Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include <algorithm> | 5 #include <algorithm> |
| 6 | 6 |
| 7 #include "skia/ext/convolver.h" | 7 #include "skia/ext/convolver.h" |
| 8 #include "third_party/skia/include/core/SkTypes.h" | 8 #include "third_party/skia/include/core/SkTypes.h" |
| 9 | 9 |
| 10 #if defined(ARCH_CPU_X86_FAMILY) | |
| 11 #if defined(OS_WIN) || defined(__SSE2__) | |
|
fbarchard
2011/03/01 17:14:30
I guess this is ok. This is the expression I've t
| |
| 12 #include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h | |
| 13 #endif | |
| 14 #endif | |
| 15 | |
| 10 namespace skia { | 16 namespace skia { |
| 11 | 17 |
| 12 namespace { | 18 namespace { |
| 13 | 19 |
| 14 // Converts the argument to an 8-bit unsigned value by clamping to the range | 20 // Converts the argument to an 8-bit unsigned value by clamping to the range |
| 15 // 0-255. | 21 // 0-255. |
| 16 inline unsigned char ClampTo8(int a) { | 22 inline unsigned char ClampTo8(int a) { |
| 17 if (static_cast<unsigned>(a) < 256) | 23 if (static_cast<unsigned>(a) < 256) |
| 18 return a; // Avoid the extra check in the common case. | 24 return a; // Avoid the extra check in the common case. |
| 19 if (a < 0) | 25 if (a < 0) |
| (...skipping 172 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 192 if (has_alpha) | 198 if (has_alpha) |
| 193 accum[3] >>= ConvolutionFilter1D::kShiftBits; | 199 accum[3] >>= ConvolutionFilter1D::kShiftBits; |
| 194 | 200 |
| 195 // Store the new pixel. | 201 // Store the new pixel. |
| 196 out_row[byte_offset + 0] = ClampTo8(accum[0]); | 202 out_row[byte_offset + 0] = ClampTo8(accum[0]); |
| 197 out_row[byte_offset + 1] = ClampTo8(accum[1]); | 203 out_row[byte_offset + 1] = ClampTo8(accum[1]); |
| 198 out_row[byte_offset + 2] = ClampTo8(accum[2]); | 204 out_row[byte_offset + 2] = ClampTo8(accum[2]); |
| 199 if (has_alpha) { | 205 if (has_alpha) { |
| 200 unsigned char alpha = ClampTo8(accum[3]); | 206 unsigned char alpha = ClampTo8(accum[3]); |
| 201 | 207 |
| 202 // Make sure the alpha channel doesn't come out larger than any of the | 208 // Make sure the alpha channel doesn't come out smaller than any of the |
| 203 // color channels. We use premultipled alpha channels, so this should | 209 // color channels. We use premultipled alpha channels, so this should |
| 204 // never happen, but rounding errors will cause this from time to time. | 210 // never happen, but rounding errors will cause this from time to time. |
| 205 // These "impossible" colors will cause overflows (and hence random pixel | 211 // These "impossible" colors will cause overflows (and hence random pixel |
| 206 // values) when the resulting bitmap is drawn to the screen. | 212 // values) when the resulting bitmap is drawn to the screen. |
| 207 // | 213 // |
| 208 // We only need to do this when generating the final output row (here). | 214 // We only need to do this when generating the final output row (here). |
| 209 int max_color_channel = std::max(out_row[byte_offset + 0], | 215 int max_color_channel = std::max(out_row[byte_offset + 0], |
| 210 std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); | 216 std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); |
| 211 if (alpha < max_color_channel) | 217 if (alpha < max_color_channel) |
| 212 out_row[byte_offset + 3] = max_color_channel; | 218 out_row[byte_offset + 3] = max_color_channel; |
| 213 else | 219 else |
| 214 out_row[byte_offset + 3] = alpha; | 220 out_row[byte_offset + 3] = alpha; |
| 215 } else { | 221 } else { |
| 216 // No alpha channel, the image is opaque. | 222 // No alpha channel, the image is opaque. |
| 217 out_row[byte_offset + 3] = 0xff; | 223 out_row[byte_offset + 3] = 0xff; |
| 218 } | 224 } |
| 219 } | 225 } |
| 220 } | 226 } |
| 221 | 227 |
| 228 | |
|
fbarchard
2011/03/01 17:14:30
This strikes me as a lot of hard to maintain code,
jiesun
2011/03/07 18:57:15
the only speed up for this algorithm is parallelis
| |
| 229 // Convolves horizontally along a single row. The row data is given in | |
| 230 // |src_data| and continues for the num_values() of the filter. | |
| 231 void ConvolveHorizontally_SSE2(const unsigned char* src_data, | |
| 232 const ConvolutionFilter1D& filter, | |
| 233 unsigned char* out_row) { | |
| 234 #if defined(ARCH_CPU_X86_FAMILY) | |
| 235 #if defined(OS_WIN) || defined(__SSE2__) | |
| 236 int num_values = filter.num_values(); | |
| 237 | |
| 238 int filter_offset, filter_length; | |
