| Index: src/spaces.cc
|
| ===================================================================
|
| --- src/spaces.cc (revision 7216)
|
| +++ src/spaces.cc (working copy)
|
| @@ -1,4 +1,4 @@
|
| -// Copyright 2006-2010 the V8 project authors. All rights reserved.
|
| +// Copyright 2011 the V8 project authors. All rights reserved.
|
| // Redistribution and use in source and binary forms, with or without
|
| // modification, are permitted provided that the following conditions are
|
| // met:
|
| @@ -42,121 +42,93 @@
|
| && (info).top <= (space).high() \
|
| && (info).limit == (space).high())
|
|
|
| -intptr_t Page::watermark_invalidated_mark_ = 1 << Page::WATERMARK_INVALIDATED;
|
| -
|
| // ----------------------------------------------------------------------------
|
| // HeapObjectIterator
|
|
|
| HeapObjectIterator::HeapObjectIterator(PagedSpace* space) {
|
| - Initialize(space->bottom(), space->top(), NULL);
|
| + // You can't actually iterate over the anchor page. It is not a real page,
|
| + // just an anchor for the double linked page list. Initialize as if we have
|
| + // reached the end of the anchor page, then the first iteration will move on
|
| + // to the first page.
|
| + Initialize(space,
|
| + NULL,
|
| + NULL,
|
| + kAllPagesInSpace,
|
| + NULL);
|
| }
|
|
|
|
|
| HeapObjectIterator::HeapObjectIterator(PagedSpace* space,
|
| HeapObjectCallback size_func) {
|
| - Initialize(space->bottom(), space->top(), size_func);
|
| + // You can't actually iterate over the anchor page. It is not a real page,
|
| + // just an anchor for the double linked page list. Initialize the current
|
| + // address and end as NULL, then the first iteration will move on
|
| + // to the first page.
|
| + Initialize(space,
|
| + NULL,
|
| + NULL,
|
| + kAllPagesInSpace,
|
| + size_func);
|
| }
|
|
|
|
|
| HeapObjectIterator::HeapObjectIterator(Page* page,
|
| HeapObjectCallback size_func) {
|
| - Initialize(page->ObjectAreaStart(), page->AllocationTop(), size_func);
|
| + Initialize(page->owner(),
|
| + page->ObjectAreaStart(),
|
| + page->ObjectAreaEnd(),
|
| + kOnePageOnly,
|
| + size_func);
|
| + ASSERT(!page->IsFlagSet(Page::WAS_SWEPT_CONSERVATIVELY));
|
| }
|
|
|
|
|
| -void HeapObjectIterator::Initialize(Address cur, Address end,
|
| +void HeapObjectIterator::Initialize(PagedSpace* space,
|
| + Address cur, Address end,
|
| + HeapObjectIterator::PageMode mode,
|
| HeapObjectCallback size_f) {
|
| + space_ = space;
|
| cur_addr_ = cur;
|
| - end_addr_ = end;
|
| - end_page_ = Page::FromAllocationTop(end);
|
| + cur_end_ = end;
|
| + page_mode_ = mode;
|
| size_func_ = size_f;
|
| - Page* p = Page::FromAllocationTop(cur_addr_);
|
| - cur_limit_ = (p == end_page_) ? end_addr_ : p->AllocationTop();
|
|
|
| - if (!p->IsFlagSet(Page::IS_CONTINUOUS)) {
|
| - ASSERT(IncrementalMarking::state() == IncrementalMarking::STOPPED);
|
| - cur_addr_ = Marking::FirstLiveObject(cur_addr_, cur_limit_);
|
| - if (cur_addr_ > cur_limit_) cur_addr_ = cur_limit_;
|
| - }
|
| -
|
| #ifdef DEBUG
|
| Verify();
|
| #endif
|
| }
|
|
|
|
|
| -HeapObject* HeapObjectIterator::FromNextPage() {
|
| - if (cur_addr_ == end_addr_) return NULL;
|
| -
|
| - Page* cur_page = Page::FromAllocationTop(cur_addr_);
|
| +// We have hit the end of the page and should advance to the next block of
|
| +// objects. This happens at the end of the page.
|
| +bool HeapObjectIterator::AdvanceToNextPage() {
|
| + ASSERT(cur_addr_ == cur_end_);
|
| + if (page_mode_ == kOnePageOnly) return false;
|
| + Page* cur_page;
|
| + if (cur_addr_ == NULL) {
|
| + cur_page = space_->anchor();
|
| + } else {
|
| + cur_page = Page::FromAddress(cur_addr_ - 1);
|
| + ASSERT(cur_addr_ == cur_page->ObjectAreaEnd());
|
| + }
|
| cur_page = cur_page->next_page();
|
| - ASSERT(cur_page->is_valid());
|
| -
|
| + if (cur_page == space_->anchor()) return false;
|
| cur_addr_ = cur_page->ObjectAreaStart();
|
| - cur_limit_ = (cur_page == end_page_) ? end_addr_ : cur_page->AllocationTop();
|
| -
|
| - if (!cur_page->IsFlagSet(Page::IS_CONTINUOUS)) {
|
| - ASSERT(IncrementalMarking::state() == IncrementalMarking::STOPPED);
|
| - cur_addr_ = Marking::FirstLiveObject(cur_addr_, cur_limit_);
|
| - if (cur_addr_ > cur_limit_) cur_addr_ = cur_limit_;
|
| - }
|
| -
|
| - if (cur_addr_ == end_addr_) return NULL;
|
| - ASSERT(cur_addr_ < cur_limit_);
|
| -#ifdef DEBUG
|
| - Verify();
|
| -#endif
|
| - return FromCurrentPage();
|
| -}
|
| -
|
| -
|
| -void HeapObjectIterator::AdvanceUsingMarkbits() {
|
| + cur_end_ = cur_page->ObjectAreaEnd();
|
| + ASSERT(!cur_page->IsFlagSet(Page::WAS_SWEPT_CONSERVATIVELY));
|
| ASSERT(IncrementalMarking::state() == IncrementalMarking::STOPPED);
|
| - HeapObject* obj = HeapObject::FromAddress(cur_addr_);
|
| - int obj_size = (size_func_ == NULL) ? obj->Size() : size_func_(obj);
|
| - ASSERT_OBJECT_SIZE(obj_size);
|
| - cur_addr_ = Marking::NextLiveObject(obj,
|
| - obj_size,
|
| - cur_limit_);
|
| - if (cur_addr_ > cur_limit_) cur_addr_ = cur_limit_;
|
| + return true;
|
| }
|
|
|
|
|
| #ifdef DEBUG
|
| void HeapObjectIterator::Verify() {
|
| - Page* p = Page::FromAllocationTop(cur_addr_);
|
| - ASSERT(p == Page::FromAllocationTop(cur_limit_));
|
| - ASSERT(p->Offset(cur_addr_) <= p->Offset(cur_limit_));
|
| + // TODO(gc): We should do something here.
