| Index: tegra2_spi.c
|
| diff --git a/tegra2_spi.c b/tegra2_spi.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..276aea4087c129a63f77bb679475c678b812fad8
|
| --- /dev/null
|
| +++ b/tegra2_spi.c
|
| @@ -0,0 +1,427 @@
|
| +/*
|
| + * This file is part of the flashrom project.
|
| + *
|
| + * Copyright (C) 2010 NVIDIA Corporation
|
| + * Copyright (C) 2011 Google Inc
|
| + *
|
| + * This program is free software; you can redistribute it and/or modify
|
| + * it under the terms of the GNU General Public License as published by
|
| + * the Free Software Foundation; either version 2 of the License, or
|
| + * (at your option) any later version.
|
| + *
|
| + * This program is distributed in the hope that it will be useful,
|
| + * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| + * GNU General Public License for more details.
|
| + *
|
| + * You should have received a copy of the GNU General Public License
|
| + * along with this program; if not, write to the Free Software
|
| + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
| + */
|
| +
|
| +#if defined(__arm__)
|
| +#include <assert.h>
|
| +#include <stdio.h>
|
| +#include <stdlib.h>
|
| +#include <string.h>
|
| +
|
| +#include "flash.h"
|
| +#include "programmer.h"
|
| +#include "tegra2_spi.h"
|
| +
|
| +static void *gpio_base, *clkrst_base, *apbmisc_base, *spi_base;
|
| +
|
| +#define SPI_TIMEOUT 50000 /* 100ms = 50000 * 2us */
|
| +
|
| +/* On Seaboard: GPIO_PI3 = Port I = 8, bit = 3 */
|
| +#define UART_DISABLE_PORT 8
|
| +#define UART_DISABLE_BIT 3
|
| +
|
| +/* To restore the original value of register. */
|
| +struct tegra2_undo_register {
|
| + void *reg_addr;
|
| + uint32_t value;
|
| +};
|
| +
|
| +#define register_tegra2_undo(reg) \
|
| + do { \
|
| + struct tegra2_undo_register *undo; \
|
| + undo = malloc(sizeof(struct tegra2_undo_register)); \
|
| + undo->reg_addr = (reg); \
|
| + undo->value = mmio_readl(reg); \
|
| + register_shutdown(tegra2_do_undo, undo); \
|
| + } while (0)
|
| +
|
| +static void tegra2_do_undo(void *p) {
|
| + struct tegra2_undo_register *undo = (struct tegra2_undo_register*)p;
|
| +
|
| + mmio_writel(undo->value, undo->reg_addr);
|
| + free(p);
|
| +}
|
| +
|
| +/* Config port:bit as GPIO, not SFPIO (default) */
|
| +static void __set_config(unsigned port, unsigned bit, int type)
|
| +{
|
| + u32 u;
|
| +
|
| + msg_pdbg("%s: port = %d, bit = %d, %s\n", __func__,
|
| + port, bit, type ? "GPIO" : "SFPIO");
|
| +
|
| + u = mmio_readl(GPIO_CNF(port));
|
| + if (type) /* GPIO */
|
| + u |= 1 << bit;
