OLD | NEW |
1 // Copyright 2006-2008 the V8 project authors. All rights reserved. | 1 // Copyright 2006-2008 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
(...skipping 89 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
100 #endif | 100 #endif |
101 | 101 |
102 | 102 |
103 #define DEF_ARG_TYPE(name, spec) \ | 103 #define DEF_ARG_TYPE(name, spec) \ |
104 typedef BuiltinArguments<spec> name##ArgumentsType; | 104 typedef BuiltinArguments<spec> name##ArgumentsType; |
105 BUILTIN_LIST_C(DEF_ARG_TYPE) | 105 BUILTIN_LIST_C(DEF_ARG_TYPE) |
106 #undef DEF_ARG_TYPE | 106 #undef DEF_ARG_TYPE |
107 | 107 |
108 } // namespace | 108 } // namespace |
109 | 109 |
110 | |
111 // ---------------------------------------------------------------------------- | 110 // ---------------------------------------------------------------------------- |
112 // Support macro for defining builtins in C++. | 111 // Support macro for defining builtins in C++. |
113 // ---------------------------------------------------------------------------- | 112 // ---------------------------------------------------------------------------- |
114 // | 113 // |
115 // A builtin function is defined by writing: | 114 // A builtin function is defined by writing: |
116 // | 115 // |
117 // BUILTIN(name) { | 116 // BUILTIN(name) { |
118 // ... | 117 // ... |
119 // } | 118 // } |
120 // | 119 // |
121 // In the body of the builtin function the arguments can be accessed | 120 // In the body of the builtin function the arguments can be accessed |
122 // through the BuiltinArguments object args. | 121 // through the BuiltinArguments object args. |
123 | 122 |
124 #ifdef DEBUG | 123 #ifdef DEBUG |
125 | 124 |
126 #define BUILTIN(name) \ | 125 #define BUILTIN(name) \ |
127 MUST_USE_RESULT static MaybeObject* Builtin_Impl_##name( \ | 126 MUST_USE_RESULT static MaybeObject* Builtin_Impl_##name( \ |
128 name##ArgumentsType args); \ | 127 name##ArgumentsType args, Isolate* isolate); \ |
129 MUST_USE_RESULT static MaybeObject* Builtin_##name( \ | 128 MUST_USE_RESULT static MaybeObject* Builtin_##name( \ |
130 name##ArgumentsType args) { \ | 129 name##ArgumentsType args, Isolate* isolate) { \ |
131 args.Verify(); \ | 130 ASSERT(isolate == Isolate::Current()); \ |
132 return Builtin_Impl_##name(args); \ | 131 args.Verify(); \ |
133 } \ | 132 return Builtin_Impl_##name(args, isolate); \ |
134 MUST_USE_RESULT static MaybeObject* Builtin_Impl_##name( \ | 133 } \ |
135 name##ArgumentsType args) | 134 MUST_USE_RESULT static MaybeObject* Builtin_Impl_##name( \ |
| 135 name##ArgumentsType args, Isolate* isolate) |
136 | 136 |
137 #else // For release mode. | 137 #else // For release mode. |
138 | 138 |
139 #define BUILTIN(name) \ | 139 #define BUILTIN(name) \ |
140 static MaybeObject* Builtin_##name(name##ArgumentsType args) | 140 static MaybeObject* Builtin_##name(name##ArgumentsType args, Isolate* isolate) |
141 | 141 |
142 #endif | 142 #endif |
143 | 143 |
144 | 144 |
145 static inline bool CalledAsConstructor() { | 145 static inline bool CalledAsConstructor(Isolate* isolate) { |
146 #ifdef DEBUG | 146 #ifdef DEBUG |
147 // Calculate the result using a full stack frame iterator and check | 147 // Calculate the result using a full stack frame iterator and check |
148 // that the state of the stack is as we assume it to be in the | 148 // that the state of the stack is as we assume it to be in the |
149 // code below. | 149 // code below. |
150 StackFrameIterator it; | 150 StackFrameIterator it; |
151 ASSERT(it.frame()->is_exit()); | 151 ASSERT(it.frame()->is_exit()); |
152 it.Advance(); | 152 it.Advance(); |
153 StackFrame* frame = it.frame(); | 153 StackFrame* frame = it.frame(); |
154 bool reference_result = frame->is_construct(); | 154 bool reference_result = frame->is_construct(); |
155 #endif | 155 #endif |
156 Address fp = Top::c_entry_fp(Top::GetCurrentThread()); | 156 Address fp = Isolate::c_entry_fp(isolate->thread_local_top()); |
157 // Because we know fp points to an exit frame we can use the relevant | 157 // Because we know fp points to an exit frame we can use the relevant |
158 // part of ExitFrame::ComputeCallerState directly. | 158 // part of ExitFrame::ComputeCallerState directly. |
159 const int kCallerOffset = ExitFrameConstants::kCallerFPOffset; | 159 const int kCallerOffset = ExitFrameConstants::kCallerFPOffset; |
160 Address caller_fp = Memory::Address_at(fp + kCallerOffset); | 160 Address caller_fp = Memory::Address_at(fp + kCallerOffset); |
161 // This inlines the part of StackFrame::ComputeType that grabs the | 161 // This inlines the part of StackFrame::ComputeType that grabs the |
162 // type of the current frame. Note that StackFrame::ComputeType | 162 // type of the current frame. Note that StackFrame::ComputeType |
163 // has been specialized for each architecture so if any one of them | 163 // has been specialized for each architecture so if any one of them |
164 // changes this code has to be changed as well. | 164 // changes this code has to be changed as well. |
165 const int kMarkerOffset = StandardFrameConstants::kMarkerOffset; | 165 const int kMarkerOffset = StandardFrameConstants::kMarkerOffset; |
166 const Smi* kConstructMarker = Smi::FromInt(StackFrame::CONSTRUCT); | 166 const Smi* kConstructMarker = Smi::FromInt(StackFrame::CONSTRUCT); |
167 Object* marker = Memory::Object_at(caller_fp + kMarkerOffset); | 167 Object* marker = Memory::Object_at(caller_fp + kMarkerOffset); |
168 bool result = (marker == kConstructMarker); | 168 bool result = (marker == kConstructMarker); |
169 ASSERT_EQ(result, reference_result); | 169 ASSERT_EQ(result, reference_result); |
170 return result; | 170 return result; |
171 } | 171 } |
172 | 172 |
173 // ---------------------------------------------------------------------------- | 173 // ---------------------------------------------------------------------------- |
174 | 174 |
175 | |
176 BUILTIN(Illegal) { | 175 BUILTIN(Illegal) { |
177 UNREACHABLE(); | 176 UNREACHABLE(); |
178 return Heap::undefined_value(); // Make compiler happy. | 177 return isolate->heap()->undefined_value(); // Make compiler happy. |
179 } | 178 } |
180 | 179 |
181 | 180 |
182 BUILTIN(EmptyFunction) { | 181 BUILTIN(EmptyFunction) { |
183 return Heap::undefined_value(); | 182 return isolate->heap()->undefined_value(); |
184 } | 183 } |
185 | 184 |
186 | 185 |
187 BUILTIN(ArrayCodeGeneric) { | 186 BUILTIN(ArrayCodeGeneric) { |
188 Counters::array_function_runtime.Increment(); | 187 Heap* heap = isolate->heap(); |
| 188 isolate->counters()->array_function_runtime()->Increment(); |
189 | 189 |
190 JSArray* array; | 190 JSArray* array; |
191 if (CalledAsConstructor()) { | 191 if (CalledAsConstructor(isolate)) { |
192 array = JSArray::cast(*args.receiver()); | 192 array = JSArray::cast(*args.receiver()); |
193 } else { | 193 } else { |
194 // Allocate the JS Array | 194 // Allocate the JS Array |
195 JSFunction* constructor = | 195 JSFunction* constructor = |
196 Top::context()->global_context()->array_function(); | 196 isolate->context()->global_context()->array_function(); |
197 Object* obj; | 197 Object* obj; |
198 { MaybeObject* maybe_obj = Heap::AllocateJSObject(constructor); | 198 { MaybeObject* maybe_obj = heap->AllocateJSObject(constructor); |
199 if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 199 if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
200 } | 200 } |
201 array = JSArray::cast(obj); | 201 array = JSArray::cast(obj); |
202 } | 202 } |
203 | 203 |
204 // 'array' now contains the JSArray we should initialize. | 204 // 'array' now contains the JSArray we should initialize. |
205 ASSERT(array->HasFastElements()); | 205 ASSERT(array->HasFastElements()); |
206 | 206 |
207 // Optimize the case where there is one argument and the argument is a | 207 // Optimize the case where there is one argument and the argument is a |
208 // small smi. | 208 // small smi. |
209 if (args.length() == 2) { | 209 if (args.length() == 2) { |
210 Object* obj = args[1]; | 210 Object* obj = args[1]; |
211 if (obj->IsSmi()) { | 211 if (obj->IsSmi()) { |
212 int len = Smi::cast(obj)->value(); | 212 int len = Smi::cast(obj)->value(); |
213 if (len >= 0 && len < JSObject::kInitialMaxFastElementArray) { | 213 if (len >= 0 && len < JSObject::kInitialMaxFastElementArray) { |
214 Object* obj; | 214 Object* obj; |
215 { MaybeObject* maybe_obj = Heap::AllocateFixedArrayWithHoles(len); | 215 { MaybeObject* maybe_obj = heap->AllocateFixedArrayWithHoles(len); |
216 if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 216 if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
217 } | 217 } |
218 array->SetContent(FixedArray::cast(obj)); | 218 array->SetContent(FixedArray::cast(obj)); |
219 return array; | 219 return array; |
220 } | 220 } |
221 } | 221 } |
222 // Take the argument as the length. | 222 // Take the argument as the length. |
223 { MaybeObject* maybe_obj = array->Initialize(0); | 223 { MaybeObject* maybe_obj = array->Initialize(0); |
224 if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 224 if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
225 } | 225 } |
226 return array->SetElementsLength(args[1]); | 226 return array->SetElementsLength(args[1]); |
227 } | 227 } |
228 | 228 |
229 // Optimize the case where there are no parameters passed. | 229 // Optimize the case where there are no parameters passed. |
230 if (args.length() == 1) { | 230 if (args.length() == 1) { |
231 return array->Initialize(JSArray::kPreallocatedArrayElements); | 231 return array->Initialize(JSArray::kPreallocatedArrayElements); |
232 } | 232 } |
233 | 233 |
234 // Take the arguments as elements. | 234 // Take the arguments as elements. |
235 int number_of_elements = args.length() - 1; | 235 int number_of_elements = args.length() - 1; |
236 Smi* len = Smi::FromInt(number_of_elements); | 236 Smi* len = Smi::FromInt(number_of_elements); |
237 Object* obj; | 237 Object* obj; |
238 { MaybeObject* maybe_obj = Heap::AllocateFixedArrayWithHoles(len->value()); | 238 { MaybeObject* maybe_obj = heap->AllocateFixedArrayWithHoles(len->value()); |
239 if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 239 if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
240 } | 240 } |
241 | 241 |
242 AssertNoAllocation no_gc; | 242 AssertNoAllocation no_gc; |
243 FixedArray* elms = FixedArray::cast(obj); | 243 FixedArray* elms = FixedArray::cast(obj); |
244 WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); | 244 WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); |
245 // Fill in the content | 245 // Fill in the content |
246 for (int index = 0; index < number_of_elements; index++) { | 246 for (int index = 0; index < number_of_elements; index++) { |
247 elms->set(index, args[index+1], mode); | 247 elms->set(index, args[index+1], mode); |
248 } | 248 } |
249 | 249 |
250 // Set length and elements on the array. | 250 // Set length and elements on the array. |
251 array->set_elements(FixedArray::cast(obj)); | 251 array->set_elements(FixedArray::cast(obj)); |
252 array->set_length(len); | 252 array->set_length(len); |
253 | 253 |
254 return array; | 254 return array; |
255 } | 255 } |
256 | 256 |
257 | 257 |
258 MUST_USE_RESULT static MaybeObject* AllocateJSArray() { | 258 MUST_USE_RESULT static MaybeObject* AllocateJSArray(Heap* heap) { |
259 JSFunction* array_function = | 259 JSFunction* array_function = |
260 Top::context()->global_context()->array_function(); | 260 heap->isolate()->context()->global_context()->array_function(); |
261 Object* result; | 261 Object* result; |
262 { MaybeObject* maybe_result = Heap::AllocateJSObject(array_function); | 262 { MaybeObject* maybe_result = heap->AllocateJSObject(array_function); |
263 if (!maybe_result->ToObject(&result)) return maybe_result; | 263 if (!maybe_result->ToObject(&result)) return maybe_result; |
264 } | 264 } |
265 return result; | 265 return result; |
266 } | 266 } |
267 | 267 |
268 | 268 |