|
| }
|
| #endif
|
|
|
|
|
| // -----------------------------------------------------------------------------
|
| -// PageIterator
|
| -
|
| -PageIterator::PageIterator(PagedSpace* space, Mode mode) : space_(space) {
|
| - prev_page_ = NULL;
|
| - switch (mode) {
|
| - case PAGES_IN_USE:
|
| - stop_page_ = space->AllocationTopPage();
|
| - break;
|
| - case ALL_PAGES:
|
| -#ifdef DEBUG
|
| - // Verify that the cached last page in the space is actually the
|
| - // last page.
|
| - for (Page* p = space->first_page_; p->is_valid(); p = p->next_page()) {
|
| - if (!p->next_page()->is_valid()) {
|
| - ASSERT(space->last_page_ == p);
|
| - }
|
| - }
|
| -#endif
|
| - stop_page_ = space->last_page_;
|
| - break;
|
| - }
|
| -}
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| // CodeRange
|
|
|
| List<CodeRange::FreeBlock> CodeRange::free_list_(0);
|
| @@ -413,10 +385,33 @@
|
| }
|
|
|
|
|
| +void Page::InitializeAsAnchor(PagedSpace* owner) {
|
| + owner_ = owner;
|
| + set_prev_page(this);
|
| + set_next_page(this);
|
| +}
|
| +
|
| +
|
| +void MemoryChunk::InsertAfter(MemoryChunk* other) {
|
| + next_chunk_ = other->next_chunk_;
|
| + prev_chunk_ = other;
|
| + other->next_chunk_->prev_chunk_ = this;
|
| + other->next_chunk_ = this;
|
| +}
|
| +
|
| +
|
| +void MemoryChunk::Unlink() {
|
| + next_chunk_->prev_chunk_ = prev_chunk_;
|
| + prev_chunk_->next_chunk_ = next_chunk_;
|
| + prev_chunk_ = NULL;
|
| + next_chunk_ = NULL;
|
| +}
|
| +
|
| +
|
| MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t body_size,
|
| Executability executable,
|
| Space* owner) {
|
| - size_t chunk_size = MemoryChunk::kBodyOffset + body_size;
|
| + size_t chunk_size = MemoryChunk::kObjectStartOffset + body_size;
|
| Address base = NULL;
|
| if (executable == EXECUTABLE) {
|
| // Check executable memory limit.
|
| @@ -474,7 +469,7 @@
|
|
|
| if (chunk == NULL) return NULL;
|
|
|
| - return Page::Initialize(chunk);
|
| + return Page::Initialize(chunk, executable, owner);
|
| }
|
|
|
|
|
| @@ -589,53 +584,37 @@
|
| PagedSpace::PagedSpace(intptr_t max_capacity,
|
| AllocationSpace id,
|
| Executability executable)
|
| - : Space(id, executable) {
|
| + : Space(id, executable),
|
| + free_list_(this),
|
| + was_swept_conservatively_(false) {
|
| max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize)
|
| * Page::kObjectAreaSize;
|
| accounting_stats_.Clear();
|
|
|
| allocation_info_.top = NULL;
|
| allocation_info_.limit = NULL;
|
| +
|
| + anchor_.InitializeAsAnchor(this);
|
| }
|
|
|
|
|
| bool PagedSpace::Setup() {
|
| - if (HasBeenSetup()) return false;
|
| -
|
| - // Maximum space capacity can not be less than single page size.
|
| - if (max_capacity_ < Page::kPageSize) return false;
|
| -
|
| - first_page_ = MemoryAllocator::AllocatePage(this, executable());
|
| - if (!first_page_->is_valid()) return false;
|
| -
|
| - // We are sure that the first page is valid and that we have at least one
|
| - // page.
|
| - accounting_stats_.ExpandSpace(Page::kObjectAreaSize);
|
| - ASSERT(Capacity() <= max_capacity_);
|
| -
|
| - last_page_ = first_page_;
|
| - ASSERT(!last_page_->next_page()->is_valid());
|
| -
|
| - // Use first_page_ for allocation.
|
| - SetAllocationInfo(&allocation_info_, first_page_);
|
| -
|
| return true;
|
| }
|
|
|
|
|
| bool PagedSpace::HasBeenSetup() {
|
| - return (Capacity() > 0);
|
| + return true;
|
| }
|
|
|
|
|
| void PagedSpace::TearDown() {
|
| - Page* next = NULL;
|
| - for (Page* p = first_page_; p->is_valid(); p = next) {
|
| - next = p->next_page();
|
| - MemoryAllocator::Free(p);
|
| + PageIterator iterator(this);
|
| + while (iterator.has_next()) {
|
| + MemoryAllocator::Free(iterator.next());
|
| }
|
| - first_page_ = NULL;
|
| - last_page_ = NULL;
|
| + anchor_.set_next_page(&anchor_);
|
| + anchor_.set_prev_page(&anchor_);
|
| accounting_stats_.Clear();
|
| }
|
|
|
| @@ -663,21 +642,17 @@
|
|
|
|
|
| MaybeObject* PagedSpace::FindObject(Address addr) {
|
| - // Note: this function can only be called before or after mark-compact GC
|
| - // because it accesses map pointers.
|
| + // Note: this function can only be called on precisely swept spaces.
|
| ASSERT(!MarkCompactCollector::in_use());
|
|
|
| if (!Contains(addr)) return Failure::Exception();
|
|
|
| Page* p = Page::FromAddress(addr);
|
| - ASSERT(IsUsed(p));
|
| - Address cur = p->ObjectAreaStart();
|
| - Address end = p->AllocationTop();
|
| - while (cur < end) {
|
| - HeapObject* obj = HeapObject::FromAddress(cur);
|
| + HeapObjectIterator it(p, NULL);
|
| + for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
|
| + Address cur = obj->address();
|
| Address next = cur + obj->Size();
|
| if ((cur <= addr) && (addr < next)) return obj;
|
| - cur = next;
|
| }
|
|
|
| UNREACHABLE();
|
| @@ -685,22 +660,14 @@
|
| }
|
|
|
|
|
| -bool PagedSpace::IsUsed(Page* page) {
|
| - PageIterator it(this, PageIterator::PAGES_IN_USE);
|
| - while (it.has_next()) {
|
| - if (page == it.next()) return true;
|
| - }
|
| - return false;
|
| +void PagedSpace::SetAllocationInfo(Address top, Address limit) {
|
| + Free(allocation_info_.top, allocation_info_.limit - allocation_info_.top);
|
| + allocation_info_.top = top;
|
| + allocation_info_.limit = limit;
|
| + ASSERT(allocation_info_.VerifyPagedAllocation());
|
| }
|
|
|
|
|
| -void PagedSpace::SetAllocationInfo(AllocationInfo* alloc_info, Page* p) {
|
| - alloc_info->top = p->ObjectAreaStart();
|
| - alloc_info->limit = p->ObjectAreaEnd();
|
| - ASSERT(alloc_info->VerifyPagedAllocation());
|
| -}
|
| -
|
| -
|
| bool PagedSpace::Expand() {
|
| ASSERT(max_capacity_ % Page::kObjectAreaSize == 0);
|
| ASSERT(Capacity() % Page::kObjectAreaSize == 0);
|
| @@ -708,31 +675,27 @@
|
| if (Capacity() == max_capacity_) return false;
|
|
|
| ASSERT(Capacity() < max_capacity_);
|
| - // Last page must be valid and its next page is invalid.