|
| + else
|
| + u &= ~(1 << bit);
|
| + register_tegra2_undo(GPIO_CNF(port));
|
| + mmio_writel(u, GPIO_CNF(port));
|
| +}
|
| +
|
| +/* Config GPIO port:bit as input or output (OE) */
|
| +static void __set_direction(unsigned port, unsigned bit, int output)
|
| +{
|
| + u32 u;
|
| +
|
| + msg_pdbg("%s: port = %d, bit = %d, %s\n", __func__,
|
| + port, bit, output ? "OUT" : "IN");
|
| +
|
| + u = mmio_readl(GPIO_OE(port));
|
| + if (output)
|
| + u |= 1 << bit;
|
| + else
|
| + u &= ~(1 << bit);
|
| + register_tegra2_undo(GPIO_OE(port));
|
| + mmio_writel(u, GPIO_OE(port));
|
| +}
|
| +
|
| +/* set GPIO OUT port:bit as 0 or 1 */
|
| +static void __set_level(unsigned port, unsigned bit, int high)
|
| +{
|
| + u32 u;
|
| +
|
| + msg_pdbg("%s: port = %d, bit %d == %d\n", __func__,
|
| + port, bit, high);
|
| +
|
| + u = mmio_readl(GPIO_OUT(port));
|
| + if (high)
|
| + u |= 1 << bit;
|
| + else
|
| + u &= ~(1 << bit);
|
| + register_tegra2_undo(GPIO_OUT(port));
|
| + mmio_writel(u, GPIO_OUT(port));
|
| +}
|
| +
|
| +
|
| +/* set GPIO port:bit as an output, with polarity 'value' */
|
| +static int tg2_gpio_direction_output(unsigned port, unsigned bit, int value)
|
| +{
|
| + msg_pdbg("%s: port = %d, bit = %d, value = %d\n",
|
| + __func__, port, bit, value);
|
| +
|
| + /* Configure as a GPIO */
|
| + __set_config(port, bit, 1);
|
| +
|
| + /* Configure GPIO output value. */
|
| + __set_level(port, bit, value);
|
| +
|
| + /* Configure GPIO direction as output. */
|
| + __set_direction(port, bit, 1);
|
| +
|
| + return 0;
|
| +}
|
| +
|
| +static void spi_cs_activate(void)
|
| +{
|
| + uint32_t *spi_cmd = (uint32_t *)spi_base;
|
| +
|
| + /*
|
| + * CS is negated on Tegra, so drive a 1 to get a 0
|
| + */
|
| + mmio_writel(mmio_readl(spi_cmd) | SPI_CMD_CS_VAL, spi_cmd);
|
| + msg_pdbg("%s: CS driven %s\n", __func__,
|
| + (mmio_readl(spi_cmd) & SPI_CMD_CS_VAL) ? "LOW" : "HIGH");
|
| +}
|
| +
|
| +static void spi_cs_deactivate(void)
|
| +{
|
| + uint32_t *spi_cmd = (uint32_t *)spi_base;
|
| +
|
| +
|
| + /*
|
| + * CS is negated on Tegra, so drive a 0 to get a 1
|
| + */
|
| + mmio_writel(mmio_readl(spi_cmd) & ~SPI_CMD_CS_VAL, spi_cmd);
|
| + msg_pdbg("%s: CS driven %s\n", __func__,
|
| + (mmio_readl(spi_cmd) & SPI_CMD_CS_VAL) ? "LOW" : "HIGH");
|
| +}
|
| +
|
| +
|
| +/* Helper function to calculate the clock cycle in this round.
|
| + * Also updates the byte count remaining to be used this round.
|
| + *
|
| + * For example, we want to write 6 bytes to SPI and then read 5 bytes back.