269 MUST_USE_RESULT static MaybeObject* AllocateEmptyJSArray() { | 269 MUST_USE_RESULT static MaybeObject* AllocateEmptyJSArray(Heap* heap) { |
270 Object* result; | 270 Object* result; |
271 { MaybeObject* maybe_result = AllocateJSArray(); | 271 { MaybeObject* maybe_result = AllocateJSArray(heap); |
272 if (!maybe_result->ToObject(&result)) return maybe_result; | 272 if (!maybe_result->ToObject(&result)) return maybe_result; |
273 } | 273 } |
274 JSArray* result_array = JSArray::cast(result); | 274 JSArray* result_array = JSArray::cast(result); |
275 result_array->set_length(Smi::FromInt(0)); | 275 result_array->set_length(Smi::FromInt(0)); |
276 result_array->set_elements(Heap::empty_fixed_array()); | 276 result_array->set_elements(heap->empty_fixed_array()); |
277 return result_array; | 277 return result_array; |
278 } | 278 } |
279 | 279 |
280 | 280 |
281 static void CopyElements(AssertNoAllocation* no_gc, | 281 static void CopyElements(Heap* heap, |
| 282 AssertNoAllocation* no_gc, |
282 FixedArray* dst, | 283 FixedArray* dst, |
283 int dst_index, | 284 int dst_index, |
284 FixedArray* src, | 285 FixedArray* src, |
285 int src_index, | 286 int src_index, |
286 int len) { | 287 int len) { |
287 ASSERT(dst != src); // Use MoveElements instead. | 288 ASSERT(dst != src); // Use MoveElements instead. |
288 ASSERT(dst->map() != Heap::fixed_cow_array_map()); | 289 ASSERT(dst->map() != HEAP->fixed_cow_array_map()); |
289 ASSERT(len > 0); | 290 ASSERT(len > 0); |
290 CopyWords(dst->data_start() + dst_index, | 291 CopyWords(dst->data_start() + dst_index, |
291 src->data_start() + src_index, | 292 src->data_start() + src_index, |
292 len); | 293 len); |
293 WriteBarrierMode mode = dst->GetWriteBarrierMode(*no_gc); | 294 WriteBarrierMode mode = dst->GetWriteBarrierMode(*no_gc); |
294 if (mode == UPDATE_WRITE_BARRIER) { | 295 if (mode == UPDATE_WRITE_BARRIER) { |
295 Heap::RecordWrites(dst->address(), dst->OffsetOfElementAt(dst_index), len); | 296 heap->RecordWrites(dst->address(), dst->OffsetOfElementAt(dst_index), len); |
296 } | 297 } |
297 } | 298 } |
298 | 299 |
299 | 300 |
300 static void MoveElements(AssertNoAllocation* no_gc, | 301 static void MoveElements(Heap* heap, |
| 302 AssertNoAllocation* no_gc, |
301 FixedArray* dst, | 303 FixedArray* dst, |
302 int dst_index, | 304 int dst_index, |
303 FixedArray* src, | 305 FixedArray* src, |
304 int src_index, | 306 int src_index, |
305 int len) { | 307 int len) { |
306 ASSERT(dst->map() != Heap::fixed_cow_array_map()); | 308 ASSERT(dst->map() != HEAP->fixed_cow_array_map()); |
307 memmove(dst->data_start() + dst_index, | 309 memmove(dst->data_start() + dst_index, |
308 src->data_start() + src_index, | 310 src->data_start() + src_index, |
309 len * kPointerSize); | 311 len * kPointerSize); |
310 WriteBarrierMode mode = dst->GetWriteBarrierMode(*no_gc); | 312 WriteBarrierMode mode = dst->GetWriteBarrierMode(*no_gc); |
311 if (mode == UPDATE_WRITE_BARRIER) { | 313 if (mode == UPDATE_WRITE_BARRIER) { |
312 Heap::RecordWrites(dst->address(), dst->OffsetOfElementAt(dst_index), len); | 314 heap->RecordWrites(dst->address(), dst->OffsetOfElementAt(dst_index), len); |
313 } | 315 } |
314 } | 316 } |
315 | 317 |
316 | 318 |
317 static void FillWithHoles(FixedArray* dst, int from, int to) { | 319 static void FillWithHoles(Heap* heap, FixedArray* dst, int from, int to) { |
318 ASSERT(dst->map() != Heap::fixed_cow_array_map()); | 320 ASSERT(dst->map() != heap->fixed_cow_array_map()); |
319 MemsetPointer(dst->data_start() + from, Heap::the_hole_value(), to - from); | 321 MemsetPointer(dst->data_start() + from, heap->the_hole_value(), to - from); |
320 } | 322 } |
321 | 323 |
322 | 324 |
323 static FixedArray* LeftTrimFixedArray(FixedArray* elms, int to_trim) { | 325 static FixedArray* LeftTrimFixedArray(Heap* heap, |
324 ASSERT(elms->map() != Heap::fixed_cow_array_map()); | 326 FixedArray* elms, |
| 327 int to_trim) { |
| 328 ASSERT(elms->map() != HEAP->fixed_cow_array_map()); |
325 // For now this trick is only applied to fixed arrays in new and paged space. | 329 // For now this trick is only applied to fixed arrays in new and paged space. |
326 // In large object space the object's start must coincide with chunk | 330 // In large object space the object's start must coincide with chunk |
327 // and thus the trick is just not applicable. | 331 // and thus the trick is just not applicable. |
328 ASSERT(!Heap::lo_space()->Contains(elms)); | 332 ASSERT(!HEAP->lo_space()->Contains(elms)); |
329 | 333 |
330 STATIC_ASSERT(FixedArray::kMapOffset == 0); | 334 STATIC_ASSERT(FixedArray::kMapOffset == 0); |
331 STATIC_ASSERT(FixedArray::kLengthOffset == kPointerSize); | 335 STATIC_ASSERT(FixedArray::kLengthOffset == kPointerSize); |
332 STATIC_ASSERT(FixedArray::kHeaderSize == 2 * kPointerSize); | 336 STATIC_ASSERT(FixedArray::kHeaderSize == 2 * kPointerSize); |
333 | 337 |
334 Object** former_start = HeapObject::RawField(elms, 0); | 338 Object** former_start = HeapObject::RawField(elms, 0); |
335 | 339 |
336 const int len = elms->length(); | 340 const int len = elms->length(); |
337 | 341 |
338 if (to_trim > FixedArray::kHeaderSize / kPointerSize && | 342 if (to_trim > FixedArray::kHeaderSize / kPointerSize && |
339 !Heap::new_space()->Contains(elms)) { | 343 !heap->new_space()->Contains(elms)) { |
340 // If we are doing a big trim in old space then we zap the space that was | 344 // If we are doing a big trim in old space then we zap the space that was |
341 // formerly part of the array so that the GC (aided by the card-based | 345 // formerly part of the array so that the GC (aided by the card-based |
342 // remembered set) won't find pointers to new-space there. | 346 // remembered set) won't find pointers to new-space there. |
343 Object** zap = reinterpret_cast<Object**>(elms->address()); | 347 Object** zap = reinterpret_cast<Object**>(elms->address()); |
344 zap++; // Header of filler must be at least one word so skip that. | 348 zap++; // Header of filler must be at least one word so skip that. |
345 for (int i = 1; i < to_trim; i++) { | 349 for (int i = 1; i < to_trim; i++) { |
346 *zap++ = Smi::FromInt(0); | 350 *zap++ = Smi::FromInt(0); |
347 } | 351 } |
348 } | 352 } |
349 // Technically in new space this write might be omitted (except for | 353 // Technically in new space this write might be omitted (except for |
350 // debug mode which iterates through the heap), but to play safer | 354 // debug mode which iterates through the heap), but to play safer |
351 // we still do it. | 355 // we still do it. |
352 Heap::CreateFillerObjectAt(elms->address(), to_trim * kPointerSize); | 356 heap->CreateFillerObjectAt(elms->address(), to_trim * kPointerSize); |
353 | 357 |
354 former_start[to_trim] = Heap::fixed_array_map(); | 358 former_start[to_trim] = heap->fixed_array_map(); |
355 former_start[to_trim + 1] = Smi::FromInt(len - to_trim); | 359 former_start[to_trim + 1] = Smi::FromInt(len - to_trim); |
356 | 360 |
357 return FixedArray::cast(HeapObject::FromAddress( | 361 return FixedArray::cast(HeapObject::FromAddress( |
358 elms->address() + to_trim * kPointerSize)); | 362 elms->address() + to_trim * kPointerSize)); |
359 } | 363 } |
360 | 364 |
361 | 365 |
362 static bool ArrayPrototypeHasNoElements(Context* global_context, | 366 static bool ArrayPrototypeHasNoElements(Heap* heap, |
| 367 Context* global_context, |
363 JSObject* array_proto) { | 368 JSObject* array_proto) { |
364 // This method depends on non writability of Object and Array prototype | 369 // This method depends on non writability of Object and Array prototype |
365 // fields. | 370 // fields. |
366 if (array_proto->elements() != Heap::empty_fixed_array()) return false; | 371 if (array_proto->elements() != heap->empty_fixed_array()) return false; |
367 // Hidden prototype | 372 // Hidden prototype |
368 array_proto = JSObject::cast(array_proto->GetPrototype()); | 373 array_proto = JSObject::cast(array_proto->GetPrototype()); |
369 ASSERT(array_proto->elements() == Heap::empty_fixed_array()); | 374 ASSERT(array_proto->elements() == heap->empty_fixed_array()); |
370 // Object.prototype | 375 // Object.prototype |
371 Object* proto = array_proto->GetPrototype(); | 376 Object* proto = array_proto->GetPrototype(); |
372 if (proto == Heap::null_value()) return false; | 377 if (proto == heap->null_value()) return false; |
373 array_proto = JSObject::cast(proto); | 378 array_proto = JSObject::cast(proto); |
374 if (array_proto != global_context->initial_object_prototype()) return false; | 379 if (array_proto != global_context->initial_object_prototype()) return false; |
375 if (array_proto->elements() != Heap::empty_fixed_array()) return false; | 380 if (array_proto->elements() != heap->empty_fixed_array()) return false; |
376 ASSERT(array_proto->GetPrototype()->IsNull()); | 381 ASSERT(array_proto->GetPrototype()->IsNull()); |
377 return true; | 382 return true; |
378 } | 383 } |
379 | 384 |
380 | 385 |
381 MUST_USE_RESULT | 386 MUST_USE_RESULT |
382 static inline MaybeObject* EnsureJSArrayWithWritableFastElements( | 387 static inline MaybeObject* EnsureJSArrayWithWritableFastElements( |
383 Object* receiver) { | 388 Heap* heap, Object* receiver) { |
384 if (!receiver->IsJSArray()) return NULL; | 389 if (!receiver->IsJSArray()) return NULL; |
385 JSArray* array = JSArray::cast(receiver); | 390 JSArray* array = JSArray::cast(receiver); |
386 HeapObject* elms = array->elements(); | 391 HeapObject* elms = array->elements(); |
387 if (elms->map() == Heap::fixed_array_map()) return elms; | 392 if (elms->map() == heap->fixed_array_map()) return elms; |
388 if (elms->map() == Heap::fixed_cow_array_map()) { | 393 if (elms->map() == heap->fixed_cow_array_map()) { |
389 return array->EnsureWritableFastElements(); | 394 return array->EnsureWritableFastElements(); |
390 } | 395 } |
391 return NULL; | 396 return NULL; |
392 } | 397 } |
393 | 398 |
394 | 399 |
395 static inline bool IsJSArrayFastElementMovingAllowed(JSArray* receiver) { | 400 static inline bool IsJSArrayFastElementMovingAllowed(Heap* heap, |
396 Context* global_context = Top::context()->global_context(); | 401 JSArray* receiver) { |
| 402 Context* global_context = heap->isolate()->context()->global_context(); |
397 JSObject* array_proto = | 403 JSObject* array_proto = |
398 JSObject::cast(global_context->array_function()->prototype()); | 404 JSObject::cast(global_context->array_function()->prototype()); |
399 return receiver->GetPrototype() == array_proto && | 405 return receiver->GetPrototype() == array_proto && |
400 ArrayPrototypeHasNoElements(global_context, array_proto); | 406 ArrayPrototypeHasNoElements(heap, global_context, array_proto); |
401 } | 407 } |
402 | 408 |
403 | 409 |
404 MUST_USE_RESULT static MaybeObject* CallJsBuiltin( | 410 MUST_USE_RESULT static MaybeObject* CallJsBuiltin( |
| 411 Isolate* isolate, |
405 const char* name, | 412 const char* name, |
406 BuiltinArguments<NO_EXTRA_ARGUMENTS> args) { | 413 BuiltinArguments<NO_EXTRA_ARGUMENTS> args) { |
407 HandleScope handleScope; | 414 HandleScope handleScope(isolate); |
408 | 415 |
409 Handle<Object> js_builtin = | 416 Handle<Object> js_builtin = |
410 GetProperty(Handle<JSObject>(Top::global_context()->builtins()), | 417 GetProperty(Handle<JSObject>( |
411 name); | 418 isolate->global_context()->builtins()), |
| 419 name); |
412 ASSERT(js_builtin->IsJSFunction()); | 420 ASSERT(js_builtin->IsJSFunction()); |
413 Handle<JSFunction> function(Handle<JSFunction>::cast(js_builtin)); | 421 Handle<JSFunction> function(Handle<JSFunction>::cast(js_builtin)); |
414 ScopedVector<Object**> argv(args.length() - 1); | 422 ScopedVector<Object**> argv(args.length() - 1); |
415 int n_args = args.length() - 1; | 423 int n_args = args.length() - 1; |
416 for (int i = 0; i < n_args; i++) { | 424 for (int i = 0; i < n_args; i++) { |
417 argv[i] = args.at<Object>(i + 1).location(); | 425 argv[i] = args.at<Object>(i + 1).location(); |
418 } | 426 } |
419 bool pending_exception = false; | 427 bool pending_exception = false; |
