OLD | NEW |
1 // Copyright 2006-2010 the V8 project authors. All rights reserved. | 1 // Copyright 2011 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
11 // with the distribution. | 11 // with the distribution. |
(...skipping 19 matching lines...) Expand all Loading... |
31 #include "memory.h" | 31 #include "memory.h" |
32 #include "spaces.h" | 32 #include "spaces.h" |
33 | 33 |
34 namespace v8 { | 34 namespace v8 { |
35 namespace internal { | 35 namespace internal { |
36 | 36 |
37 | 37 |
38 // ----------------------------------------------------------------------------- | 38 // ----------------------------------------------------------------------------- |
39 // PageIterator | 39 // PageIterator |
40 | 40 |
| 41 |
| 42 PageIterator::PageIterator(PagedSpace* space) |
| 43 : space_(space), |
| 44 prev_page_(&space->anchor_), |
| 45 next_page_(prev_page_->next_page()) { } |
| 46 |
| 47 |
41 bool PageIterator::has_next() { | 48 bool PageIterator::has_next() { |
42 return prev_page_ != stop_page_; | 49 return next_page_ != &space_->anchor_; |
43 } | 50 } |
44 | 51 |
45 | 52 |
46 Page* PageIterator::next() { | 53 Page* PageIterator::next() { |
47 ASSERT(has_next()); | 54 ASSERT(has_next()); |
48 prev_page_ = (prev_page_ == NULL) | 55 prev_page_ = next_page_; |
49 ? space_->first_page_ | 56 next_page_ = next_page_->next_page(); |
50 : prev_page_->next_page(); | |
51 return prev_page_; | 57 return prev_page_; |
52 } | 58 } |
53 | 59 |
54 | 60 |
55 // ----------------------------------------------------------------------------- | 61 // ----------------------------------------------------------------------------- |
56 // Page | 62 // HeapObjectIterator |
57 | 63 HeapObject* HeapObjectIterator::FromCurrentPage() { |
58 | 64 while (cur_addr_ != cur_end_) { |
59 Address Page::AllocationTop() { | 65 if (cur_addr_ == space_->top() && cur_addr_ != space_->limit()) { |
60 return static_cast<PagedSpace*>(owner())->PageAllocationTop(this); | 66 cur_addr_ = space_->limit(); |
61 } | 67 continue; |
62 | 68 } |
63 | 69 HeapObject* obj = HeapObject::FromAddress(cur_addr_); |
64 Address Page::AllocationWatermark() { | 70 int obj_size = (size_func_ == NULL) ? obj->Size() : size_func_(obj); |
65 if (this == static_cast<PagedSpace*>(owner())->AllocationTopPage()) { | 71 cur_addr_ += obj_size; |
66 return static_cast<PagedSpace*>(owner())->top(); | 72 ASSERT(cur_addr_ <= cur_end_); |
| 73 if (!obj->IsFiller()) { |
| 74 ASSERT_OBJECT_SIZE(obj_size); |
| 75 return obj; |
| 76 } |
67 } | 77 } |
68 return address() + AllocationWatermarkOffset(); | 78 return NULL; |
69 } | |
70 | |
71 | |
72 uint32_t Page::AllocationWatermarkOffset() { | |
73 return static_cast<uint32_t>((flags_ & kAllocationWatermarkOffsetMask) >> | |
74 kAllocationWatermarkOffsetShift); | |
75 } | |
76 | |
77 | |
78 void Page::SetAllocationWatermark(Address allocation_watermark) { | |
79 if ((Heap::gc_state() == Heap::SCAVENGE) && IsWatermarkValid()) { | |
80 // When iterating intergenerational references during scavenge | |
81 // we might decide to promote an encountered young object. | |
82 // We will allocate a space for such an object and put it | |
83 // into the promotion queue to process it later. | |
84 // If space for object was allocated somewhere beyond allocation | |
85 // watermark this might cause garbage pointers to appear under allocation | |
86 // watermark. To avoid visiting them during pointer-to-newspace iteration | |
87 // which might be still in progress we store a valid allocation watermark | |
88 // value and mark this page as having an invalid watermark. | |
89 SetCachedAllocationWatermark(AllocationWatermark()); | |
90 InvalidateWatermark(true); | |
91 } | |
92 | |