|
| - ASSERT(last_page_->is_valid() && !last_page_->next_page()->is_valid());
|
|
|
| - // We are going to exceed capacity for this space.
|
| + // Are we going to exceed capacity for this space?
|
| if ((Capacity() + Page::kPageSize) > max_capacity_) return false;
|
|
|
| Page* p = MemoryAllocator::AllocatePage(this, executable());
|
| - if (!p->is_valid()) return false;
|
| + if (p == NULL) return false;
|
|
|
| - accounting_stats_.ExpandSpace(Page::kObjectAreaSize);
|
| ASSERT(Capacity() <= max_capacity_);
|
|
|
| - last_page_->set_next_page(p);
|
| - last_page_ = p;
|
| + p->InsertAfter(anchor_.prev_page());
|
|
|
| - ASSERT(!last_page_->next_page()->is_valid());
|
| -
|
| return true;
|
| }
|
|
|
|
|
| #ifdef DEBUG
|
| int PagedSpace::CountTotalPages() {
|
| + PageIterator it(this);
|
| int count = 0;
|
| - for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
|
| + while (it.has_next()) {
|
| + it.next();
|
| count++;
|
| }
|
| return count;
|
| @@ -741,26 +704,7 @@
|
|
|
|
|
| void PagedSpace::Shrink() {
|
| - Page* top_page = AllocationTopPage();
|
| - ASSERT(top_page->is_valid());
|
| -
|
| // TODO(gc) release half of pages?
|
| - if (top_page->next_page()->is_valid()) {
|
| - int pages_freed = 0;
|
| - Page* page = top_page->next_page();
|
| - Page* next_page;
|
| - while (page->is_valid()) {
|
| - next_page = page->next_page();
|
| - MemoryAllocator::Free(page);
|
| - pages_freed++;
|
| - page = next_page;
|
| - }
|
| - top_page->set_next_page(Page::FromAddress(NULL));
|
| - last_page_ = top_page;
|
| -
|
| - accounting_stats_.ShrinkSpace(pages_freed * Page::kObjectAreaSize);
|
| - ASSERT(Capacity() == CountTotalPages() * Page::kObjectAreaSize);
|
| - }
|
| }
|
|
|
|
|
| @@ -779,57 +723,45 @@
|
|
|
|
|
| #ifdef DEBUG
|
| -// We do not assume that the PageIterator works, because it depends on the
|
| -// invariants we are checking during verification.
|
| void PagedSpace::Verify(ObjectVisitor* visitor) {
|
| - // The allocation pointer should be valid, and it should be in a page in the
|
| - // space.
|
| - ASSERT(allocation_info_.VerifyPagedAllocation());
|
| - Page* top_page = Page::FromAllocationTop(allocation_info_.top);
|
| + // We can only iterate over the pages if they were swept precisely.
|
| + if (was_swept_conservatively_) return;
|
|
|
| - // Loop over all the pages.
|
| - bool above_allocation_top = false;
|
| - Page* current_page = first_page_;
|
| - while (current_page->is_valid()) {
|
| - if (above_allocation_top) {
|
| - // We don't care what's above the allocation top.
|
| - } else {
|
| - Address top = current_page->AllocationTop();
|
| - if (current_page == top_page) {
|
| - ASSERT(top == allocation_info_.top);
|
| - // The next page will be above the allocation top.
|
| - above_allocation_top = true;
|
| - }
|
| + bool allocation_pointer_found_in_space =
|
| + (allocation_info_.top != allocation_info_.limit);
|
| + PageIterator page_iterator(this);
|
| + while (page_iterator.has_next()) {
|
| + Page* page = page_iterator.next();
|
| + ASSERT(page->owner() == this);
|
| + if (page == Page::FromAllocationTop(allocation_info_.top)) {
|
| + allocation_pointer_found_in_space = true;
|
| + }
|
| + ASSERT(!page->IsFlagSet(MemoryChunk::WAS_SWEPT_CONSERVATIVELY));
|
| + HeapObjectIterator it(page, NULL);
|
| + Address end_of_previous_object = page->ObjectAreaStart();
|
| + Address top = page->ObjectAreaEnd();
|
| + for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
|
| + ASSERT(end_of_previous_object <= object->address());
|
|
|
| - HeapObjectIterator it(current_page, NULL);
|
| - Address end_of_previous_object = current_page->ObjectAreaStart();
|
| - for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
|
| - ASSERT(end_of_previous_object <= object->address());
|
| + // The first word should be a map, and we expect all map pointers to
|
| + // be in map space.
|
| + Map* map = object->map();
|
| + ASSERT(map->IsMap());
|
| + ASSERT(Heap::map_space()->Contains(map));
|
|
|
| - // The first word should be a map, and we expect all map pointers to
|
| - // be in map space.
|
| - Map* map = object->map();
|
| - ASSERT(map->IsMap());
|
| - ASSERT(Heap::map_space()->Contains(map));
|
| + // Perform space-specific object verification.
|
| + VerifyObject(object);
|
|
|
| - // Perform space-specific object verification.
|
| - VerifyObject(object);
|
| + // The object itself should look OK.
|
| + object->Verify();
|
|
|
| - // The object itself should look OK.
|
| - object->Verify();
|
| + // All the interior pointers should be contained in the heap.
|
| + int size = object->Size();
|
| + object->IterateBody(map->instance_type(), size, visitor);
|
|
|
| - // All the interior pointers should be contained in the heap and
|
| - // have page regions covering intergenerational references should be
|
| - // marked dirty.
|
| - int size = object->Size();
|
| - object->IterateBody(map->instance_type(), size, visitor);
|
| -
|
| - ASSERT(object->address() + size <= top);
|
| - end_of_previous_object = object->address() + size;
|
| - }
|
| + ASSERT(object->address() + size <= top);
|
| + end_of_previous_object = object->address() + size;
|
| }
|
| -
|
| - current_page = current_page->next_page();
|
| }
|
| }
|
| #endif
|
| @@ -1392,17 +1324,17 @@
|
| ASSERT(IsAligned(size_in_bytes, kPointerSize));
|
|
|
| // We write a map and possibly size information to the block. If the block
|
| - // is big enough to be a ByteArray with at least one extra word (the next
|
| - // pointer), we set its map to be the byte array map and its size to an
|
| + // is big enough to be a FreeSpace with at least one extra word (the next
|
| + // pointer), we set its map to be the free space map and its size to an
|
| // appropriate array length for the desired size from HeapObject::Size().
|
| // If the block is too small (eg, one or two words), to hold both a size
|
| // field and a next pointer, we give it a filler map that gives it the
|
| // correct size.
