Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(60)

Side by Side Diff: skia/ext/convolver.cc

Issue 6334070: SIMD implementation of Convolver for Lanczos filter etc. (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: review issue/adding comments. Created 9 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include <algorithm> 5 #include <algorithm>
6 6
7 #include "skia/ext/convolver.h" 7 #include "skia/ext/convolver.h"
8 #include "third_party/skia/include/core/SkTypes.h" 8 #include "third_party/skia/include/core/SkTypes.h"
9 9
10 #if defined(ARCH_CPU_X86_FAMILY)
11 #include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h
12 #endif
13
10 namespace skia { 14 namespace skia {
11 15
12 namespace { 16 namespace {
13 17
14 // Converts the argument to an 8-bit unsigned value by clamping to the range 18 // Converts the argument to an 8-bit unsigned value by clamping to the range
15 // 0-255. 19 // 0-255.
16 inline unsigned char ClampTo8(int a) { 20 inline unsigned char ClampTo8(int a) {
17 if (static_cast<unsigned>(a) < 256) 21 if (static_cast<unsigned>(a) < 256)
18 return a; // Avoid the extra check in the common case. 22 return a; // Avoid the extra check in the common case.
19 if (a < 0) 23 if (a < 0)
(...skipping 172 matching lines...) Expand 10 before | Expand all | Expand 10 after
192 if (has_alpha) 196 if (has_alpha)
193 accum[3] >>= ConvolutionFilter1D::kShiftBits; 197 accum[3] >>= ConvolutionFilter1D::kShiftBits;
194 198
195 // Store the new pixel. 199 // Store the new pixel.
196 out_row[byte_offset + 0] = ClampTo8(accum[0]); 200 out_row[byte_offset + 0] = ClampTo8(accum[0]);
197 out_row[byte_offset + 1] = ClampTo8(accum[1]); 201 out_row[byte_offset + 1] = ClampTo8(accum[1]);
198 out_row[byte_offset + 2] = ClampTo8(accum[2]); 202 out_row[byte_offset + 2] = ClampTo8(accum[2]);
199 if (has_alpha) { 203 if (has_alpha) {
200 unsigned char alpha = ClampTo8(accum[3]); 204 unsigned char alpha = ClampTo8(accum[3]);
201 205
202 // Make sure the alpha channel doesn't come out larger than any of the 206 // Make sure the alpha channel doesn't come out smaller than any of the
203 // color channels. We use premultipled alpha channels, so this should 207 // color channels. We use premultipled alpha channels, so this should
204 // never happen, but rounding errors will cause this from time to time. 208 // never happen, but rounding errors will cause this from time to time.
205 // These "impossible" colors will cause overflows (and hence random pixel 209 // These "impossible" colors will cause overflows (and hence random pixel
206 // values) when the resulting bitmap is drawn to the screen. 210 // values) when the resulting bitmap is drawn to the screen.
207 // 211 //
208 // We only need to do this when generating the final output row (here). 212 // We only need to do this when generating the final output row (here).
209 int max_color_channel = std::max(out_row[byte_offset + 0], 213 int max_color_channel = std::max(out_row[byte_offset + 0],
210 std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); 214 std::max(out_row[byte_offset + 1], out_row[byte_offset + 2]));
211 if (alpha < max_color_channel) 215 if (alpha < max_color_channel)
212 out_row[byte_offset + 3] = max_color_channel; 216 out_row[byte_offset + 3] = max_color_channel;
213 else 217 else
214 out_row[byte_offset + 3] = alpha; 218 out_row[byte_offset + 3] = alpha;
215 } else { 219 } else {
216 // No alpha channel, the image is opaque. 220 // No alpha channel, the image is opaque.
217 out_row[byte_offset + 3] = 0xff; 221 out_row[byte_offset + 3] = 0xff;
218 } 222 }
219 } 223 }
220 } 224 }
221 225
226
227 // Convolves horizontally along a single row. The row data is given in
228 // |src_data| and continues for the num_values() of the filter.
229 void ConvolveHorizontally_SSE2(const unsigned char* src_data,
230 const ConvolutionFilter1D& filter,
231 unsigned char* out_row) {
232 #ifdef ARCH_CPU_X86_FAMILY
233 int num_values = filter.num_values();
234
235 int filter_offset, filter_length;
236 __m128i zero = _mm_setzero_si128();
237 __m128i mask[4];
238 // |mask| will be used to decimate all extra filter coefficients that are
239 // loaded by SIMD when |filter_length| is not divisible by 4.
