| Index: src/arm/stub-cache-arm.cc
|
| diff --git a/src/arm/stub-cache-arm.cc b/src/arm/stub-cache-arm.cc
|
| index 60a11f3ced6b5d5e6fc38597c7cbe99b20a8c1be..57fe596ac59d6af1c9fa3b80fb4f4e055c10cef0 100644
|
| --- a/src/arm/stub-cache-arm.cc
|
| +++ b/src/arm/stub-cache-arm.cc
|
| @@ -3143,38 +3143,6 @@ MaybeObject* KeyedLoadStubCompiler::CompileLoadSpecialized(JSObject* receiver) {
|
| }
|
|
|
|
|
| -MaybeObject* KeyedLoadStubCompiler::CompileLoadPixelArray(JSObject* receiver) {
|
| - // ----------- S t a t e -------------
|
| - // -- lr : return address
|
| - // -- r0 : key
|
| - // -- r1 : receiver
|
| - // -----------------------------------
|
| - Label miss;
|
| -
|
| - // Check that the map matches.
|
| - __ CheckMap(r1, r2, Handle<Map>(receiver->map()), &miss, false);
|
| -
|
| - GenerateFastPixelArrayLoad(masm(),
|
| - r1,
|
| - r0,
|
| - r2,
|
| - r3,
|
| - r4,
|
| - r5,
|
| - r0,
|
| - &miss,
|
| - &miss,
|
| - &miss);
|
| -
|
| - __ bind(&miss);
|
| - Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Miss));
|
| - __ Jump(ic, RelocInfo::CODE_TARGET);
|
| -
|
| - // Return the generated code.
|
| - return GetCode(NORMAL, NULL);
|
| -}
|
| -
|
| -
|
| MaybeObject* KeyedStoreStubCompiler::CompileStoreField(JSObject* object,
|
| int index,
|
| Map* transition,
|
| @@ -3283,47 +3251,6 @@ MaybeObject* KeyedStoreStubCompiler::CompileStoreSpecialized(
|
| }
|
|
|
|
|
| -MaybeObject* KeyedStoreStubCompiler::CompileStorePixelArray(
|
| - JSObject* receiver) {
|
| - // ----------- S t a t e -------------
|
| - // -- r0 : value
|
| - // -- r1 : key
|
| - // -- r2 : receiver
|
| - // -- r3 : scratch
|
| - // -- r4 : scratch
|
| - // -- r5 : scratch
|
| - // -- r6 : scratch
|
| - // -- lr : return address
|
| - // -----------------------------------
|
| - Label miss;
|
| -
|
| - // Check that the map matches.
|
| - __ CheckMap(r2, r6, Handle<Map>(receiver->map()), &miss, false);
|
| -
|
| - GenerateFastPixelArrayStore(masm(),
|
| - r2,
|
| - r1,
|
| - r0,
|
| - r3,
|
| - r4,
|
| - r5,
|
| - r6,
|
| - true,
|
| - true,
|
| - &miss,
|
| - &miss,
|
| - NULL,
|
| - &miss);
|
| -
|
| - __ bind(&miss);
|
| - Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Miss));
|
| - __ Jump(ic, RelocInfo::CODE_TARGET);
|
| -
|
| - // Return the generated code.
|
| - return GetCode(NORMAL, NULL);
|
| -}
|
| -
|
| -
|
| MaybeObject* ConstructStubCompiler::CompileConstructStub(JSFunction* function) {
|
| // ----------- S t a t e -------------
|
| // -- r0 : argc
|
| @@ -3488,7 +3415,9 @@ static bool IsElementTypeSigned(ExternalArrayType array_type) {
|
|
|
|
|
| MaybeObject* ExternalArrayStubCompiler::CompileKeyedLoadStub(
|
| - ExternalArrayType array_type, Code::Flags flags) {
|
| + JSObject* receiver_object,
|
| + ExternalArrayType array_type,
|
| + Code::Flags flags) {
|
| // ---------- S t a t e --------------
|
| // -- lr : return address
|
| // -- r0 : key
|
| @@ -3505,24 +3434,13 @@ MaybeObject* ExternalArrayStubCompiler::CompileKeyedLoadStub(
|
| // Check that the key is a smi.