420 Handle<Object> result = Execution::Call(function, | 428 Handle<Object> result = Execution::Call(function, |
421 args.receiver(), | 429 args.receiver(), |
422 n_args, | 430 n_args, |
423 argv.start(), | 431 argv.start(), |
424 &pending_exception); | 432 &pending_exception); |
425 if (pending_exception) return Failure::Exception(); | 433 if (pending_exception) return Failure::Exception(); |
426 return *result; | 434 return *result; |
427 } | 435 } |
428 | 436 |
429 | 437 |
430 BUILTIN(ArrayPush) { | 438 BUILTIN(ArrayPush) { |
| 439 Heap* heap = isolate->heap(); |
431 Object* receiver = *args.receiver(); | 440 Object* receiver = *args.receiver(); |
432 Object* elms_obj; | 441 Object* elms_obj; |
433 { MaybeObject* maybe_elms_obj = | 442 { MaybeObject* maybe_elms_obj = |
434 EnsureJSArrayWithWritableFastElements(receiver); | 443 EnsureJSArrayWithWritableFastElements(heap, receiver); |
435 if (maybe_elms_obj == NULL) return CallJsBuiltin("ArrayPush", args); | 444 if (maybe_elms_obj == NULL) { |
| 445 return CallJsBuiltin(isolate, "ArrayPush", args); |
| 446 } |
436 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; | 447 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; |
437 } | 448 } |
438 FixedArray* elms = FixedArray::cast(elms_obj); | 449 FixedArray* elms = FixedArray::cast(elms_obj); |
439 JSArray* array = JSArray::cast(receiver); | 450 JSArray* array = JSArray::cast(receiver); |
440 | 451 |
441 int len = Smi::cast(array->length())->value(); | 452 int len = Smi::cast(array->length())->value(); |
442 int to_add = args.length() - 1; | 453 int to_add = args.length() - 1; |
443 if (to_add == 0) { | 454 if (to_add == 0) { |
444 return Smi::FromInt(len); | 455 return Smi::FromInt(len); |
445 } | 456 } |
446 // Currently fixed arrays cannot grow too big, so | 457 // Currently fixed arrays cannot grow too big, so |
447 // we should never hit this case. | 458 // we should never hit this case. |
448 ASSERT(to_add <= (Smi::kMaxValue - len)); | 459 ASSERT(to_add <= (Smi::kMaxValue - len)); |
449 | 460 |
450 int new_length = len + to_add; | 461 int new_length = len + to_add; |
451 | 462 |
452 if (new_length > elms->length()) { | 463 if (new_length > elms->length()) { |
453 // New backing storage is needed. | 464 // New backing storage is needed. |
454 int capacity = new_length + (new_length >> 1) + 16; | 465 int capacity = new_length + (new_length >> 1) + 16; |
455 Object* obj; | 466 Object* obj; |
456 { MaybeObject* maybe_obj = Heap::AllocateUninitializedFixedArray(capacity); | 467 { MaybeObject* maybe_obj = heap->AllocateUninitializedFixedArray(capacity); |
457 if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 468 if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
458 } | 469 } |
459 FixedArray* new_elms = FixedArray::cast(obj); | 470 FixedArray* new_elms = FixedArray::cast(obj); |
460 | 471 |
461 AssertNoAllocation no_gc; | 472 AssertNoAllocation no_gc; |
462 if (len > 0) { | 473 if (len > 0) { |
463 CopyElements(&no_gc, new_elms, 0, elms, 0, len); | 474 CopyElements(heap, &no_gc, new_elms, 0, elms, 0, len); |
464 } | 475 } |
465 FillWithHoles(new_elms, new_length, capacity); | 476 FillWithHoles(heap, new_elms, new_length, capacity); |
466 | 477 |
467 elms = new_elms; | 478 elms = new_elms; |
468 array->set_elements(elms); | 479 array->set_elements(elms); |
469 } | 480 } |
470 | 481 |
471 // Add the provided values. | 482 // Add the provided values. |
472 AssertNoAllocation no_gc; | 483 AssertNoAllocation no_gc; |
473 WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); | 484 WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); |
474 for (int index = 0; index < to_add; index++) { | 485 for (int index = 0; index < to_add; index++) { |
475 elms->set(index + len, args[index + 1], mode); | 486 elms->set(index + len, args[index + 1], mode); |
476 } | 487 } |
477 | 488 |
478 // Set the length. | 489 // Set the length. |
479 array->set_length(Smi::FromInt(new_length)); | 490 array->set_length(Smi::FromInt(new_length)); |
480 return Smi::FromInt(new_length); | 491 return Smi::FromInt(new_length); |
481 } | 492 } |
482 | 493 |
483 | 494 |
484 BUILTIN(ArrayPop) { | 495 BUILTIN(ArrayPop) { |
| 496 Heap* heap = isolate->heap(); |
485 Object* receiver = *args.receiver(); | 497 Object* receiver = *args.receiver(); |
486 Object* elms_obj; | 498 Object* elms_obj; |
487 { MaybeObject* maybe_elms_obj = | 499 { MaybeObject* maybe_elms_obj = |
488 EnsureJSArrayWithWritableFastElements(receiver); | 500 EnsureJSArrayWithWritableFastElements(heap, receiver); |
489 if (maybe_elms_obj == NULL) return CallJsBuiltin("ArrayPop", args); | 501 if (maybe_elms_obj == NULL) return CallJsBuiltin(isolate, "ArrayPop", args); |
490 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; | 502 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; |
491 } | 503 } |
492 FixedArray* elms = FixedArray::cast(elms_obj); | 504 FixedArray* elms = FixedArray::cast(elms_obj); |
493 JSArray* array = JSArray::cast(receiver); | 505 JSArray* array = JSArray::cast(receiver); |
494 | 506 |
495 int len = Smi::cast(array->length())->value(); | 507 int len = Smi::cast(array->length())->value(); |
496 if (len == 0) return Heap::undefined_value(); | 508 if (len == 0) return heap->undefined_value(); |
497 | 509 |
498 // Get top element | 510 // Get top element |
499 MaybeObject* top = elms->get(len - 1); | 511 MaybeObject* top = elms->get(len - 1); |
500 | 512 |
501 // Set the length. | 513 // Set the length. |
502 array->set_length(Smi::FromInt(len - 1)); | 514 array->set_length(Smi::FromInt(len - 1)); |
503 | 515 |
504 if (!top->IsTheHole()) { | 516 if (!top->IsTheHole()) { |
505 // Delete the top element. | 517 // Delete the top element. |
506 elms->set_the_hole(len - 1); | 518 elms->set_the_hole(len - 1); |
507 return top; | 519 return top; |
508 } | 520 } |
509 | 521 |
510 top = array->GetPrototype()->GetElement(len - 1); | 522 top = array->GetPrototype()->GetElement(len - 1); |
511 | 523 |
512 return top; | 524 return top; |
513 } | 525 } |
514 | 526 |
515 | 527 |
516 BUILTIN(ArrayShift) { | 528 BUILTIN(ArrayShift) { |
| 529 Heap* heap = isolate->heap(); |
517 Object* receiver = *args.receiver(); | 530 Object* receiver = *args.receiver(); |
518 Object* elms_obj; | 531 Object* elms_obj; |
519 { MaybeObject* maybe_elms_obj = | 532 { MaybeObject* maybe_elms_obj = |
520 EnsureJSArrayWithWritableFastElements(receiver); | 533 EnsureJSArrayWithWritableFastElements(heap, receiver); |
521 if (maybe_elms_obj == NULL) return CallJsBuiltin("ArrayShift", args); | 534 if (maybe_elms_obj == NULL) |
| 535 return CallJsBuiltin(isolate, "ArrayShift", args); |
522 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; | 536 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; |
523 } | 537 } |
524 if (!IsJSArrayFastElementMovingAllowed(JSArray::cast(receiver))) { | 538 if (!IsJSArrayFastElementMovingAllowed(heap, JSArray::cast(receiver))) { |
525 return CallJsBuiltin("ArrayShift", args); | 539 return CallJsBuiltin(isolate, "ArrayShift", args); |
526 } | 540 } |
527 FixedArray* elms = FixedArray::cast(elms_obj); | 541 FixedArray* elms = FixedArray::cast(elms_obj); |
528 JSArray* array = JSArray::cast(receiver); | 542 JSArray* array = JSArray::cast(receiver); |
529 ASSERT(array->HasFastElements()); | 543 ASSERT(array->HasFastElements()); |
530 | 544 |
531 int len = Smi::cast(array->length())->value(); | 545 int len = Smi::cast(array->length())->value(); |
532 if (len == 0) return Heap::undefined_value(); | 546 if (len == 0) return heap->undefined_value(); |
533 | 547 |
534 // Get first element | 548 // Get first element |
535 Object* first = elms->get(0); | 549 Object* first = elms->get(0); |
536 if (first->IsTheHole()) { | 550 if (first->IsTheHole()) { |
537 first = Heap::undefined_value(); | 551 first = heap->undefined_value(); |
538 } | 552 } |
539 | 553 |
540 if (!Heap::lo_space()->Contains(elms)) { | 554 if (!heap->lo_space()->Contains(elms)) { |
541 // As elms still in the same space they used to be, | 555 // As elms still in the same space they used to be, |
542 // there is no need to update region dirty mark. | 556 // there is no need to update region dirty mark. |
543 array->set_elements(LeftTrimFixedArray(elms, 1), SKIP_WRITE_BARRIER); | 557 array->set_elements(LeftTrimFixedArray(heap, elms, 1), SKIP_WRITE_BARRIER); |
544 } else { | 558 } else { |
545 // Shift the elements. | 559 // Shift the elements. |
546 AssertNoAllocation no_gc; | 560 AssertNoAllocation no_gc; |
547 MoveElements(&no_gc, elms, 0, elms, 1, len - 1); | 561 MoveElements(heap, &no_gc, elms, 0, elms, 1, len - 1); |
548 elms->set(len - 1, Heap::the_hole_value()); | 562 elms->set(len - 1, heap->the_hole_value()); |
549 } | 563 } |
550 | 564 |
551 // Set the length. | 565 // Set the length. |
552 array->set_length(Smi::FromInt(len - 1)); | 566 array->set_length(Smi::FromInt(len - 1)); |
553 | 567 |
554 return first; | 568 return first; |
555 } | 569 } |
556 | 570 |
557 | 571 |
558 BUILTIN(ArrayUnshift) { | 572 BUILTIN(ArrayUnshift) { |
| 573 Heap* heap = isolate->heap(); |
559 Object* receiver = *args.receiver(); | 574 Object* receiver = *args.receiver(); |
560 Object* elms_obj; | 575 Object* elms_obj; |
561 { MaybeObject* maybe_elms_obj = | 576 { MaybeObject* maybe_elms_obj = |
562 EnsureJSArrayWithWritableFastElements(receiver); | 577 EnsureJSArrayWithWritableFastElements(heap, receiver); |
563 if (maybe_elms_obj == NULL) return CallJsBuiltin("ArrayUnshift", args); | 578 if (maybe_elms_obj == NULL) |
| 579 return CallJsBuiltin(isolate, "ArrayUnshift", args); |
564 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; | 580 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; |
565 } | 581 } |
566 if (!IsJSArrayFastElementMovingAllowed(JSArray::cast(receiver))) { | 582 if (!IsJSArrayFastElementMovingAllowed(heap, JSArray::cast(receiver))) { |
567 return CallJsBuiltin("ArrayUnshift", args); | 583 return CallJsBuiltin(isolate, "ArrayUnshift", args); |
568 } | 584 } |
569 FixedArray* elms = FixedArray::cast(elms_obj); | 585 FixedArray* elms = FixedArray::cast(elms_obj); |
570 JSArray* array = JSArray::cast(receiver); | 586 JSArray* array = JSArray::cast(receiver); |
571 ASSERT(array->HasFastElements()); | 587 ASSERT(array->HasFastElements()); |
572 | 588 |
573 int len = Smi::cast(array->length())->value(); | 589 int len = Smi::cast(array->length())->value(); |
574 int to_add = args.length() - 1; | 590 int to_add = args.length() - 1; |
575 int new_length = len + to_add; | 591 int new_length = len + to_add; |
576 // Currently fixed arrays cannot grow too big, so | 592 // Currently fixed arrays cannot grow too big, so |
577 // we should never hit this case. | 593 // we should never hit this case. |
578 ASSERT(to_add <= (Smi::kMaxValue - len)); | 594 ASSERT(to_add <= (Smi::kMaxValue - len)); |
579 | 595 |
580 if (new_length > elms->length()) { | 596 if (new_length > elms->length()) { |
581 // New backing storage is needed. | 597 // New backing storage is needed. |
582 int capacity = new_length + (new_length >> 1) + 16; | 598 int capacity = new_length + (new_length >> 1) + 16; |
583 Object* obj; | 599 Object* obj; |
584 { MaybeObject* maybe_obj = Heap::AllocateUninitializedFixedArray(capacity); | 600 { MaybeObject* maybe_obj = heap->AllocateUninitializedFixedArray(capacity); |
585 if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 601 if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
586 } | 602 } |
587 FixedArray* new_elms = FixedArray::cast(obj); | 603 FixedArray* new_elms = FixedArray::cast(obj); |
588 | 604 |
589 AssertNoAllocation no_gc; | 605 AssertNoAllocation no_gc; |
590 if (len > 0) { | 606 if (len > 0) { |
591 CopyElements(&no_gc, new_elms, to_add, elms, 0, len); | 607 CopyElements(heap, &no_gc, new_elms, to_add, elms, 0, len); |
592 } | 608 } |
593 FillWithHoles(new_elms, new_length, capacity); | 609 FillWithHoles(heap, new_elms, new_length, capacity); |
594 | 610 |
595 elms = new_elms; | 611 elms = new_elms; |
