OLD | NEW |
---|---|
1 // Copyright 2011 the V8 project authors. All rights reserved. | 1 // Copyright 2011 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
(...skipping 325 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
336 // Compute lower part of fraction (last 12 bits). | 336 // Compute lower part of fraction (last 12 bits). |
337 __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord)); | 337 __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord)); |
338 // And the top (top 20 bits). | 338 // And the top (top 20 bits). |
339 __ orr(exponent, | 339 __ orr(exponent, |
340 exponent, | 340 exponent, |
341 Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord)); | 341 Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord)); |
342 __ Ret(); | 342 __ Ret(); |
343 } | 343 } |
344 | 344 |
345 | 345 |
346 class FloatingPointHelper : public AllStatic { | |
347 public: | |
348 | |
349 enum Destination { | |
350 kVFPRegisters, | |
351 kCoreRegisters | |
352 }; | |
353 | |
354 | |
355 // Loads smis from r0 and r1 (right and left in binary operations) into | |
356 // floating point registers. Depending on the destination the values ends up | |
357 // either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is | |
358 // floating point registers VFP3 must be supported. If core registers are | |
359 // requested when VFP3 is supported d6 and d7 will be scratched. | |
360 static void LoadSmis(MacroAssembler* masm, | |
361 Destination destination, | |
362 Register scratch1, | |
363 Register scratch2); | |
364 | |
365 // Loads objects from r0 and r1 (right and left in binary operations) into | |
366 // floating point registers. Depending on the destination the values ends up | |
367 // either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is | |
368 // floating point registers VFP3 must be supported. If core registers are | |
369 // requested when VFP3 is supported d6 and d7 will still be scratched. If | |
370 // either r0 or r1 is not a number (not smi and not heap number object) the | |
371 // not_number label is jumped to. | |
372 static void LoadOperands(MacroAssembler* masm, | |
373 FloatingPointHelper::Destination destination, | |
374 Register heap_number_map, | |
375 Register scratch1, | |
376 Register scratch2, | |
377 Label* not_number); | |
378 private: | |
379 static void LoadNumber(MacroAssembler* masm, | |
380 FloatingPointHelper::Destination destination, | |
381 Register object, | |
382 DwVfpRegister dst, | |
383 Register dst1, | |
384 Register dst2, | |
385 Register heap_number_map, | |
386 Register scratch1, | |
387 Register scratch2, | |
388 Label* not_number); | |
389 }; | |
390 | |
391 | |
392 void FloatingPointHelper::LoadSmis(MacroAssembler* masm, | |
393 FloatingPointHelper::Destination destination, | |
394 Register scratch1, | |
395 Register scratch2) { | |
396 if (CpuFeatures::IsSupported(VFP3)) { | |
397 CpuFeatures::Scope scope(VFP3); | |
398 __ mov(scratch1, Operand(r0, ASR, kSmiTagSize)); | |
399 __ vmov(s15, scratch1); | |
400 __ vcvt_f64_s32(d7, s15); | |
401 __ mov(scratch1, Operand(r1, ASR, kSmiTagSize)); | |
402 __ vmov(s13, scratch1); | |
403 __ vcvt_f64_s32(d6, s13); | |
404 if (destination == kCoreRegisters) { | |
405 __ vmov(r2, r3, d7); | |
406 __ vmov(r0, r1, d6); | |
407 } | |
408 } else { | |
409 ASSERT(destination == kCoreRegisters); | |
410 // Write Smi from r0 to r3 and r2 in double format. | |
411 __ mov(scratch1, Operand(r0)); | |
412 ConvertToDoubleStub stub1(r3, r2, scratch1, scratch2); | |
413 __ push(lr); | |
414 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); | |
415 // Write Smi from r1 to r1 and r0 in double format. r9 is scratch. | |
416 __ mov(scratch1, Operand(r1)); | |
417 ConvertToDoubleStub stub2(r1, r0, scratch1, scratch2); | |
418 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); | |
419 __ pop(lr); | |