|
| __ JumpIfNotSmi(key, &slow);
|
|
|
| - // Check that the object is a JS object. Load map into r2.
|
| - __ CompareObjectType(receiver, r2, r3, FIRST_JS_OBJECT_TYPE);
|
| - __ b(lt, &slow);
|
| -
|
| - // Check that the receiver does not require access checks. We need
|
| - // to check this explicitly since this generic stub does not perform
|
| - // map checks.
|
| - __ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset));
|
| - __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded));
|
| + // Make sure that we've got the right map.
|
| + __ ldr(r2, FieldMemOperand(receiver, HeapObject::kMapOffset));
|
| + __ cmp(r2, Operand(Handle<Map>(receiver_object->map())));
|
| __ b(ne, &slow);
|
|
|
| - // Check that the elements array is the appropriate type of
|
| - // ExternalArray.
|
| __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
|
| - __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
|
| - __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
|
| - __ cmp(r2, ip);
|
| - __ b(ne, &slow);
|
| + // r3: elements array
|
|
|
| // Check that the index is in range.
|
| __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
|
| @@ -3530,7 +3448,6 @@ MaybeObject* ExternalArrayStubCompiler::CompileKeyedLoadStub(
|
| // Unsigned comparison catches both negative and too-large values.
|
| __ b(lo, &slow);
|
|
|
| - // r3: elements array
|
| __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
|
| // r3: base pointer of external storage
|
|
|
| @@ -3543,6 +3460,7 @@ MaybeObject* ExternalArrayStubCompiler::CompileKeyedLoadStub(
|
| case kExternalByteArray:
|
| __ ldrsb(value, MemOperand(r3, key, LSR, 1));
|
| break;
|
| + case kExternalPixelArray:
|
| case kExternalUnsignedByteArray:
|
| __ ldrb(value, MemOperand(r3, key, LSR, 1));
|
| break;
|
| @@ -3768,7 +3686,9 @@ MaybeObject* ExternalArrayStubCompiler::CompileKeyedLoadStub(
|
|
|
|
|
| MaybeObject* ExternalArrayStubCompiler::CompileKeyedStoreStub(
|
| - ExternalArrayType array_type, Code::Flags flags) {
|
| + JSObject* receiver_object,
|
| + ExternalArrayType array_type,
|
| + Code::Flags flags) {
|
| // ---------- S t a t e --------------
|
| // -- r0 : value
|
| // -- r1 : key
|
| @@ -3786,28 +3706,18 @@ MaybeObject* ExternalArrayStubCompiler::CompileKeyedStoreStub(
|
| // Check that the object isn't a smi.
|
| __ JumpIfSmi(receiver, &slow);
|
|
|
| - // Check that the object is a JS object. Load map into r3.
|
| - __ CompareObjectType(receiver, r3, r4, FIRST_JS_OBJECT_TYPE);
|
| - __ b(le, &slow);
|
| -
|
| - // Check that the receiver does not require access checks. We need
|
| - // to do this because this generic stub does not perform map checks.
|
| - __ ldrb(ip, FieldMemOperand(r3, Map::kBitFieldOffset));
|
| - __ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded));
|
| + // Make sure that we've got the right map.
|
| + __ ldr(r3, FieldMemOperand(receiver, HeapObject::kMapOffset));
|
| + __ cmp(r3, Operand(Handle<Map>(receiver_object->map())));
|
| __ b(ne, &slow);
|
|
|
| + __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
|
| +
|
| // Check that the key is a smi.
|
| __ JumpIfNotSmi(key, &slow);
|
|
|
| - // Check that the elements array is the appropriate type of ExternalArray.