596 array->set_elements(elms); | 612 array->set_elements(elms); |
597 } else { | 613 } else { |
598 AssertNoAllocation no_gc; | 614 AssertNoAllocation no_gc; |
599 MoveElements(&no_gc, elms, to_add, elms, 0, len); | 615 MoveElements(heap, &no_gc, elms, to_add, elms, 0, len); |
600 } | 616 } |
601 | 617 |
602 // Add the provided values. | 618 // Add the provided values. |
603 AssertNoAllocation no_gc; | 619 AssertNoAllocation no_gc; |
604 WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); | 620 WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); |
605 for (int i = 0; i < to_add; i++) { | 621 for (int i = 0; i < to_add; i++) { |
606 elms->set(i, args[i + 1], mode); | 622 elms->set(i, args[i + 1], mode); |
607 } | 623 } |
608 | 624 |
609 // Set the length. | 625 // Set the length. |
610 array->set_length(Smi::FromInt(new_length)); | 626 array->set_length(Smi::FromInt(new_length)); |
611 return Smi::FromInt(new_length); | 627 return Smi::FromInt(new_length); |
612 } | 628 } |
613 | 629 |
614 | 630 |
615 BUILTIN(ArraySlice) { | 631 BUILTIN(ArraySlice) { |
| 632 Heap* heap = isolate->heap(); |
616 Object* receiver = *args.receiver(); | 633 Object* receiver = *args.receiver(); |
617 FixedArray* elms; | 634 FixedArray* elms; |
618 int len = -1; | 635 int len = -1; |
619 if (receiver->IsJSArray()) { | 636 if (receiver->IsJSArray()) { |
620 JSArray* array = JSArray::cast(receiver); | 637 JSArray* array = JSArray::cast(receiver); |
621 if (!array->HasFastElements() || | 638 if (!array->HasFastElements() || |
622 !IsJSArrayFastElementMovingAllowed(array)) { | 639 !IsJSArrayFastElementMovingAllowed(heap, array)) { |
623 return CallJsBuiltin("ArraySlice", args); | 640 return CallJsBuiltin(isolate, "ArraySlice", args); |
624 } | 641 } |
625 | 642 |
626 elms = FixedArray::cast(array->elements()); | 643 elms = FixedArray::cast(array->elements()); |
627 len = Smi::cast(array->length())->value(); | 644 len = Smi::cast(array->length())->value(); |
628 } else { | 645 } else { |
629 // Array.slice(arguments, ...) is quite a common idiom (notably more | 646 // Array.slice(arguments, ...) is quite a common idiom (notably more |
630 // than 50% of invocations in Web apps). Treat it in C++ as well. | 647 // than 50% of invocations in Web apps). Treat it in C++ as well. |
631 Map* arguments_map = | 648 Map* arguments_map = |
632 Top::context()->global_context()->arguments_boilerplate()->map(); | 649 isolate->context()->global_context()->arguments_boilerplate()->map(); |
633 | 650 |
634 bool is_arguments_object_with_fast_elements = | 651 bool is_arguments_object_with_fast_elements = |
635 receiver->IsJSObject() | 652 receiver->IsJSObject() |
636 && JSObject::cast(receiver)->map() == arguments_map | 653 && JSObject::cast(receiver)->map() == arguments_map |
637 && JSObject::cast(receiver)->HasFastElements(); | 654 && JSObject::cast(receiver)->HasFastElements(); |
638 if (!is_arguments_object_with_fast_elements) { | 655 if (!is_arguments_object_with_fast_elements) { |
639 return CallJsBuiltin("ArraySlice", args); | 656 return CallJsBuiltin(isolate, "ArraySlice", args); |
640 } | 657 } |
641 elms = FixedArray::cast(JSObject::cast(receiver)->elements()); | 658 elms = FixedArray::cast(JSObject::cast(receiver)->elements()); |
642 Object* len_obj = JSObject::cast(receiver) | 659 Object* len_obj = JSObject::cast(receiver) |
643 ->InObjectPropertyAt(Heap::kArgumentsLengthIndex); | 660 ->InObjectPropertyAt(Heap::kArgumentsLengthIndex); |
644 if (!len_obj->IsSmi()) { | 661 if (!len_obj->IsSmi()) { |
645 return CallJsBuiltin("ArraySlice", args); | 662 return CallJsBuiltin(isolate, "ArraySlice", args); |
646 } | 663 } |
647 len = Smi::cast(len_obj)->value(); | 664 len = Smi::cast(len_obj)->value(); |
648 if (len > elms->length()) { | 665 if (len > elms->length()) { |
649 return CallJsBuiltin("ArraySlice", args); | 666 return CallJsBuiltin(isolate, "ArraySlice", args); |
650 } | 667 } |
651 for (int i = 0; i < len; i++) { | 668 for (int i = 0; i < len; i++) { |
652 if (elms->get(i) == Heap::the_hole_value()) { | 669 if (elms->get(i) == heap->the_hole_value()) { |
653 return CallJsBuiltin("ArraySlice", args); | 670 return CallJsBuiltin(isolate, "ArraySlice", args); |
654 } | 671 } |
655 } | 672 } |
656 } | 673 } |
657 ASSERT(len >= 0); | 674 ASSERT(len >= 0); |
658 int n_arguments = args.length() - 1; | 675 int n_arguments = args.length() - 1; |
659 | 676 |
660 // Note carefully choosen defaults---if argument is missing, | 677 // Note carefully choosen defaults---if argument is missing, |
661 // it's undefined which gets converted to 0 for relative_start | 678 // it's undefined which gets converted to 0 for relative_start |
662 // and to len for relative_end. | 679 // and to len for relative_end. |
663 int relative_start = 0; | 680 int relative_start = 0; |
664 int relative_end = len; | 681 int relative_end = len; |
665 if (n_arguments > 0) { | 682 if (n_arguments > 0) { |
666 Object* arg1 = args[1]; | 683 Object* arg1 = args[1]; |
667 if (arg1->IsSmi()) { | 684 if (arg1->IsSmi()) { |
668 relative_start = Smi::cast(arg1)->value(); | 685 relative_start = Smi::cast(arg1)->value(); |
669 } else if (!arg1->IsUndefined()) { | 686 } else if (!arg1->IsUndefined()) { |
670 return CallJsBuiltin("ArraySlice", args); | 687 return CallJsBuiltin(isolate, "ArraySlice", args); |
671 } | 688 } |
672 if (n_arguments > 1) { | 689 if (n_arguments > 1) { |
673 Object* arg2 = args[2]; | 690 Object* arg2 = args[2]; |
674 if (arg2->IsSmi()) { | 691 if (arg2->IsSmi()) { |
675 relative_end = Smi::cast(arg2)->value(); | 692 relative_end = Smi::cast(arg2)->value(); |
676 } else if (!arg2->IsUndefined()) { | 693 } else if (!arg2->IsUndefined()) { |
677 return CallJsBuiltin("ArraySlice", args); | 694 return CallJsBuiltin(isolate, "ArraySlice", args); |
678 } | 695 } |
679 } | 696 } |
680 } | 697 } |
681 | 698 |
682 // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6. | 699 // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6. |
683 int k = (relative_start < 0) ? Max(len + relative_start, 0) | 700 int k = (relative_start < 0) ? Max(len + relative_start, 0) |
684 : Min(relative_start, len); | 701 : Min(relative_start, len); |
685 | 702 |
686 // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8. | 703 // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8. |
687 int final = (relative_end < 0) ? Max(len + relative_end, 0) | 704 int final = (relative_end < 0) ? Max(len + relative_end, 0) |
688 : Min(relative_end, len); | 705 : Min(relative_end, len); |
689 | 706 |
690 // Calculate the length of result array. | 707 // Calculate the length of result array. |
691 int result_len = final - k; | 708 int result_len = final - k; |
692 if (result_len <= 0) { | 709 if (result_len <= 0) { |
693 return AllocateEmptyJSArray(); | 710 return AllocateEmptyJSArray(heap); |
694 } | 711 } |
695 | 712 |
696 Object* result; | 713 Object* result; |
697 { MaybeObject* maybe_result = AllocateJSArray(); | 714 { MaybeObject* maybe_result = AllocateJSArray(heap); |
698 if (!maybe_result->ToObject(&result)) return maybe_result; | 715 if (!maybe_result->ToObject(&result)) return maybe_result; |
699 } | 716 } |
700 JSArray* result_array = JSArray::cast(result); | 717 JSArray* result_array = JSArray::cast(result); |
701 | 718 |
702 { MaybeObject* maybe_result = | 719 { MaybeObject* maybe_result = |
703 Heap::AllocateUninitializedFixedArray(result_len); | 720 heap->AllocateUninitializedFixedArray(result_len); |
704 if (!maybe_result->ToObject(&result)) return maybe_result; | 721 if (!maybe_result->ToObject(&result)) return maybe_result; |
705 } | 722 } |
706 FixedArray* result_elms = FixedArray::cast(result); | 723 FixedArray* result_elms = FixedArray::cast(result); |
707 | 724 |
708 AssertNoAllocation no_gc; | 725 AssertNoAllocation no_gc; |
709 CopyElements(&no_gc, result_elms, 0, elms, k, result_len); | 726 CopyElements(heap, &no_gc, result_elms, 0, elms, k, result_len); |
710 | 727 |
711 // Set elements. | 728 // Set elements. |
712 result_array->set_elements(result_elms); | 729 result_array->set_elements(result_elms); |
713 | 730 |
714 // Set the length. | 731 // Set the length. |
715 result_array->set_length(Smi::FromInt(result_len)); | 732 result_array->set_length(Smi::FromInt(result_len)); |
716 return result_array; | 733 return result_array; |
717 } | 734 } |
718 | 735 |
719 | 736 |
720 BUILTIN(ArraySplice) { | 737 BUILTIN(ArraySplice) { |
| 738 Heap* heap = isolate->heap(); |
721 Object* receiver = *args.receiver(); | 739 Object* receiver = *args.receiver(); |
722 Object* elms_obj; | 740 Object* elms_obj; |
723 { MaybeObject* maybe_elms_obj = | 741 { MaybeObject* maybe_elms_obj = |
724 EnsureJSArrayWithWritableFastElements(receiver); | 742 EnsureJSArrayWithWritableFastElements(heap, receiver); |
725 if (maybe_elms_obj == NULL) return CallJsBuiltin("ArraySplice", args); | 743 if (maybe_elms_obj == NULL) |
| 744 return CallJsBuiltin(isolate, "ArraySplice", args); |
726 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; | 745 if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; |
727 } | 746 } |
728 if (!IsJSArrayFastElementMovingAllowed(JSArray::cast(receiver))) { | 747 if (!IsJSArrayFastElementMovingAllowed(heap, JSArray::cast(receiver))) { |
729 return CallJsBuiltin("ArraySplice", args); | 748 return CallJsBuiltin(isolate, "ArraySplice", args); |
730 } | 749 } |
731 FixedArray* elms = FixedArray::cast(elms_obj); | 750 FixedArray* elms = FixedArray::cast(elms_obj); |
732 JSArray* array = JSArray::cast(receiver); | 751 JSArray* array = JSArray::cast(receiver); |
733 ASSERT(array->HasFastElements()); | 752 ASSERT(array->HasFastElements()); |
734 | 753 |
735 int len = Smi::cast(array->length())->value(); | 754 int len = Smi::cast(array->length())->value(); |
736 | 755 |
737 int n_arguments = args.length() - 1; | 756 int n_arguments = args.length() - 1; |
738 | 757 |
739 int relative_start = 0; | 758 int relative_start = 0; |
740 if (n_arguments > 0) { | 759 if (n_arguments > 0) { |
741 Object* arg1 = args[1]; | 760 Object* arg1 = args[1]; |
742 if (arg1->IsSmi()) { | 761 if (arg1->IsSmi()) { |
743 relative_start = Smi::cast(arg1)->value(); | 762 relative_start = Smi::cast(arg1)->value(); |
744 } else if (!arg1->IsUndefined()) { | 763 } else if (!arg1->IsUndefined()) { |
745 return CallJsBuiltin("ArraySplice", args); | 764 return CallJsBuiltin(isolate, "ArraySplice", args); |
746 } | 765 } |
747 } | 766 } |
748 int actual_start = (relative_start < 0) ? Max(len + relative_start, 0) | 767 int actual_start = (relative_start < 0) ? Max(len + relative_start, 0) |
749 : Min(relative_start, len); | 768 : Min(relative_start, len); |
750 | 769 |
751 // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is | 770 // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is |
752 // given as a request to delete all the elements from the start. | 771 // given as a request to delete all the elements from the start. |
753 // And it differs from the case of undefined delete count. | 772 // And it differs from the case of undefined delete count. |
754 // This does not follow ECMA-262, but we do the same for | 773 // This does not follow ECMA-262, but we do the same for |
755 // compatibility. | 774 // compatibility. |
756 int actual_delete_count; | 775 int actual_delete_count; |
757 if (n_arguments == 1) { | 776 if (n_arguments == 1) { |
758 ASSERT(len - actual_start >= 0); | 777 ASSERT(len - actual_start >= 0); |
759 actual_delete_count = len - actual_start; | 778 actual_delete_count = len - actual_start; |
760 } else { | 779 } else { |
761 int value = 0; // ToInteger(undefined) == 0 | 780 int value = 0; // ToInteger(undefined) == 0 |
762 if (n_arguments > 1) { | 781 if (n_arguments > 1) { |
763 Object* arg2 = args[2]; | 782 Object* arg2 = args[2]; |
764 if (arg2->IsSmi()) { | 783 if (arg2->IsSmi()) { |
765 value = Smi::cast(arg2)->value(); | 784 value = Smi::cast(arg2)->value(); |
766 } else { | 785 } else { |
767 return CallJsBuiltin("ArraySplice", args); | 786 return CallJsBuiltin(isolate, "ArraySplice", args); |