420 } | |
421 } | |
422 | |
423 | |
424 void FloatingPointHelper::LoadOperands( | |
425 MacroAssembler* masm, | |
426 FloatingPointHelper::Destination destination, | |
427 Register heap_number_map, | |
428 Register scratch1, | |
429 Register scratch2, | |
430 Label* slow) { | |
431 | |
432 // Load right operand (r0) to d6 or r2/r3. | |
433 LoadNumber(masm, destination, | |
434 r0, d7, r2, r3, heap_number_map, scratch1, scratch2, slow); | |
435 | |
436 // Load left operand (r1) to d7 or r0/r1. | |
437 LoadNumber(masm, destination, | |
438 r1, d6, r0, r1, heap_number_map, scratch1, scratch2, slow); | |
439 } | |
440 | |
441 | |
442 void FloatingPointHelper::LoadNumber(MacroAssembler* masm, | |
443 Destination destination, | |
444 Register object, | |
445 DwVfpRegister dst, | |
446 Register dst1, | |
447 Register dst2, | |
448 Register heap_number_map, | |
449 Register scratch1, | |
450 Register scratch2, | |
451 Label* not_number) { | |
452 Label is_smi, done; | |
453 | |
454 __ JumpIfSmi(object, &is_smi); | |
455 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number); | |
456 | |
457 // Handle loading a double from a heap number. | |
458 if (CpuFeatures::IsSupported(VFP3)) { | |
459 CpuFeatures::Scope scope(VFP3); | |
460 // Load the double from tagged HeapNumber to double register. | |
461 __ sub(scratch1, object, Operand(kHeapObjectTag)); | |
462 __ vldr(dst, scratch1, HeapNumber::kValueOffset); | |
463 } else { | |
464 ASSERT(destination == kCoreRegisters); | |
465 // Load the double from heap number to dst1 and dst2 in double format. | |
466 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset)); | |
467 } | |
468 __ jmp(&done); | |
469 | |
470 // Handle loading a double from a smi. | |
471 __ bind(&is_smi); | |
472 if (CpuFeatures::IsSupported(VFP3)) { | |
473 CpuFeatures::Scope scope(VFP3); | |
474 // Convert smi to double. | |
475 __ SmiUntag(scratch1, object); | |
476 __ vmov(dst.high(), scratch1); | |
477 __ vcvt_f64_s32(dst, dst.high()); | |
478 if (destination == kCoreRegisters) { | |
479 __ vmov(dst1, dst2, dst); | |
480 } | |
481 } else { | |
482 ASSERT(destination == kCoreRegisters); | |
483 // Write Smi to dst1 and dst2 double format. | |
484 __ mov(scratch1, Operand(object)); | |
485 ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2); | |
486 __ push(lr); | |
487 __ Call(stub.GetCode(), RelocInfo::CODE_TARGET); | |
488 __ pop(lr); | |
489 } | |
490 | |
491 __ bind(&done); | |
492 } | |
493 | |
494 | |
346 // See comment for class. | 495 // See comment for class. |
347 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { | 496 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { |
348 Label max_negative_int; | 497 Label max_negative_int; |
349 // the_int_ has the answer which is a signed int32 but not a Smi. | 498 // the_int_ has the answer which is a signed int32 but not a Smi. |
350 // We test for the special value that has a different exponent. This test | 499 // We test for the special value that has a different exponent. This test |
351 // has the neat side effect of setting the flags according to the sign. | 500 // has the neat side effect of setting the flags according to the sign. |
352 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); | 501 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); |
353 __ cmp(the_int_, Operand(0x80000000u)); | 502 __ cmp(the_int_, Operand(0x80000000u)); |
354 __ b(eq, &max_negative_int); | 503 __ b(eq, &max_negative_int); |
355 // Set up the correct exponent in scratch_. All non-Smi int32s have the same. | 504 // Set up the correct exponent in scratch_. All non-Smi int32s have the same. |
(...skipping 1011 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
1367 } else if (Token::ADD == op_) { | 1516 } else if (Token::ADD == op_) { |
1368 __ vadd(d5, d6, d7); | 1517 __ vadd(d5, d6, d7); |