|
| - __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
|
| - __ ldr(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
|
| - __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
|
| - __ cmp(r4, ip);
|
| - __ b(ne, &slow);
|
| -
|
| - // Check that the index is in range.
|
| - __ mov(r4, Operand(key, ASR, kSmiTagSize)); // Untag the index.
|
| + // Check that the index is in range
|
| + __ SmiUntag(r4, key);
|
| __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
|
| __ cmp(r4, ip);
|
| // Unsigned comparison catches both negative and too-large values.
|
| @@ -3817,14 +3727,24 @@ MaybeObject* ExternalArrayStubCompiler::CompileKeyedStoreStub(
|
| // runtime for all other kinds of values.
|
| // r3: external array.
|
| // r4: key (integer).
|
| - __ JumpIfNotSmi(value, &check_heap_number);
|
| - __ mov(r5, Operand(value, ASR, kSmiTagSize)); // Untag the value.
|
| + if (array_type == kExternalPixelArray) {
|
| + // Double to pixel conversion is only implemented in the runtime for now.
|
| + __ JumpIfNotSmi(value, &slow);
|
| + } else {
|
| + __ JumpIfNotSmi(value, &check_heap_number);
|
| + }
|
| + __ SmiUntag(r5, value);
|
| __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
|
|
|
| // r3: base pointer of external storage.
|
| // r4: key (integer).
|
| // r5: value (integer).
|
| switch (array_type) {
|
| + case kExternalPixelArray:
|
| + // Clamp the value to [0..255].
|
| + __ Usat(r5, 8, Operand(r5));
|
| + __ strb(r5, MemOperand(r3, r4, LSL, 0));
|
| + break;
|
| case kExternalByteArray:
|
| case kExternalUnsignedByteArray:
|
| __ strb(r5, MemOperand(r3, r4, LSL, 0));
|
| @@ -3849,198 +3769,200 @@ MaybeObject* ExternalArrayStubCompiler::CompileKeyedStoreStub(
|
| // Entry registers are intact, r0 holds the value which is the return value.
|
| __ Ret();
|
|
|
| + if (array_type != kExternalPixelArray) {
|
| + // r3: external array.
|
| + // r4: index (integer).
|
| + __ bind(&check_heap_number);
|
| + __ CompareObjectType(value, r5, r6, HEAP_NUMBER_TYPE);
|
| + __ b(ne, &slow);
|
|
|
| - // r3: external array.
|
| - // r4: index (integer).
|
| - __ bind(&check_heap_number);
|
| - __ CompareObjectType(value, r5, r6, HEAP_NUMBER_TYPE);
|
| - __ b(ne, &slow);
|
| + __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
|
|
|
| - __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
|
| -
|
| - // r3: base pointer of external storage.
|
| - // r4: key (integer).
|
| + // r3: base pointer of external storage.
|
| + // r4: key (integer).
|
|
|
| - // The WebGL specification leaves the behavior of storing NaN and
|
| - // +/-Infinity into integer arrays basically undefined. For more
|
| - // reproducible behavior, convert these to zero.
|
| - if (CpuFeatures::IsSupported(VFP3)) {
|
| - CpuFeatures::Scope scope(VFP3);
|
| + // The WebGL specification leaves the behavior of storing NaN and
|
| + // +/-Infinity into integer arrays basically undefined. For more
|
| + // reproducible behavior, convert these to zero.
|
| + if (CpuFeatures::IsSupported(VFP3)) {
|
| + CpuFeatures::Scope scope(VFP3);
|
|
|
|
|
| - if (array_type == kExternalFloatArray) {
|
| - // vldr requires offset to be a multiple of 4 so we can not
|
| - // include -kHeapObjectTag into it.
|
| - __ sub(r5, r0, Operand(kHeapObjectTag));
|
| - __ vldr(d0, r5, HeapNumber::kValueOffset);
|
| - __ add(r5, r3, Operand(r4, LSL, 2));
|
| - __ vcvt_f32_f64(s0, d0);
|
| - __ vstr(s0, r5, 0);
|
| - } else {
|
| - // Need to perform float-to-int conversion.