240 // mask[0] is not used in following algorithm.
241 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
242 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
243 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
244
245 // Output one pixel each iteration, calculating all channels (RGBA) together.
246 for (int out_x = 0; out_x < num_values; out_x += 1) {
247 const ConvolutionFilter1D::Fixed* filter_values =
248 filter.FilterForValue(out_x, &filter_offset, &filter_length);
249
250 __m128i accum = _mm_setzero_si128();
251
252 // Compute the first pixel in this row that the filter affects. It will
253 // touch |filter_length| pixels (4 bytes each) after this.
254 const __m128i* row_to_filter =
255 reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);
256
257 // We will load and accumulate with four coefficients per iterations.
brettw 2011/02/25 06:43:02 Grammar nit: iteration (no "s"). Same below for wh
jiesun 2011/03/07 18:57:15 Done.
258 for (int j = 0; j < filter_length >> 2; ++j) {
259
260 // Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
261 __m128i coeff, coeff16;
262 // [16] xx xx xx xx c3 c2 c1 c0
263 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
264 // [16] xx xx xx xx c1 c1 c0 c0
265 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
266 // [16] c1 c1 c1 c1 c0 c0 c0 c0
267 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
268
269 // Load four pixels => unpack the first two pixels to 16 bits =>
270 // multiply with coefficients => accumulate the convolution result.
271 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
272 __m128i src8 = _mm_loadu_si128(row_to_filter);
273 // [16] a1 b1 g1 r1 a0 b0 g0 r0
274 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
275 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
276 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
277 // [32] a0*c0 b0*c0 g0*c0 r0*c0
278 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
279 accum = _mm_add_epi32(accum, t);
280 // [32] a1*c1 b1*c1 g1*c1 r1*c1
281 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
282 accum = _mm_add_epi32(accum, t);
283
284 // Duplicate 3rd and 4th coefficients for all channels =>
285 // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
286 // => accumulate the convolution results.
287 // [16] xx xx xx xx c3 c3 c2 c2
288 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
289 // [16] c3 c3 c3 c3 c2 c2 c2 c2
290 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
291 // [16] a3 g3 b3 r3 a2 g2 b2 r2
292 src16 = _mm_unpackhi_epi8(src8, zero);
293 mul_hi = _mm_mulhi_epi16(src16, coeff16);
294 mul_lo = _mm_mullo_epi16(src16, coeff16);
295 // [32] a2*c2 b2*c2 g2*c2 r2*c2
296 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
297 accum = _mm_add_epi32(accum, t);
298 // [32] a3*c3 b3*c3 g3*c3 r3*c3
299 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
300 accum = _mm_add_epi32(accum, t);
301
302 // Advance the pixel and coefficients pointers.
303 row_to_filter += 1;
304 filter_values += 4;
305 }
306
307 // When |filter_length| is not divisible by 4, we need to decimate some of
308 // the filter coefficient that was loaded incorrectly to zero; Other than
309 // that the algorithm is same with above, exceot that the 4th pixel will be
310 // always absent.
311 int r = filter_length&3;
312 if (r) {
313 // Note: filter_values must be padded to align_up(filter_offset, 8).
314 __m128i coeff, coeff16;
315 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
316 // Mask out extra filter taps.
317 coeff = _mm_and_si128(coeff, mask[r]);
318 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
319 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
320
321 // Note: line buffer must be padded to align_up(filter_offset, 16).
322 // We resolve this by use C-version for the last horizontal line.
323 __m128i src8 = _mm_loadu_si128(row_to_filter);
324 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
325 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
326 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
327 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
328 accum = _mm_add_epi32(accum, t);
329 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
330 accum = _mm_add_epi32(accum, t);
331
332 src16 = _mm_unpackhi_epi8(src8, zero);
333 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
334 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
335 mul_hi = _mm_mulhi_epi16(src16, coeff16);
336 mul_lo = _mm_mullo_epi16(src16, coeff16);
337 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
338 accum = _mm_add_epi32(accum, t);
339 }
340
341 // Shift right for fixed point implementation.
342 accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits);
343
344 // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
345 accum = _mm_packs_epi32(accum, zero);
346 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
347 accum = _mm_packus_epi16(accum, zero);
348
349 // Store the pixel value of 32 bits.