| 239 __m128i zero = _mm_setzero_si128(); | |
| 240 __m128i mask[4]; | |
| 241 // |mask| will be used to decimate all extra filter coefficients that are | |
| 242 // loaded by SIMD when |filter_length| is not divisible by 4. | |
| 243 // mask[0] is not used in following algorithm. | |
| 244 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); | |
| 245 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); | |
| 246 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); | |
| 247 | |
| 248 // Output one pixel each iteration, calculating all channels (RGBA) together. | |
| 249 for (int out_x = 0; out_x < num_values; out_x++) { | |
| 250 const ConvolutionFilter1D::Fixed* filter_values = | |
| 251 filter.FilterForValue(out_x, &filter_offset, &filter_length); | |
| 252 | |
| 253 __m128i accum = _mm_setzero_si128(); | |
| 254 | |
| 255 // Compute the first pixel in this row that the filter affects. It will | |
| 256 // touch |filter_length| pixels (4 bytes each) after this. | |
| 257 const __m128i* row_to_filter = | |
| 258 reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]); | |
| 259 | |
| 260 // We will load and accumulate with four coefficients per iteration. | |
| 261 for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { | |
| 262 | |
| 263 // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. | |
| 264 __m128i coeff, coeff16; | |
| 265 // [16] xx xx xx xx c3 c2 c1 c0 | |
| 266 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
| 267 // [16] xx xx xx xx c1 c1 c0 c0 | |
| 268 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
| 269 // [16] c1 c1 c1 c1 c0 c0 c0 c0 | |
| 270 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
| 271 | |
| 272 // Load four pixels => unpack the first two pixels to 16 bits => | |
| 273 // multiply with coefficients => accumulate the convolution result. | |
| 274 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
| 275 __m128i src8 = _mm_loadu_si128(row_to_filter); | |
| 276 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
| 277 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
| 278 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 279 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 280 // [32] a0*c0 b0*c0 g0*c0 r0*c0 | |
| 281 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 282 accum = _mm_add_epi32(accum, t); | |
| 283 // [32] a1*c1 b1*c1 g1*c1 r1*c1 | |
| 284 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 285 accum = _mm_add_epi32(accum, t); | |
| 286 | |
| 287 // Duplicate 3rd and 4th coefficients for all channels => | |
| 288 // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients | |
| 289 // => accumulate the convolution results. | |
| 290 // [16] xx xx xx xx c3 c3 c2 c2 | |
| 291 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
| 292 // [16] c3 c3 c3 c3 c2 c2 c2 c2 | |
| 293 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
| 294 // [16] a3 g3 b3 r3 a2 g2 b2 r2 | |
| 295 src16 = _mm_unpackhi_epi8(src8, zero); | |
| 296 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 297 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 298 // [32] a2*c2 b2*c2 g2*c2 r2*c2 | |
| 299 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 300 accum = _mm_add_epi32(accum, t); | |
| 301 // [32] a3*c3 b3*c3 g3*c3 r3*c3 | |
| 302 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 303 accum = _mm_add_epi32(accum, t); | |
| 304 | |
| 305 // Advance the pixel and coefficients pointers. | |
| 306 row_to_filter += 1; | |
| 307 filter_values += 4; | |
| 308 } | |
| 309 | |
| 310 // When |filter_length| is not divisible by 4, we need to decimate some of | |
| 311 // the filter coefficient that was loaded incorrectly to zero; Other than | |
| 312 // that the algorithm is same with above, exceot that the 4th pixel will be | |
| 313 // always absent. | |
| 314 int r = filter_length&3; | |
| 315 if (r) { | |
| 316 // Note: filter_values must be padded to align_up(filter_offset, 8). | |
| 317 __m128i coeff, coeff16; | |
| 318 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
| 319 // Mask out extra filter taps. | |
| 320 coeff = _mm_and_si128(coeff, mask[r]); | |
| 321 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
| 322 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
| 323 | |
| 324 // Note: line buffer must be padded to align_up(filter_offset, 16). | |
| 325 // We resolve this by use C-version for the last horizontal line. | |