|
| + *
|
| + * +---+---+---+---+---+---+
|
| + * | W | W | W | W | W | W |
|
| + * +---+---+---+---+---+---+---+---+---+---+---+
|
| + * | R | R | R | R | R |
|
| + * +---+---+---+---+---+
|
| + * |<-- round 0 -->|
|
| + * |<-- round 1 -->|
|
| + * |<-- round 2 -->|
|
| + *
|
| + * So that the continuous calling this function would get:
|
| + *
|
| + * round| RET| writecnt readcnt bits to_write to_read
|
| + * -----+----+---------------------------------------------
|
| + * INIT | | 6 5
|
| + * 0 | 1 | 2 5 32 4 0
|
| + * 1 | 1 | 0 3 32 2 2
|
| + * 2 | 1 | 0 0 24 0 3
|
| + * 3 | 0 | - - - - -
|
| + *
|
| + */
|
| +int next4Bytes(uint32_t *writecnt, uint32_t *readcnt, int *num_bits,
|
| + uint32_t *to_write, uint32_t *to_read) {
|
| + assert(writecnt);
|
| + assert(readcnt);
|
| + assert(num_bits);
|
| + assert(to_write);
|
| + assert(to_read);
|
| +
|
| + *to_write = min(*writecnt, 4);
|
| + *to_read = min(*readcnt, 4 - *to_write);
|
| +
|
| + *writecnt -= *to_write;
|
| + *readcnt -= *to_read;
|
| +
|
| + *num_bits = (*to_write + *to_read) * 8;
|
| +
|
| + if (*num_bits)
|
| + return 1; /* need to be called again. */
|
| + else
|
| + return 0; /* handled write and read requests. */
|
| +}
|
| +
|
| +/*
|
| + * Tegra2 FIFO design is ... interesting. For example, you want to Tx 2 bytes:
|
| + *
|
| + * +---+---+
|
| + * writearr[]: | 0 | 1 |
|
| + * +---+---+
|
| + * \ \
|
| + * \ \
|
| + * \ \
|
| + * \ \
|
| + * \ \
|
| + * 31 +---+---+---+---+ 0
|
| + * tmp(32-bits): | X | X | 0 | 1 |
|
| + * +---+---+---+---+ LSB
|
| + *
|
| + * It is neither little or big endian. The first bit for SPI controller to
|
| + * transfer is the bit 15 in FIFO, neither bit 31 or bit 0, because the transfer
|
| + * length is 16 bits (2 bytes).
|
| + *
|
| + * Rx follows the similar rule. First bit comes at bit 0, and the whole FIFO
|
| + * left-shifts 1 bit for every bit comes in. Hence, after reading 3 bytes,
|
| + * the first coming bit will reside in bit 23.
|
| + */
|
| +int tegra2_spi_send_command(unsigned int writecnt,
|
| + unsigned int readcnt,
|
| + const unsigned char *writearr,
|
| + unsigned char *readarr)
|
| +{
|
| + int retval = 0;
|
| + uint8_t *delayed_msg = NULL; /* for UART is disabled. */
|
| + uint32_t *spi_cmd = (uint32_t *)spi_base;
|
| + uint32_t *spi_sts = (uint32_t *)(spi_base + 0x04);
|
| + uint32_t *tx_fifo = (uint32_t *)(spi_base + 0x10);
|
| + uint32_t *rx_fifo = (uint32_t *)(spi_base + 0x20);
|
| + uint32_t status;
|
| + uint32_t to_write, to_read; /* byte counts to fill FIFO. */
|
| + uint32_t bits; /* bit count to tell SPI controller. */
|
| +
|
| + mmio_writel(mmio_readl(spi_sts), spi_sts);
|
| + mmio_writel(mmio_readl(spi_cmd) | SPI_CMD_TXEN | SPI_CMD_RXEN, spi_cmd);
|
| + spi_cs_activate();
|
| +
|
| + while (next4Bytes(&writecnt, &readcnt, &bits, &to_write, &to_read)) {
|
| + int i;
|
| + uint32_t tmp;
|
| + uint32_t tm; /* timeout counter */
|
| +
|
| + /* prepare Tx FIFO */
|
| + for (tmp = 0, i = 0; i < to_write; ++i) {
|
| + tmp |= (*writearr++) << ((bits / 8 - 1 - i) * 8);
|
| + }
|
| + mmio_writel(tmp, tx_fifo);
|
| +
|
| + /* Kick the SCLK running: Shift out TX FIFO, and receive RX. */
|
| + mmio_writel(mmio_readl(spi_cmd) & ~SPI_CMD_BIT_LENGTH_MASK,
|
| + spi_cmd);
|
| + mmio_writel(mmio_readl(spi_cmd) | (bits - 1),
|
| + spi_cmd);
|
| + mmio_writel(mmio_readl(spi_cmd) | SPI_CMD_GO, spi_cmd);
|
| +
|
| + /* Wait for controller completes the task. */
|
| + for (tm = 0; tm < SPI_TIMEOUT; ++tm) {
|
| + if (((status = mmio_readl(spi_sts)) &
|
| + (SPI_STAT_BSY | SPI_STAT_RDY)) == SPI_STAT_RDY)
|
| + break;
|
| + /* We setup clock to 6MHz, so that we shall come back
|
| + * after: 1 / (6MHz) * 8 bits = 1.333us
|
| + */
|
| + programmer_delay(2);
|
| + }
|
| + mmio_writel(mmio_readl(spi_sts) | SPI_STAT_RDY, spi_sts);
|
| +
|
| + /* Since the UART is disabled here, we delay printing the
|
| + * message until spi_cs_deactivate() is called.