768 } | 787 } |
769 } | 788 } |
770 actual_delete_count = Min(Max(value, 0), len - actual_start); | 789 actual_delete_count = Min(Max(value, 0), len - actual_start); |
771 } | 790 } |
772 | 791 |
773 JSArray* result_array = NULL; | 792 JSArray* result_array = NULL; |
774 if (actual_delete_count == 0) { | 793 if (actual_delete_count == 0) { |
775 Object* result; | 794 Object* result; |
776 { MaybeObject* maybe_result = AllocateEmptyJSArray(); | 795 { MaybeObject* maybe_result = AllocateEmptyJSArray(heap); |
777 if (!maybe_result->ToObject(&result)) return maybe_result; | 796 if (!maybe_result->ToObject(&result)) return maybe_result; |
778 } | 797 } |
779 result_array = JSArray::cast(result); | 798 result_array = JSArray::cast(result); |
780 } else { | 799 } else { |
781 // Allocate result array. | 800 // Allocate result array. |
782 Object* result; | 801 Object* result; |
783 { MaybeObject* maybe_result = AllocateJSArray(); | 802 { MaybeObject* maybe_result = AllocateJSArray(heap); |
784 if (!maybe_result->ToObject(&result)) return maybe_result; | 803 if (!maybe_result->ToObject(&result)) return maybe_result; |
785 } | 804 } |
786 result_array = JSArray::cast(result); | 805 result_array = JSArray::cast(result); |
787 | 806 |
788 { MaybeObject* maybe_result = | 807 { MaybeObject* maybe_result = |
789 Heap::AllocateUninitializedFixedArray(actual_delete_count); | 808 heap->AllocateUninitializedFixedArray(actual_delete_count); |
790 if (!maybe_result->ToObject(&result)) return maybe_result; | 809 if (!maybe_result->ToObject(&result)) return maybe_result; |
791 } | 810 } |
792 FixedArray* result_elms = FixedArray::cast(result); | 811 FixedArray* result_elms = FixedArray::cast(result); |
793 | 812 |
794 AssertNoAllocation no_gc; | 813 AssertNoAllocation no_gc; |
795 // Fill newly created array. | 814 // Fill newly created array. |
796 CopyElements(&no_gc, | 815 CopyElements(heap, |
| 816 &no_gc, |
797 result_elms, 0, | 817 result_elms, 0, |
798 elms, actual_start, | 818 elms, actual_start, |
799 actual_delete_count); | 819 actual_delete_count); |
800 | 820 |
801 // Set elements. | 821 // Set elements. |
802 result_array->set_elements(result_elms); | 822 result_array->set_elements(result_elms); |
803 | 823 |
804 // Set the length. | 824 // Set the length. |
805 result_array->set_length(Smi::FromInt(actual_delete_count)); | 825 result_array->set_length(Smi::FromInt(actual_delete_count)); |
806 } | 826 } |
807 | 827 |
808 int item_count = (n_arguments > 1) ? (n_arguments - 2) : 0; | 828 int item_count = (n_arguments > 1) ? (n_arguments - 2) : 0; |
809 | 829 |
810 int new_length = len - actual_delete_count + item_count; | 830 int new_length = len - actual_delete_count + item_count; |
811 | 831 |
812 if (item_count < actual_delete_count) { | 832 if (item_count < actual_delete_count) { |
813 // Shrink the array. | 833 // Shrink the array. |
814 const bool trim_array = !Heap::lo_space()->Contains(elms) && | 834 const bool trim_array = !heap->lo_space()->Contains(elms) && |
815 ((actual_start + item_count) < | 835 ((actual_start + item_count) < |
816 (len - actual_delete_count - actual_start)); | 836 (len - actual_delete_count - actual_start)); |
817 if (trim_array) { | 837 if (trim_array) { |
818 const int delta = actual_delete_count - item_count; | 838 const int delta = actual_delete_count - item_count; |
819 | 839 |
820 if (actual_start > 0) { | 840 if (actual_start > 0) { |
821 Object** start = elms->data_start(); | 841 Object** start = elms->data_start(); |
822 memmove(start + delta, start, actual_start * kPointerSize); | 842 memmove(start + delta, start, actual_start * kPointerSize); |
823 } | 843 } |
824 | 844 |
825 elms = LeftTrimFixedArray(elms, delta); | 845 elms = LeftTrimFixedArray(heap, elms, delta); |
826 array->set_elements(elms, SKIP_WRITE_BARRIER); | 846 array->set_elements(elms, SKIP_WRITE_BARRIER); |
827 } else { | 847 } else { |
828 AssertNoAllocation no_gc; | 848 AssertNoAllocation no_gc; |
829 MoveElements(&no_gc, | 849 MoveElements(heap, &no_gc, |
830 elms, actual_start + item_count, | 850 elms, actual_start + item_count, |
831 elms, actual_start + actual_delete_count, | 851 elms, actual_start + actual_delete_count, |
832 (len - actual_delete_count - actual_start)); | 852 (len - actual_delete_count - actual_start)); |
833 FillWithHoles(elms, new_length, len); | 853 FillWithHoles(heap, elms, new_length, len); |
834 } | 854 } |
835 } else if (item_count > actual_delete_count) { | 855 } else if (item_count > actual_delete_count) { |
836 // Currently fixed arrays cannot grow too big, so | 856 // Currently fixed arrays cannot grow too big, so |
837 // we should never hit this case. | 857 // we should never hit this case. |
838 ASSERT((item_count - actual_delete_count) <= (Smi::kMaxValue - len)); | 858 ASSERT((item_count - actual_delete_count) <= (Smi::kMaxValue - len)); |
839 | 859 |
840 // Check if array need to grow. | 860 // Check if array need to grow. |
841 if (new_length > elms->length()) { | 861 if (new_length > elms->length()) { |
842 // New backing storage is needed. | 862 // New backing storage is needed. |
843 int capacity = new_length + (new_length >> 1) + 16; | 863 int capacity = new_length + (new_length >> 1) + 16; |
844 Object* obj; | 864 Object* obj; |
845 { MaybeObject* maybe_obj = | 865 { MaybeObject* maybe_obj = |
846 Heap::AllocateUninitializedFixedArray(capacity); | 866 heap->AllocateUninitializedFixedArray(capacity); |
847 if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 867 if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
848 } | 868 } |
849 FixedArray* new_elms = FixedArray::cast(obj); | 869 FixedArray* new_elms = FixedArray::cast(obj); |
850 | 870 |
851 AssertNoAllocation no_gc; | 871 AssertNoAllocation no_gc; |
852 // Copy the part before actual_start as is. | 872 // Copy the part before actual_start as is. |
853 if (actual_start > 0) { | 873 if (actual_start > 0) { |
854 CopyElements(&no_gc, new_elms, 0, elms, 0, actual_start); | 874 CopyElements(heap, &no_gc, new_elms, 0, elms, 0, actual_start); |
855 } | 875 } |
856 const int to_copy = len - actual_delete_count - actual_start; | 876 const int to_copy = len - actual_delete_count - actual_start; |
857 if (to_copy > 0) { | 877 if (to_copy > 0) { |
858 CopyElements(&no_gc, | 878 CopyElements(heap, &no_gc, |
859 new_elms, actual_start + item_count, | 879 new_elms, actual_start + item_count, |
860 elms, actual_start + actual_delete_count, | 880 elms, actual_start + actual_delete_count, |
861 to_copy); | 881 to_copy); |
862 } | 882 } |
863 FillWithHoles(new_elms, new_length, capacity); | 883 FillWithHoles(heap, new_elms, new_length, capacity); |
864 | 884 |
865 elms = new_elms; | 885 elms = new_elms; |
866 array->set_elements(elms); | 886 array->set_elements(elms); |
867 } else { | 887 } else { |
868 AssertNoAllocation no_gc; | 888 AssertNoAllocation no_gc; |
869 MoveElements(&no_gc, | 889 MoveElements(heap, &no_gc, |
870 elms, actual_start + item_count, | 890 elms, actual_start + item_count, |
871 elms, actual_start + actual_delete_count, | 891 elms, actual_start + actual_delete_count, |
872 (len - actual_delete_count - actual_start)); | 892 (len - actual_delete_count - actual_start)); |
873 } | 893 } |
874 } | 894 } |
875 | 895 |
876 AssertNoAllocation no_gc; | 896 AssertNoAllocation no_gc; |
877 WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); | 897 WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc); |
878 for (int k = actual_start; k < actual_start + item_count; k++) { | 898 for (int k = actual_start; k < actual_start + item_count; k++) { |
879 elms->set(k, args[3 + k - actual_start], mode); | 899 elms->set(k, args[3 + k - actual_start], mode); |
880 } | 900 } |
881 | 901 |
882 // Set the length. | 902 // Set the length. |
883 array->set_length(Smi::FromInt(new_length)); | 903 array->set_length(Smi::FromInt(new_length)); |
884 | 904 |
885 return result_array; | 905 return result_array; |
886 } | 906 } |
887 | 907 |
888 | 908 |
889 BUILTIN(ArrayConcat) { | 909 BUILTIN(ArrayConcat) { |
890 Context* global_context = Top::context()->global_context(); | 910 Heap* heap = isolate->heap(); |
| 911 Context* global_context = isolate->context()->global_context(); |
891 JSObject* array_proto = | 912 JSObject* array_proto = |
892 JSObject::cast(global_context->array_function()->prototype()); | 913 JSObject::cast(global_context->array_function()->prototype()); |
893 if (!ArrayPrototypeHasNoElements(global_context, array_proto)) { | 914 if (!ArrayPrototypeHasNoElements(heap, global_context, array_proto)) { |
894 return CallJsBuiltin("ArrayConcat", args); | 915 return CallJsBuiltin(isolate, "ArrayConcat", args); |
895 } | 916 } |
896 | 917 |
897 // Iterate through all the arguments performing checks | 918 // Iterate through all the arguments performing checks |
898 // and calculating total length. | 919 // and calculating total length. |
899 int n_arguments = args.length(); | 920 int n_arguments = args.length(); |
900 int result_len = 0; | 921 int result_len = 0; |
901 for (int i = 0; i < n_arguments; i++) { | 922 for (int i = 0; i < n_arguments; i++) { |
902 Object* arg = args[i]; | 923 Object* arg = args[i]; |
903 if (!arg->IsJSArray() || !JSArray::cast(arg)->HasFastElements() | 924 if (!arg->IsJSArray() || !JSArray::cast(arg)->HasFastElements() |
904 || JSArray::cast(arg)->GetPrototype() != array_proto) { | 925 || JSArray::cast(arg)->GetPrototype() != array_proto) { |
905 return CallJsBuiltin("ArrayConcat", args); | 926 return CallJsBuiltin(isolate, "ArrayConcat", args); |
906 } | 927 } |
907 | 928 |
908 int len = Smi::cast(JSArray::cast(arg)->length())->value(); | 929 int len = Smi::cast(JSArray::cast(arg)->length())->value(); |
909 | 930 |
910 // We shouldn't overflow when adding another len. | 931 // We shouldn't overflow when adding another len. |
911 const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2); | 932 const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2); |
912 STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt); | 933 STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt); |
913 USE(kHalfOfMaxInt); | 934 USE(kHalfOfMaxInt); |
914 result_len += len; | 935 result_len += len; |
915 ASSERT(result_len >= 0); | 936 ASSERT(result_len >= 0); |
916 | 937 |
917 if (result_len > FixedArray::kMaxLength) { | 938 if (result_len > FixedArray::kMaxLength) { |
918 return CallJsBuiltin("ArrayConcat", args); | 939 return CallJsBuiltin(isolate, "ArrayConcat", args); |
919 } | 940 } |
920 } | 941 } |
921 | 942 |
922 if (result_len == 0) { | 943 if (result_len == 0) { |
923 return AllocateEmptyJSArray(); | 944 return AllocateEmptyJSArray(heap); |
924 } | 945 } |
925 | 946 |
926 // Allocate result. | 947 // Allocate result. |
927 Object* result; | 948 Object* result; |
928 { MaybeObject* maybe_result = AllocateJSArray(); | 949 { MaybeObject* maybe_result = AllocateJSArray(heap); |
929 if (!maybe_result->ToObject(&result)) return maybe_result; | 950 if (!maybe_result->ToObject(&result)) return maybe_result; |
930 } | 951 } |
931 JSArray* result_array = JSArray::cast(result); | 952 JSArray* result_array = JSArray::cast(result); |
932 | 953 |
933 { MaybeObject* maybe_result = | 954 { MaybeObject* maybe_result = |
934 Heap::AllocateUninitializedFixedArray(result_len); | 955 heap->AllocateUninitializedFixedArray(result_len); |
935 if (!maybe_result->ToObject(&result)) return maybe_result; | 956 if (!maybe_result->ToObject(&result)) return maybe_result; |
936 } | 957 } |
937 FixedArray* result_elms = FixedArray::cast(result); | 958 FixedArray* result_elms = FixedArray::cast(result); |
938 | 959 |
939 // Copy data. | 960 // Copy data. |
940 AssertNoAllocation no_gc; | 961 AssertNoAllocation no_gc; |
941 int start_pos = 0; | 962 int start_pos = 0; |
942 for (int i = 0; i < n_arguments; i++) { | 963 for (int i = 0; i < n_arguments; i++) { |
943 JSArray* array = JSArray::cast(args[i]); | 964 JSArray* array = JSArray::cast(args[i]); |