350 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
351 out_row += 4;
352 }
353 #endif
354 }
355
356 // Convolves horizontally along four rows. The row data is given in
357 // |src_data| and continues for the num_values() of the filter.
358 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
359 // refer to that function for detailed comments.
360 void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4],
361 const ConvolutionFilter1D& filter,
362 unsigned char* out_row[4]) {
363 #ifdef ARCH_CPU_X86_FAMILY
364 int num_values = filter.num_values();
365
366 int filter_offset, filter_length;
367 __m128i zero = _mm_setzero_si128();
368 __m128i mask[4];
369 // |mask| will be used to decimate all extra filter coefficients that are
370 // loaded by SIMD when |filter_length| is not divisible by 4.
371 // mask[0] is not used in following algorithm.
372 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
373 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
374 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
375
376 // Output one pixel each iteration, calculating all channels (RGBA) together.
377 for (int i = 0; i < num_values; ++i) {
brettw 2011/02/25 06:43:02 It's weird this for loop is so different than the
jiesun 2011/03/07 18:57:15 Done.
378 const ConvolutionFilter1D::Fixed* filter_values =
379 filter.FilterForValue(i, &filter_offset, &filter_length);
380
381 // four pixels in a column per iteration.
382 __m128i accum0 = _mm_setzero_si128();
383 __m128i accum1 = _mm_setzero_si128();
384 __m128i accum2 = _mm_setzero_si128();
385 __m128i accum3 = _mm_setzero_si128();
386 int start = (filter_offset<<2);
387 // We will load and accumulate with four coefficients per iterations.
388 for (int j = 0; j < (filter_length >> 2); ++j) {
389 __m128i coeff, coeff16lo, coeff16hi;
390 // [16] xx xx xx xx c3 c2 c1 c0
391 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
392 // [16] xx xx xx xx c1 c1 c0 c0
393 coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
394 // [16] c1 c1 c1 c1 c0 c0 c0 c0
395 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
396 // [16] xx xx xx xx c3 c3 c2 c2
397 coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
398 // [16] c3 c3 c3 c3 c2 c2 c2 c2
399 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
400
401 __m128i src8, src16, mul_hi, mul_lo, t;
402
403 #define ITERATION(src, accum) \
404 src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \
405 src16 = _mm_unpacklo_epi8(src8, zero); \
406 mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \
407 mul_lo = _mm_mullo_epi16(src16, coeff16lo); \
408 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
409 accum = _mm_add_epi32(accum, t); \
410 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
411 accum = _mm_add_epi32(accum, t); \
412 src16 = _mm_unpackhi_epi8(src8, zero); \
413 mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \
414 mul_lo = _mm_mullo_epi16(src16, coeff16hi); \
415 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
416 accum = _mm_add_epi32(accum, t); \
417 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
418 accum = _mm_add_epi32(accum, t)
419
420 ITERATION(src_data[0]+start, accum0);
421 ITERATION(src_data[1]+start, accum1);
422 ITERATION(src_data[2]+start, accum2);
423 ITERATION(src_data[3]+start, accum3);
424
425 start += 16;
426 filter_values += 4;
427 }
428
429 int r = filter_length&3;
brettw 2011/02/25 06:43:02 Please put a space around the &
jiesun 2011/03/07 18:57:15 Done.
430 if (r) {
431 // Note: filter_values must be padded to align_up(filter_offset, 8);
432 __m128i coeff;
433 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
434 // Mask out extra filter taps.
435 coeff = _mm_and_si128(coeff, mask[r]);
436
437 __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
438 /* c1 c1 c1 c1 c0 c0 c0 c0 */
439 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
440 __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
441 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
442
443 __m128i src8, src16, mul_hi, mul_lo, t;
444
445 ITERATION(src_data[0]+start, accum0);
brettw 2011/02/25 06:43:02 Spaces around the +'s
jiesun 2011/03/07 18:57:15 Done.