|
| - // Test for NaN or infinity (both give zero).
|
| - __ ldr(r6, FieldMemOperand(value, HeapNumber::kExponentOffset));
|
| -
|
| - // Hoisted load. vldr requires offset to be a multiple of 4 so we can not
|
| - // include -kHeapObjectTag into it.
|
| - __ sub(r5, value, Operand(kHeapObjectTag));
|
| - __ vldr(d0, r5, HeapNumber::kValueOffset);
|
| -
|
| - __ Sbfx(r6, r6, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
|
| - // NaNs and Infinities have all-one exponents so they sign extend to -1.
|
| - __ cmp(r6, Operand(-1));
|
| - __ mov(r5, Operand(0), LeaveCC, eq);
|
| -
|
| - // Not infinity or NaN simply convert to int.
|
| - if (IsElementTypeSigned(array_type)) {
|
| - __ vcvt_s32_f64(s0, d0, kDefaultRoundToZero, ne);
|
| + if (array_type == kExternalFloatArray) {
|
| + // vldr requires offset to be a multiple of 4 so we can not
|
| + // include -kHeapObjectTag into it.
|
| + __ sub(r5, r0, Operand(kHeapObjectTag));
|
| + __ vldr(d0, r5, HeapNumber::kValueOffset);
|
| + __ add(r5, r3, Operand(r4, LSL, 2));
|
| + __ vcvt_f32_f64(s0, d0);
|
| + __ vstr(s0, r5, 0);
|
| } else {
|
| - __ vcvt_u32_f64(s0, d0, kDefaultRoundToZero, ne);
|
| - }
|
| - __ vmov(r5, s0, ne);
|
| -
|
| - switch (array_type) {
|
| - case kExternalByteArray:
|
| - case kExternalUnsignedByteArray:
|
| - __ strb(r5, MemOperand(r3, r4, LSL, 0));
|
| - break;
|
| - case kExternalShortArray:
|
| - case kExternalUnsignedShortArray:
|
| - __ strh(r5, MemOperand(r3, r4, LSL, 1));
|
| - break;
|
| - case kExternalIntArray:
|
| - case kExternalUnsignedIntArray:
|
| - __ str(r5, MemOperand(r3, r4, LSL, 2));
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - break;
|
| + // Need to perform float-to-int conversion.
|
| + // Test for NaN or infinity (both give zero).
|
| + __ ldr(r6, FieldMemOperand(value, HeapNumber::kExponentOffset));
|
| +
|
| + // Hoisted load. vldr requires offset to be a multiple of 4 so we can
|
| + // not include -kHeapObjectTag into it.
|
| + __ sub(r5, value, Operand(kHeapObjectTag));
|
| + __ vldr(d0, r5, HeapNumber::kValueOffset);
|
| +
|
| + __ Sbfx(r6, r6, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
|
| + // NaNs and Infinities have all-one exponents so they sign extend to -1.
|
| + __ cmp(r6, Operand(-1));
|
| + __ mov(r5, Operand(0), LeaveCC, eq);
|
| +
|
| + // Not infinity or NaN simply convert to int.
|
| + if (IsElementTypeSigned(array_type)) {
|
| + __ vcvt_s32_f64(s0, d0, kDefaultRoundToZero, ne);
|
| + } else {
|
| + __ vcvt_u32_f64(s0, d0, kDefaultRoundToZero, ne);
|
| + }
|
| + __ vmov(r5, s0, ne);
|
| +
|
| + switch (array_type) {
|
| + case kExternalByteArray:
|
| + case kExternalUnsignedByteArray:
|
| + __ strb(r5, MemOperand(r3, r4, LSL, 0));
|
| + break;
|
| + case kExternalShortArray:
|
| + case kExternalUnsignedShortArray:
|
| + __ strh(r5, MemOperand(r3, r4, LSL, 1));
|
| + break;
|
| + case kExternalIntArray:
|
| + case kExternalUnsignedIntArray:
|
| + __ str(r5, MemOperand(r3, r4, LSL, 2));
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| }
|
| - }
|
| -
|
| - // Entry registers are intact, r0 holds the value which is the return value.