|
| - if (size_in_bytes > ByteArray::kHeaderSize) {
|
| - set_map(Heap::raw_unchecked_byte_array_map());
|
| - // Can't use ByteArray::cast because it fails during deserialization.
|
| - ByteArray* this_as_byte_array = reinterpret_cast<ByteArray*>(this);
|
| - this_as_byte_array->set_length(ByteArray::LengthFor(size_in_bytes));
|
| + if (size_in_bytes > FreeSpace::kHeaderSize) {
|
| + set_map(Heap::raw_unchecked_free_space_map());
|
| + // Can't use FreeSpace::cast because it fails during deserialization.
|
| + FreeSpace* this_as_free_space = reinterpret_cast<FreeSpace*>(this);
|
| + this_as_free_space->set_size(size_in_bytes);
|
| } else if (size_in_bytes == kPointerSize) {
|
| set_map(Heap::raw_unchecked_one_pointer_filler_map());
|
| } else if (size_in_bytes == 2 * kPointerSize) {
|
| @@ -1411,285 +1343,201 @@
|
| UNREACHABLE();
|
| }
|
| // We would like to ASSERT(Size() == size_in_bytes) but this would fail during
|
| - // deserialization because the byte array map is not done yet.
|
| + // deserialization because the free space map is not done yet.
|
| }
|
|
|
|
|
| -Address FreeListNode::next() {
|
| +FreeListNode* FreeListNode::next() {
|
| ASSERT(IsFreeListNode(this));
|
| - if (map() == Heap::raw_unchecked_byte_array_map()) {
|
| - ASSERT(Size() >= kNextOffset + kPointerSize);
|
| - return Memory::Address_at(address() + kNextOffset);
|
| + if (map() == Heap::raw_unchecked_free_space_map()) {
|
| + ASSERT(map() == NULL || Size() >= kNextOffset + kPointerSize);
|
| + return reinterpret_cast<FreeListNode*>(
|
| + Memory::Address_at(address() + kNextOffset));
|
| } else {
|
| - return Memory::Address_at(address() + kPointerSize);
|
| + return reinterpret_cast<FreeListNode*>(
|
| + Memory::Address_at(address() + kPointerSize));
|
| }
|
| }
|
|
|
|
|
| -void FreeListNode::set_next(Address next) {
|
| +FreeListNode** FreeListNode::next_address() {
|
| ASSERT(IsFreeListNode(this));
|
| - if (map() == Heap::raw_unchecked_byte_array_map()) {
|
| + if (map() == Heap::raw_unchecked_free_space_map()) {
|
| ASSERT(Size() >= kNextOffset + kPointerSize);
|
| - Memory::Address_at(address() + kNextOffset) = next;
|
| + return reinterpret_cast<FreeListNode**>(address() + kNextOffset);
|
| } else {
|
| - Memory::Address_at(address() + kPointerSize) = next;
|
| + return reinterpret_cast<FreeListNode**>(address() + kPointerSize);
|
| }
|
| }
|
|
|
|
|
| -OldSpaceFreeList::OldSpaceFreeList(AllocationSpace owner) : owner_(owner) {
|
| +void FreeListNode::set_next(FreeListNode* next) {
|
| + ASSERT(IsFreeListNode(this));
|
| + // While we are booting the VM the free space map will actually be null. So
|
| + // we have to make sure that we don't try to use it for anything at that
|
| + // stage.
|
| + if (map() == Heap::raw_unchecked_free_space_map()) {
|
| + ASSERT(map() == NULL || Size() >= kNextOffset + kPointerSize);
|
| + Memory::Address_at(address() + kNextOffset) =
|
| + reinterpret_cast<Address>(next);
|
| + } else {
|
| + Memory::Address_at(address() + kPointerSize) =
|
| + reinterpret_cast<Address>(next);
|
| + }
|
| +}
|
| +
|
| +
|
| +OldSpaceFreeList::OldSpaceFreeList(PagedSpace* owner) : owner_(owner) {
|
| Reset();
|
| }
|
|
|
|
|
| void OldSpaceFreeList::Reset() {
|
| available_ = 0;
|
| - for (int i = 0; i < kFreeListsLength; i++) {
|
| - free_[i].head_node_ = NULL;
|
| - }
|
| - needs_rebuild_ = false;
|
| - finger_ = kHead;
|
| - free_[kHead].next_size_ = kEnd;
|
| + small_list_ = NULL;
|
| + medium_list_ = NULL;
|
| + large_list_ = NULL;
|
| + huge_list_ = NULL;
|
| }
|
|
|
|
|
| -void OldSpaceFreeList::RebuildSizeList() {
|
| - ASSERT(needs_rebuild_);
|
| - int cur = kHead;
|
| - for (int i = cur + 1; i < kFreeListsLength; i++) {
|
| - if (free_[i].head_node_ != NULL) {
|
| - free_[cur].next_size_ = i;
|
| - cur = i;
|
| - }
|
| - }
|
| - free_[cur].next_size_ = kEnd;
|
| - needs_rebuild_ = false;
|
| -}
|
| -
|
| -
|
| int OldSpaceFreeList::Free(Address start, int size_in_bytes) {
|
| #ifdef DEBUG
|
| MemoryAllocator::ZapBlock(start, size_in_bytes);
|
| #endif
|
| + if (size_in_bytes == 0) return 0;
|
| FreeListNode* node = FreeListNode::FromAddress(start);
|
| node->set_size(size_in_bytes);
|
|
|
| - // We don't use the freelists in compacting mode. This makes it more like a
|
| - // GC that only has mark-sweep-compact and doesn't have a mark-sweep
|
| - // collector.
|
| - if (FLAG_always_compact) {
|
| - return size_in_bytes;
|
| - }
|
| + // Early return to drop too-small blocks on the floor.
|
| + if (size_in_bytes < kSmallListMin) return size_in_bytes;
|
|
|
| - // Early return to drop too-small blocks on the floor (one or two word
|
| - // blocks cannot hold a map pointer, a size field, and a pointer to the
|
| - // next block in the free list).
|
| - if (size_in_bytes < kMinBlockSize) {
|
| - return size_in_bytes;
|
| + // Insert other blocks at the head of a free list of the appropriate
|
| + // magnitude.
|
| + if (size_in_bytes <= kSmallListMax) {
|
| + node->set_next(small_list_);
|
| + small_list_ = node;
|
| + } else if (size_in_bytes <= kMediumListMax) {
|
| + node->set_next(medium_list_);
|
| + medium_list_ = node;
|
| + } else if (size_in_bytes <= kLargeListMax) {
|
| + node->set_next(large_list_);
|
| + large_list_ = node;
|
| + } else {
|
| + node->set_next(huge_list_);
|
| + huge_list_ = node;
|
| }
|
| -
|
| - // Insert other blocks at the head of an exact free list.