446 ITERATION(src_data[1]+start, accum1);
447 ITERATION(src_data[2]+start, accum2);
448 ITERATION(src_data[3]+start, accum3);
449 }
450
451 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
452 accum0 = _mm_packs_epi32(accum0, zero);
453 accum0 = _mm_packus_epi16(accum0, zero);
454 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
455 accum1 = _mm_packs_epi32(accum1, zero);
456 accum1 = _mm_packus_epi16(accum1, zero);
457 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
458 accum2 = _mm_packs_epi32(accum2, zero);
459 accum2 = _mm_packus_epi16(accum2, zero);
460 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
461 accum3 = _mm_packs_epi32(accum3, zero);
462 accum3 = _mm_packus_epi16(accum3, zero);
463
464 *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
465 *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
466 *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
467 *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);
468
469 out_row[0] += 4;
470 out_row[1] += 4;
471 out_row[2] += 4;
472 out_row[3] += 4;
473 }
474 #endif
475 }
476
477 // Does vertical convolution to produce one output row. The filter values and
478 // length are given in the first two parameters. These are applied to each
479 // of the rows pointed to in the |source_data_rows| array, with each row
480 // being |pixel_width| wide.
481 //
482 // The output must have room for |pixel_width * 4| bytes.
483 template<bool has_alpha>
484 void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values,
485 int filter_length,
486 unsigned char* const* source_data_rows,
487 int pixel_width,
488 unsigned char* out_row) {
489 #ifdef ARCH_CPU_X86_FAMILY
490 int width = pixel_width & ~3;
491
492 __m128i zero = _mm_setzero_si128();
493 __m128i accum0, accum1, accum2, accum3, coeff16;
494 const __m128i* src;
495 // Output four pixels per iteration (16 bytes).
496 for (int i = 0; i < width; i += 4) {
brettw 2011/02/25 06:43:02 Can you give your loop variables better names than
jiesun 2011/03/07 18:57:15 Done.
497
498 // Accumulated result for each pixel. 32 bits per RGBA channel.
499 accum0 = _mm_setzero_si128();
500 accum1 = _mm_setzero_si128();
501 accum2 = _mm_setzero_si128();
502 accum3 = _mm_setzero_si128();
503
504 // Convolve with one filter coefficient per iteration.
505 for (int j = 0; j < filter_length; ++j) {
506
507 // Duplicate the filter coefficient 8 times.
508 // [16] cj cj cj cj cj cj cj cj
509 coeff16 = _mm_set1_epi16(filter_values[j]);
510
511 // Load four pixels (16 bytes) together.
512 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
513 src = reinterpret_cast<const __m128i*>(&source_data_rows[j][i<<2]);
514 __m128i src8 = _mm_loadu_si128(src);
515
516 // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
517 // multiply with current coefficient => accumulate the result.
518 // [16] a1 b1 g1 r1 a0 b0 g0 r0
519 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
520 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
521 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
522 // [32] a0 b0 g0 r0
523 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
524 accum0 = _mm_add_epi32(accum0, t);
525 // [32] a1 b1 g1 r1
526 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
527 accum1 = _mm_add_epi32(accum1, t);
528
529 // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
530 // multiply with current coefficient => accumulate the result.
531 // [16] a3 b3 g3 r3 a2 b2 g2 r2
532 src16 = _mm_unpackhi_epi8(src8, zero);
533 mul_hi = _mm_mulhi_epi16(src16, coeff16);
534 mul_lo = _mm_mullo_epi16(src16, coeff16);
535 // [32] a2 b2 g2 r2
536 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
537 accum2 = _mm_add_epi32(accum2, t);
538 // [32] a3 b3 g3 r3
539 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
540 accum3 = _mm_add_epi32(accum3, t);
541 }
542
543 // Shift right for fixed point implementation.
544 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
545 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
546 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
547 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
548
549 // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
550 // [16] a1 b1 g1 r1 a0 b0 g0 r0
551 accum0 = _mm_packs_epi32(accum0, accum1);
552 // [16] a3 b3 g3 r3 a2 b2 g2 r2
553 accum2 = _mm_packs_epi32(accum2, accum3);
554
555 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
556 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
557 accum0 = _mm_packus_epi16(accum0, accum2);
558
559 if (has_alpha) {
560 // Compute the max(ri, gi, bi) for each pixel.
561 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
562 __m128i a = _mm_srli_epi32(accum0, 8);
563 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
564 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
565 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
566 a = _mm_srli_epi32(accum0, 16);
567 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
568 b = _mm_max_epu8(a, b); // Max of r and g and b.
569 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
570 b = _mm_slli_epi32(b, 24);
571
572 // Make sure the value of alpha channel is always larger than maximum
573 // value of color channels.
