAsciiStringTag)); |
| 3153 } |
| 3154 |
| 3155 |
| 3156 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type, |
| 3157 Register scratch, |
| 3158 Label* failure) { |
| 3159 int kFlatAsciiStringMask = |
| 3160 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; |
| 3161 int kFlatAsciiStringTag = ASCII_STRING_TYPE; |
| 3162 And(scratch, type, Operand(kFlatAsciiStringMask)); |
| 3163 Branch(failure, ne, scratch, Operand(kFlatAsciiStringTag)); |
| 3164 } |
| 3165 |
| 3166 |
| 3167 static const int kRegisterPassedArguments = 4; |
| 3168 |
| 3169 void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) { |
| 3170 int frame_alignment = ActivationFrameAlignment(); |
| 3171 |
| 3172 // Reserve space for Isolate address which is always passed as last parameter |
| 3173 num_arguments += 1; |
| 3174 |
| 3175 // Up to four simple arguments are passed in registers a0..a3. |
| 3176 // Those four arguments must have reserved argument slots on the stack for |
| 3177 // mips, even though those argument slots are not normally used. |
| 3178 // Remaining arguments are pushed on the stack, above (higher address than) |
| 3179 // the argument slots. |
| 3180 ASSERT(StandardFrameConstants::kCArgsSlotsSize % kPointerSize == 0); |
| 3181 int stack_passed_arguments = ((num_arguments <= kRegisterPassedArguments) ? |
| 3182 0 : num_arguments - kRegisterPassedArguments) + |
| 3183 (StandardFrameConstants::kCArgsSlotsSize / |
| 3184 kPointerSize); |
| 3185 if (frame_alignment > kPointerSize) { |
| 3186 // Make stack end at alignment and make room for num_arguments - 4 words |
| 3187 // and the original value of sp. |
| 3188 mov(scratch, sp); |
| 3189 Subu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); |
| 3190 ASSERT(IsPowerOf2(frame_alignment)); |
| 3191 And(sp, sp, Operand(-frame_alignment)); |
| 3192 sw(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); |
| 3193 } else { |
| 3194 Subu(sp, sp, Operand(stack_passed_arguments * kPointerSize)); |
| 3195 } |
| 3196 } |
| 3197 |
| 3198 |
| 3199 void MacroAssembler::CallCFunction(ExternalReference function, |
| 3200 int num_arguments) { |
| 3201 CallCFunctionHelper(no_reg, function, at, num_arguments); |
| 3202 } |
| 3203 |
| 3204 |
| 3205 void MacroAssembler::CallCFunction(Register function, |
| 3206 Register scratch, |
| 3207 int num_arguments) { |
| 3208 CallCFunctionHelper(function, |
| 3209 ExternalReference::the_hole_value_location(isolate()), |
| 3210 scratch, |
| 3211 num_arguments); |
| 3212 } |
| 3213 |
| 3214 |
| 3215 void MacroAssembler::CallCFunctionHelper(Register function, |
| 3216 ExternalReference function_reference, |
| 3217 Register scratch, |
| 3218 int num_arguments) { |
| 3219 // Push Isolate address as the last argument. |
| 3220 if (num_arguments < kRegisterPassedArguments) { |
| 3221 Register arg_to_reg[] = {a0, a1, a2, a3}; |
| 3222 Register r = arg_to_reg[num_arguments]; |
| 3223 li(r, Operand(ExternalReference::isolate_address())); |
| 3224 } else { |
| 3225 int stack_passed_arguments = num_arguments - kRegisterPassedArguments + |
| 3226 (StandardFrameConstants::kCArgsSlotsSize / |
| 3227 kPointerSize); |
| 3228 // Push Isolate address on the stack after the arguments. |
| 3229 li(scratch, Operand(ExternalReference::isolate_address())); |
| 3230 sw(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); |
| 3231 } |
| 3232 num_arguments += 1; |
| 3233 |
| 3234 // Make sure that the stack is aligned before calling a C function unless |