| 326 __m128i src8 = _mm_loadu_si128(row_to_filter); | |
| 327 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
| 328 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 329 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 330 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 331 accum = _mm_add_epi32(accum, t); | |
| 332 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 333 accum = _mm_add_epi32(accum, t); | |
| 334 | |
| 335 src16 = _mm_unpackhi_epi8(src8, zero); | |
| 336 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
| 337 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
| 338 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 339 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 340 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 341 accum = _mm_add_epi32(accum, t); | |
| 342 } | |
| 343 | |
| 344 // Shift right for fixed point implementation. | |
| 345 accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits); | |
| 346 | |
| 347 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). | |
| 348 accum = _mm_packs_epi32(accum, zero); | |
| 349 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). | |
| 350 accum = _mm_packus_epi16(accum, zero); | |
| 351 | |
| 352 // Store the pixel value of 32 bits. | |
| 353 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum); | |
| 354 out_row += 4; | |
| 355 } | |
| 356 #endif | |
| 357 #endif | |
| 358 } | |
| 359 | |
| 360 // Convolves horizontally along four rows. The row data is given in | |
| 361 // |src_data| and continues for the num_values() of the filter. | |
| 362 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please | |
| 363 // refer to that function for detailed comments. | |
| 364 void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4], | |
| 365 const ConvolutionFilter1D& filter, | |
| 366 unsigned char* out_row[4]) { | |
| 367 #if defined(ARCH_CPU_X86_FAMILY) | |
| 368 #if defined(OS_WIN) || defined(__SSE2__) | |
| 369 int num_values = filter.num_values(); | |
| 370 | |
| 371 int filter_offset, filter_length; | |
| 372 __m128i zero = _mm_setzero_si128(); | |
| 373 __m128i mask[4]; | |
| 374 // |mask| will be used to decimate all extra filter coefficients that are | |
| 375 // loaded by SIMD when |filter_length| is not divisible by 4. | |
| 376 // mask[0] is not used in following algorithm. | |
| 377 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); | |
| 378 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); | |
| 379 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); | |
| 380 | |
| 381 // Output one pixel each iteration, calculating all channels (RGBA) together. | |
| 382 for (int out_x = 0; out_x < num_values; out_x++) { | |
| 383 const ConvolutionFilter1D::Fixed* filter_values = | |
| 384 filter.FilterForValue(out_x, &filter_offset, &filter_length); | |
| 385 | |
| 386 // four pixels in a column per iteration. | |
| 387 __m128i accum0 = _mm_setzero_si128(); | |
| 388 __m128i accum1 = _mm_setzero_si128(); | |
| 389 __m128i accum2 = _mm_setzero_si128(); | |
| 390 __m128i accum3 = _mm_setzero_si128(); | |
| 391 int start = (filter_offset<<2); | |
| 392 // We will load and accumulate with four coefficients per iteration. | |
| 393 for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { | |
| 394 __m128i coeff, coeff16lo, coeff16hi; | |
| 395 // [16] xx xx xx xx c3 c2 c1 c0 | |
| 396 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
| 397 // [16] xx xx xx xx c1 c1 c0 c0 | |
| 398 coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
| 399 // [16] c1 c1 c1 c1 c0 c0 c0 c0 | |
| 400 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); | |
| 401 // [16] xx xx xx xx c3 c3 c2 c2 | |
| 402 coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
| 403 // [16] c3 c3 c3 c3 c2 c2 c2 c2 | |
| 404 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); | |
| 405 | |
| 406 __m128i src8, src16, mul_hi, mul_lo, t; | |
| 407 | |
| 408 #define ITERATION(src, accum) \ | |
| 409 src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \ | |
| 410 src16 = _mm_unpacklo_epi8(src8, zero); \ | |
| 411 mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ | |
| 412 mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ | |
| 413 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ | |
| 414 accum = _mm_add_epi32(accum, t); \ | |
| 415 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ | |
| 416 accum = _mm_add_epi32(accum, t); \ | |
| 417 src16 = _mm_unpackhi_epi8(src8, zero); \ | |