574 accum0 = _mm_max_epu8(b, accum0);
575 } else {
576 // Set value of alpha channels to 0xFF.
577 __m128i mask = _mm_set1_epi32(0xff000000);
578 accum0 = _mm_or_si128(accum0, mask);
579 }
580
581 // Store the convolution result (16 bytes) and advance the pixel pointers.
582 _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
583 out_row += 16;
584 }
585
586 // When the width of the output is not divisible by 4, We need to save one
587 // pixel (4 bytes) each time. And also the fourth pixel is always absent.
588 if (pixel_width & 3) {
589 accum0 = _mm_setzero_si128();
590 accum1 = _mm_setzero_si128();
591 accum2 = _mm_setzero_si128();
592 for (int j = 0; j < filter_length; ++j) {
593 coeff16 = _mm_set1_epi16(filter_values[j]);
594 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
595 src = reinterpret_cast<const __m128i*>(&source_data_rows[j][width<<2]);
596 __m128i src8 = _mm_loadu_si128(src);
597 // [16] a1 b1 g1 r1 a0 b0 g0 r0
598 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
599 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
600 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
601 // [32] a0 b0 g0 r0
602 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
603 accum0 = _mm_add_epi32(accum0, t);
604 // [32] a1 b1 g1 r1
605 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
606 accum1 = _mm_add_epi32(accum1, t);
607 // [16] a3 b3 g3 r3 a2 b2 g2 r2
608 src16 = _mm_unpackhi_epi8(src8, zero);
609 mul_hi = _mm_mulhi_epi16(src16, coeff16);
610 mul_lo = _mm_mullo_epi16(src16, coeff16);
611 // [32] a2 b2 g2 r2
612 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
613 accum2 = _mm_add_epi32(accum2, t);
614 }
615
616 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
617 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
618 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
619 // [16] a1 b1 g1 r1 a0 b0 g0 r0
620 accum0 = _mm_packs_epi32(accum0, accum1);
621 // [16] a3 b3 g3 r3 a2 b2 g2 r2
622 accum2 = _mm_packs_epi32(accum2, zero);
623 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
624 accum0 = _mm_packus_epi16(accum0, accum2);
625 if (has_alpha) {
626 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
627 __m128i a = _mm_srli_epi32(accum0, 8);
628 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
629 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
630 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
631 a = _mm_srli_epi32(accum0, 16);
632 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
633 b = _mm_max_epu8(a, b); // Max of r and g and b.
634 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
635 b = _mm_slli_epi32(b, 24);
636 accum0 = _mm_max_epu8(b, accum0);
637 } else {
638 __m128i mask = _mm_set1_epi32(0xff000000);
639 accum0 = _mm_or_si128(accum0, mask);
640 }
641
642 for (int i = width; i < pixel_width; ++i) {
643 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
644 accum0 = _mm_srli_si128(accum0, 4);
645 out_row += 4;
646 }
647 }
648 #endif
649 }
650
222 } // namespace 651 } // namespace
223 652
224 // ConvolutionFilter1D --------------------------------------------------------- 653 // ConvolutionFilter1D ---------------------------------------------------------
225 654
226 ConvolutionFilter1D::ConvolutionFilter1D() 655 ConvolutionFilter1D::ConvolutionFilter1D()
227 : max_filter_(0) { 656 : max_filter_(0) {
228 } 657 }
229 658
230 ConvolutionFilter1D::~ConvolutionFilter1D() { 659 ConvolutionFilter1D::~ConvolutionFilter1D() {
231 } 660 }
(...skipping 45 matching lines...) Expand 10 before | Expand all | Expand 10 after
277 // We pushed filter_length elements onto filter_values_ 706 // We pushed filter_length elements onto filter_values_
278 instance.data_location = (static_cast<int>(filter_values_.size()) - 707 instance.data_location = (static_cast<int>(filter_values_.size()) -
279 filter_length); 708 filter_length);
280 instance.offset = filter_offset; 709 instance.offset = filter_offset;
281 instance.length = filter_length; 710 instance.length = filter_length;
282 filters_.push_back(instance); 711 filters_.push_back(instance);
283 712
284 max_filter_ = std::max(max_filter_, filter_length); 713 max_filter_ = std::max(max_filter_, filter_length);
285 } 714 }
286 715
287 // BGRAConvolve2D ------------------------------------------------------------- 716 void BGRAConvolve2D_C(const unsigned char* source_data,
288 717 int source_byte_row_stride,
289 void BGRAConvolve2D(const unsigned char* source_data, 718 bool source_has_alpha,
290 int source_byte_row_stride, 719 const ConvolutionFilter1D& filter_x,
291 bool source_has_alpha, 720 const ConvolutionFilter1D& filter_y,
292 const ConvolutionFilter1D& filter_x, 721 int output_byte_row_stride,
293 const ConvolutionFilter1D& filter_y, 722 unsigned char* output) {
294 int output_byte_row_stride,
295 unsigned char* output) {
296 int max_y_filter_size = filter_y.max_filter(); 723 int max_y_filter_size = filter_y.max_filter();
297 724
298 // The next row in the input that we will generate a horizontally 725 // The next row in the input that we will generate a horizontally
299 // convolved row for. If the filter doesn't start at the beginning of the 726 // convolved row for. If the filter doesn't start at the beginning of the
300 // image (this is the case when we are only resizing a subset), then we 727 // image (this is the case when we are only resizing a subset), then we
301 // don't want to generate any output rows before that. Compute the starting 728 // don't want to generate any output rows before that. Compute the starting
302 // row for convolution as the first pixel for the first vertical filter. 729 // row for convolution as the first pixel for the first vertical filter.