|
| - int index = size_in_bytes >> kPointerSizeLog2;
|
| - node->set_next(free_[index].head_node_);
|
| - free_[index].head_node_ = node->address();
|
| available_ += size_in_bytes;
|
| - needs_rebuild_ = true;
|
| + ASSERT(available_ == SumFreeLists());
|
| return 0;
|
| }
|
|
|
|
|
| -MaybeObject* OldSpaceFreeList::Allocate(int size_in_bytes, int* wasted_bytes) {
|
| +// Allocation on the old space free list. If it succeeds then a new linear
|
| +// allocation space has been set up with the top and limit of the space. If
|
| +// the allocation fails then NULL is returned, and the caller can perform a GC
|
| +// or allocate a new page before retrying.
|
| +HeapObject* OldSpaceFreeList::Allocate(int size_in_bytes) {
|
| ASSERT(0 < size_in_bytes);
|
| ASSERT(size_in_bytes <= kMaxBlockSize);
|
| ASSERT(IsAligned(size_in_bytes, kPointerSize));
|
| + // Don't free list allocate if there is linear space available.
|
| + ASSERT(owner_->limit() - owner_->top() < size_in_bytes);
|
|
|
| - if (needs_rebuild_) RebuildSizeList();
|
| - int index = size_in_bytes >> kPointerSizeLog2;
|
| - // Check for a perfect fit.
|
| - if (free_[index].head_node_ != NULL) {
|
| - FreeListNode* node = FreeListNode::FromAddress(free_[index].head_node_);
|
| - // If this was the last block of its size, remove the size.
|
| - if ((free_[index].head_node_ = node->next()) == NULL) RemoveSize(index);
|
| - available_ -= size_in_bytes;
|
| - *wasted_bytes = 0;
|
| - ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
|
| - return node;
|
| - }
|
| - // Search the size list for the best fit.
|
| - int prev = finger_ < index ? finger_ : kHead;
|
| - int cur = FindSize(index, &prev);
|
| - ASSERT(index < cur);
|
| - if (cur == kEnd) {
|
| - // No large enough size in list.
|
| - *wasted_bytes = 0;
|
| - return Failure::RetryAfterGC(owner_);
|
| - }
|
| - ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
|
| - int rem = cur - index;
|
| - int rem_bytes = rem << kPointerSizeLog2;
|
| - FreeListNode* cur_node = FreeListNode::FromAddress(free_[cur].head_node_);
|
| - ASSERT(cur_node->Size() == (cur << kPointerSizeLog2));
|
| - FreeListNode* rem_node = FreeListNode::FromAddress(free_[cur].head_node_ +
|
| - size_in_bytes);
|
| - // Distinguish the cases prev < rem < cur and rem <= prev < cur
|
| - // to avoid many redundant tests and calls to Insert/RemoveSize.
|
| - if (prev < rem) {
|
| - // Simple case: insert rem between prev and cur.
|
| - finger_ = prev;
|
| - free_[prev].next_size_ = rem;
|
| - // If this was the last block of size cur, remove the size.
|
| - if ((free_[cur].head_node_ = cur_node->next()) == NULL) {
|
| - free_[rem].next_size_ = free_[cur].next_size_;
|
| - } else {
|
| - free_[rem].next_size_ = cur;
|
| - }
|
| - // Add the remainder block.
|
| - rem_node->set_size(rem_bytes);
|
| - rem_node->set_next(free_[rem].head_node_);
|
| - free_[rem].head_node_ = rem_node->address();
|
| + FreeListNode* new_node = NULL;
|
| + int new_node_size = 0;
|
| +
|
| + if (size_in_bytes <= kSmallAllocationMax && small_list_ != NULL) {
|
| + new_node = small_list_;
|
| + new_node_size = new_node->Size();
|
| + small_list_ = new_node->next();
|
| + } else if (size_in_bytes <= kMediumAllocationMax && medium_list_ != NULL) {
|
| + new_node = medium_list_;
|
| + new_node_size = new_node->Size();
|
| + medium_list_ = new_node->next();
|
| + } else if (size_in_bytes <= kLargeAllocationMax && large_list_ != NULL) {
|
| + new_node = large_list_;
|
| + new_node_size = new_node->Size();
|
| + large_list_ = new_node->next();
|
| } else {
|
| - // If this was the last block of size cur, remove the size.
|
| - if ((free_[cur].head_node_ = cur_node->next()) == NULL) {
|
| - finger_ = prev;
|
| - free_[prev].next_size_ = free_[cur].next_size_;
|
| + for (FreeListNode** cur = &huge_list_;
|
| + *cur != NULL;
|
| + cur = (*cur)->next_address()) {
|
| + ASSERT((*cur)->map() == Heap::raw_unchecked_free_space_map());
|
| + FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(*cur);
|
| + int size = cur_as_free_space->Size();
|
| + if (size >= size_in_bytes) {
|
| + // Large enough node found. Unlink it from the list.
|
| + new_node = *cur;
|
| + new_node_size = size;
|
| + *cur = new_node->next();
|
| + break;
|
| + }
|
| }
|
| - if (rem_bytes < kMinBlockSize) {
|
| - // Too-small remainder is wasted.
|
| - rem_node->set_size(rem_bytes);
|
| - available_ -= size_in_bytes + rem_bytes;
|
| - *wasted_bytes = rem_bytes;
|
| - return cur_node;
|
| - }
|
| - // Add the remainder block and, if needed, insert its size.
|
| - rem_node->set_size(rem_bytes);
|
| - rem_node->set_next(free_[rem].head_node_);
|
| - free_[rem].head_node_ = rem_node->address();
|
| - if (rem_node->next() == NULL) InsertSize(rem);
|
| + if (new_node == NULL) return NULL;
|
| }
|
| - available_ -= size_in_bytes;
|
| - *wasted_bytes = 0;
|
| - return cur_node;
|
| -}
|
|
|
| + available_ -= new_node_size;
|
| + ASSERT(available_ == SumFreeLists());
|
|
|
| -void OldSpaceFreeList::MarkNodes() {
|
| - for (int i = 0; i < kFreeListsLength; i++) {
|
| - Address cur_addr = free_[i].head_node_;
|
| - while (cur_addr != NULL) {
|
| - FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
|
| - cur_addr = cur_node->next();
|
| - IntrusiveMarking::SetMark(cur_node);
|
| - }
|
| - }
|
| -}
|
| + int old_linear_size = owner_->limit() - owner_->top();
|
| + // Mark the old linear allocation area with a free space map so it can be
|
| + // skipped when scanning the heap. This also puts it back in the free list
|
| + // if it is big enough.
|
| + owner_->Free(owner_->top(), old_linear_size);
|
| + IncrementalMarking::Step(size_in_bytes - old_linear_size);
|
|
|
| + ASSERT(new_node_size - size_in_bytes >= 0); // New linear size.
|
|
|
| -#ifdef DEBUG
|
| -bool OldSpaceFreeList::Contains(FreeListNode* node) {
|
| - for (int i = 0; i < kFreeListsLength; i++) {
|
| - Address cur_addr = free_[i].head_node_;
|
| - while (cur_addr != NULL) {
|
| - FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
|
| - if (cur_node == node) return true;
|
| - cur_addr = cur_node->next();
|
| - }
|
| - }
|
| - return false;
|
| -}
|
| + const int kThreshold = IncrementalMarking::kAllocatedThreshold;
|
|
|
| + // Memory in the linear allocation area is counted as allocated. We may free
|
| + // a little of this again immediately - see below.
