Chromium Code Reviews| Index: skia/ext/convolver.cc |
| diff --git a/skia/ext/convolver.cc b/skia/ext/convolver.cc |
| index a42a9daf32a17a3a77602f89d841de997f2787de..dd1e5068a383091fd1fcee307e97b7a5fae9fdb7 100644 |
| --- a/skia/ext/convolver.cc |
| +++ b/skia/ext/convolver.cc |
| @@ -7,6 +7,10 @@ |
| #include "skia/ext/convolver.h" |
| #include "third_party/skia/include/core/SkTypes.h" |
| +#if defined(ARCH_CPU_X86_FAMILY) |
| +#include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h |
| +#endif |
| + |
| namespace skia { |
| namespace { |
| @@ -199,7 +203,7 @@ void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, |
| if (has_alpha) { |
| unsigned char alpha = ClampTo8(accum[3]); |
| - // Make sure the alpha channel doesn't come out larger than any of the |
| + // Make sure the alpha channel doesn't come out smaller than any of the |
| // color channels. We use premultipled alpha channels, so this should |
| // never happen, but rounding errors will cause this from time to time. |
| // These "impossible" colors will cause overflows (and hence random pixel |
| @@ -219,6 +223,367 @@ void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, |
| } |
| } |
| + |
| +// Convolves horizontally along a single row. The row data is given in |
| +// |src_data| and continues for the num_values() of the filter. |
| +void ConvolveHorizontally_SSE2(const unsigned char* src_data, |
| + const ConvolutionFilter1D& filter, |
| + unsigned char* out_row) { |
| +#ifdef ARCH_CPU_X86_FAMILY |
| + int num_values = filter.num_values(); |
| + |
| + int filter_offset, filter_length; |
| + __m128i zero = _mm_setzero_si128(); |
| + __m128i mask[4]; |
|
brettw
2011/02/21 04:45:45
What's mask[0] for? Can you provide a comment for
jiesun
2011/02/22 21:37:03
yes, mask[0] is not used.
|
| + mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); |
| + mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); |
| + mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); |
| + |
| + for (int out_x = 0; out_x < num_values; out_x += 1) { |
| + const ConvolutionFilter1D::Fixed* filter_values = |
| + filter.FilterForValue(out_x, &filter_offset, &filter_length); |
| + |
| + __m128i accum = _mm_setzero_si128(); |
| + |
| + const __m128i* row_to_filter = |
|
brettw
2011/02/21 04:45:45
Can you comment what this means?
jiesun
2011/02/22 21:37:03
Done.
|
| + reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]); |
| + // Four filter taps per iteration. |
| + for (int j = 0; j < filter_length >> 2; ++j) { |
| + __m128i coeff, coeff16; |
|
brettw
2011/02/21 04:45:45
For each of the "blocks" of SSE code you're writte
jiesun
2011/02/22 21:37:03
Done.
|
| + // [16] xx xx xx xx c3 c2 c1 c0 |
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| + // [16] xx xx xx xx c1 c1 c0 c0 |
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| + // [16] c1 c1 c1 c1 c0 c0 c0 c0 |
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| + |
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| + __m128i src8 = _mm_loadu_si128(row_to_filter); |
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| + // [32] a0*c0 b0*c0 g0*c0 r0*c0 |
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| + accum = _mm_add_epi32(accum, t); |
| + // [32] a1*c1 b1*c1 g1*c1 r1*c1 |
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| + accum = _mm_add_epi32(accum, t); |
| + |
| + // [16] xx xx xx xx c3 c3 c2 c2 |
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| + // [16] c3 c3 c3 c3 c2 c2 c2 c2 |
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| + // [16] a3 g3 b3 r3 a2 g2 b2 r2 |
| + src16 = _mm_unpackhi_epi8(src8, zero); |
| + mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| + mul_lo = _mm_mullo_epi16(src16, coeff16); |
| + // [32] a2*c2 b2*c2 g2*c2 r2*c2 |
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| + accum = _mm_add_epi32(accum, t); |
| + // [32] a3*c3 b3*c3 g3*c3 r3*c3 |
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| + accum = _mm_add_epi32(accum, t); |
| + |
| + row_to_filter += 1; |
| + filter_values += 4; |
| + } |
| + |
| + // remaining |
|
brettw
2011/02/21 04:45:45
Can you provide a better comment here?
jiesun
2011/02/22 21:37:03
Done.