303 int filter_offset, filter_length; 730 int filter_offset, filter_length;
304 const ConvolutionFilter1D::Fixed* filter_values = 731 const ConvolutionFilter1D::Fixed* filter_values =
305 filter_y.FilterForValue(0, &filter_offset, &filter_length); 732 filter_y.FilterForValue(0, &filter_offset, &filter_length);
306 int next_x_row = filter_offset; 733 int next_x_row = filter_offset;
307 734
308 // We loop over each row in the input doing a horizontal convolution. This 735 // We loop over each row in the input doing a horizontal convolution. This
309 // will result in a horizontally convolved image. We write the results into 736 // will result in a horizontally convolved image. We write the results into
310 // a circular buffer of convolved rows and do vertical convolution as rows 737 // a circular buffer of convolved rows and do vertical convolution as rows
311 // are available. This prevents us from having to store the entire 738 // are available. This prevents us from having to store the entire
312 // intermediate image and helps cache coherency. 739 // intermediate image and helps cache coherency.
313 CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size, 740 CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size,
314 filter_offset); 741 filter_offset);
315 742
316 // Loop over every possible output row, processing just enough horizontal 743 // Loop over every possible output row, processing just enough horizontal
317 // convolutions to run each subsequent vertical convolution. 744 // convolutions to run each subsequent vertical convolution.
318 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); 745 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4);
319 int num_output_rows = filter_y.num_values(); 746 int num_output_rows = filter_y.num_values();
747
320 for (int out_y = 0; out_y < num_output_rows; out_y++) { 748 for (int out_y = 0; out_y < num_output_rows; out_y++) {
321 filter_values = filter_y.FilterForValue(out_y, 749 filter_values = filter_y.FilterForValue(out_y,
322 &filter_offset, &filter_length); 750 &filter_offset, &filter_length);
323 751
324 // Generate output rows until we have enough to run the current filter. 752 // Generate output rows until we have enough to run the current filter.
325 while (next_x_row < filter_offset + filter_length) { 753 while (next_x_row < filter_offset + filter_length) {
326 if (source_has_alpha) { 754 if (source_has_alpha) {
327 ConvolveHorizontally<true>( 755 ConvolveHorizontally<true>(
328 &source_data[next_x_row * source_byte_row_stride], 756 &source_data[next_x_row * source_byte_row_stride],
329 filter_x, row_buffer.AdvanceRow()); 757 filter_x, row_buffer.AdvanceRow());
(...skipping 17 matching lines...) Expand all
347 // needs. 775 // needs.