|
| + owner_->Allocate(new_node_size);
|
|
|
| -void FreeListNode::Zap() {
|
| - if (IsByteArray()) {
|
| - ByteArray* ba = ByteArray::cast(this);
|
| - // Skip map, length and next pointer.
|
| - Address payload_start = ba->GetDataStartAddress() + kPointerSize;
|
| - Address payload_end = ba->address() + ba->Size();
|
| - for (Address cur = payload_start;
|
| - cur < payload_end;
|
| - cur += kPointerSize) {
|
| - *reinterpret_cast<uintptr_t*>(cur) = kFreeListZapValue;
|
| - }
|
| + if (new_node_size - size_in_bytes > kThreshold &&
|
| + IncrementalMarking::state() == IncrementalMarking::MARKING) {
|
| + // We don't want to give too large linear areas to the allocator while
|
| + // incremental marking is going on, because we won't check again whether
|
| + // we want to do another increment until the linear area is used up.
|
| + owner_->Free(new_node->address() + size_in_bytes + kThreshold,
|
| + new_node_size - size_in_bytes - kThreshold);
|
| + owner_->SetTop(new_node->address() + size_in_bytes,
|
| + new_node->address() + size_in_bytes + kThreshold);
|
| + } else {
|
| + // Normally we give the rest of the node to the allocator as its new
|
| + // linear allocation area.
|
| + owner_->SetTop(new_node->address() + size_in_bytes,
|
| + new_node->address() + new_node_size);
|
| }
|
| -}
|
|
|
| -
|
| -void OldSpaceFreeList::Zap() {
|
| - for (int i = 0; i < kFreeListsLength; i++) {
|
| - Address cur_addr = free_[i].head_node_;
|
| - while (cur_addr != NULL) {
|
| - FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
|
| - cur_node->Zap();
|
| - cur_addr = cur_node->next();
|
| - }
|
| - }
|
| + return new_node;
|
| }
|
|
|
|
|
| -void FixedSizeFreeList::Zap() {
|
| - Address cur_addr = head_;
|
| - while (cur_addr != NULL && cur_addr != tail_) {
|
| - FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
|
| - cur_node->Zap();
|
| - cur_addr = cur_node->next();
|
| +#ifdef DEBUG
|
| +intptr_t OldSpaceFreeList::SumFreeList(FreeListNode* cur) {
|
| + intptr_t sum = 0;
|
| + while (cur != NULL) {
|
| + ASSERT(cur->map() == Heap::raw_unchecked_free_space_map());
|
| + FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(cur);
|
| + sum += cur_as_free_space->Size();
|
| + cur = cur->next();
|
| }
|
| + return sum;
|
| }
|
| -#endif
|
|
|
|
|
| -FixedSizeFreeList::FixedSizeFreeList(AllocationSpace owner, int object_size)
|
| - : owner_(owner), object_size_(object_size) {
|
| - Reset();
|
| +intptr_t OldSpaceFreeList::SumFreeLists() {
|
| + intptr_t sum = SumFreeList(small_list_);
|
| + sum += SumFreeList(medium_list_);
|
| + sum += SumFreeList(large_list_);
|
| + sum += SumFreeList(huge_list_);
|
| + return sum;
|
| }
|
| -
|
| -
|
| -void FixedSizeFreeList::Reset() {
|
| - available_ = 0;
|
| - head_ = tail_ = NULL;
|
| -}
|
| -
|
| -
|
| -void FixedSizeFreeList::Free(Address start) {
|
| -#ifdef DEBUG
|
| - MemoryAllocator::ZapBlock(start, object_size_);
|
| #endif
|
| - // We only use the freelists with mark-sweep.
|
| - ASSERT(!MarkCompactCollector::IsCompacting());
|
| - FreeListNode* node = FreeListNode::FromAddress(start);
|
| - node->set_size(object_size_);
|
| - node->set_next(NULL);
|
| - if (head_ == NULL) {
|
| - tail_ = head_ = node->address();
|
| - } else {
|
| - FreeListNode::FromAddress(tail_)->set_next(node->address());
|
| - tail_ = node->address();
|
| - }
|
| - available_ += object_size_;
|
| -}
|
|
|
|
|
| -MaybeObject* FixedSizeFreeList::Allocate() {
|
| - if (head_ == NULL) {
|
| - return Failure::RetryAfterGC(owner_);
|
| - }
|
| -
|
| - ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
|
| - FreeListNode* node = FreeListNode::FromAddress(head_);
|
| - head_ = node->next();
|
| - available_ -= object_size_;
|
| - return node;
|
| -}
|
| -
|
| -
|
| -void FixedSizeFreeList::MarkNodes() {
|
| - Address cur_addr = head_;
|
| - while (cur_addr != NULL && cur_addr != tail_) {
|
| - FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
|
| - cur_addr = cur_node->next();
|
| - IntrusiveMarking::SetMark(cur_node);
|
| - }
|
| -}
|
| -
|
| -
|
| // -----------------------------------------------------------------------------
|
| // OldSpace implementation
|
|
|
| @@ -1698,13 +1546,6 @@
|
| // Call prepare of the super class.
|
| PagedSpace::PrepareForMarkCompact(will_compact);
|
|
|
| - // During a non-compacting collection, everything below the linear
|
| - // allocation pointer is considered allocated (everything above is
|
| - // available) and we will rediscover available and wasted bytes during
|
| - // the collection.
|
| - accounting_stats_.AllocateBytes(free_list_.available());
|
| - accounting_stats_.FillWastedBytes(Waste());
|
| -
|
| // Clear the free list before a full GC---it will be rebuilt afterward.
|
| free_list_.Reset();
|
| }
|
| @@ -1720,76 +1561,30 @@
|
| }
|
|
|
|
|
| -void PagedSpace::FreePages(Page* prev, Page* last) {
|
| - if (last == AllocationTopPage()) {
|
| - // Pages are already at the end of used pages.
|
| - // Just mark them as continuous.
|
| - Page* p = prev == NULL ? first_page_ : prev->next_page();
|
| - Page* end_page = last->next_page();
|
| - do {
|
| - p->SetFlag(Page::IS_CONTINUOUS);
|
| - p = p->next_page();
|
| - } while (p != end_page);
|
| - return;
|
| - }
|
| -
|
| - Page* first = NULL;
|
| -
|
| - // Remove pages from the list.
|
| - if (prev == NULL) {
|
| - first = first_page_;
|
| - first_page_ = last->next_page();
|
| - } else {
|
| - first = prev->next_page();
|
| - prev->set_next_page(last->next_page());
|
| - }
|
| -
|
| - // Attach it after the last page.
|
| - last_page_->set_next_page(first);
|
| - last_page_ = last;
|
| - last->set_next_page(NULL);
|
| -
|
| - // Clean them up.
