| OLD | NEW |
| (Empty) |
| 1 /***************************************************************************** | |
| 2 Copyright (c) 2001 - 2011, The Board of Trustees of the University of Illinois. | |
| 3 All rights reserved. | |
| 4 | |
| 5 Redistribution and use in source and binary forms, with or without | |
| 6 modification, are permitted provided that the following conditions are | |
| 7 met: | |
| 8 | |
| 9 * Redistributions of source code must retain the above | |
| 10 copyright notice, this list of conditions and the | |
| 11 following disclaimer. | |
| 12 | |
| 13 * Redistributions in binary form must reproduce the | |
| 14 above copyright notice, this list of conditions | |
| 15 and the following disclaimer in the documentation | |
| 16 and/or other materials provided with the distribution. | |
| 17 | |
| 18 * Neither the name of the University of Illinois | |
| 19 nor the names of its contributors may be used to | |
| 20 endorse or promote products derived from this | |
| 21 software without specific prior written permission. | |
| 22 | |
| 23 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS | |
| 24 IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, | |
| 25 THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
| 26 PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | |
| 27 CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
| 28 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
| 29 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
| 30 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | |
| 31 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
| 32 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
| 33 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 34 *****************************************************************************/ | |
| 35 | |
| 36 /***************************************************************************** | |
| 37 written by | |
| 38 Yunhong Gu, last updated 01/22/2011 | |
| 39 *****************************************************************************/ | |
| 40 | |
| 41 #include <cmath> | |
| 42 #include "common.h" | |
| 43 #include "window.h" | |
| 44 #include <algorithm> | |
| 45 | |
| 46 using namespace std; | |
| 47 | |
| 48 CACKWindow::CACKWindow(const int& size): | |
| 49 m_piACKSeqNo(NULL), | |
| 50 m_piACK(NULL), | |
| 51 m_pTimeStamp(NULL), | |
| 52 m_iSize(size), | |
| 53 m_iHead(0), | |
| 54 m_iTail(0) | |
| 55 { | |
| 56 m_piACKSeqNo = new int32_t[m_iSize]; | |
| 57 m_piACK = new int32_t[m_iSize]; | |
| 58 m_pTimeStamp = new uint64_t[m_iSize]; | |
| 59 | |
| 60 m_piACKSeqNo[0] = -1; | |
| 61 } | |
| 62 | |
| 63 CACKWindow::~CACKWindow() | |
| 64 { | |
| 65 delete [] m_piACKSeqNo; | |
| 66 delete [] m_piACK; | |
| 67 delete [] m_pTimeStamp; | |
| 68 } | |
| 69 | |
| 70 void CACKWindow::store(const int32_t& seq, const int32_t& ack) | |
| 71 { | |
| 72 m_piACKSeqNo[m_iHead] = seq; | |
| 73 m_piACK[m_iHead] = ack; | |
| 74 m_pTimeStamp[m_iHead] = CTimer::getTime(); | |
| 75 | |
| 76 m_iHead = (m_iHead + 1) % m_iSize; | |
| 77 | |
| 78 // overwrite the oldest ACK since it is not likely to be acknowledged | |
| 79 if (m_iHead == m_iTail) | |
| 80 m_iTail = (m_iTail + 1) % m_iSize; | |