|
| + int r = filter_length&3; |
| + if (r) { |
| + // Note: filter_values must be padded to align_up(filter_offset, 8). |
| + __m128i coeff, coeff16; |
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| + // Mask out extra filter taps. |
| + coeff = _mm_and_si128(coeff, mask[r]); |
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| + |
| + // Note: line buffer must be padded to align_up(filter_offset, 16). |
| + // We resolve this by use C-version for the last horizontal line. |
| + __m128i src8 = _mm_loadu_si128(row_to_filter); |
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| + accum = _mm_add_epi32(accum, t); |
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| + accum = _mm_add_epi32(accum, t); |
| + |
| + src16 = _mm_unpackhi_epi8(src8, zero); |
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| + mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| + mul_lo = _mm_mullo_epi16(src16, coeff16); |
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| + accum = _mm_add_epi32(accum, t); |
| + } |
| + |
| + // shift right for fix point implementation before saturation. |
| + accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits); |
| + accum = _mm_packs_epi32(accum, zero); |
| + accum = _mm_packus_epi16(accum, zero); |
| + |
| + *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum); |
| + out_row += 4; |
| + } |
| +#endif |
| +} |
| + |
| +// Convolves horizontally along four rows. The row data is given in |
| +// |src_data| and continues for the num_values() of the filter. |
| +void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4], |
| + const ConvolutionFilter1D& filter, |
| + unsigned char* out_row[4]) { |
| +#ifdef ARCH_CPU_X86_FAMILY |
| + int width = filter.num_values(); |
| + |
| + int filter_offset, filter_length; |
| + __m128i zero = _mm_setzero_si128(); |
| + __m128i mask[4]; |
| + mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); |
| + mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); |
| + mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); |
| + |
| + for (int i = 0; i < width; ++i) { |
| + const ConvolutionFilter1D::Fixed* filter_values = |
| + filter.FilterForValue(i, &filter_offset, &filter_length); |
| + |
| + // four pixels in a column per iteration. |
| + __m128i accum0 = _mm_setzero_si128(); |
| + __m128i accum1 = _mm_setzero_si128(); |
| + __m128i accum2 = _mm_setzero_si128(); |
| + __m128i accum3 = _mm_setzero_si128(); |
| + int start = (filter_offset<<2); |
| + for (int j = 0; j < (filter_length >> 2); ++j) { |
| + __m128i coeff, coeff16lo, coeff16hi; |
| + // [16] xx xx xx xx c3 c2 c1 c0 |
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| + // [16] xx xx xx xx c1 c1 c0 c0 |
| + coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| + // [16] c1 c1 c1 c1 c0 c0 c0 c0 |
| + coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); |
| + // [16] xx xx xx xx c3 c3 c2 c2 |
| + coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| + // [16] c3 c3 c3 c3 c2 c2 c2 c2 |
| + coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); |
| + |
| + __m128i src8, src16, mul_hi, mul_lo, t; |
| + |
| +#define ITERATION(src, accum) \ |
| + src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \ |
| + src16 = _mm_unpacklo_epi8(src8, zero); \ |
| + mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ |
| + mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ |
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ |
| + accum = _mm_add_epi32(accum, t); \ |
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ |
| + accum = _mm_add_epi32(accum, t); \ |
| + src16 = _mm_unpackhi_epi8(src8, zero); \ |
| + mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ |
| + mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ |
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ |
| + accum = _mm_add_epi32(accum, t); \ |
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ |
| + accum = _mm_add_epi32(accum, t) |
| + |
| + ITERATION(src_data[0]+start, accum0); |
| + ITERATION(src_data[1]+start, accum1); |
| + ITERATION(src_data[2]+start, accum2); |
| + ITERATION(src_data[3]+start, accum3); |
| + |
| + start += 16; |
| + filter_values += 4; |
| + } |
| + |
| + int r = filter_length&3; |
| + if (r) { |
| + // Note: filter_values must be padded to align_up(filter_offset, 8); |
| + __m128i coeff; |
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| + // Mask out extra filter taps. |
| + coeff = _mm_and_si128(coeff, mask[r]); |
| + |
| + __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| + /* c1 c1 c1 c1 c0 c0 c0 c0 */ |
| + coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); |
| + __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| + coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); |
| + |
| + __m128i src8, src16, mul_hi, mul_lo, t; |
| + |
| + ITERATION(src_data[0]+start, accum0); |
| + ITERATION(src_data[1]+start, accum1); |
| + ITERATION(src_data[2]+start, accum2); |
| + ITERATION(src_data[3]+start, accum3); |
| + } |
| + |
| + accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
| + accum0 = _mm_packs_epi32(accum0, zero); |
| + accum0 = _mm_packus_epi16(accum0, zero); |
| + accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
| + accum1 = _mm_packs_epi32(accum1, zero); |
| + accum1 = _mm_packus_epi16(accum1, zero); |
| + accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
| + accum2 = _mm_packs_epi32(accum2, zero); |
| + accum2 = _mm_packus_epi16(accum2, zero); |
| + accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); |
| + accum3 = _mm_packs_epi32(accum3, zero); |
| + accum3 = _mm_packus_epi16(accum3, zero); |
| + |
| + *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0); |
| + *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1); |
| + *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2); |
| + *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3); |
| + |
| + out_row[0] += 4; |
| + out_row[1] += 4; |
| + out_row[2] += 4; |
| + out_row[3] += 4; |
| + } |
| +#endif |
| +} |
| + |
| +template<bool has_alpha> |
| +void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, |
| + int filter_length, |
|
brettw
2011/02/21 04:45:45
Check indentation
jiesun
2011/02/22 21:37:03
Done.