1369 } else if (Token::SUB == op_) { | 1518 } else if (Token::SUB == op_) { |
1370 __ vsub(d5, d6, d7); | 1519 __ vsub(d5, d6, d7); |
1371 } else { | 1520 } else { |
1372 UNREACHABLE(); | 1521 UNREACHABLE(); |
1373 } | 1522 } |
1374 __ sub(r0, r5, Operand(kHeapObjectTag)); | 1523 __ sub(r0, r5, Operand(kHeapObjectTag)); |
1375 __ vstr(d5, r0, HeapNumber::kValueOffset); | 1524 __ vstr(d5, r0, HeapNumber::kValueOffset); |
1376 __ add(r0, r0, Operand(kHeapObjectTag)); | 1525 __ add(r0, r0, Operand(kHeapObjectTag)); |
1377 __ mov(pc, lr); | 1526 __ Ret(); |
1378 } else { | 1527 } else { |
1379 // If we did not inline the operation, then the arguments are in: | 1528 // If we did not inline the operation, then the arguments are in: |
1380 // r0: Left value (least significant part of mantissa). | 1529 // r0: Left value (least significant part of mantissa). |
1381 // r1: Left value (sign, exponent, top of mantissa). | 1530 // r1: Left value (sign, exponent, top of mantissa). |
1382 // r2: Right value (least significant part of mantissa). | 1531 // r2: Right value (least significant part of mantissa). |
1383 // r3: Right value (sign, exponent, top of mantissa). | 1532 // r3: Right value (sign, exponent, top of mantissa). |
1384 // r5: Address of heap number for result. | 1533 // r5: Address of heap number for result. |
1385 | 1534 |
1386 __ push(lr); // For later. | 1535 __ push(lr); // For later. |
1387 __ PrepareCallCFunction(4, r4); // Two doubles count as 4 arguments. | 1536 __ PrepareCallCFunction(4, r4); // Two doubles count as 4 arguments. |
(...skipping 811 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
2199 | 2348 |
2200 Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { | 2349 Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { |
2201 GenericBinaryOpStub stub(key, type_info); | 2350 GenericBinaryOpStub stub(key, type_info); |
2202 return stub.GetCode(); | 2351 return stub.GetCode(); |
2203 } | 2352 } |
2204 | 2353 |
2205 | 2354 |
2206 Handle<Code> GetTypeRecordingBinaryOpStub(int key, | 2355 Handle<Code> GetTypeRecordingBinaryOpStub(int key, |
2207 TRBinaryOpIC::TypeInfo type_info, | 2356 TRBinaryOpIC::TypeInfo type_info, |
2208 TRBinaryOpIC::TypeInfo result_type_info) { | 2357 TRBinaryOpIC::TypeInfo result_type_info) { |
2358 TypeRecordingBinaryOpStub stub(key, type_info, result_type_info); | |
2359 return stub.GetCode(); | |
2360 } | |
2361 | |
2362 | |
2363 void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { | |
2364 Label get_result; | |
2365 | |
2366 __ Push(r1, r0); | |
2367 | |
2368 __ mov(r2, Operand(Smi::FromInt(MinorKey()))); | |
2369 __ mov(r1, Operand(Smi::FromInt(op_))); | |
2370 __ mov(r0, Operand(Smi::FromInt(operands_type_))); | |
2371 __ Push(r2, r1, r0); | |
2372 | |
2373 __ TailCallExternalReference( | |
2374 ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch)), | |
2375 5, | |
2376 1); | |
2377 } | |
2378 | |
2379 | |
2380 void TypeRecordingBinaryOpStub::GenerateTypeTransitionWithSavedArgs( | |
2381 MacroAssembler* masm) { | |
2209 UNIMPLEMENTED(); | 2382 UNIMPLEMENTED(); |
2210 return Handle<Code>::null(); | 2383 } |
2384 | |
2385 | |
2386 void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) { | |
2387 switch (operands_type_) { | |
2388 case TRBinaryOpIC::UNINITIALIZED: | |
2389 GenerateTypeTransition(masm); | |
2390 break; | |
2391 case TRBinaryOpIC::SMI: | |
2392 GenerateSmiStub(masm); | |
2393 break; | |
2394 case TRBinaryOpIC::INT32: | |
2395 GenerateInt32Stub(masm); | |
2396 break; | |
2397 case TRBinaryOpIC::HEAP_NUMBER: | |
2398 GenerateHeapNumberStub(masm); | |
2399 break; | |
2400 case TRBinaryOpIC::STRING: | |
2401 GenerateStringStub(masm); | |
2402 break; | |
2403 case TRBinaryOpIC::GENERIC: | |
2404 GenerateGeneric(masm); | |
2405 break; | |
2406 default: | |
2407 UNREACHABLE(); | |
2408 } | |
2409 } | |
2410 | |
2411 | |
2412 const char* TypeRecordingBinaryOpStub::GetName() { | |