|
| - do {
|
| - first->InvalidateWatermark(true);
|
| - first->SetAllocationWatermark(first->ObjectAreaStart());
|
| - first->SetCachedAllocationWatermark(first->ObjectAreaStart());
|
| - first->SetFlag(Page::IS_CONTINUOUS);
|
| - first->markbits()->Clear();
|
| - first = first->next_page();
|
| - } while (first->is_valid());
|
| -}
|
| -
|
| -
|
| void PagedSpace::PrepareForMarkCompact(bool will_compact) {
|
| ASSERT(!will_compact);
|
| }
|
|
|
|
|
| -bool PagedSpace::ReserveSpace(int bytes) {
|
| - Address limit = allocation_info_.limit;
|
| - Address top = allocation_info_.top;
|
| - if (limit - top >= bytes) return true;
|
| +bool PagedSpace::ReserveSpace(int size_in_bytes) {
|
| + ASSERT(size_in_bytes <= Page::kMaxHeapObjectSize);
|
| + ASSERT(size_in_bytes == RoundUp(size_in_bytes, kPointerSize));
|
| + Address current_top = allocation_info_.top;
|
| + Address new_top = current_top + size_in_bytes;
|
| + if (new_top <= allocation_info_.limit) return true;
|
|
|
| - // There wasn't enough space in the current page. Lets put the rest
|
| - // of the page on the free list and start a fresh page.
|
| - PutRestOfCurrentPageOnFreeList(TopPageOf(allocation_info_));
|
| + HeapObject* new_area = free_list_.Allocate(size_in_bytes);
|
| + if (new_area == NULL) new_area = SlowAllocateRaw(size_in_bytes);
|
| + if (new_area == NULL) return false;
|
|
|
| - Page* reserved_page = TopPageOf(allocation_info_);
|
| - int bytes_left_to_reserve = bytes;
|
| - while (bytes_left_to_reserve > 0) {
|
| - if (!reserved_page->next_page()->is_valid()) {
|
| - if (Heap::OldGenerationAllocationLimitReached()) return false;
|
| - Expand();
|
| - }
|
| - bytes_left_to_reserve -= Page::kPageSize;
|
| - reserved_page = reserved_page->next_page();
|
| - if (!reserved_page->is_valid()) return false;
|
| - }
|
| - ASSERT(TopPageOf(allocation_info_)->next_page()->is_valid());
|
| - TopPageOf(allocation_info_)->next_page()->InvalidateWatermark(true);
|
| - SetAllocationInfo(&allocation_info_,
|
| - TopPageOf(allocation_info_)->next_page());
|
| + int old_linear_size = limit() - top();
|
| + // Mark the old linear allocation area with a free space so it can be
|
| + // skipped when scanning the heap. This also puts it back in the free list
|
| + // if it is big enough.
|
| + Free(top(), old_linear_size);
|
| +
|
| + SetTop(new_area->address(), new_area->address() + size_in_bytes);
|
| + Allocate(size_in_bytes);
|
| return true;
|
| }
|
|
|
| @@ -1801,52 +1596,9 @@
|
| }
|
|
|
|
|
| -// Slow case for normal allocation. Try in order: (1) allocate in the next
|
| -// page in the space, (2) allocate off the space's free list, (3) expand the
|
| -// space, (4) fail.
|
| -HeapObject* OldSpace::SlowAllocateRaw(int size_in_bytes) {
|
| - // Linear allocation in this space has failed. If there is another page
|
| - // in the space, move to that page and allocate there. This allocation
|
| - // should succeed (size_in_bytes should not be greater than a page's
|
| - // object area size).
|
| - Page* current_page = TopPageOf(allocation_info_);
|
| - if (current_page->next_page()->is_valid()) {
|
| - return AllocateInNextPage(current_page, size_in_bytes);
|
| - }
|
| +HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) {
|
| + // Allocation in this space has failed.
|
|
|
| - // There is no next page in this space. Try free list allocation unless that
|
| - // is currently forbidden.
|
| - if (!Heap::linear_allocation()) {
|
| - int wasted_bytes;
|
| - Object* result;
|
| - MaybeObject* maybe = free_list_.Allocate(size_in_bytes, &wasted_bytes);
|
| - accounting_stats_.WasteBytes(wasted_bytes);
|
| - if (maybe->ToObject(&result)) {
|
| - accounting_stats_.AllocateBytes(size_in_bytes);
|
| -
|
| - HeapObject* obj = HeapObject::cast(result);
|
| - Page* p = Page::FromAddress(obj->address());
|
| -
|
| - if (obj->address() >= p->AllocationWatermark()) {
|
| - // There should be no hole between the allocation watermark
|
| - // and allocated object address.
|
| - // Memory above the allocation watermark was not swept and
|
| - // might contain garbage pointers to new space.
|
| - ASSERT(obj->address() == p->AllocationWatermark());
|
| - p->SetAllocationWatermark(obj->address() + size_in_bytes);
|
| - }
|
| -
|
| - if (!p->IsFlagSet(Page::IS_CONTINUOUS)) {
|
| - // This page is not continuous so we have to mark objects
|
| - // that should be visited by HeapObjectIterator.
|
| - ASSERT(!Marking::IsMarked(obj));
|
| - Marking::SetMark(obj);
|
| - }
|
| -
|
| - return obj;
|
| - }
|
| - }
|
| -
|
| // Free list allocation failed and there is no next page. Fail if we have
|
| // hit the old generation size limit that should cause a garbage
|
| // collection.
|
| @@ -1855,9 +1607,8 @@
|
| }
|
|
|
| // Try to expand the space and allocate in the new next page.
|
| - ASSERT(!current_page->next_page()->is_valid());
|
| if (Expand()) {
|
| - return AllocateInNextPage(current_page, size_in_bytes);
|
| + return free_list_.Allocate(size_in_bytes);
|
| }
|
|
|
| // Finally, fail.
|
| @@ -1865,53 +1616,6 @@
|
| }
|
|
|
|
|
| -void OldSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) {
|
| - current_page->SetAllocationWatermark(allocation_info_.top);
|
| - int free_size =
|
| - static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top);
|
| - if (free_size > 0) {
|
| - int wasted_bytes = free_list_.Free(allocation_info_.top, free_size);
|
| - accounting_stats_.WasteBytes(wasted_bytes);
|
| - }
|
| -}
|
| -
|
| -
|
| -void FixedSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) {
|
| - current_page->SetAllocationWatermark(allocation_info_.top);
|
| - int free_size =
|
| - static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top);
|
| - // In the fixed space free list all the free list items have the right size.
|
| - // We use up the rest of the page while preserving this invariant.
|
| - while (free_size >= object_size_in_bytes_) {
|
| - free_list_.Free(allocation_info_.top);
|
| - allocation_info_.top += object_size_in_bytes_;
|
| - free_size -= object_size_in_bytes_;
|
| - accounting_stats_.WasteBytes(object_size_in_bytes_);
|
| - }
|
| -}
|
| -
|
| -
|
| -// Add the block at the top of the page to the space's free list, set the
|
| -// allocation info to the next page (assumed to be one), and allocate
|
| -// linearly there.