|
| + */
|
| + if (tm >= SPI_TIMEOUT) {
|
| + static uint8_t err[256];
|
| + retval = -1;
|
| + snprintf(err, sizeof(err),
|
| + "%s():%d BSY&RDY timeout, status = 0x%08x\n",
|
| + __func__, __LINE__, status);
|
| + delayed_msg = err;
|
| + break;
|
| + }
|
| +
|
| + /* read RX FIFO */
|
| + tmp = mmio_readl(rx_fifo);
|
| + for (i = 0; i < to_read; ++i) {
|
| + *readarr++ = (tmp >> ((to_read - 1 - i) * 8)) & 0xFF;
|
| + }
|
| + }
|
| +
|
| + mmio_writel(status = mmio_readl(spi_sts), spi_sts);
|
| +
|
| + spi_cs_deactivate();
|
| + if (delayed_msg) {
|
| + msg_perr("%s\n", delayed_msg);
|
| + }
|
| +
|
| + return retval;
|
| +}
|
| +
|
| +
|
| +int tegra2_spi_read(struct flashchip *flash, uint8_t *buf, int start, int len)
|
| +{
|
| + return spi_read_chunked(flash, buf, start, len, 256);
|
| +}
|
| +
|
| +
|
| +int tegra2_spi_write(struct flashchip *flash, uint8_t *buf, int start, int len)
|
| +{
|
| + return spi_write_chunked(flash, buf, start, len, 256);
|
| +}
|
| +
|
| +
|
| +/* Map register spaces */
|
| +int tegra2_spi_init(void)
|
| +{
|
| + u32 val;
|
| + int error = 0;
|
| + uint32_t *spi_cmd;
|
| + uint32_t *spi_sts;
|
| +
|
| + gpio_base = physmap("GPIO", TEGRA2_GPIO_BASE, 4096);
|
| + clkrst_base = physmap("CLK/RST", NV_ADDRESS_MAP_PPSB_CLK_RST_BASE,
|
| + 4096);
|
| + apbmisc_base = physmap("APB MISC", NV_ADDRESS_MAP_APB_MISC_BASE, 4096);
|
| + /* non-page offset */
|
| + spi_base = physmap("SPI", TEGRA2_SPI_BASE - 0x380, 4096) + 0x380;
|
| + register_shutdown(tegra2_spi_shutdown, NULL);
|
| +
|
| + if (error)
|
| + return 1;
|
| +
|
| + flashbase = 0; /* FIXME: to make sanity check happy. */
|
| + buses_supported = CHIP_BUSTYPE_SPI;
|
| + spi_controller = SPI_CONTROLLER_TEGRA2;
|
| +
|
| + /* Init variables */
|
| + spi_cmd = (uint32_t *)spi_base;
|
| + spi_sts = (uint32_t *)(spi_base + 0x04);
|
| +
|
| + register_tegra2_undo(clkrst_base + 0x08);
|
| + register_tegra2_undo(clkrst_base + 0x114);
|
| + register_tegra2_undo(clkrst_base + 0x14);
|
| + /*
|
| + * SPI reset/clocks init - reset SPI, set clocks, release from reset
|
| + */
|
| + val = mmio_readl(clkrst_base + 0x08);
|
| + mmio_writel((val | 0x800), (clkrst_base + 0x08));
|
| + msg_pdbg("%s: ClkRst = %08x\n", __func__, val);
|
| +
|
| + val = mmio_readl(clkrst_base + 0x14);
|
| + mmio_writel((val | 0x800), (clkrst_base + 0x14));
|
| + msg_pdbg("%s: ClkEnable = %08x\n", __func__, val);
|
| +
|
| + /* Change default SPI clock from 12MHz to 6MHz, same as BootROM */