2413 if (name_ != NULL) return name_; | |
2414 const int kMaxNameLength = 100; | |
2415 name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); | |
2416 if (name_ == NULL) return "OOM"; | |
2417 const char* op_name = Token::Name(op_); | |
2418 const char* overwrite_name; | |
2419 switch (mode_) { | |
2420 case NO_OVERWRITE: overwrite_name = "Alloc"; break; | |
2421 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; | |
2422 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; | |
2423 default: overwrite_name = "UnknownOverwrite"; break; | |
2424 } | |
2425 | |
2426 OS::SNPrintF(Vector<char>(name_, kMaxNameLength), | |
2427 "TypeRecordingBinaryOpStub_%s_%s_%s", | |
2428 op_name, | |
2429 overwrite_name, | |
2430 TRBinaryOpIC::GetName(operands_type_)); | |
2431 return name_; | |
2432 } | |
2433 | |
2434 | |
2435 // Generate the smi code. If the operation on smis are successful this return is | |
2436 // generated. If the result is not a smi and heap number allocation is not | |
2437 // requested the code falls through. If number allocation is requested but a | |
2438 // heap number cannot be allocated the code jumps to the lable gc_required. | |
2439 void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, | |
2440 Label* gc_required, | |
2441 SmiCodeGenerateHeapNumberResults allow_heapnumber_results) { | |
2442 Label not_smis; | |
2443 | |
2444 ASSERT(op_ == Token::ADD); | |
2445 | |
2446 Register left = r1; | |
2447 Register right = r0; | |
2448 Register scratch1 = r7; | |
2449 Register scratch2 = r9; | |
2450 | |
2451 // Perform combined smi check on both operands. | |
2452 __ orr(scratch1, left, Operand(right)); | |
2453 STATIC_ASSERT(kSmiTag == 0); | |
2454 __ tst(scratch1, Operand(kSmiTagMask)); | |
2455 __ b(ne, ¬_smis); | |
2456 | |
2457 __ add(right, right, Operand(left), SetCC); // Add optimistically. | |
2458 | |
2459 // Return smi result if no overflow (r0 is the result). | |
2460 ASSERT(right.is(r0)); | |
2461 __ Ret(vc); | |
2462 | |
2463 // Result is not a smi. Revert the optimistic add. | |
2464 __ sub(right, right, Operand(left)); | |
2465 | |
2466 // If heap number results are possible generate the result in an allocated | |
2467 // heap number. | |
2468 if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) { | |
2469 FloatingPointHelper::Destination destination = | |
2470 CpuFeatures::IsSupported(VFP3) && Token::MOD != op_ ? | |
2471 FloatingPointHelper::kVFPRegisters : | |
2472 FloatingPointHelper::kCoreRegisters; | |
2473 | |
2474 Register heap_number_map = r6; | |
2475 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); | |
2476 | |
2477 // Allocate new heap number for result. | |
2478 Register heap_number = r5; | |
2479 __ AllocateHeapNumber( | |
2480 heap_number, scratch1, scratch2, heap_number_map, gc_required); | |
2481 | |
2482 // Load the smis. | |
2483 FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2); | |
2484 | |
2485 // Calculate the result. | |
2486 if (destination == FloatingPointHelper::kVFPRegisters) { | |
2487 // Using VFP registers: | |
2488 // d6: Left value | |
2489 // d7: Right value | |
2490 CpuFeatures::Scope scope(VFP3); | |
2491 __ vadd(d5, d6, d7); | |
2492 | |
2493 __ sub(r0, heap_number, Operand(kHeapObjectTag)); | |
2494 __ vstr(d5, r0, HeapNumber::kValueOffset); | |
2495 __ add(r0, r0, Operand(kHeapObjectTag)); | |
2496 __ Ret(); | |
2497 } else { | |
2498 // Using core registers: | |
2499 // r0: Left value (least significant part of mantissa). | |
2500 // r1: Left value (sign, exponent, top of mantissa). | |
2501 // r2: Right value (least significant part of mantissa). | |
2502 // r3: Right value (sign, exponent, top of mantissa). | |
2503 | |
2504 __ push(lr); // For later. | |
2505 __ PrepareCallCFunction(4, scratch1); // Two doubles count as 4 arguments . | |
Mads Ager (chromium)
2011/01/25 14:23:17
Long line.