|
| - __ Ret();
|
| - } else {
|
| - // VFP3 is not available do manual conversions.
|
| - __ ldr(r5, FieldMemOperand(value, HeapNumber::kExponentOffset));
|
| - __ ldr(r6, FieldMemOperand(value, HeapNumber::kMantissaOffset));
|
| -
|
| - if (array_type == kExternalFloatArray) {
|
| - Label done, nan_or_infinity_or_zero;
|
| - static const int kMantissaInHiWordShift =
|
| - kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
|
|
|
| - static const int kMantissaInLoWordShift =
|
| - kBitsPerInt - kMantissaInHiWordShift;
|
| -
|
| - // Test for all special exponent values: zeros, subnormal numbers, NaNs
|
| - // and infinities. All these should be converted to 0.
|
| - __ mov(r7, Operand(HeapNumber::kExponentMask));
|
| - __ and_(r9, r5, Operand(r7), SetCC);
|
| - __ b(eq, &nan_or_infinity_or_zero);
|
| -
|
| - __ teq(r9, Operand(r7));
|
| - __ mov(r9, Operand(kBinary32ExponentMask), LeaveCC, eq);
|
| - __ b(eq, &nan_or_infinity_or_zero);
|
| -
|
| - // Rebias exponent.
|
| - __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
|
| - __ add(r9,
|
| - r9,
|
| - Operand(kBinary32ExponentBias - HeapNumber::kExponentBias));
|
| -
|
| - __ cmp(r9, Operand(kBinary32MaxExponent));
|
| - __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, gt);
|
| - __ orr(r5, r5, Operand(kBinary32ExponentMask), LeaveCC, gt);
|
| - __ b(gt, &done);
|
| -
|
| - __ cmp(r9, Operand(kBinary32MinExponent));
|
| - __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, lt);
|
| - __ b(lt, &done);
|
| -
|
| - __ and_(r7, r5, Operand(HeapNumber::kSignMask));
|
| - __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
|
| - __ orr(r7, r7, Operand(r5, LSL, kMantissaInHiWordShift));
|
| - __ orr(r7, r7, Operand(r6, LSR, kMantissaInLoWordShift));
|
| - __ orr(r5, r7, Operand(r9, LSL, kBinary32ExponentShift));
|
| -
|
| - __ bind(&done);
|
| - __ str(r5, MemOperand(r3, r4, LSL, 2));
|
| // Entry registers are intact, r0 holds the value which is the return
|
| // value.
|
| __ Ret();
|
| -
|
| - __ bind(&nan_or_infinity_or_zero);
|
| - __ and_(r7, r5, Operand(HeapNumber::kSignMask));
|
| - __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
|
| - __ orr(r9, r9, r7);
|
| - __ orr(r9, r9, Operand(r5, LSL, kMantissaInHiWordShift));
|
| - __ orr(r5, r9, Operand(r6, LSR, kMantissaInLoWordShift));
|
| - __ b(&done);
|
| } else {
|
| - bool is_signed_type = IsElementTypeSigned(array_type);
|
| - int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt;
|
| - int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000;
|
| -
|
| - Label done, sign;
|
| -
|
| - // Test for all special exponent values: zeros, subnormal numbers, NaNs
|
| - // and infinities. All these should be converted to 0.
|
| - __ mov(r7, Operand(HeapNumber::kExponentMask));
|
| - __ and_(r9, r5, Operand(r7), SetCC);
|
| - __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
|
| - __ b(eq, &done);
|
| -
|
| - __ teq(r9, Operand(r7));
|
| - __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
|
| - __ b(eq, &done);
|
| -
|
| - // Unbias exponent.