| 418 mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ | |
| 419 mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ | |
| 420 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ | |
| 421 accum = _mm_add_epi32(accum, t); \ | |
| 422 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ | |
| 423 accum = _mm_add_epi32(accum, t) | |
| 424 | |
| 425 ITERATION(src_data[0] + start, accum0); | |
| 426 ITERATION(src_data[1] + start, accum1); | |
| 427 ITERATION(src_data[2] + start, accum2); | |
| 428 ITERATION(src_data[3] + start, accum3); | |
| 429 | |
| 430 start += 16; | |
| 431 filter_values += 4; | |
| 432 } | |
| 433 | |
| 434 int r = filter_length & 3; | |
| 435 if (r) { | |
| 436 // Note: filter_values must be padded to align_up(filter_offset, 8); | |
| 437 __m128i coeff; | |
| 438 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
| 439 // Mask out extra filter taps. | |
| 440 coeff = _mm_and_si128(coeff, mask[r]); | |
| 441 | |
| 442 __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
| 443 /* c1 c1 c1 c1 c0 c0 c0 c0 */ | |
| 444 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); | |
| 445 __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
| 446 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); | |
| 447 | |
| 448 __m128i src8, src16, mul_hi, mul_lo, t; | |
| 449 | |
| 450 ITERATION(src_data[0] + start, accum0); | |
| 451 ITERATION(src_data[1] + start, accum1); | |
| 452 ITERATION(src_data[2] + start, accum2); | |
| 453 ITERATION(src_data[3] + start, accum3); | |
| 454 } | |
| 455 | |
| 456 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); | |
| 457 accum0 = _mm_packs_epi32(accum0, zero); | |
| 458 accum0 = _mm_packus_epi16(accum0, zero); | |
| 459 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); | |
| 460 accum1 = _mm_packs_epi32(accum1, zero); | |
| 461 accum1 = _mm_packus_epi16(accum1, zero); | |
| 462 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); | |
| 463 accum2 = _mm_packs_epi32(accum2, zero); | |
| 464 accum2 = _mm_packus_epi16(accum2, zero); | |
| 465 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); | |
| 466 accum3 = _mm_packs_epi32(accum3, zero); | |
| 467 accum3 = _mm_packus_epi16(accum3, zero); | |
| 468 | |
| 469 *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0); | |
| 470 *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1); | |
| 471 *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2); | |
| 472 *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3); | |
| 473 | |
| 474 out_row[0] += 4; | |
| 475 out_row[1] += 4; | |
| 476 out_row[2] += 4; | |
| 477 out_row[3] += 4; | |
| 478 } | |
| 479 #endif | |
| 480 #endif | |
| 481 } | |
| 482 | |
| 483 // Does vertical convolution to produce one output row. The filter values and | |
| 484 // length are given in the first two parameters. These are applied to each | |
| 485 // of the rows pointed to in the |source_data_rows| array, with each row | |
| 486 // being |pixel_width| wide. | |
| 487 // | |
| 488 // The output must have room for |pixel_width * 4| bytes. | |
| 489 template<bool has_alpha> | |
| 490 void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, | |
| 491 int filter_length, | |
| 492 unsigned char* const* source_data_rows, | |
| 493 int pixel_width, | |
| 494 unsigned char* out_row) { | |
| 495 #if defined(ARCH_CPU_X86_FAMILY) | |
| 496 #if defined(OS_WIN) || defined(__SSE2__) | |
| 497 int width = pixel_width & ~3; | |
| 498 | |
| 499 __m128i zero = _mm_setzero_si128(); | |
| 500 __m128i accum0, accum1, accum2, accum3, coeff16; | |
| 501 const __m128i* src; | |
| 502 // Output four pixels per iteration (16 bytes). | |
| 503 for (int out_x = 0; out_x < width; out_x += 4) { | |
| 504 | |
| 505 // Accumulated result for each pixel. 32 bits per RGBA channel. | |
| 506 accum0 = _mm_setzero_si128(); | |
| 507 accum1 = _mm_setzero_si128(); | |
| 508 accum2 = _mm_setzero_si128(); | |
| 509 accum3 = _mm_setzero_si128(); | |
| 510 | |
| 511 // Convolve with one filter coefficient per iteration. | |
| 512 for (int filter_y = 0; filter_y < filter_length; filter_y++) { | |
| 513 | |
| 514 // Duplicate the filter coefficient 8 times. | |
| 515 // [16] cj cj cj cj cj cj cj cj | |
| 516 coeff16 = _mm_set1_epi16(filter_values[filter_y]); | |
| 517 | |
| 518 // Load four pixels (16 bytes) together. | |
| 519 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
| 520 src = reinterpret_cast<const __m128i*>( | |