Søren Thygesen Gjesse
2011/01/25 14:49:41
Done.
| |
2506 // Call C routine that may not cause GC or other trouble. r5 is callee | |
2507 // save. | |
2508 __ CallCFunction(ExternalReference::double_fp_operation(op_), 4); | |
2509 // Store answer in the overwritable heap number. | |
2510 #if !defined(USE_ARM_EABI) | |
2511 // Double returned in fp coprocessor register 0 and 1, encoded as | |
2512 // register cr8. Offsets must be divisible by 4 for coprocessor so we | |
2513 // need to substract the tag from r5. | |
2514 __ sub(scratch1, heap_number, Operand(kHeapObjectTag)); | |
2515 __ stc(p1, cr8, MemOperand(scratch1, HeapNumber::kValueOffset)); | |
2516 #else | |
2517 // Double returned in registers 0 and 1. | |
2518 __ Strd(r0, r1, FieldMemOperand(heap_number, HeapNumber::kValueOffset)); | |
2519 #endif | |
2520 __ mov(r0, Operand(heap_number)); | |
2521 // And we are done. | |
2522 __ pop(pc); | |
2523 } | |
2524 } | |
2525 __ bind(¬_smis); | |
2526 } | |
2527 | |
2528 | |
2529 void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { | |
2530 Label not_smis, call_runtime; | |
2531 | |
2532 ASSERT(op_ == Token::ADD); | |
2533 | |
2534 if (result_type_ == TRBinaryOpIC::UNINITIALIZED || | |
2535 result_type_ == TRBinaryOpIC::SMI) { | |
2536 // Only allow smi results. | |
2537 GenerateSmiCode(masm, NULL, NO_HEAPNUMBER_RESULTS); | |
2538 } else { | |
2539 // Allow heap number result and don't make a transition if a heap number | |
2540 // cannot be allocated. | |
2541 GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); | |
2542 } | |
2543 | |
2544 // Code falls through if the result is not returned as either a smi or heap | |
2545 // number. | |
2546 GenerateTypeTransition(masm); | |
2547 | |
2548 __ bind(&call_runtime); | |
2549 GenerateCallRuntime(masm); | |
2550 } | |
2551 | |
2552 | |
2553 void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) { | |
2554 ASSERT(operands_type_ == TRBinaryOpIC::STRING); | |
2555 ASSERT(op_ == Token::ADD); | |
2556 // Try to add arguments as strings, otherwise, transition to the generic | |
2557 // TRBinaryOpIC type. | |
2558 GenerateAddStrings(masm); | |
2559 GenerateTypeTransition(masm); | |
2560 } | |
2561 | |
2562 | |
2563 void TypeRecordingBinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { | |
2564 ASSERT(op_ == Token::ADD); | |
2565 | |
2566 ASSERT(operands_type_ == TRBinaryOpIC::INT32); | |
2567 | |
2568 GenerateTypeTransition(masm); | |
2569 } | |
2570 | |
2571 | |
2572 void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { | |
2573 ASSERT(op_ == Token::ADD); | |
2574 | |
2575 Register scratch1 = r7; | |
2576 Register scratch2 = r9; | |
2577 | |
2578 Label not_number, call_runtime; | |
2579 ASSERT(operands_type_ == TRBinaryOpIC::HEAP_NUMBER); | |
2580 | |
2581 Register heap_number_map = r6; | |
2582 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); | |
2583 | |
2584 // Load left and right operands into d6 and d7 or r0/r1 and r2/r3 depending on | |
2585 // whether VFP3 is available. | |
2586 FloatingPointHelper::Destination destination = | |
2587 CpuFeatures::IsSupported(VFP3) ? | |
2588 FloatingPointHelper::kVFPRegisters : | |
2589 FloatingPointHelper::kCoreRegisters; | |
2590 FloatingPointHelper::LoadOperands(masm, | |
2591 destination, | |
2592 heap_number_map, | |
2593 scratch1, | |
2594 scratch2, | |