| 3235 // running in the simulator. The simulator has its own alignment check which |
| 3236 // provides more information. |
| 3237 // The argument stots are presumed to have been set up by |
| 3238 // PrepareCallCFunction. The C function must be called via t9, for mips ABI. |
| 3239 |
| 3240 #if defined(V8_HOST_ARCH_MIPS) |
| 3241 if (emit_debug_code()) { |
| 3242 int frame_alignment = OS::ActivationFrameAlignment(); |
| 3243 int frame_alignment_mask = frame_alignment - 1; |
| 3244 if (frame_alignment > kPointerSize) { |
| 3245 ASSERT(IsPowerOf2(frame_alignment)); |
| 3246 Label alignment_as_expected; |
| 3247 And(at, sp, Operand(frame_alignment_mask)); |
| 3248 Branch(&alignment_as_expected, eq, at, Operand(zero_reg)); |
| 3249 // Don't use Check here, as it will call Runtime_Abort possibly |
| 3250 // re-entering here. |
| 3251 stop("Unexpected alignment in CallCFunction"); |
| 3252 bind(&alignment_as_expected); |
| 3253 } |
| 3254 } |
| 3255 #endif // V8_HOST_ARCH_MIPS |
| 3256 |
| 3257 // Just call directly. The function called cannot cause a GC, or |
| 3258 // allow preemption, so the return address in the link register |
| 3259 // stays correct. |
| 3260 if (!function.is(t9)) { |
| 3261 mov(t9, function); |
| 3262 function = t9; |
| 3263 } |
| 3264 |
| 3265 if (function.is(no_reg)) { |
| 3266 li(t9, Operand(function_reference)); |
| 3267 function = t9; |
| 3268 } |
| 3269 |
| 3270 Call(function); |
| 3271 |
| 3272 ASSERT(StandardFrameConstants::kCArgsSlotsSize % kPointerSize == 0); |
| 3273 int stack_passed_arguments = ((num_arguments <= kRegisterPassedArguments) ? |
| 3274 0 : num_arguments - kRegisterPassedArguments) + |
| 3275 (StandardFrameConstants::kCArgsSlotsSize / |
| 3276 kPointerSize); |
| 3277 |
| 3278 if (OS::ActivationFrameAlignment() > kPointerSize) { |
| 3279 lw(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); |
| 3280 } else { |
| 3281 Addu(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize))); |
| 3282 } |
| 3283 } |
| 3284 |
| 3285 |
| 3286 #undef BRANCH_ARGS_CHECK |
| 3287 |
| 3288 |
| 3289 #ifdef ENABLE_DEBUGGER_SUPPORT |
| 3290 CodePatcher::CodePatcher(byte* address, int instructions) |
| 3291 : address_(address), |
| 3292 instructions_(instructions), |
| 3293 size_(instructions * Assembler::kInstrSize), |
| 3294 masm_(address, size_ + Assembler::kGap) { |
| 3295 // Create a new macro assembler pointing to the address of the code to patch. |
| 3296 // The size is adjusted with kGap on order for the assembler to generate size |
| 3297 // bytes of instructions without failing with buffer size constraints. |
| 3298 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
| 3299 } |
| 3300 |
| 3301 |
| 3302 CodePatcher::~CodePatcher() { |
| 3303 // Indicate that code has changed. |
| 3304 CPU::FlushICache(address_, size_); |
| 3305 |
| 3306 // Check that the code was patched as expected. |
| 3307 ASSERT(masm_.pc_ == address_ + size_); |
| 3308 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
| 3309 } |
| 3310 |
| 3311 |
| 3312 void CodePatcher::Emit(Instr x) { |
| 3313 masm()->emit(x); |
| 3314 } |
| 3315 |
| 3316 |
| 3317 void CodePatcher::Emit(Address addr) { |
| 3318 masm()->emit(reinterpret_cast<Instr>(addr)); |
| 3319 } |
| 3320 |
| 3321 |
| 3322 #endif // ENABLE_DEBUGGER_SUPPORT |
| 3323 |
| 3324 |
1324 } } // namespace v8::internal | 3325 } } // namespace v8::internal |
1325 | 3326 |
1326 #endif // V8_TARGET_ARCH_MIPS | 3327 #endif // V8_TARGET_ARCH_MIPS |
OLD | NEW |