|
| + unsigned char* const* source_data_rows, |
| + int pixel_width, |
| + unsigned char* out_row) { |
| +#ifdef ARCH_CPU_X86_FAMILY |
| + int width = pixel_width & ~3; |
| + |
| + __m128i zero = _mm_setzero_si128(); |
| + __m128i accum0, accum1, accum2, accum3, coeff16; |
| + const __m128i* src; |
| + for (int i = 0; i < width; i += 4) { // Four pixels per iteration. |
| + accum0 = _mm_setzero_si128(); |
| + accum1 = _mm_setzero_si128(); |
| + accum2 = _mm_setzero_si128(); |
| + accum3 = _mm_setzero_si128(); |
| + for (int j = 0; j < filter_length; ++j) { |
| + coeff16 = _mm_set1_epi16(filter_values[j]); |
| + |
| + // aligned load due to row_buffer is 16 byte aligned. |
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| + src = reinterpret_cast<const __m128i*>(&source_data_rows[j][i<<2]); |
| + __m128i src8 = _mm_loadu_si128(src); |
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| + // [32] a0 b0 g0 r0 |
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| + accum0 = _mm_add_epi32(accum0, t); |
| + // [32] a1 b1 g1 r1 |
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| + accum1 = _mm_add_epi32(accum1, t); |
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| + src16 = _mm_unpackhi_epi8(src8, zero); |
| + mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| + mul_lo = _mm_mullo_epi16(src16, coeff16); |
| + // [32] a2 b2 g2 r2 |
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| + accum2 = _mm_add_epi32(accum2, t); |
| + // [32] a3 b3 g3 r3 |
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| + accum3 = _mm_add_epi32(accum3, t); |
| + } |
| + |
| + accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
| + accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
| + accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
| + accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); |
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| + accum0 = _mm_packs_epi32(accum0, accum1); |
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| + accum2 = _mm_packs_epi32(accum2, accum3); |
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| + accum0 = _mm_packus_epi16(accum0, accum2); |
| + if (has_alpha) { |
| + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
| + __m128i a = _mm_srli_epi32(accum0, 8); |
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| + __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. |
| + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
| + a = _mm_srli_epi32(accum0, 16); |
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| + b = _mm_max_epu8(a, b); // Max of r and g and b. |
| + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
| + b = _mm_slli_epi32(b, 24); |
| + accum0 = _mm_max_epu8(b, accum0); |
| + } else { |
| + __m128i mask = _mm_set1_epi32(0xff000000); |
| + accum0 = _mm_or_si128(accum0, mask); |
| + } |
| + _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); |
| + out_row += 16; |
| + } |
| + |
| + if (pixel_width & 3) { |
| + accum0 = _mm_setzero_si128(); |
| + accum1 = _mm_setzero_si128(); |
| + accum2 = _mm_setzero_si128(); |
| + for (int j = 0; j < filter_length; ++j) { |
| + coeff16 = _mm_set1_epi16(filter_values[j]); |
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| + src = reinterpret_cast<const __m128i*>(&source_data_rows[j][width<<2]); |
| + __m128i src8 = _mm_loadu_si128(src); |
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| + // [32] a0 b0 g0 r0 |
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| + accum0 = _mm_add_epi32(accum0, t); |
| + // [32] a1 b1 g1 r1 |
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| + accum1 = _mm_add_epi32(accum1, t); |
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| + src16 = _mm_unpackhi_epi8(src8, zero); |
| + mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| + mul_lo = _mm_mullo_epi16(src16, coeff16); |
| + // [32] a2 b2 g2 r2 |
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| + accum2 = _mm_add_epi32(accum2, t); |
| + } |
| + |
| + accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
| + accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
| + accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| + accum0 = _mm_packs_epi32(accum0, accum1); |