| 81 } | |
| 82 | |
| 83 int CACKWindow::acknowledge(const int32_t& seq, int32_t& ack) | |
| 84 { | |
| 85 if (m_iHead >= m_iTail) | |
| 86 { | |
| 87 // Head has not exceeded the physical boundary of the window | |
| 88 | |
| 89 for (int i = m_iTail, n = m_iHead; i < n; ++ i) | |
| 90 { | |
| 91 // looking for indentical ACK Seq. No. | |
| 92 if (seq == m_piACKSeqNo[i]) | |
| 93 { | |
| 94 // return the Data ACK it carried | |
| 95 ack = m_piACK[i]; | |
| 96 | |
| 97 // calculate RTT | |
| 98 int rtt = int(CTimer::getTime() - m_pTimeStamp[i]); | |
| 99 | |
| 100 if (i + 1 == m_iHead) | |
| 101 { | |
| 102 m_iTail = m_iHead = 0; | |
| 103 m_piACKSeqNo[0] = -1; | |
| 104 } | |
| 105 else | |
| 106 m_iTail = (i + 1) % m_iSize; | |
| 107 | |
| 108 return rtt; | |
| 109 } | |
| 110 } | |
| 111 | |
| 112 // Bad input, the ACK node has been overwritten | |
| 113 return -1; | |
| 114 } | |
| 115 | |
| 116 // Head has exceeded the physical window boundary, so it is behind tail | |
| 117 for (int j = m_iTail, n = m_iHead + m_iSize; j < n; ++ j) | |
| 118 { | |
| 119 // looking for indentical ACK seq. no. | |
| 120 if (seq == m_piACKSeqNo[j % m_iSize]) | |
| 121 { | |
| 122 // return Data ACK | |
| 123 j %= m_iSize; | |
| 124 ack = m_piACK[j]; | |
| 125 | |
| 126 // calculate RTT | |
| 127 int rtt = int(CTimer::getTime() - m_pTimeStamp[j]); | |
| 128 | |
| 129 if (j == m_iHead) | |
| 130 { | |
| 131 m_iTail = m_iHead = 0; | |
| 132 m_piACKSeqNo[0] = -1; | |
| 133 } | |
| 134 else | |
| 135 m_iTail = (j + 1) % m_iSize; | |
| 136 | |
| 137 return rtt; | |
| 138 } | |
| 139 } | |
| 140 | |
| 141 // bad input, the ACK node has been overwritten | |
| 142 return -1; | |
| 143 } | |
| 144 | |
| 145 //////////////////////////////////////////////////////////////////////////////// | |
| 146 | |
| 147 CPktTimeWindow::CPktTimeWindow(const int& asize, const int& psize): | |
| 148 m_iAWSize(asize), | |
| 149 m_piPktWindow(NULL), | |
| 150 m_iPktWindowPtr(0), | |
| 151 m_iPWSize(psize), | |
| 152 m_piProbeWindow(NULL), | |
| 153 m_iProbeWindowPtr(0), | |
| 154 m_iLastSentTime(0), | |
| 155 m_iMinPktSndInt(1000000), | |
| 156 m_LastArrTime(), | |
| 157 m_CurrArrTime(), | |
| 158 m_ProbeTime() | |
| 159 { | |
| 160 m_piPktWindow = new int[m_iAWSize]; | |
| 161 m_piPktReplica = new int[m_iAWSize]; | |
| 162 m_piProbeWindow = new int[m_iPWSize]; | |
| 163 m_piProbeReplica = new int[m_iPWSize]; | |
| 164 | |
| 165 m_LastArrTime = CTimer::getTime(); | |
| 166 | |
| 167 for (int i = 0; i < m_iAWSize; ++ i) | |
| 168 m_piPktWindow[i] = 1000000; | |
| 169 | |
| 170 for (int k = 0; k < m_iPWSize; ++ k) | |
| 171 m_piProbeWindow[k] = 1000; | |
| 172 } | |
| 173 | |
| 174 CPktTimeWindow::~CPktTimeWindow() | |
| 175 { | |
| 176 delete [] m_piPktWindow; | |
| 177 delete [] m_piPktReplica; | |
| 178 delete [] m_piProbeWindow; | |
| 179 delete [] m_piProbeReplica; | |
| 180 } | |
| 181 | |
| 182 int CPktTimeWindow::getMinPktSndInt() const | |
| 183 { | |
| 184 return m_iMinPktSndInt; | |
| 185 } | |
| 186 | |
| 187 int CPktTimeWindow::getPktRcvSpeed() const | |
| 188 { | |
| 189 // get median value, but cannot change the original value order in the window | |