944 int len = Smi::cast(array->length())->value(); | 965 int len = Smi::cast(array->length())->value(); |
945 if (len > 0) { | 966 if (len > 0) { |
946 FixedArray* elms = FixedArray::cast(array->elements()); | 967 FixedArray* elms = FixedArray::cast(array->elements()); |
947 CopyElements(&no_gc, result_elms, start_pos, elms, 0, len); | 968 CopyElements(heap, &no_gc, result_elms, start_pos, elms, 0, len); |
948 start_pos += len; | 969 start_pos += len; |
949 } | 970 } |
950 } | 971 } |
951 ASSERT(start_pos == result_len); | 972 ASSERT(start_pos == result_len); |
952 | 973 |
953 // Set the length and elements. | 974 // Set the length and elements. |
954 result_array->set_length(Smi::FromInt(result_len)); | 975 result_array->set_length(Smi::FromInt(result_len)); |
955 result_array->set_elements(result_elms); | 976 result_array->set_elements(result_elms); |
956 | 977 |
957 return result_array; | 978 return result_array; |
958 } | 979 } |
959 | 980 |
960 | 981 |
961 // ----------------------------------------------------------------------------- | 982 // ----------------------------------------------------------------------------- |
962 // Strict mode poison pills | 983 // Strict mode poison pills |
963 | 984 |
964 | 985 |
965 BUILTIN(StrictArgumentsCallee) { | 986 BUILTIN(StrictArgumentsCallee) { |
966 HandleScope scope; | 987 HandleScope scope; |
967 return Top::Throw(*Factory::NewTypeError("strict_arguments_callee", | 988 return isolate->Throw(*isolate->factory()->NewTypeError( |
968 HandleVector<Object>(NULL, 0))); | 989 "strict_arguments_callee", HandleVector<Object>(NULL, 0))); |
969 } | 990 } |
970 | 991 |
971 | 992 |
972 BUILTIN(StrictArgumentsCaller) { | 993 BUILTIN(StrictArgumentsCaller) { |
973 HandleScope scope; | 994 HandleScope scope; |
974 return Top::Throw(*Factory::NewTypeError("strict_arguments_caller", | 995 return isolate->Throw(*isolate->factory()->NewTypeError( |
975 HandleVector<Object>(NULL, 0))); | 996 "strict_arguments_caller", HandleVector<Object>(NULL, 0))); |
976 } | 997 } |
977 | 998 |
978 | 999 |
979 BUILTIN(StrictFunctionCaller) { | 1000 BUILTIN(StrictFunctionCaller) { |
980 HandleScope scope; | 1001 HandleScope scope; |
981 return Top::Throw(*Factory::NewTypeError("strict_function_caller", | 1002 return isolate->Throw(*isolate->factory()->NewTypeError( |
982 HandleVector<Object>(NULL, 0))); | 1003 "strict_function_caller", HandleVector<Object>(NULL, 0))); |
983 } | 1004 } |
984 | 1005 |
985 | 1006 |
986 BUILTIN(StrictFunctionArguments) { | 1007 BUILTIN(StrictFunctionArguments) { |
987 HandleScope scope; | 1008 HandleScope scope; |
988 return Top::Throw(*Factory::NewTypeError("strict_function_arguments", | 1009 return isolate->Throw(*isolate->factory()->NewTypeError( |
989 HandleVector<Object>(NULL, 0))); | 1010 "strict_function_arguments", HandleVector<Object>(NULL, 0))); |
990 } | 1011 } |
991 | 1012 |
992 | 1013 |
993 // ----------------------------------------------------------------------------- | 1014 // ----------------------------------------------------------------------------- |
994 // | 1015 // |
995 | 1016 |
996 | 1017 |
997 // Returns the holder JSObject if the function can legally be called | 1018 // Returns the holder JSObject if the function can legally be called |
998 // with this receiver. Returns Heap::null_value() if the call is | 1019 // with this receiver. Returns Heap::null_value() if the call is |
999 // illegal. Any arguments that don't fit the expected type is | 1020 // illegal. Any arguments that don't fit the expected type is |
1000 // overwritten with undefined. Arguments that do fit the expected | 1021 // overwritten with undefined. Arguments that do fit the expected |
1001 // type is overwritten with the object in the prototype chain that | 1022 // type is overwritten with the object in the prototype chain that |
1002 // actually has that type. | 1023 // actually has that type. |
1003 static inline Object* TypeCheck(int argc, | 1024 static inline Object* TypeCheck(Heap* heap, |
| 1025 int argc, |
1004 Object** argv, | 1026 Object** argv, |
1005 FunctionTemplateInfo* info) { | 1027 FunctionTemplateInfo* info) { |
1006 Object* recv = argv[0]; | 1028 Object* recv = argv[0]; |
1007 Object* sig_obj = info->signature(); | 1029 Object* sig_obj = info->signature(); |
1008 if (sig_obj->IsUndefined()) return recv; | 1030 if (sig_obj->IsUndefined()) return recv; |
1009 SignatureInfo* sig = SignatureInfo::cast(sig_obj); | 1031 SignatureInfo* sig = SignatureInfo::cast(sig_obj); |
1010 // If necessary, check the receiver | 1032 // If necessary, check the receiver |
1011 Object* recv_type = sig->receiver(); | 1033 Object* recv_type = sig->receiver(); |
1012 | 1034 |
1013 Object* holder = recv; | 1035 Object* holder = recv; |
1014 if (!recv_type->IsUndefined()) { | 1036 if (!recv_type->IsUndefined()) { |
1015 for (; holder != Heap::null_value(); holder = holder->GetPrototype()) { | 1037 for (; holder != heap->null_value(); holder = holder->GetPrototype()) { |
1016 if (holder->IsInstanceOf(FunctionTemplateInfo::cast(recv_type))) { | 1038 if (holder->IsInstanceOf(FunctionTemplateInfo::cast(recv_type))) { |
1017 break; | 1039 break; |
1018 } | 1040 } |
1019 } | 1041 } |
1020 if (holder == Heap::null_value()) return holder; | 1042 if (holder == heap->null_value()) return holder; |
1021 } | 1043 } |
1022 Object* args_obj = sig->args(); | 1044 Object* args_obj = sig->args(); |
1023 // If there is no argument signature we're done | 1045 // If there is no argument signature we're done |
1024 if (args_obj->IsUndefined()) return holder; | 1046 if (args_obj->IsUndefined()) return holder; |
1025 FixedArray* args = FixedArray::cast(args_obj); | 1047 FixedArray* args = FixedArray::cast(args_obj); |
1026 int length = args->length(); | 1048 int length = args->length(); |
1027 if (argc <= length) length = argc - 1; | 1049 if (argc <= length) length = argc - 1; |
1028 for (int i = 0; i < length; i++) { | 1050 for (int i = 0; i < length; i++) { |
1029 Object* argtype = args->get(i); | 1051 Object* argtype = args->get(i); |
1030 if (argtype->IsUndefined()) continue; | 1052 if (argtype->IsUndefined()) continue; |
1031 Object** arg = &argv[-1 - i]; | 1053 Object** arg = &argv[-1 - i]; |
1032 Object* current = *arg; | 1054 Object* current = *arg; |
1033 for (; current != Heap::null_value(); current = current->GetPrototype()) { | 1055 for (; current != heap->null_value(); current = current->GetPrototype()) { |
1034 if (current->IsInstanceOf(FunctionTemplateInfo::cast(argtype))) { | 1056 if (current->IsInstanceOf(FunctionTemplateInfo::cast(argtype))) { |
1035 *arg = current; | 1057 *arg = current; |
1036 break; | 1058 break; |
1037 } | 1059 } |
1038 } | 1060 } |
1039 if (current == Heap::null_value()) *arg = Heap::undefined_value(); | 1061 if (current == heap->null_value()) *arg = heap->undefined_value(); |
1040 } | 1062 } |
1041 return holder; | 1063 return holder; |
1042 } | 1064 } |
1043 | 1065 |
1044 | 1066 |
1045 template <bool is_construct> | 1067 template <bool is_construct> |
1046 MUST_USE_RESULT static MaybeObject* HandleApiCallHelper( | 1068 MUST_USE_RESULT static MaybeObject* HandleApiCallHelper( |
1047 BuiltinArguments<NEEDS_CALLED_FUNCTION> args) { | 1069 BuiltinArguments<NEEDS_CALLED_FUNCTION> args, Isolate* isolate) { |
1048 ASSERT(is_construct == CalledAsConstructor()); | 1070 ASSERT(is_construct == CalledAsConstructor(isolate)); |
| 1071 Heap* heap = isolate->heap(); |
1049 | 1072 |
1050 HandleScope scope; | 1073 HandleScope scope(isolate); |
1051 Handle<JSFunction> function = args.called_function(); | 1074 Handle<JSFunction> function = args.called_function(); |
1052 ASSERT(function->shared()->IsApiFunction()); | 1075 ASSERT(function->shared()->IsApiFunction()); |
1053 | 1076 |
1054 FunctionTemplateInfo* fun_data = function->shared()->get_api_func_data(); | 1077 FunctionTemplateInfo* fun_data = function->shared()->get_api_func_data(); |
1055 if (is_construct) { | 1078 if (is_construct) { |
1056 Handle<FunctionTemplateInfo> desc(fun_data); | 1079 Handle<FunctionTemplateInfo> desc(fun_data, isolate); |
1057 bool pending_exception = false; | 1080 bool pending_exception = false; |
1058 Factory::ConfigureInstance(desc, Handle<JSObject>::cast(args.receiver()), | 1081 isolate->factory()->ConfigureInstance( |
1059 &pending_exception); | 1082 desc, Handle<JSObject>::cast(args.receiver()), &pending_exception); |
1060 ASSERT(Top::has_pending_exception() == pending_exception); | 1083 ASSERT(isolate->has_pending_exception() == pending_exception); |
1061 if (pending_exception) return Failure::Exception(); | 1084 if (pending_exception) return Failure::Exception(); |
1062 fun_data = *desc; | 1085 fun_data = *desc; |
1063 } | 1086 } |
1064 | 1087 |
1065 Object* raw_holder = TypeCheck(args.length(), &args[0], fun_data); | 1088 Object* raw_holder = TypeCheck(heap, args.length(), &args[0], fun_data); |
1066 | 1089 |
1067 if (raw_holder->IsNull()) { | 1090 if (raw_holder->IsNull()) { |
1068 // This function cannot be called with the given receiver. Abort! | 1091 // This function cannot be called with the given receiver. Abort! |
1069 Handle<Object> obj = | 1092 Handle<Object> obj = |
1070 Factory::NewTypeError("illegal_invocation", HandleVector(&function, 1)); | 1093 isolate->factory()->NewTypeError( |
1071 return Top::Throw(*obj); | 1094 "illegal_invocation", HandleVector(&function, 1)); |
| 1095 return isolate->Throw(*obj); |
1072 } | 1096 } |
1073 | 1097 |
1074 Object* raw_call_data = fun_data->call_code(); | 1098 Object* raw_call_data = fun_data->call_code(); |
1075 if (!raw_call_data->IsUndefined()) { | 1099 if (!raw_call_data->IsUndefined()) { |
1076 CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data); | 1100 CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data); |
1077 Object* callback_obj = call_data->callback(); | 1101 Object* callback_obj = call_data->callback(); |
1078 v8::InvocationCallback callback = | 1102 v8::InvocationCallback callback = |
1079 v8::ToCData<v8::InvocationCallback>(callback_obj); | 1103 v8::ToCData<v8::InvocationCallback>(callback_obj); |
1080 Object* data_obj = call_data->data(); | 1104 Object* data_obj = call_data->data(); |
1081 Object* result; | 1105 Object* result; |
1082 | 1106 |
1083 LOG(ApiObjectAccess("call", JSObject::cast(*args.receiver()))); | 1107 LOG(isolate, ApiObjectAccess("call", JSObject::cast(*args.receiver()))); |
1084 ASSERT(raw_holder->IsJSObject()); | 1108 ASSERT(raw_holder->IsJSObject()); |
1085 | 1109 |
1086 CustomArguments custom; | 1110 CustomArguments custom(isolate); |
1087 v8::ImplementationUtilities::PrepareArgumentsData(custom.end(), | 1111 v8::ImplementationUtilities::PrepareArgumentsData(custom.end(), |
1088 data_obj, *function, raw_holder); | 1112 data_obj, *function, raw_holder); |
1089 | 1113 |
1090 v8::Arguments new_args = v8::ImplementationUtilities::NewArguments( | 1114 v8::Arguments new_args = v8::ImplementationUtilities::NewArguments( |
1091 custom.end(), | 1115 custom.end(), |
1092 &args[0] - 1, | 1116 &args[0] - 1, |
1093 args.length() - 1, | 1117 args.length() - 1, |
1094 is_construct); | 1118 is_construct); |
1095 | 1119 |
1096 v8::Handle<v8::Value> value; | 1120 v8::Handle<v8::Value> value; |
1097 { | 1121 { |
1098 // Leaving JavaScript. | 1122 // Leaving JavaScript. |
1099 VMState state(EXTERNAL); | 1123 VMState state(isolate, EXTERNAL); |
1100 ExternalCallbackScope call_scope(v8::ToCData<Address>(callback_obj)); | 1124 ExternalCallbackScope call_scope(isolate, |
| 1125 v8::ToCData<Address>(callback_obj)); |
1101 value = callback(new_args); | 1126 value = callback(new_args); |
1102 } | 1127 } |
1103 if (value.IsEmpty()) { | 1128 if (value.IsEmpty()) { |
1104 result = Heap::undefined_value(); | 1129 result = heap->undefined_value(); |
1105 } else { | 1130 } else { |
1106 result = *reinterpret_cast<Object**>(*value); | 1131 result = *reinterpret_cast<Object**>(*value); |
1107 } | 1132 } |
1108 | 1133 |
1109 RETURN_IF_SCHEDULED_EXCEPTION(); | 1134 RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