|
| -HeapObject* OldSpace::AllocateInNextPage(Page* current_page,
|
| - int size_in_bytes) {
|
| - ASSERT(current_page->next_page()->is_valid());
|
| - Page* next_page = current_page->next_page();
|
| - next_page->ClearGCFields();
|
| - PutRestOfCurrentPageOnFreeList(current_page);
|
| - SetAllocationInfo(&allocation_info_, next_page);
|
| - return AllocateLinearly(&allocation_info_, size_in_bytes);
|
| -}
|
| -
|
| -
|
| -void OldSpace::DeallocateBlock(Address start,
|
| - int size_in_bytes,
|
| - bool add_to_freelist) {
|
| - Free(start, size_in_bytes, add_to_freelist);
|
| -}
|
| -
|
| -
|
| #ifdef DEBUG
|
| struct CommentStatistic {
|
| const char* comment;
|
| @@ -2020,7 +1724,7 @@
|
| // - by code comment
|
| void PagedSpace::CollectCodeStatistics() {
|
| HeapObjectIterator obj_it(this);
|
| - for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) {
|
| + for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) {
|
| if (obj->IsCode()) {
|
| Code* code = Code::cast(obj);
|
| code_kind_statistics[code->kind()] += code->Size();
|
| @@ -2045,7 +1749,7 @@
|
| }
|
|
|
|
|
| -void OldSpace::ReportStatistics() {
|
| +void PagedSpace::ReportStatistics() {
|
| int pct = static_cast<int>(Available() * 100 / Capacity());
|
| PrintF(" capacity: %" V8_PTR_PREFIX "d"
|
| ", waste: %" V8_PTR_PREFIX "d"
|
| @@ -2054,7 +1758,7 @@
|
|
|
| ClearHistograms();
|
| HeapObjectIterator obj_it(this);
|
| - for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next())
|
| + for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next())
|
| CollectHistogramInfo(obj);
|
| ReportHistogram(true);
|
| }
|
| @@ -2080,110 +1784,6 @@
|
| }
|
|
|
|
|
| -// Slow case for normal allocation. Try in order: (1) allocate in the next
|
| -// page in the space, (2) allocate off the space's free list, (3) expand the
|
| -// space, (4) fail.
|
| -HeapObject* FixedSpace::SlowAllocateRaw(int size_in_bytes) {
|
| - ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
|
| - // Linear allocation in this space has failed. If there is another page
|
| - // in the space, move to that page and allocate there. This allocation
|
| - // should succeed.
|
| - Page* current_page = TopPageOf(allocation_info_);
|
| - if (current_page->next_page()->is_valid()) {
|
| - return AllocateInNextPage(current_page, size_in_bytes);
|
| - }
|
| -
|
| - // There is no next page in this space. Try free list allocation unless
|
| - // that is currently forbidden. The fixed space free list implicitly assumes
|
| - // that all free blocks are of the fixed size.
|
| - if (!Heap::linear_allocation()) {
|
| - Object* result;
|
| - MaybeObject* maybe = free_list_.Allocate();
|
| - if (maybe->ToObject(&result)) {
|
| - accounting_stats_.AllocateBytes(size_in_bytes);
|
| - HeapObject* obj = HeapObject::cast(result);
|
| - Page* p = Page::FromAddress(obj->address());
|
| -
|
| - if (obj->address() >= p->AllocationWatermark()) {
|
| - // There should be no hole between the allocation watermark
|
| - // and allocated object address.
|
| - // Memory above the allocation watermark was not swept and
|
| - // might contain garbage pointers to new space.
|
| - ASSERT(obj->address() == p->AllocationWatermark());
|
| - p->SetAllocationWatermark(obj->address() + size_in_bytes);
|
| - }
|
| -
|
| - return obj;
|
| - }
|
| - }
|
| -
|
| - // Free list allocation failed and there is no next page. Fail if we have
|
| - // hit the old generation size limit that should cause a garbage
|
| - // collection.
|
| - if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) {
|
| - return NULL;
|
| - }
|
| -
|
| - // Try to expand the space and allocate in the new next page.
|
| - ASSERT(!current_page->next_page()->is_valid());
|
| - if (Expand()) {
|
| - return AllocateInNextPage(current_page, size_in_bytes);
|
| - }
|
| -
|
| - // Finally, fail.
|
| - return NULL;
|
| -}
|
| -
|
| -
|
| -// Move to the next page (there is assumed to be one) and allocate there.
|
| -// The top of page block is always wasted, because it is too small to hold a
|
| -// map.
|
| -HeapObject* FixedSpace::AllocateInNextPage(Page* current_page,
|
| - int size_in_bytes) {
|
| - ASSERT(current_page->next_page()->is_valid());
|
| - ASSERT(allocation_info_.top == PageAllocationLimit(current_page));
|
| - ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
|
| - Page* next_page = current_page->next_page();
|
| - next_page->ClearGCFields();
|
| - current_page->SetAllocationWatermark(allocation_info_.top);
|
| - accounting_stats_.WasteBytes(page_extra_);
|
| - SetAllocationInfo(&allocation_info_, next_page);
|
| - return AllocateLinearly(&allocation_info_, size_in_bytes);
|
| -}
|
| -
|
| -
|
| -void FixedSpace::DeallocateBlock(Address start,
|
| - int size_in_bytes,
|
| - bool add_to_freelist) {
|
| - // Free-list elements in fixed space are assumed to have a fixed size.
|
| - // We break the free block into chunks and add them to the free list
|
| - // individually.
|
| - int size = object_size_in_bytes();
|
| - ASSERT(size_in_bytes % size == 0);
|
| - Address end = start + size_in_bytes;
|
| - for (Address a = start; a < end; a += size) {
|
| - Free(a, add_to_freelist);
|
| - }
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -void FixedSpace::ReportStatistics() {
|
| - int pct = static_cast<int>(Available() * 100 / Capacity());
|
| - PrintF(" capacity: %" V8_PTR_PREFIX "d"
|
| - ", waste: %" V8_PTR_PREFIX "d"
|
| - ", available: %" V8_PTR_PREFIX "d, %%%d\n",
|
| - Capacity(), Waste(), Available(), pct);
|
| -
|
| - ClearHistograms();
|
| - HeapObjectIterator obj_it(this);
|
| - for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next())
|
| - CollectHistogramInfo(obj);
|
| - ReportHistogram(false);
|
| -}
|
| -#endif
|
| -
|
| -
|
| // -----------------------------------------------------------------------------
|
| // MapSpace implementation
|
|
|
| @@ -2196,7 +1796,7 @@
|
| #ifdef DEBUG
|
| void MapSpace::VerifyObject(HeapObject* object) {
|
| // The object should be a map or a free-list node.
|
| - ASSERT(object->IsMap() || object->IsByteArray());
|
| + ASSERT(object->IsMap() || object->IsFreeSpace());
|
| }
|
| #endif
|
|
|
|
|