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| + accum2 = _mm_packs_epi32(accum2, zero); |
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| + accum0 = _mm_packus_epi16(accum0, accum2); |
| + if (has_alpha) { |
| + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
| + __m128i a = _mm_srli_epi32(accum0, 8); |
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| + __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. |
| + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
| + a = _mm_srli_epi32(accum0, 16); |
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| + b = _mm_max_epu8(a, b); // Max of r and g and b. |
| + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
| + b = _mm_slli_epi32(b, 24); |
| + accum0 = _mm_max_epu8(b, accum0); |
| + } else { |
| + __m128i mask = _mm_set1_epi32(0xff000000); |
| + accum0 = _mm_or_si128(accum0, mask); |
| + } |
| + |
| + for (int i = width; i < pixel_width; ++i) { |
| + *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0); |
| + accum0 = _mm_srli_si128(accum0, 4); |
| + out_row += 4; |
| + } |
| + } |
| +#endif |
| +} |
| + |
| } // namespace |
| // ConvolutionFilter1D --------------------------------------------------------- |
| @@ -284,15 +649,13 @@ void ConvolutionFilter1D::AddFilter(int filter_offset, |
| max_filter_ = std::max(max_filter_, filter_length); |
| } |
| -// BGRAConvolve2D ------------------------------------------------------------- |
| - |
| -void BGRAConvolve2D(const unsigned char* source_data, |
| - int source_byte_row_stride, |
| - bool source_has_alpha, |
| - const ConvolutionFilter1D& filter_x, |
| - const ConvolutionFilter1D& filter_y, |
| - int output_byte_row_stride, |
| - unsigned char* output) { |
| +void BGRAConvolve2D_C(const unsigned char* source_data, |
| + int source_byte_row_stride, |
| + bool source_has_alpha, |
| + const ConvolutionFilter1D& filter_x, |
| + const ConvolutionFilter1D& filter_y, |
| + int output_byte_row_stride, |
| + unsigned char* output) { |
| int max_y_filter_size = filter_y.max_filter(); |
| // The next row in the input that we will generate a horizontally |
| @@ -317,6 +680,11 @@ void BGRAConvolve2D(const unsigned char* source_data, |
| // convolutions to run each subsequent vertical convolution. |
| SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); |
| int num_output_rows = filter_y.num_values(); |
| + |
| + int last_filter_offset, last_filter_length; |
| + filter_y.FilterForValue(num_output_rows-1, &last_filter_offset, |
| + &last_filter_length); |
| + |
| for (int out_y = 0; out_y < num_output_rows; out_y++) { |
| filter_values = filter_y.FilterForValue(out_y, |
| &filter_offset, &filter_length); |
| @@ -354,10 +722,132 @@ void BGRAConvolve2D(const unsigned char* source_data, |
| filter_x.num_values(), cur_output_row); |
| } else { |
| ConvolveVertically<false>(filter_values, filter_length, |
| - first_row_for_filter, |
| - filter_x.num_values(), cur_output_row); |
| + first_row_for_filter, |
| + filter_x.num_values(), cur_output_row); |
| } |
| } |
| } |
| +// BGRAConvolve2D ------------------------------------------------------------- |
| + |
| +void BGRAConvolve2D_SSE2(const unsigned char* source_data, |
| + int source_byte_row_stride, |
| + bool source_has_alpha, |
| + const ConvolutionFilter1D& filter_x, |
| + const ConvolutionFilter1D& filter_y, |
| + int output_byte_row_stride, |
| + unsigned char* output) { |
| + int max_y_filter_size = filter_y.max_filter(); |
| + |
| + // The next row in the input that we will generate a horizontally |
| + // convolved row for. If the filter doesn't start at the beginning of the |
| + // image (this is the case when we are only resizing a subset), then we |
| + // don't want to generate any output rows before that. Compute the starting |
| + // row for convolution as the first pixel for the first vertical filter. |
| + int filter_offset, filter_length; |
| + const ConvolutionFilter1D::Fixed* filter_values = |
| + filter_y.FilterForValue(0, &filter_offset, &filter_length); |
| + int next_x_row = filter_offset; |
| + |
| + // We loop over each row in the input doing a horizontal convolution. This |