1110 if (!is_construct || result->IsJSObject()) return result; | 1135 if (!is_construct || result->IsJSObject()) return result; |
1111 } | 1136 } |
1112 | 1137 |
1113 return *args.receiver(); | 1138 return *args.receiver(); |
1114 } | 1139 } |
1115 | 1140 |
1116 | 1141 |
1117 BUILTIN(HandleApiCall) { | 1142 BUILTIN(HandleApiCall) { |
1118 return HandleApiCallHelper<false>(args); | 1143 return HandleApiCallHelper<false>(args, isolate); |
1119 } | 1144 } |
1120 | 1145 |
1121 | 1146 |
1122 BUILTIN(HandleApiCallConstruct) { | 1147 BUILTIN(HandleApiCallConstruct) { |
1123 return HandleApiCallHelper<true>(args); | 1148 return HandleApiCallHelper<true>(args, isolate); |
1124 } | 1149 } |
1125 | 1150 |
1126 | 1151 |
1127 #ifdef DEBUG | 1152 #ifdef DEBUG |
1128 | 1153 |
1129 static void VerifyTypeCheck(Handle<JSObject> object, | 1154 static void VerifyTypeCheck(Handle<JSObject> object, |
1130 Handle<JSFunction> function) { | 1155 Handle<JSFunction> function) { |
1131 ASSERT(function->shared()->IsApiFunction()); | 1156 ASSERT(function->shared()->IsApiFunction()); |
1132 FunctionTemplateInfo* info = function->shared()->get_api_func_data(); | 1157 FunctionTemplateInfo* info = function->shared()->get_api_func_data(); |
1133 if (info->signature()->IsUndefined()) return; | 1158 if (info->signature()->IsUndefined()) return; |
1134 SignatureInfo* signature = SignatureInfo::cast(info->signature()); | 1159 SignatureInfo* signature = SignatureInfo::cast(info->signature()); |
1135 Object* receiver_type = signature->receiver(); | 1160 Object* receiver_type = signature->receiver(); |
1136 if (receiver_type->IsUndefined()) return; | 1161 if (receiver_type->IsUndefined()) return; |
1137 FunctionTemplateInfo* type = FunctionTemplateInfo::cast(receiver_type); | 1162 FunctionTemplateInfo* type = FunctionTemplateInfo::cast(receiver_type); |
1138 ASSERT(object->IsInstanceOf(type)); | 1163 ASSERT(object->IsInstanceOf(type)); |
1139 } | 1164 } |
1140 | 1165 |
1141 #endif | 1166 #endif |
1142 | 1167 |
1143 | 1168 |
1144 BUILTIN(FastHandleApiCall) { | 1169 BUILTIN(FastHandleApiCall) { |
1145 ASSERT(!CalledAsConstructor()); | 1170 ASSERT(!CalledAsConstructor(isolate)); |
| 1171 Heap* heap = isolate->heap(); |
1146 const bool is_construct = false; | 1172 const bool is_construct = false; |
1147 | 1173 |
1148 // We expect four more arguments: callback, function, call data, and holder. | 1174 // We expect four more arguments: callback, function, call data, and holder. |
1149 const int args_length = args.length() - 4; | 1175 const int args_length = args.length() - 4; |
1150 ASSERT(args_length >= 0); | 1176 ASSERT(args_length >= 0); |
1151 | 1177 |
1152 Object* callback_obj = args[args_length]; | 1178 Object* callback_obj = args[args_length]; |
1153 | 1179 |
1154 v8::Arguments new_args = v8::ImplementationUtilities::NewArguments( | 1180 v8::Arguments new_args = v8::ImplementationUtilities::NewArguments( |
1155 &args[args_length + 1], | 1181 &args[args_length + 1], |
1156 &args[0] - 1, | 1182 &args[0] - 1, |
1157 args_length - 1, | 1183 args_length - 1, |
1158 is_construct); | 1184 is_construct); |
1159 | 1185 |
1160 #ifdef DEBUG | 1186 #ifdef DEBUG |
1161 VerifyTypeCheck(Utils::OpenHandle(*new_args.Holder()), | 1187 VerifyTypeCheck(Utils::OpenHandle(*new_args.Holder()), |
1162 Utils::OpenHandle(*new_args.Callee())); | 1188 Utils::OpenHandle(*new_args.Callee())); |
1163 #endif | 1189 #endif |
1164 HandleScope scope; | 1190 HandleScope scope(isolate); |
1165 Object* result; | 1191 Object* result; |
1166 v8::Handle<v8::Value> value; | 1192 v8::Handle<v8::Value> value; |
1167 { | 1193 { |
1168 // Leaving JavaScript. | 1194 // Leaving JavaScript. |
1169 VMState state(EXTERNAL); | 1195 VMState state(isolate, EXTERNAL); |
1170 ExternalCallbackScope call_scope(v8::ToCData<Address>(callback_obj)); | 1196 ExternalCallbackScope call_scope(isolate, |
| 1197 v8::ToCData<Address>(callback_obj)); |
1171 v8::InvocationCallback callback = | 1198 v8::InvocationCallback callback = |
1172 v8::ToCData<v8::InvocationCallback>(callback_obj); | 1199 v8::ToCData<v8::InvocationCallback>(callback_obj); |
1173 | 1200 |
1174 value = callback(new_args); | 1201 value = callback(new_args); |
1175 } | 1202 } |
1176 if (value.IsEmpty()) { | 1203 if (value.IsEmpty()) { |
1177 result = Heap::undefined_value(); | 1204 result = heap->undefined_value(); |
1178 } else { | 1205 } else { |
1179 result = *reinterpret_cast<Object**>(*value); | 1206 result = *reinterpret_cast<Object**>(*value); |
1180 } | 1207 } |
1181 | 1208 |
1182 RETURN_IF_SCHEDULED_EXCEPTION(); | 1209 RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
1183 return result; | 1210 return result; |
1184 } | 1211 } |
1185 | 1212 |
1186 | 1213 |
1187 // Helper function to handle calls to non-function objects created through the | 1214 // Helper function to handle calls to non-function objects created through the |
1188 // API. The object can be called as either a constructor (using new) or just as | 1215 // API. The object can be called as either a constructor (using new) or just as |
1189 // a function (without new). | 1216 // a function (without new). |
1190 MUST_USE_RESULT static MaybeObject* HandleApiCallAsFunctionOrConstructor( | 1217 MUST_USE_RESULT static MaybeObject* HandleApiCallAsFunctionOrConstructor( |
| 1218 Isolate* isolate, |
1191 bool is_construct_call, | 1219 bool is_construct_call, |
1192 BuiltinArguments<NO_EXTRA_ARGUMENTS> args) { | 1220 BuiltinArguments<NO_EXTRA_ARGUMENTS> args) { |
1193 // Non-functions are never called as constructors. Even if this is an object | 1221 // Non-functions are never called as constructors. Even if this is an object |
1194 // called as a constructor the delegate call is not a construct call. | 1222 // called as a constructor the delegate call is not a construct call. |
1195 ASSERT(!CalledAsConstructor()); | 1223 ASSERT(!CalledAsConstructor(isolate)); |
| 1224 Heap* heap = isolate->heap(); |
1196 | 1225 |
1197 Handle<Object> receiver = args.at<Object>(0); | 1226 Handle<Object> receiver = args.at<Object>(0); |
1198 | 1227 |
1199 // Get the object called. | 1228 // Get the object called. |
1200 JSObject* obj = JSObject::cast(*args.receiver()); | 1229 JSObject* obj = JSObject::cast(*args.receiver()); |
1201 | 1230 |
1202 // Get the invocation callback from the function descriptor that was | 1231 // Get the invocation callback from the function descriptor that was |
1203 // used to create the called object. | 1232 // used to create the called object. |
1204 ASSERT(obj->map()->has_instance_call_handler()); | 1233 ASSERT(obj->map()->has_instance_call_handler()); |
1205 JSFunction* constructor = JSFunction::cast(obj->map()->constructor()); | 1234 JSFunction* constructor = JSFunction::cast(obj->map()->constructor()); |
1206 ASSERT(constructor->shared()->IsApiFunction()); | 1235 ASSERT(constructor->shared()->IsApiFunction()); |
1207 Object* handler = | 1236 Object* handler = |
1208 constructor->shared()->get_api_func_data()->instance_call_handler(); | 1237 constructor->shared()->get_api_func_data()->instance_call_handler(); |
1209 ASSERT(!handler->IsUndefined()); | 1238 ASSERT(!handler->IsUndefined()); |
1210 CallHandlerInfo* call_data = CallHandlerInfo::cast(handler); | 1239 CallHandlerInfo* call_data = CallHandlerInfo::cast(handler); |
1211 Object* callback_obj = call_data->callback(); | 1240 Object* callback_obj = call_data->callback(); |
1212 v8::InvocationCallback callback = | 1241 v8::InvocationCallback callback = |
1213 v8::ToCData<v8::InvocationCallback>(callback_obj); | 1242 v8::ToCData<v8::InvocationCallback>(callback_obj); |
1214 | 1243 |
1215 // Get the data for the call and perform the callback. | 1244 // Get the data for the call and perform the callback. |
1216 Object* result; | 1245 Object* result; |
1217 { | 1246 { |
1218 HandleScope scope; | 1247 HandleScope scope(isolate); |
| 1248 LOG(isolate, ApiObjectAccess("call non-function", obj)); |
1219 | 1249 |
1220 LOG(ApiObjectAccess("call non-function", obj)); | 1250 CustomArguments custom(isolate); |
1221 | |
1222 CustomArguments custom; | |
1223 v8::ImplementationUtilities::PrepareArgumentsData(custom.end(), | 1251 v8::ImplementationUtilities::PrepareArgumentsData(custom.end(), |
1224 call_data->data(), constructor, obj); | 1252 call_data->data(), constructor, obj); |
1225 v8::Arguments new_args = v8::ImplementationUtilities::NewArguments( | 1253 v8::Arguments new_args = v8::ImplementationUtilities::NewArguments( |
1226 custom.end(), | 1254 custom.end(), |
1227 &args[0] - 1, | 1255 &args[0] - 1, |
1228 args.length() - 1, | 1256 args.length() - 1, |
1229 is_construct_call); | 1257 is_construct_call); |
1230 v8::Handle<v8::Value> value; | 1258 v8::Handle<v8::Value> value; |
1231 { | 1259 { |
1232 // Leaving JavaScript. | 1260 // Leaving JavaScript. |
1233 VMState state(EXTERNAL); | 1261 VMState state(isolate, EXTERNAL); |
1234 ExternalCallbackScope call_scope(v8::ToCData<Address>(callback_obj)); | 1262 ExternalCallbackScope call_scope(isolate, |
| 1263 v8::ToCData<Address>(callback_obj)); |
1235 value = callback(new_args); | 1264 value = callback(new_args); |
1236 } | 1265 } |
1237 if (value.IsEmpty()) { | 1266 if (value.IsEmpty()) { |
1238 result = Heap::undefined_value(); | 1267 result = heap->undefined_value(); |
1239 } else { | 1268 } else { |
1240 result = *reinterpret_cast<Object**>(*value); | 1269 result = *reinterpret_cast<Object**>(*value); |
1241 } | 1270 } |
1242 } | 1271 } |
1243 // Check for exceptions and return result. | 1272 // Check for exceptions and return result. |
1244 RETURN_IF_SCHEDULED_EXCEPTION(); | 1273 RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
1245 return result; | 1274 return result; |
1246 } | 1275 } |
1247 | 1276 |
1248 | 1277 |
1249 // Handle calls to non-function objects created through the API. This delegate | 1278 // Handle calls to non-function objects created through the API. This delegate |
1250 // function is used when the call is a normal function call. | 1279 // function is used when the call is a normal function call. |
1251 BUILTIN(HandleApiCallAsFunction) { | 1280 BUILTIN(HandleApiCallAsFunction) { |
1252 return HandleApiCallAsFunctionOrConstructor(false, args); | 1281 return HandleApiCallAsFunctionOrConstructor(isolate, false, args); |
1253 } | 1282 } |
1254 | 1283 |
1255 | 1284 |
1256 // Handle calls to non-function objects created through the API. This delegate | 1285 // Handle calls to non-function objects created through the API. This delegate |
1257 // function is used when the call is a construct call. | 1286 // function is used when the call is a construct call. |
1258 BUILTIN(HandleApiCallAsConstructor) { | 1287 BUILTIN(HandleApiCallAsConstructor) { |
1259 return HandleApiCallAsFunctionOrConstructor(true, args); | 1288 return HandleApiCallAsFunctionOrConstructor(isolate, true, args); |
1260 } | 1289 } |
1261 | 1290 |
1262 | 1291 |
1263 static void Generate_LoadIC_ArrayLength(MacroAssembler* masm) { | 1292 static void Generate_LoadIC_ArrayLength(MacroAssembler* masm) { |
1264 LoadIC::GenerateArrayLength(masm); | 1293 LoadIC::GenerateArrayLength(masm); |
1265 } | 1294 } |
1266 | 1295 |
1267 | 1296 |
1268 static void Generate_LoadIC_StringLength(MacroAssembler* masm) { | 1297 static void Generate_LoadIC_StringLength(MacroAssembler* masm) { |
1269 LoadIC::GenerateStringLength(masm, false); | 1298 LoadIC::GenerateStringLength(masm, false); |
(...skipping 188 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1458 static void Generate_PlainReturn_LiveEdit(MacroAssembler* masm) { | 1487 static void Generate_PlainReturn_LiveEdit(MacroAssembler* masm) { |
1459 Debug::GeneratePlainReturnLiveEdit(masm); | 1488 Debug::GeneratePlainReturnLiveEdit(masm); |
1460 } | 1489 } |
1461 | 1490 |
1462 | 1491 |
1463 static void Generate_FrameDropper_LiveEdit(MacroAssembler* masm) { | 1492 static void Generate_FrameDropper_LiveEdit(MacroAssembler* masm) { |