| 521 &source_data_rows[filter_y][out_x << 2]); | |
| 522 __m128i src8 = _mm_loadu_si128(src); | |
| 523 | |
| 524 // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => | |
| 525 // multiply with current coefficient => accumulate the result. | |
| 526 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
| 527 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
| 528 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 529 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 530 // [32] a0 b0 g0 r0 | |
| 531 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 532 accum0 = _mm_add_epi32(accum0, t); | |
| 533 // [32] a1 b1 g1 r1 | |
| 534 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 535 accum1 = _mm_add_epi32(accum1, t); | |
| 536 | |
| 537 // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => | |
| 538 // multiply with current coefficient => accumulate the result. | |
| 539 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
| 540 src16 = _mm_unpackhi_epi8(src8, zero); | |
| 541 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 542 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 543 // [32] a2 b2 g2 r2 | |
| 544 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 545 accum2 = _mm_add_epi32(accum2, t); | |
| 546 // [32] a3 b3 g3 r3 | |
| 547 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 548 accum3 = _mm_add_epi32(accum3, t); | |
| 549 } | |
| 550 | |
| 551 // Shift right for fixed point implementation. | |
| 552 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); | |
| 553 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); | |
| 554 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); | |
| 555 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); | |
| 556 | |
| 557 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). | |
| 558 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
| 559 accum0 = _mm_packs_epi32(accum0, accum1); | |
| 560 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
| 561 accum2 = _mm_packs_epi32(accum2, accum3); | |
| 562 | |
| 563 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). | |
| 564 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
| 565 accum0 = _mm_packus_epi16(accum0, accum2); | |
| 566 | |
| 567 if (has_alpha) { | |
| 568 // Compute the max(ri, gi, bi) for each pixel. | |
| 569 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 | |
| 570 __m128i a = _mm_srli_epi32(accum0, 8); | |
| 571 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
| 572 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. | |
| 573 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 | |
| 574 a = _mm_srli_epi32(accum0, 16); | |
| 575 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
| 576 b = _mm_max_epu8(a, b); // Max of r and g and b. | |
| 577 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 | |
| 578 b = _mm_slli_epi32(b, 24); | |
| 579 | |
| 580 // Make sure the value of alpha channel is always larger than maximum | |
| 581 // value of color channels. | |
| 582 accum0 = _mm_max_epu8(b, accum0); | |
| 583 } else { | |
| 584 // Set value of alpha channels to 0xFF. | |
| 585 __m128i mask = _mm_set1_epi32(0xff000000); | |
| 586 accum0 = _mm_or_si128(accum0, mask); | |
| 587 } | |
| 588 | |
| 589 // Store the convolution result (16 bytes) and advance the pixel pointers. | |
| 590 _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); | |
| 591 out_row += 16; | |
| 592 } | |
| 593 | |
| 594 // When the width of the output is not divisible by 4, We need to save one | |
| 595 // pixel (4 bytes) each time. And also the fourth pixel is always absent. | |
| 596 if (pixel_width & 3) { | |
| 597 accum0 = _mm_setzero_si128(); | |
| 598 accum1 = _mm_setzero_si128(); | |
| 599 accum2 = _mm_setzero_si128(); | |
| 600 for (int filter_y = 0; filter_y < filter_length; ++filter_y) { | |
| 601 coeff16 = _mm_set1_epi16(filter_values[filter_y]); | |
| 602 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
| 603 src = reinterpret_cast<const __m128i*>( | |
| 604 &source_data_rows[filter_y][width<<2]); | |
| 605 __m128i src8 = _mm_loadu_si128(src); | |
| 606 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
| 607 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
| 608 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 609 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 610 // [32] a0 b0 g0 r0 | |
| 611 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 612 accum0 = _mm_add_epi32(accum0, t); | |