|
| - __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
|
| - __ sub(r9, r9, Operand(HeapNumber::kExponentBias), SetCC);
|
| - // If exponent is negative then result is 0.
|
| - __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, mi);
|
| - __ b(mi, &done);
|
| -
|
| - // If exponent is too big then result is minimal value.
|
| - __ cmp(r9, Operand(meaningfull_bits - 1));
|
| - __ mov(r5, Operand(min_value), LeaveCC, ge);
|
| - __ b(ge, &done);
|
| -
|
| - __ and_(r7, r5, Operand(HeapNumber::kSignMask), SetCC);
|
| - __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
|
| - __ orr(r5, r5, Operand(1u << HeapNumber::kMantissaBitsInTopWord));
|
| -
|
| - __ rsb(r9, r9, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
|
| - __ mov(r5, Operand(r5, LSR, r9), LeaveCC, pl);
|
| - __ b(pl, &sign);
|
| -
|
| - __ rsb(r9, r9, Operand(0, RelocInfo::NONE));
|
| - __ mov(r5, Operand(r5, LSL, r9));
|
| - __ rsb(r9, r9, Operand(meaningfull_bits));
|
| - __ orr(r5, r5, Operand(r6, LSR, r9));
|
| -
|
| - __ bind(&sign);
|
| - __ teq(r7, Operand(0, RelocInfo::NONE));
|
| - __ rsb(r5, r5, Operand(0, RelocInfo::NONE), LeaveCC, ne);
|
| -
|
| - __ bind(&done);
|
| - switch (array_type) {
|
| - case kExternalByteArray:
|
| - case kExternalUnsignedByteArray:
|
| - __ strb(r5, MemOperand(r3, r4, LSL, 0));
|
| - break;
|
| - case kExternalShortArray:
|
| - case kExternalUnsignedShortArray:
|
| - __ strh(r5, MemOperand(r3, r4, LSL, 1));
|
| - break;
|
| - case kExternalIntArray:
|
| - case kExternalUnsignedIntArray:
|
| - __ str(r5, MemOperand(r3, r4, LSL, 2));
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - break;
|
| + // VFP3 is not available do manual conversions.
|
| + __ ldr(r5, FieldMemOperand(value, HeapNumber::kExponentOffset));
|
| + __ ldr(r6, FieldMemOperand(value, HeapNumber::kMantissaOffset));
|
| +
|
| + if (array_type == kExternalFloatArray) {
|
| + Label done, nan_or_infinity_or_zero;
|
| + static const int kMantissaInHiWordShift =
|
| + kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
|
| +
|
| + static const int kMantissaInLoWordShift =
|
| + kBitsPerInt - kMantissaInHiWordShift;
|
| +
|
| + // Test for all special exponent values: zeros, subnormal numbers, NaNs
|
| + // and infinities. All these should be converted to 0.
|
| + __ mov(r7, Operand(HeapNumber::kExponentMask));
|
| + __ and_(r9, r5, Operand(r7), SetCC);
|
| + __ b(eq, &nan_or_infinity_or_zero);
|
| +
|
| + __ teq(r9, Operand(r7));
|
| + __ mov(r9, Operand(kBinary32ExponentMask), LeaveCC, eq);
|
| + __ b(eq, &nan_or_infinity_or_zero);
|
| +
|
| + // Rebias exponent.