1464 Debug::GenerateFrameDropperLiveEdit(masm); | 1493 Debug::GenerateFrameDropperLiveEdit(masm); |
1465 } | 1494 } |
1466 #endif | 1495 #endif |
1467 | 1496 |
1468 Object* Builtins::builtins_[builtin_count] = { NULL, }; | 1497 |
1469 const char* Builtins::names_[builtin_count] = { NULL, }; | 1498 Builtins::Builtins() : initialized_(false) { |
| 1499 memset(builtins_, 0, sizeof(builtins_[0]) * builtin_count); |
| 1500 memset(names_, 0, sizeof(names_[0]) * builtin_count); |
| 1501 } |
| 1502 |
| 1503 |
| 1504 Builtins::~Builtins() { |
| 1505 } |
| 1506 |
1470 | 1507 |
1471 #define DEF_ENUM_C(name, ignore) FUNCTION_ADDR(Builtin_##name), | 1508 #define DEF_ENUM_C(name, ignore) FUNCTION_ADDR(Builtin_##name), |
1472 Address Builtins::c_functions_[cfunction_count] = { | 1509 Address const Builtins::c_functions_[cfunction_count] = { |
1473 BUILTIN_LIST_C(DEF_ENUM_C) | 1510 BUILTIN_LIST_C(DEF_ENUM_C) |
1474 }; | 1511 }; |
1475 #undef DEF_ENUM_C | 1512 #undef DEF_ENUM_C |
1476 | 1513 |
1477 #define DEF_JS_NAME(name, ignore) #name, | 1514 #define DEF_JS_NAME(name, ignore) #name, |
1478 #define DEF_JS_ARGC(ignore, argc) argc, | 1515 #define DEF_JS_ARGC(ignore, argc) argc, |
1479 const char* Builtins::javascript_names_[id_count] = { | 1516 const char* const Builtins::javascript_names_[id_count] = { |
1480 BUILTINS_LIST_JS(DEF_JS_NAME) | 1517 BUILTINS_LIST_JS(DEF_JS_NAME) |
1481 }; | 1518 }; |
1482 | 1519 |
1483 int Builtins::javascript_argc_[id_count] = { | 1520 int const Builtins::javascript_argc_[id_count] = { |
1484 BUILTINS_LIST_JS(DEF_JS_ARGC) | 1521 BUILTINS_LIST_JS(DEF_JS_ARGC) |
1485 }; | 1522 }; |
1486 #undef DEF_JS_NAME | 1523 #undef DEF_JS_NAME |
1487 #undef DEF_JS_ARGC | 1524 #undef DEF_JS_ARGC |
1488 | 1525 |
1489 static bool is_initialized = false; | 1526 struct BuiltinDesc { |
| 1527 byte* generator; |
| 1528 byte* c_code; |
| 1529 const char* s_name; // name is only used for generating log information. |
| 1530 int name; |
| 1531 Code::Flags flags; |
| 1532 BuiltinExtraArguments extra_args; |
| 1533 }; |
| 1534 |
| 1535 class BuiltinFunctionTable { |
| 1536 public: |
| 1537 BuiltinFunctionTable() { |
| 1538 Builtins::InitBuiltinFunctionTable(); |
| 1539 } |
| 1540 |
| 1541 static const BuiltinDesc* functions() { return functions_; } |
| 1542 |
| 1543 private: |
| 1544 static BuiltinDesc functions_[Builtins::builtin_count + 1]; |
| 1545 |
| 1546 friend class Builtins; |
| 1547 }; |
| 1548 |
| 1549 BuiltinDesc BuiltinFunctionTable::functions_[Builtins::builtin_count + 1]; |
| 1550 |
| 1551 static const BuiltinFunctionTable builtin_function_table_init; |
| 1552 |
| 1553 // Define array of pointers to generators and C builtin functions. |
| 1554 // We do this in a sort of roundabout way so that we can do the initialization |
| 1555 // within the lexical scope of Builtins:: and within a context where |
| 1556 // Code::Flags names a non-abstract type. |
| 1557 void Builtins::InitBuiltinFunctionTable() { |
| 1558 BuiltinDesc* functions = BuiltinFunctionTable::functions_; |
| 1559 functions[builtin_count].generator = NULL; |
| 1560 functions[builtin_count].c_code = NULL; |
| 1561 functions[builtin_count].s_name = NULL; |
| 1562 functions[builtin_count].name = builtin_count; |
| 1563 functions[builtin_count].flags = static_cast<Code::Flags>(0); |
| 1564 functions[builtin_count].extra_args = NO_EXTRA_ARGUMENTS; |
| 1565 |
| 1566 #define DEF_FUNCTION_PTR_C(aname, aextra_args) \ |
| 1567 functions->generator = FUNCTION_ADDR(Generate_Adaptor); \ |
| 1568 functions->c_code = FUNCTION_ADDR(Builtin_##aname); \ |
| 1569 functions->s_name = #aname; \ |
| 1570 functions->name = c_##aname; \ |
| 1571 functions->flags = Code::ComputeFlags(Code::BUILTIN); \ |
| 1572 functions->extra_args = aextra_args; \ |
| 1573 ++functions; |
| 1574 |
| 1575 #define DEF_FUNCTION_PTR_A(aname, kind, state, extra) \ |
| 1576 functions->generator = FUNCTION_ADDR(Generate_##aname); \ |
| 1577 functions->c_code = NULL; \ |
| 1578 functions->s_name = #aname; \ |
| 1579 functions->name = aname; \ |
| 1580 functions->flags = Code::ComputeFlags(Code::kind, \ |
| 1581 NOT_IN_LOOP, \ |
| 1582 state, \ |
| 1583 extra); \ |
| 1584 functions->extra_args = NO_EXTRA_ARGUMENTS; \ |
| 1585 ++functions; |
| 1586 |
| 1587 BUILTIN_LIST_C(DEF_FUNCTION_PTR_C) |
| 1588 BUILTIN_LIST_A(DEF_FUNCTION_PTR_A) |
| 1589 BUILTIN_LIST_DEBUG_A(DEF_FUNCTION_PTR_A) |
| 1590 |
| 1591 #undef DEF_FUNCTION_PTR_C |
| 1592 #undef DEF_FUNCTION_PTR_A |
| 1593 } |
| 1594 |
1490 void Builtins::Setup(bool create_heap_objects) { | 1595 void Builtins::Setup(bool create_heap_objects) { |
1491 ASSERT(!is_initialized); | 1596 ASSERT(!initialized_); |
| 1597 Heap* heap = Isolate::Current()->heap(); |
1492 | 1598 |
1493 // Create a scope for the handles in the builtins. | 1599 // Create a scope for the handles in the builtins. |
1494 HandleScope scope; | 1600 HandleScope scope; |
1495 | 1601 |
1496 struct BuiltinDesc { | 1602 const BuiltinDesc* functions = BuiltinFunctionTable::functions(); |
1497 byte* generator; | |
1498 byte* c_code; | |
1499 const char* s_name; // name is only used for generating log information. | |
1500 int name; | |
1501 Code::Flags flags; | |
1502 BuiltinExtraArguments extra_args; | |
1503 }; | |
1504 | |
1505 #define DEF_FUNCTION_PTR_C(name, extra_args) \ | |
1506 { FUNCTION_ADDR(Generate_Adaptor), \ | |
1507 FUNCTION_ADDR(Builtin_##name), \ | |
1508 #name, \ | |
1509 c_##name, \ | |
1510 Code::ComputeFlags(Code::BUILTIN), \ | |
1511 extra_args \ | |
1512 }, | |
1513 | |
1514 #define DEF_FUNCTION_PTR_A(name, kind, state, extra) \ | |
1515 { FUNCTION_ADDR(Generate_##name), \ | |
1516 NULL, \ | |
1517 #name, \ | |
1518 name, \ | |
1519 Code::ComputeFlags(Code::kind, NOT_IN_LOOP, state, extra), \ | |
1520 NO_EXTRA_ARGUMENTS \ | |
1521 }, | |
1522 | |
1523 // Define array of pointers to generators and C builtin functions. | |
1524 static BuiltinDesc functions[] = { | |
1525 BUILTIN_LIST_C(DEF_FUNCTION_PTR_C) | |
1526 BUILTIN_LIST_A(DEF_FUNCTION_PTR_A) | |
1527 BUILTIN_LIST_DEBUG_A(DEF_FUNCTION_PTR_A) | |
1528 // Terminator: | |
1529 { NULL, NULL, NULL, builtin_count, static_cast<Code::Flags>(0), | |
1530 NO_EXTRA_ARGUMENTS } | |
1531 }; | |
1532 | |
1533 #undef DEF_FUNCTION_PTR_C | |
1534 #undef DEF_FUNCTION_PTR_A | |
1535 | 1603 |
1536 // For now we generate builtin adaptor code into a stack-allocated | 1604 // For now we generate builtin adaptor code into a stack-allocated |
1537 // buffer, before copying it into individual code objects. | 1605 // buffer, before copying it into individual code objects. |
1538 byte buffer[4*KB]; | 1606 byte buffer[4*KB]; |
1539 | 1607 |
1540 // Traverse the list of builtins and generate an adaptor in a | 1608 // Traverse the list of builtins and generate an adaptor in a |
1541 // separate code object for each one. | 1609 // separate code object for each one. |
1542 for (int i = 0; i < builtin_count; i++) { | 1610 for (int i = 0; i < builtin_count; i++) { |
1543 if (create_heap_objects) { | 1611 if (create_heap_objects) { |
1544 MacroAssembler masm(buffer, sizeof buffer); | 1612 MacroAssembler masm(buffer, sizeof buffer); |
1545 // Generate the code/adaptor. | 1613 // Generate the code/adaptor. |
1546 typedef void (*Generator)(MacroAssembler*, int, BuiltinExtraArguments); | 1614 typedef void (*Generator)(MacroAssembler*, int, BuiltinExtraArguments); |
1547 Generator g = FUNCTION_CAST<Generator>(functions[i].generator); | 1615 Generator g = FUNCTION_CAST<Generator>(functions[i].generator); |
1548 // We pass all arguments to the generator, but it may not use all of | 1616 // We pass all arguments to the generator, but it may not use all of |
1549 // them. This works because the first arguments are on top of the | 1617 // them. This works because the first arguments are on top of the |
1550 // stack. | 1618 // stack. |
1551 g(&masm, functions[i].name, functions[i].extra_args); | 1619 g(&masm, functions[i].name, functions[i].extra_args); |
1552 // Move the code into the object heap. | 1620 // Move the code into the object heap. |
1553 CodeDesc desc; | 1621 CodeDesc desc; |
1554 masm.GetCode(&desc); | 1622 masm.GetCode(&desc); |
1555 Code::Flags flags = functions[i].flags; | 1623 Code::Flags flags = functions[i].flags; |
1556 Object* code = NULL; | 1624 Object* code = NULL; |
1557 { | 1625 { |
1558 // During startup it's OK to always allocate and defer GC to later. | 1626 // During startup it's OK to always allocate and defer GC to later. |
1559 // This simplifies things because we don't need to retry. | 1627 // This simplifies things because we don't need to retry. |
1560 AlwaysAllocateScope __scope__; | 1628 AlwaysAllocateScope __scope__; |
1561 { MaybeObject* maybe_code = | 1629 { MaybeObject* maybe_code = |
1562 Heap::CreateCode(desc, flags, masm.CodeObject()); | 1630 heap->CreateCode(desc, flags, masm.CodeObject()); |
1563 if (!maybe_code->ToObject(&code)) { | 1631 if (!maybe_code->ToObject(&code)) { |
1564 v8::internal::V8::FatalProcessOutOfMemory("CreateCode"); | 1632 v8::internal::V8::FatalProcessOutOfMemory("CreateCode"); |
1565 } | 1633 } |
1566 } | 1634 } |
1567 } | 1635 } |
1568 // Log the event and add the code to the builtins array. | 1636 // Log the event and add the code to the builtins array. |
1569 PROFILE(CodeCreateEvent(Logger::BUILTIN_TAG, | 1637 PROFILE(ISOLATE, |
| 1638 CodeCreateEvent(Logger::BUILTIN_TAG, |
1570 Code::cast(code), | 1639 Code::cast(code), |
1571 functions[i].s_name)); | 1640 functions[i].s_name)); |
1572 GDBJIT(AddCode(GDBJITInterface::BUILTIN, | 1641 GDBJIT(AddCode(GDBJITInterface::BUILTIN, |
1573 functions[i].s_name, | 1642 functions[i].s_name, |
1574 Code::cast(code))); | 1643 Code::cast(code))); |
1575 builtins_[i] = code; | 1644 builtins_[i] = code; |
1576 #ifdef ENABLE_DISASSEMBLER | 1645 #ifdef ENABLE_DISASSEMBLER |
1577 if (FLAG_print_builtin_code) { | 1646 if (FLAG_print_builtin_code) { |
1578 PrintF("Builtin: %s\n", functions[i].s_name); | 1647 PrintF("Builtin: %s\n", functions[i].s_name); |
1579 Code::cast(code)->Disassemble(functions[i].s_name); | 1648 Code::cast(code)->Disassemble(functions[i].s_name); |
1580 PrintF("\n"); | 1649 PrintF("\n"); |
1581 } | 1650 } |
1582 #endif | 1651 #endif |
1583 } else { | 1652 } else { |
1584 // Deserializing. The values will be filled in during IterateBuiltins. | 1653 // Deserializing. The values will be filled in during IterateBuiltins. |
1585 builtins_[i] = NULL; | 1654 builtins_[i] = NULL; |
1586 } | 1655 } |
1587 names_[i] = functions[i].s_name; | 1656 names_[i] = functions[i].s_name; |
1588 } | 1657 } |
1589 | 1658 |
1590 // Mark as initialized. | 1659 // Mark as initialized. |
1591 is_initialized = true; | 1660 initialized_ = true; |
1592 } | 1661 } |
1593 | 1662 |
1594 | 1663 |
1595 void Builtins::TearDown() { | 1664 void Builtins::TearDown() { |
1596 is_initialized = false; | 1665 initialized_ = false; |
1597 } | 1666 } |
1598 | 1667 |
1599 | 1668 |
1600 void Builtins::IterateBuiltins(ObjectVisitor* v) { | 1669 void Builtins::IterateBuiltins(ObjectVisitor* v) { |
1601 v->VisitPointers(&builtins_[0], &builtins_[0] + builtin_count); | 1670 v->VisitPointers(&builtins_[0], &builtins_[0] + builtin_count); |
1602 } | 1671 } |
1603 | 1672 |
1604 | 1673 |
1605 const char* Builtins::Lookup(byte* pc) { | 1674 const char* Builtins::Lookup(byte* pc) { |
1606 if (is_initialized) { // may be called during initialization (disassembler!) | 1675 // may be called during initialization (disassembler!) |
| 1676 if (initialized_) { |
1607 for (int i = 0; i < builtin_count; i++) { | 1677 for (int i = 0; i < builtin_count; i++) { |
1608 Code* entry = Code::cast(builtins_[i]); | 1678 Code* entry = Code::cast(builtins_[i]); |
1609 if (entry->contains(pc)) { | 1679 if (entry->contains(pc)) { |
1610 return names_[i]; | 1680 return names_[i]; |
1611 } | 1681 } |
1612 } | 1682 } |
1613 } | 1683 } |
1614 return NULL; | 1684 return NULL; |
1615 } | 1685 } |
1616 | 1686 |
1617 | 1687 |
1618 } } // namespace v8::internal | 1688 } } // namespace v8::internal |
OLD | NEW |