| 613 // [32] a1 b1 g1 r1 | |
| 614 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 615 accum1 = _mm_add_epi32(accum1, t); | |
| 616 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
| 617 src16 = _mm_unpackhi_epi8(src8, zero); | |
| 618 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 619 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 620 // [32] a2 b2 g2 r2 | |
| 621 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 622 accum2 = _mm_add_epi32(accum2, t); | |
| 623 } | |
| 624 | |
| 625 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); | |
| 626 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); | |
| 627 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); | |
| 628 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
| 629 accum0 = _mm_packs_epi32(accum0, accum1); | |
| 630 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
| 631 accum2 = _mm_packs_epi32(accum2, zero); | |
| 632 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
| 633 accum0 = _mm_packus_epi16(accum0, accum2); | |
| 634 if (has_alpha) { | |
| 635 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 | |
| 636 __m128i a = _mm_srli_epi32(accum0, 8); | |
| 637 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
| 638 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. | |
| 639 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 | |
| 640 a = _mm_srli_epi32(accum0, 16); | |
| 641 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
| 642 b = _mm_max_epu8(a, b); // Max of r and g and b. | |
| 643 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 | |
| 644 b = _mm_slli_epi32(b, 24); | |
| 645 accum0 = _mm_max_epu8(b, accum0); | |
| 646 } else { | |
| 647 __m128i mask = _mm_set1_epi32(0xff000000); | |
| 648 accum0 = _mm_or_si128(accum0, mask); | |
| 649 } | |
| 650 | |
| 651 for (int out_x = width; out_x < pixel_width; out_x++) { | |
| 652 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0); | |
| 653 accum0 = _mm_srli_si128(accum0, 4); | |
| 654 out_row += 4; | |
| 655 } | |
| 656 } | |
| 657 #endif | |
| 658 #endif | |
| 659 } | |
| 660 | |
| 222 } // namespace | 661 } // namespace |
| 223 | 662 |
| 224 // ConvolutionFilter1D --------------------------------------------------------- | 663 // ConvolutionFilter1D --------------------------------------------------------- |
| 225 | 664 |
| 226 ConvolutionFilter1D::ConvolutionFilter1D() | 665 ConvolutionFilter1D::ConvolutionFilter1D() |
| 227 : max_filter_(0) { | 666 : max_filter_(0) { |
| 228 } | 667 } |
| 229 | 668 |
| 230 ConvolutionFilter1D::~ConvolutionFilter1D() { | 669 ConvolutionFilter1D::~ConvolutionFilter1D() { |
| 231 } | 670 } |
| (...skipping 45 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 277 // We pushed filter_length elements onto filter_values_ | 716 // We pushed filter_length elements onto filter_values_ |
| 278 instance.data_location = (static_cast<int>(filter_values_.size()) - | 717 instance.data_location = (static_cast<int>(filter_values_.size()) - |
| 279 filter_length); | 718 filter_length); |
| 280 instance.offset = filter_offset; | 719 instance.offset = filter_offset; |
| 281 instance.length = filter_length; | 720 instance.length = filter_length; |
| 282 filters_.push_back(instance); | 721 filters_.push_back(instance); |
| 283 | 722 |
| 284 max_filter_ = std::max(max_filter_, filter_length); | 723 max_filter_ = std::max(max_filter_, filter_length); |
| 285 } | 724 } |
| 286 | 725 |
| 287 // BGRAConvolve2D ------------------------------------------------------------- | |
| 288 | |
| 289 void BGRAConvolve2D(const unsigned char* source_data, | 726 void BGRAConvolve2D(const unsigned char* source_data, |
| 290 int source_byte_row_stride, | 727 int source_byte_row_stride, |
| 291 bool source_has_alpha, | 728 bool source_has_alpha, |
| 292 const ConvolutionFilter1D& filter_x, | 729 const ConvolutionFilter1D& filter_x, |
| 293 const ConvolutionFilter1D& filter_y, | 730 const ConvolutionFilter1D& filter_y, |
| 294 int output_byte_row_stride, | 731 int output_byte_row_stride, |
| 295 unsigned char* output) { | 732 unsigned char* output, |
| 733 bool use_sse2) { | |
| 734 #if defined(ARCH_CPU_X86_FAMILY) | |
| 735 #if !defined(OS_WIN) && !defined(__SSE2__) | |
| 736 // even runtime support SSE2 instructions, we had not built with SSE2 support. | |
|
brettw
2011/03/03 17:56:19
This comment doesn't really parse, can you reword
jiesun
2011/03/07 18:57:15
Done.