| + // will result in a horizontally convolved image. We write the results into |
| + // a circular buffer of convolved rows and do vertical convolution as rows |
| + // are available. This prevents us from having to store the entire |
| + // intermediate image and helps cache coherency. |
| + // We will need four extra rows to allow horizontal convolution could be done |
| + // simultaneously. |
| + int row_buffer_width = (filter_x.num_values() + 15) & ~0xF; |
| + int row_buffer_height = max_y_filter_size + 4; |
| + CircularRowBuffer row_buffer(row_buffer_width, |
| + row_buffer_height, |
| + filter_offset); |
| + |
| + // Loop over every possible output row, processing just enough horizontal |
| + // convolutions to run each subsequent vertical convolution. |
| + SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); |
| + int num_output_rows = filter_y.num_values(); |
| + |
| + int last_filter_offset, last_filter_length; |
| + filter_y.FilterForValue(num_output_rows-1, &last_filter_offset, |
| + &last_filter_length); |
| + |
| + for (int out_y = 0; out_y < num_output_rows; out_y++) { |
| + filter_values = filter_y.FilterForValue(out_y, |
| + &filter_offset, &filter_length); |
| + |
| + // Generate output rows until we have enough to run the current filter. |
| + while (next_x_row < filter_offset + filter_length) { |
| + if (next_x_row + 3 < last_filter_offset + last_filter_length - 1) { |
| + const unsigned char* src[4]; |
| + unsigned char* out_row[4]; |
| + for (int i = 0; i < 4; ++i) { |
| + src[i] = &source_data[(next_x_row+i) * source_byte_row_stride]; |
| + out_row[i] = row_buffer.AdvanceRow(); |
| + } |
| + ConvolveHorizontally4_SSE2(src, filter_x, out_row); |
| + next_x_row+=4; |
| + } else { |
| + // For the last row, SSE2 load possibly to access data beyond the |
| + // image area. therefore we use C version here. Hacking into skia |
| + // to add line paddings is not something in my mind. |
| + if (next_x_row == last_filter_offset + last_filter_length - 1) { |
| + if (source_has_alpha) |
| + ConvolveHorizontally<true>( |
| + &source_data[next_x_row * source_byte_row_stride], |
| + filter_x, row_buffer.AdvanceRow()); |
| + else |
| + ConvolveHorizontally<false>( |
| + &source_data[next_x_row * source_byte_row_stride], |
| + filter_x, row_buffer.AdvanceRow()); |
| + } else { |
| + ConvolveHorizontally_SSE2( |
| + &source_data[next_x_row * source_byte_row_stride], |
| + filter_x, row_buffer.AdvanceRow()); |
| + } |
| + next_x_row++; |
| + } |
| + } |
| + |
| + // Compute where in the output image this row of final data will go. |
| + unsigned char* cur_output_row = &output[out_y * output_byte_row_stride]; |
| + |
| + // Get the list of rows that the circular buffer has, in order. |
| + int first_row_in_circular_buffer; |
| + unsigned char* const* rows_to_convolve = |
| + row_buffer.GetRowAddresses(&first_row_in_circular_buffer); |
| + |
| + // Now compute the start of the subset of those rows that the filter |
| + // needs. |
| + unsigned char* const* first_row_for_filter = |
| + &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; |
| + |
| + if (source_has_alpha) { |
| + ConvolveVertically_SSE2<true>(filter_values, filter_length, |
| + first_row_for_filter, |
| + filter_x.num_values(), cur_output_row); |
| + } else { |
| + ConvolveVertically_SSE2<false>(filter_values, filter_length, |
| + first_row_for_filter, |
| + filter_x.num_values(), cur_output_row); |
| + } |
| + } |
| +} |
| + |
| +void BGRAConvolve2D(const unsigned char* source_data, |
| + int source_byte_row_stride, |
| + bool source_has_alpha, |
| + const ConvolutionFilter1D& filter_x, |
| + const ConvolutionFilter1D& filter_y, |
| + int output_byte_row_stride, |
| + unsigned char* output) { |
| + base::CPU cpu; |
| + if (cpu.has_sse2()) { |
| + BGRAConvolve2D_SSE2(source_data, source_byte_row_stride, source_has_alpha, |
| + filter_x, filter_y, output_byte_row_stride, output); |
| + } else { |
| + BGRAConvolve2D_C(source_data, source_byte_row_stride, source_has_alpha, |
| + filter_x, filter_y, output_byte_row_stride, output); |
| + } |
| +} |
| + |
| } // namespace skia |