|
| + __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
|
| + __ add(r9,
|
| + r9,
|
| + Operand(kBinary32ExponentBias - HeapNumber::kExponentBias));
|
| +
|
| + __ cmp(r9, Operand(kBinary32MaxExponent));
|
| + __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, gt);
|
| + __ orr(r5, r5, Operand(kBinary32ExponentMask), LeaveCC, gt);
|
| + __ b(gt, &done);
|
| +
|
| + __ cmp(r9, Operand(kBinary32MinExponent));
|
| + __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, lt);
|
| + __ b(lt, &done);
|
| +
|
| + __ and_(r7, r5, Operand(HeapNumber::kSignMask));
|
| + __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
|
| + __ orr(r7, r7, Operand(r5, LSL, kMantissaInHiWordShift));
|
| + __ orr(r7, r7, Operand(r6, LSR, kMantissaInLoWordShift));
|
| + __ orr(r5, r7, Operand(r9, LSL, kBinary32ExponentShift));
|
| +
|
| + __ bind(&done);
|
| + __ str(r5, MemOperand(r3, r4, LSL, 2));
|
| + // Entry registers are intact, r0 holds the value which is the return
|
| + // value.
|
| + __ Ret();
|
| +
|
| + __ bind(&nan_or_infinity_or_zero);
|
| + __ and_(r7, r5, Operand(HeapNumber::kSignMask));
|
| + __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
|
| + __ orr(r9, r9, r7);
|
| + __ orr(r9, r9, Operand(r5, LSL, kMantissaInHiWordShift));
|
| + __ orr(r5, r9, Operand(r6, LSR, kMantissaInLoWordShift));
|
| + __ b(&done);
|
| + } else {
|
| + bool is_signed_type = IsElementTypeSigned(array_type);
|
| + int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt;
|
| + int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000;
|
| +
|
| + Label done, sign;
|
| +
|
| + // Test for all special exponent values: zeros, subnormal numbers, NaNs
|
| + // and infinities. All these should be converted to 0.
|
| + __ mov(r7, Operand(HeapNumber::kExponentMask));
|
| + __ and_(r9, r5, Operand(r7), SetCC);
|
| + __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
|
| + __ b(eq, &done);
|
| +
|
| + __ teq(r9, Operand(r7));
|
| + __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
|
| + __ b(eq, &done);
|
| +
|
| + // Unbias exponent.
|
| + __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
|
| + __ sub(r9, r9, Operand(HeapNumber::kExponentBias), SetCC);
|
| + // If exponent is negative then result is 0.
|
| + __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, mi);
|
| + __ b(mi, &done);
|
| +
|
| + // If exponent is too big then result is minimal value.
|
| + __ cmp(r9, Operand(meaningfull_bits - 1));
|
| + __ mov(r5, Operand(min_value), LeaveCC, ge);
|
| + __ b(ge, &done);
|
| +
|
| + __ and_(r7, r5, Operand(HeapNumber::kSignMask), SetCC);
|
| + __ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
|
| + __ orr(r5, r5, Operand(1u << HeapNumber::kMantissaBitsInTopWord));
|
| +
|
| + __ rsb(r9, r9, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
|
| + __ mov(r5, Operand(r5, LSR, r9), LeaveCC, pl);
|
| + __ b(pl, &sign);
|
| +
|
| + __ rsb(r9, r9, Operand(0, RelocInfo::NONE));
|
| + __ mov(r5, Operand(r5, LSL, r9));
|
| + __ rsb(r9, r9, Operand(meaningfull_bits));
|
| + __ orr(r5, r5, Operand(r6, LSR, r9));
|
| +
|
| + __ bind(&sign);
|
| + __ teq(r7, Operand(0, RelocInfo::NONE));
|
| + __ rsb(r5, r5, Operand(0, RelocInfo::NONE), LeaveCC, ne);
|
| +
|
| + __ bind(&done);
|
| + switch (array_type) {
|
| + case kExternalByteArray:
|
| + case kExternalUnsignedByteArray:
|
| + __ strb(r5, MemOperand(r3, r4, LSL, 0));
|
| + break;
|
| + case kExternalShortArray:
|
| + case kExternalUnsignedShortArray:
|
| + __ strh(r5, MemOperand(r3, r4, LSL, 1));
|
| + break;
|
| + case kExternalIntArray:
|
| + case kExternalUnsignedIntArray:
|
| + __ str(r5, MemOperand(r3, r4, LSL, 2));
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| }
|
| }
|
| }
|
|
|