2595 ¬_number); | |
2596 if (destination == FloatingPointHelper::kVFPRegisters) { | |
2597 // Use floating point instructions for the binary operation. | |
2598 CpuFeatures::Scope scope(VFP3); | |
2599 __ vadd(d5, d6, d7); | |
2600 | |
2601 // Get a heap number object for the result - might be left or right if one | |
2602 // of these are overwritable. | |
2603 GenerateHeapResultAllocation( | |
2604 masm, r4, heap_number_map, scratch1, scratch2, &call_runtime); | |
2605 | |
2606 // Fill the result into the allocated heap number and return. | |
2607 __ sub(r0, r4, Operand(kHeapObjectTag)); | |
2608 __ vstr(d5, r0, HeapNumber::kValueOffset); | |
2609 __ add(r0, r0, Operand(kHeapObjectTag)); | |
2610 __ Ret(); | |
2611 | |
2612 } else { | |
2613 // Call a C function for the binary operation. | |
2614 // r0/r1: Left operand | |
2615 // r2/r3: Right operand | |
2616 | |
2617 // Get a heap number object for the result - might be left or right if one | |
2618 // of these are overwritable. Uses a callee-save register to keep the value | |
2619 // across the c call. | |
2620 GenerateHeapResultAllocation( | |
2621 masm, r4, heap_number_map, scratch1, scratch2, &call_runtime); | |
2622 | |
2623 __ push(lr); // For returning later (no GC after this point). | |
2624 __ PrepareCallCFunction(4, scratch1); // Two doubles count as 4 arguments. | |
2625 // Call C routine that may not cause GC or other trouble. r4 is callee | |
2626 // saved. | |
2627 __ CallCFunction(ExternalReference::double_fp_operation(op_), 4); | |
2628 | |
2629 // Fill the result into the allocated heap number. | |
2630 #if !defined(USE_ARM_EABI) | |
2631 // Double returned in fp coprocessor register 0 and 1, encoded as | |
2632 // register cr8. Offsets must be divisible by 4 for coprocessor so we | |
2633 // need to substract the tag from r5. | |
2634 __ sub(scratch1, r4, Operand(kHeapObjectTag)); | |
2635 __ stc(p1, cr8, MemOperand(scratch1, HeapNumber::kValueOffset)); | |
2636 #else | |
2637 // Double returned in registers 0 and 1. | |
2638 __ Strd(r0, r1, FieldMemOperand(r4, HeapNumber::kValueOffset)); | |
2639 #endif | |
2640 __ mov(r0, Operand(r4)); | |
2641 __ pop(pc); // Return to the pushed lr. | |
2642 } | |
2643 | |
2644 __ bind(¬_number); | |
2645 GenerateTypeTransition(masm); | |
2646 | |
2647 __ bind(&call_runtime); | |
2648 GenerateCallRuntime(masm); | |
2649 } | |
2650 | |
2651 | |
2652 void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) { | |
2653 ASSERT(op_ == Token::ADD); | |
2654 | |
2655 Label call_runtime; | |
2656 | |
2657 GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); | |
2658 | |
2659 // If all else fails, use the runtime system to get the correct | |
2660 // result. | |
2661 __ bind(&call_runtime); | |
2662 | |
2663 // Try to add strings before calling runtime. | |
2664 GenerateAddStrings(masm); | |
2665 | |
2666 GenericBinaryOpStub stub(op_, mode_, r1, r0); | |
2667 __ TailCallStub(&stub); | |
2668 } | |
2669 | |
2670 | |
2671 void TypeRecordingBinaryOpStub::GenerateAddStrings(MacroAssembler* masm) { | |
2672 Register left = r1; | |
2673 Register right = r0; | |
2674 Label call_runtime; | |
2675 | |
2676 // Check if first argument is a string. | |
2677 __ JumpIfSmi(left, &call_runtime); | |
2678 __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE); | |
2679 __ b(ge, &call_runtime); | |