|
| + val = mmio_readl(clkrst_base + 0x114);
|
| + mmio_writel((val | 0x2), (clkrst_base + 0x114));
|
| + msg_pdbg("%s: ClkSrc = %08x\n", __func__, val);
|
| +
|
| + val = mmio_readl(clkrst_base + 0x08);
|
| + mmio_writel((val & 0xFFFFF7FF), (clkrst_base + 0x08));
|
| + msg_pdbg("%s: ClkRst final = %08x\n", __func__, val);
|
| +
|
| + /* Clear stale status here */
|
| + mmio_writel(SPI_STAT_RDY | SPI_STAT_RXF_FLUSH | SPI_STAT_TXF_FLUSH |
|
| + SPI_STAT_RXF_UNR | SPI_STAT_TXF_OVF, spi_sts);
|
| + msg_pdbg("%s: STATUS = %08x\n", __func__, mmio_readl(spi_sts));
|
| +
|
| + /*
|
| + * Use sw-controlled CS, so we can clock in data after ReadID, etc.
|
| + */
|
| + mmio_writel(mmio_readl(spi_cmd) | SPI_CMD_CS_SOFT, spi_cmd);
|
| + msg_pdbg("%s: COMMAND = %08x\n", __func__, mmio_readl(spi_cmd));
|
| +
|
| + register_tegra2_undo(apbmisc_base + 0x84);
|
| + register_tegra2_undo(apbmisc_base + 0x20);
|
| + register_tegra2_undo(apbmisc_base + 0x88);
|
| + /*
|
| + * SPI pins on Tegra2 are muxed - change pinmux last due to UART issue
|
| + */
|
| + val = mmio_readl(apbmisc_base + 0x88);
|
| + val |= 0xC0000000;
|
| + mmio_writel(val, (apbmisc_base + 0x88));
|
| + msg_pdbg("%s: PinMuxRegC = %08x\n", __func__, val);
|
| +
|
| + val = mmio_readl(apbmisc_base + 0x20);
|
| + val &= 0xFFFFFFFE;
|
| + mmio_writel(val, (apbmisc_base + 0x20));
|
| + msg_pdbg("%s: TriStateReg = %08x\n", __func__, val);
|
| +
|
| + /* delay 100ms so that all chars in buffer (1KB) can be flushed. */
|
| + programmer_delay(100000);
|
| +
|
| + /*
|
| + * We need to dynamically change the pinmux, shared w/UART RXD/CTS!
|
| + */
|
| + val = mmio_readl(apbmisc_base + 0x84);
|
| + val |= 0x0000000C; /* 3 = SFLASH */
|
| + mmio_writel(val, (apbmisc_base + 0x84));
|
| + msg_pdbg("%s: PinMuxRegB = %08x\n", __func__, val);
|
| +
|
| + /* On Seaboard, MOSI/MISO are shared w/UART.
|
| + * Use GPIO I3 (UART_DISABLE) to tristate UART during SPI activity.
|
| + * Enable UART later (cs_deactivate) so we can use it for U-Boot comms.
|
| + */
|
| + msg_pdbg("%s: DISABLING UART!\n", __func__);
|
| + tg2_gpio_direction_output(UART_DISABLE_PORT, UART_DISABLE_BIT, 1);
|
| +
|
| + return 0;
|
| +}
|
| +
|
| +
|
| +/* Unmap register spaces */
|
| +void tegra2_spi_shutdown(void *not_used)
|
| +{
|
| + physunmap(gpio_base, 4096);
|
| + physunmap(clkrst_base, 4096);
|
| + physunmap(apbmisc_base, 4096);
|
| + physunmap(spi_base - 0x380, 4096);
|
| +}
|
| +#endif
|
|
|