| |
| 737 use_sse2 = false; | |
| 738 #endif | |
| 739 #endif | |
| 740 | |
| 296 int max_y_filter_size = filter_y.max_filter(); | 741 int max_y_filter_size = filter_y.max_filter(); |
| 297 | 742 |
| 298 // The next row in the input that we will generate a horizontally | 743 // The next row in the input that we will generate a horizontally |
| 299 // convolved row for. If the filter doesn't start at the beginning of the | 744 // convolved row for. If the filter doesn't start at the beginning of the |
| 300 // image (this is the case when we are only resizing a subset), then we | 745 // image (this is the case when we are only resizing a subset), then we |
| 301 // don't want to generate any output rows before that. Compute the starting | 746 // don't want to generate any output rows before that. Compute the starting |
| 302 // row for convolution as the first pixel for the first vertical filter. | 747 // row for convolution as the first pixel for the first vertical filter. |
| 303 int filter_offset, filter_length; | 748 int filter_offset, filter_length; |
| 304 const ConvolutionFilter1D::Fixed* filter_values = | 749 const ConvolutionFilter1D::Fixed* filter_values = |
| 305 filter_y.FilterForValue(0, &filter_offset, &filter_length); | 750 filter_y.FilterForValue(0, &filter_offset, &filter_length); |
| 306 int next_x_row = filter_offset; | 751 int next_x_row = filter_offset; |
| 307 | 752 |
| 308 // We loop over each row in the input doing a horizontal convolution. This | 753 // We loop over each row in the input doing a horizontal convolution. This |
| 309 // will result in a horizontally convolved image. We write the results into | 754 // will result in a horizontally convolved image. We write the results into |
| 310 // a circular buffer of convolved rows and do vertical convolution as rows | 755 // a circular buffer of convolved rows and do vertical convolution as rows |
| 311 // are available. This prevents us from having to store the entire | 756 // are available. This prevents us from having to store the entire |
| 312 // intermediate image and helps cache coherency. | 757 // intermediate image and helps cache coherency. |
| 313 CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size, | 758 // We will need four extra rows to allow horizontal convolution could be done |
| 759 // simultaneously. We also padding each row in row buffer to be aligned-up to | |
| 760 // 16 bytes. | |
| 761 // TODO(jiesun): We do not use aligned load from row buffer in vertical | |
| 762 // convolution pass yet. Somehow Windows does not like it. | |
| 763 int row_buffer_width = (filter_x.num_values() + 15) & ~0xF; | |
| 764 int row_buffer_height = max_y_filter_size + (use_sse2 ? 4 : 0); | |
| 765 CircularRowBuffer row_buffer(row_buffer_width, | |
| 766 row_buffer_height, | |
| 314 filter_offset); | 767 filter_offset); |
| 315 | 768 |
| 316 // Loop over every possible output row, processing just enough horizontal | 769 // Loop over every possible output row, processing just enough horizontal |
| 317 // convolutions to run each subsequent vertical convolution. | 770 // convolutions to run each subsequent vertical convolution. |
| 318 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); | 771 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); |
| 319 int num_output_rows = filter_y.num_values(); | 772 int num_output_rows = filter_y.num_values(); |
| 773 | |
| 774 // We need to check which is the last line to convolve before we advance 4 | |
| 775 // lines in one iteration. | |
| 776 int last_filter_offset, last_filter_length; | |
| 777 filter_y.FilterForValue(num_output_rows-1, &last_filter_offset, | |
|
brettw
2011/03/03 17:56:19
Spaces around -
jiesun
2011/03/07 18:57:15
Done.
| |
| 778 &last_filter_length); | |
| 779 | |
| 320 for (int out_y = 0; out_y < num_output_rows; out_y++) { | 780 for (int out_y = 0; out_y < num_output_rows; out_y++) { |
| 321 filter_values = filter_y.FilterForValue(out_y, | 781 filter_values = filter_y.FilterForValue(out_y, |
| 322 &filter_offset, &filter_length); | 782 &filter_offset, &filter_length); |
| 323 | 783 |
| 324 // Generate output rows until we have enough to run the current filter. | 784 // Generate output rows until we have enough to run the current filter. |
| 325 while (next_x_row < filter_offset + filter_length) { | 785 if (use_sse2) { |
| 326 if (source_has_alpha) { | 786 while (next_x_row < filter_offset + filter_length) { |
| 327 ConvolveHorizontally<true>( | 787 if (next_x_row + 3 < last_filter_offset + last_filter_length - 1) { |
| 328 &source_data[next_x_row * source_byte_row_stride], | 788 const unsigned char* src[4]; |
| 329 filter_x, row_buffer.AdvanceRow()); | 789 unsigned char* out_row[4]; |
| 330 } else { | 790 for (int i = 0; i < 4; ++i) { |
| 331 ConvolveHorizontally<false>( | 791 src[i] = &source_data[(next_x_row+i) * source_byte_row_stride]; |
|
brettw
2011/03/03 17:56:19
Spaces around +
jiesun
2011/03/07 18:57:15
Done.
| |
| 332 &source_data[next_x_row * source_byte_row_stride], | 792 out_row[i] = row_buffer.AdvanceRow(); |
| 333 filter_x, row_buffer.AdvanceRow()); | 793 } |
| 794 ConvolveHorizontally4_SSE2(src, filter_x, out_row); | |
| 795 next_x_row+=4; | |
|
brettw
2011/03/03 17:56:19
Spaces around +=
jiesun
2011/03/07 18:57:15
Done.