2680 | |
2681 // First argument is a a string, test second. | |
2682 __ JumpIfSmi(right, &call_runtime); | |
2683 __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE); | |
2684 __ b(ge, &call_runtime); | |
2685 | |
2686 // First and second argument are strings. | |
2687 StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); | |
2688 GenerateRegisterArgsPush(masm); | |
2689 __ TailCallStub(&string_add_stub); | |
2690 | |
2691 // At least one argument is not a string. | |
2692 __ bind(&call_runtime); | |
2693 } | |
2694 | |
2695 | |
2696 void TypeRecordingBinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) { | |
2697 switch (op_) { | |
2698 case Token::ADD: | |
2699 GenerateRegisterArgsPush(masm); | |
2700 __ InvokeBuiltin(Builtins::ADD, JUMP_JS); | |
2701 break; | |
2702 default: | |
2703 UNREACHABLE(); | |
2704 } | |
2705 } | |
2706 | |
2707 | |
2708 void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation( | |
2709 MacroAssembler* masm, | |
2710 Register result, | |
2711 Register heap_number_map, | |
2712 Register scratch1, | |
2713 Register scratch2, | |
2714 Label* gc_required) { | |
2715 | |
2716 // Code below will scratch result if allocation fails. To keep both arguments | |
2717 // intact for the runtime call result cannot be one of these. | |
2718 ASSERT(!result.is(r0) && !result.is(r1)); | |
2719 | |
2720 if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) { | |
2721 Label skip_allocation, allocated; | |
2722 Register overwritable_operand = mode_ == OVERWRITE_LEFT ? r1 : r0; | |
2723 // If the overwritable operand is already an object, we skip the | |
2724 // allocation of a heap number. | |
2725 __ JumpIfNotSmi(overwritable_operand, &skip_allocation); | |
2726 // Allocate a heap number for the result. | |
2727 __ AllocateHeapNumber( | |
2728 result, scratch1, scratch2, heap_number_map, gc_required); | |
2729 __ b(&allocated); | |
2730 __ bind(&skip_allocation); | |
2731 // Use object holding the overwritable operand for result. | |
2732 __ mov(result, Operand(overwritable_operand)); | |
2733 __ bind(&allocated); | |
2734 } else { | |
2735 ASSERT(mode_ == NO_OVERWRITE); | |
2736 __ AllocateHeapNumber( | |
2737 result, scratch1, scratch2, heap_number_map, gc_required); | |
2738 } | |
2739 } | |
2740 | |
2741 | |
2742 void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { | |
2743 __ Push(r1, r0); | |
2211 } | 2744 } |
2212 | 2745 |
2213 | 2746 |
2214 void TranscendentalCacheStub::Generate(MacroAssembler* masm) { | 2747 void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
2215 // Argument is a number and is on stack and in r0. | 2748 // Argument is a number and is on stack and in r0. |
2216 Label runtime_call; | 2749 Label runtime_call; |
2217 Label input_not_smi; | 2750 Label input_not_smi; |
2218 Label loaded; | 2751 Label loaded; |
2219 | 2752 |
2220 if (CpuFeatures::IsSupported(VFP3)) { | 2753 if (CpuFeatures::IsSupported(VFP3)) { |
(...skipping 2865 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
5086 __ pop(r1); | 5619 __ pop(r1); |
5087 __ Jump(r2); | 5620 __ Jump(r2); |
5088 } | 5621 } |
5089 | 5622 |
5090 | 5623 |
5091 #undef __ | 5624 #undef __ |
5092 | 5625 |
5093 } } // namespace v8::internal | 5626 } } // namespace v8::internal |
5094 | 5627 |
5095 #endif // V8_TARGET_ARCH_ARM | 5628 #endif // V8_TARGET_ARCH_ARM |
OLD | NEW |