93 flags_ = (flags_ & kFlagsMask) | | |
94 Offset(allocation_watermark) << kAllocationWatermarkOffsetShift; | |
95 ASSERT(AllocationWatermarkOffset() | |
96 == static_cast<uint32_t>(Offset(allocation_watermark))); | |
97 } | |
98 | |
99 | |
100 void Page::SetCachedAllocationWatermark(Address allocation_watermark) { | |
101 allocation_watermark_ = allocation_watermark; | |
102 } | |
103 | |
104 | |
105 Address Page::CachedAllocationWatermark() { | |
106 return allocation_watermark_; | |
107 } | |
108 | |
109 | |
110 void Page::FlipMeaningOfInvalidatedWatermarkFlag() { | |
111 watermark_invalidated_mark_ ^= 1 << WATERMARK_INVALIDATED; | |
112 } | |
113 | |
114 | |
115 bool Page::IsWatermarkValid() { | |
116 return (flags_ & (1 << WATERMARK_INVALIDATED)) != watermark_invalidated_mark_; | |
117 } | |
118 | |
119 | |
120 void Page::InvalidateWatermark(bool value) { | |
121 if (value) { | |
122 flags_ = (flags_ & ~(1 << WATERMARK_INVALIDATED)) | | |
123 watermark_invalidated_mark_; | |
124 } else { | |
125 flags_ = (flags_ & ~(1 << WATERMARK_INVALIDATED)) | | |
126 (watermark_invalidated_mark_ ^ (1 << WATERMARK_INVALIDATED)); | |
127 } | |
128 | |
129 ASSERT(IsWatermarkValid() == !value); | |
130 } | |
131 | |
132 | |
133 void Page::ClearGCFields() { | |
134 InvalidateWatermark(true); | |
135 SetAllocationWatermark(ObjectAreaStart()); | |
136 if (Heap::gc_state() == Heap::SCAVENGE) { | |
137 SetCachedAllocationWatermark(ObjectAreaStart()); | |
138 } | |
139 } | 79 } |
140 | 80 |
141 | 81 |
142 // ----------------------------------------------------------------------------- | 82 // ----------------------------------------------------------------------------- |
143 // MemoryAllocator | 83 // MemoryAllocator |
144 | 84 |
145 #ifdef ENABLE_HEAP_PROTECTION | 85 #ifdef ENABLE_HEAP_PROTECTION |
146 | 86 |
147 void MemoryAllocator::Protect(Address start, size_t size) { | 87 void MemoryAllocator::Protect(Address start, size_t size) { |
148 OS::Protect(start, size); | 88 OS::Protect(start, size); |
(...skipping 25 matching lines...) Expand all Loading... |
174 // -------------------------------------------------------------------------- | 114 // -------------------------------------------------------------------------- |
175 // PagedSpace | 115 // PagedSpace |
176 | 116 |
177 bool PagedSpace::Contains(Address addr) { | 117 bool PagedSpace::Contains(Address addr) { |
178 Page* p = Page::FromAddress(addr); | 118 Page* p = Page::FromAddress(addr); |
179 if (!p->is_valid()) return false; | 119 if (!p->is_valid()) return false; |
180 return p->owner() == this; | 120 return p->owner() == this; |
181 } | 121 } |
182 | 122 |
183 | 123 |
| 124 Page* Page::Initialize(MemoryChunk* chunk, |
| 125 Executability executable, |
| 126 PagedSpace* owner) { |
| 127 Page* page = reinterpret_cast<Page*>(chunk); |
| 128 MemoryChunk::Initialize(reinterpret_cast<Address>(chunk), |
| 129 kPageSize, |
| 130 executable, |
| 131 owner); |
| 132 owner->IncreaseCapacity(Page::kObjectAreaSize); |
| 133 owner->Free(page->ObjectAreaStart(), |
| 134 page->ObjectAreaEnd() - page->ObjectAreaStart()); |
| 135 return page; |
| 136 } |
| 137 |
| 138 |
| 139 Page* Page::next_page() { |
| 140 ASSERT(next_chunk()->owner() == owner()); |
| 141 return static_cast<Page*>(next_chunk()); |
| 142 } |
| 143 |
| 144 |
| 145 Page* Page::prev_page() { |
| 146 ASSERT(prev_chunk()->owner() == owner()); |
| 147 return static_cast<Page*>(prev_chunk()); |
| 148 } |
| 149 |
| 150 |
| 151 void Page::set_next_page(Page* page) { |
| 152 ASSERT(page->owner() == owner()); |
| 153 set_next_chunk(page); |
| 154 } |
| 155 |
| 156 |
| 157 void Page::set_prev_page(Page* page) { |
| 158 ASSERT(page->owner() == owner()); |