| |
| 796 } else { | |
| 797 // For the last row, SSE2 load possibly to access data beyond the | |
| 798 // image area. therefore we use C version here. Hacking into skia | |
|
brettw
2011/03/03 17:56:19
I'd probably remove the sentence "Hacking into ski
jiesun
2011/03/07 18:57:15
Done.
| |
| 799 // to add line paddings is not something in my mind. | |
| 800 if (next_x_row == last_filter_offset + last_filter_length - 1) { | |
| 801 if (source_has_alpha) { | |
| 802 ConvolveHorizontally<true>( | |
| 803 &source_data[next_x_row * source_byte_row_stride], | |
| 804 filter_x, row_buffer.AdvanceRow()); | |
| 805 } else { | |
| 806 ConvolveHorizontally<false>( | |
| 807 &source_data[next_x_row * source_byte_row_stride], | |
| 808 filter_x, row_buffer.AdvanceRow()); | |
| 809 } | |
| 810 } else { | |
| 811 ConvolveHorizontally_SSE2( | |
| 812 &source_data[next_x_row * source_byte_row_stride], | |
| 813 filter_x, row_buffer.AdvanceRow()); | |
| 814 } | |
| 815 next_x_row++; | |
| 816 } | |
| 334 } | 817 } |
| 335 next_x_row++; | 818 } else { |
| 819 while (next_x_row < filter_offset + filter_length) { | |
| 820 if (source_has_alpha) { | |
| 821 ConvolveHorizontally<true>( | |
| 822 &source_data[next_x_row * source_byte_row_stride], | |
| 823 filter_x, row_buffer.AdvanceRow()); | |
| 824 } else { | |
| 825 ConvolveHorizontally<false>( | |
| 826 &source_data[next_x_row * source_byte_row_stride], | |
| 827 filter_x, row_buffer.AdvanceRow()); | |
| 828 } | |
| 829 next_x_row++; | |
| 830 } | |
| 336 } | 831 } |
| 337 | 832 |
| 338 // Compute where in the output image this row of final data will go. | 833 // Compute where in the output image this row of final data will go. |
| 339 unsigned char* cur_output_row = &output[out_y * output_byte_row_stride]; | 834 unsigned char* cur_output_row = &output[out_y * output_byte_row_stride]; |
| 340 | 835 |
| 341 // Get the list of rows that the circular buffer has, in order. | 836 // Get the list of rows that the circular buffer has, in order. |
| 342 int first_row_in_circular_buffer; | 837 int first_row_in_circular_buffer; |
| 343 unsigned char* const* rows_to_convolve = | 838 unsigned char* const* rows_to_convolve = |
| 344 row_buffer.GetRowAddresses(&first_row_in_circular_buffer); | 839 row_buffer.GetRowAddresses(&first_row_in_circular_buffer); |
| 345 | 840 |
| 346 // Now compute the start of the subset of those rows that the filter | 841 // Now compute the start of the subset of those rows that the filter |
| 347 // needs. | 842 // needs. |
| 348 unsigned char* const* first_row_for_filter = | 843 unsigned char* const* first_row_for_filter = |
| 349 &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; | 844 &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; |
| 350 | 845 |
| 351 if (source_has_alpha) { | 846 if (source_has_alpha) { |
| 352 ConvolveVertically<true>(filter_values, filter_length, | 847 if (use_sse2) { |
| 353 first_row_for_filter, | 848 ConvolveVertically_SSE2<true>(filter_values, filter_length, |
| 354 filter_x.num_values(), cur_output_row); | 849 first_row_for_filter, |
| 850 filter_x.num_values(), cur_output_row); | |
| 851 } else { | |
| 852 ConvolveVertically<true>(filter_values, filter_length, | |
| 853 first_row_for_filter, | |
| 854 filter_x.num_values(), cur_output_row); | |
| 855 } | |
| 355 } else { | 856 } else { |
| 356 ConvolveVertically<false>(filter_values, filter_length, | 857 if (use_sse2) { |
| 357 first_row_for_filter, | 858 ConvolveVertically_SSE2<false>(filter_values, filter_length, |
| 358 filter_x.num_values(), cur_output_row); | 859 first_row_for_filter, |
| 860 filter_x.num_values(), cur_output_row); | |
| 861 } else { | |
| 862 ConvolveVertically<false>(filter_values, filter_length, | |
| 863 first_row_for_filter, | |
| 864 filter_x.num_values(), cur_output_row); | |
| 865 } | |
| 359 } | 866 } |
| 360 } | 867 } |
| 361 } | 868 } |
| 362 | 869 |
| 363 } // namespace skia | 870 } // namespace skia |
| OLD | NEW |