| 190 std::copy(m_piPktWindow, m_piPktWindow + m_iAWSize - 1, m_piPktReplica); | |
| 191 std::nth_element(m_piPktReplica, m_piPktReplica + (m_iAWSize / 2), m_piPktRep
lica + m_iAWSize - 1); | |
| 192 int median = m_piPktReplica[m_iAWSize / 2]; | |
| 193 | |
| 194 int count = 0; | |
| 195 int sum = 0; | |
| 196 int upper = median << 3; | |
| 197 int lower = median >> 3; | |
| 198 | |
| 199 // median filtering | |
| 200 int* p = m_piPktWindow; | |
| 201 for (int i = 0, n = m_iAWSize; i < n; ++ i) | |
| 202 { | |
| 203 if ((*p < upper) && (*p > lower)) | |
| 204 { | |
| 205 ++ count; | |
| 206 sum += *p; | |
| 207 } | |
| 208 ++ p; | |
| 209 } | |
| 210 | |
| 211 // claculate speed, or return 0 if not enough valid value | |
| 212 if (count > (m_iAWSize >> 1)) | |
| 213 return (int)ceil(1000000.0 / (sum / count)); | |
| 214 else | |
| 215 return 0; | |
| 216 } | |
| 217 | |
| 218 int CPktTimeWindow::getBandwidth() const | |
| 219 { | |
| 220 // get median value, but cannot change the original value order in the window | |
| 221 std::copy(m_piProbeWindow, m_piProbeWindow + m_iPWSize - 1, m_piProbeReplica)
; | |
| 222 std::nth_element(m_piProbeReplica, m_piProbeReplica + (m_iPWSize / 2), m_piPr
obeReplica + m_iPWSize - 1); | |
| 223 int median = m_piProbeReplica[m_iPWSize / 2]; | |
| 224 | |
| 225 int count = 1; | |
| 226 int sum = median; | |
| 227 int upper = median << 3; | |
| 228 int lower = median >> 3; | |
| 229 | |
| 230 // median filtering | |
| 231 int* p = m_piProbeWindow; | |
| 232 for (int i = 0, n = m_iPWSize; i < n; ++ i) | |
| 233 { | |
| 234 if ((*p < upper) && (*p > lower)) | |
| 235 { | |
| 236 ++ count; | |
| 237 sum += *p; | |
| 238 } | |
| 239 ++ p; | |
| 240 } | |
| 241 | |
| 242 return (int)ceil(1000000.0 / (double(sum) / double(count))); | |
| 243 } | |
| 244 | |
| 245 void CPktTimeWindow::onPktSent(const int& currtime) | |
| 246 { | |
| 247 int interval = currtime - m_iLastSentTime; | |
| 248 | |
| 249 if ((interval < m_iMinPktSndInt) && (interval > 0)) | |
| 250 m_iMinPktSndInt = interval; | |
| 251 | |
| 252 m_iLastSentTime = currtime; | |
| 253 } | |
| 254 | |
| 255 void CPktTimeWindow::onPktArrival() | |
| 256 { | |
| 257 m_CurrArrTime = CTimer::getTime(); | |
| 258 | |
| 259 // record the packet interval between the current and the last one | |
| 260 *(m_piPktWindow + m_iPktWindowPtr) = int(m_CurrArrTime - m_LastArrTime); | |
| 261 | |
| 262 // the window is logically circular | |
| 263 ++ m_iPktWindowPtr; | |
| 264 if (m_iPktWindowPtr == m_iAWSize) | |
| 265 m_iPktWindowPtr = 0; | |
| 266 | |
| 267 // remember last packet arrival time | |
| 268 m_LastArrTime = m_CurrArrTime; | |
| 269 } | |
| 270 | |
| 271 void CPktTimeWindow::probe1Arrival() | |
| 272 { | |
| 273 m_ProbeTime = CTimer::getTime(); | |
| 274 } | |
| 275 | |
| 276 void CPktTimeWindow::probe2Arrival() | |
| 277 { | |
| 278 m_CurrArrTime = CTimer::getTime(); | |
| 279 | |
| 280 // record the probing packets interval | |
| 281 *(m_piProbeWindow + m_iProbeWindowPtr) = int(m_CurrArrTime - m_ProbeTime); | |
| 282 // the window is logically circular | |
| 283 ++ m_iProbeWindowPtr; | |
| 284 if (m_iProbeWindowPtr == m_iPWSize) | |
| 285 m_iProbeWindowPtr = 0; | |
| 286 } | |
| OLD | NEW |