| 159 set_prev_chunk(page); |
| 160 } |
| 161 |
| 162 |
184 // Try linear allocation in the page of alloc_info's allocation top. Does | 163 // Try linear allocation in the page of alloc_info's allocation top. Does |
185 // not contain slow case logic (eg, move to the next page or try free list | 164 // not contain slow case logic (eg, move to the next page or try free list |
186 // allocation) so it can be used by all the allocation functions and for all | 165 // allocation) so it can be used by all the allocation functions and for all |
187 // the paged spaces. | 166 // the paged spaces. |
188 HeapObject* PagedSpace::AllocateLinearly(AllocationInfo* alloc_info, | 167 HeapObject* PagedSpace::AllocateLinearly(AllocationInfo* alloc_info, |
189 int size_in_bytes) { | 168 int size_in_bytes) { |
190 Address current_top = alloc_info->top; | 169 Address current_top = alloc_info->top; |
191 Address new_top = current_top + size_in_bytes; | 170 Address new_top = current_top + size_in_bytes; |
192 if (new_top > alloc_info->limit) return NULL; | 171 if (new_top > alloc_info->limit) return NULL; |
193 | 172 |
194 alloc_info->top = new_top; | 173 alloc_info->top = new_top; |
195 ASSERT(alloc_info->VerifyPagedAllocation()); | 174 ASSERT(alloc_info->VerifyPagedAllocation()); |
196 accounting_stats_.AllocateBytes(size_in_bytes); | 175 ASSERT(current_top != NULL); |
197 return HeapObject::FromAddress(current_top); | 176 return HeapObject::FromAddress(current_top); |
198 } | 177 } |
199 | 178 |
200 | 179 |
201 // Raw allocation. | 180 // Raw allocation. |
202 MaybeObject* PagedSpace::AllocateRaw(int size_in_bytes) { | 181 MaybeObject* PagedSpace::AllocateRaw(int size_in_bytes) { |
203 ASSERT(HasBeenSetup()); | 182 ASSERT(HasBeenSetup()); |
204 ASSERT_OBJECT_SIZE(size_in_bytes); | 183 ASSERT_OBJECT_SIZE(size_in_bytes); |
| 184 MaybeObject* object = AllocateLinearly(&allocation_info_, size_in_bytes); |
| 185 if (object != NULL) { |
| 186 return object; |
| 187 } |
205 | 188 |
206 HeapObject* object = AllocateLinearly(&allocation_info_, size_in_bytes); | 189 object = free_list_.Allocate(size_in_bytes); |
207 if (object != NULL) { | 190 if (object != NULL) { |
208 IncrementalMarking::Step(size_in_bytes); | |
209 return object; | 191 return object; |
210 } | 192 } |
211 | 193 |
212 object = SlowAllocateRaw(size_in_bytes); | 194 object = SlowAllocateRaw(size_in_bytes); |
213 if (object != NULL) { | 195 if (object != NULL) { |
214 IncrementalMarking::Step(size_in_bytes); | |
215 return object; | 196 return object; |
216 } | 197 } |
217 | 198 |
218 return Failure::RetryAfterGC(identity()); | 199 return Failure::RetryAfterGC(identity()); |
219 } | 200 } |
220 | 201 |
221 | 202 |
222 // ----------------------------------------------------------------------------- | 203 // ----------------------------------------------------------------------------- |
223 // NewSpace | 204 // NewSpace |
224 | 205 |
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
257 | 238 |
258 bool FreeListNode::IsFreeListNode(HeapObject* object) { | 239 bool FreeListNode::IsFreeListNode(HeapObject* object) { |
259 return object->map() == Heap::raw_unchecked_byte_array_map() | 240 return object->map() == Heap::raw_unchecked_byte_array_map() |
260 || object->map() == Heap::raw_unchecked_one_pointer_filler_map() | 241 || object->map() == Heap::raw_unchecked_one_pointer_filler_map() |
261 || object->map() == Heap::raw_unchecked_two_pointer_filler_map(); | 242 || object->map() == Heap::raw_unchecked_two_pointer_filler_map(); |
262 } | 243 } |
263 | 244 |
264 } } // namespace v8::internal | 245 } } // namespace v8::internal |
265 | 246 |
266 #endif // V8_SPACES_INL_H_ | 247 #endif // V8_SPACES_INL_H_ |
OLD | NEW |