348 unsigned char* const* first_row_for_filter = 776 unsigned char* const* first_row_for_filter =
349 &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; 777 &rows_to_convolve[filter_offset - first_row_in_circular_buffer];
350 778
351 if (source_has_alpha) { 779 if (source_has_alpha) {
352 ConvolveVertically<true>(filter_values, filter_length, 780 ConvolveVertically<true>(filter_values, filter_length,
353 first_row_for_filter, 781 first_row_for_filter,
354 filter_x.num_values(), cur_output_row); 782 filter_x.num_values(), cur_output_row);
355 } else { 783 } else {
356 ConvolveVertically<false>(filter_values, filter_length, 784 ConvolveVertically<false>(filter_values, filter_length,
357 first_row_for_filter, 785 first_row_for_filter,
358 filter_x.num_values(), cur_output_row); 786 filter_x.num_values(), cur_output_row);
359 } 787 }
360 } 788 }
361 } 789 }
362 790
791 // BGRAConvolve2D -------------------------------------------------------------
792
793 void BGRAConvolve2D_SSE2(const unsigned char* source_data,
794 int source_byte_row_stride,
795 bool source_has_alpha,
796 const ConvolutionFilter1D& filter_x,
797 const ConvolutionFilter1D& filter_y,
798 int output_byte_row_stride,
799 unsigned char* output) {
800 int max_y_filter_size = filter_y.max_filter();
801
802 // The next row in the input that we will generate a horizontally
803 // convolved row for. If the filter doesn't start at the beginning of the
804 // image (this is the case when we are only resizing a subset), then we
805 // don't want to generate any output rows before that. Compute the starting
806 // row for convolution as the first pixel for the first vertical filter.
807 int filter_offset, filter_length;
808 const ConvolutionFilter1D::Fixed* filter_values =
809 filter_y.FilterForValue(0, &filter_offset, &filter_length);
810 int next_x_row = filter_offset;
811
812 // We loop over each row in the input doing a horizontal convolution. This
813 // will result in a horizontally convolved image. We write the results into
814 // a circular buffer of convolved rows and do vertical convolution as rows
815 // are available. This prevents us from having to store the entire
816 // intermediate image and helps cache coherency.
817 // We will need four extra rows to allow horizontal convolution could be done
818 // simultaneously. We also padding each row in row buffer to be aligned-up to
819 // 16 bytes.
820 // TODO(jiesun): We do not use aligned load from row buffer in vertical
821 // convolution pass yet. Somehow Windows does not like it.
822 int row_buffer_width = (filter_x.num_values() + 15) & ~0xF;
823 int row_buffer_height = max_y_filter_size + 4;
824 CircularRowBuffer row_buffer(row_buffer_width,
825 row_buffer_height,
826 filter_offset);
827
828 // Loop over every possible output row, processing just enough horizontal
829 // convolutions to run each subsequent vertical convolution.
830 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4);
831 int num_output_rows = filter_y.num_values();
832
833 int last_filter_offset, last_filter_length;
brettw 2011/02/25 06:43:02 Can you comment why you need these?
jiesun 2011/03/07 18:57:15 Done.
834 filter_y.FilterForValue(num_output_rows-1, &last_filter_offset,
835 &last_filter_length);
836
837 for (int out_y = 0; out_y < num_output_rows; out_y++) {
838 filter_values = filter_y.FilterForValue(out_y,
839 &filter_offset, &filter_length);
840
841 // Generate output rows until we have enough to run the current filter.
842 while (next_x_row < filter_offset + filter_length) {
843 if (next_x_row + 3 < last_filter_offset + last_filter_length - 1) {
844 const unsigned char* src[4];
845 unsigned char* out_row[4];
846 for (int i = 0; i < 4; ++i) {
847 src[i] = &source_data[(next_x_row+i) * source_byte_row_stride];
848 out_row[i] = row_buffer.AdvanceRow();
849 }
850 ConvolveHorizontally4_SSE2(src, filter_x, out_row);
851 next_x_row+=4;
852 } else {
853 // For the last row, SSE2 load possibly to access data beyond the
854 // image area. therefore we use C version here. Hacking into skia
855 // to add line paddings is not something in my mind.
856 if (next_x_row == last_filter_offset + last_filter_length - 1) {
857 if (source_has_alpha)
brettw 2011/02/25 06:43:02 These multi-line conditionals need {}
jiesun 2011/03/07 18:57:15 Done.
858 ConvolveHorizontally<true>(
859 &source_data[next_x_row * source_byte_row_stride],
860 filter_x, row_buffer.AdvanceRow());
861 else
862 ConvolveHorizontally<false>(
863 &source_data[next_x_row * source_byte_row_stride],
864 filter_x, row_buffer.AdvanceRow());
865 } else {
866 ConvolveHorizontally_SSE2(
867 &source_data[next_x_row * source_byte_row_stride],
868 filter_x, row_buffer.AdvanceRow());
869 }
870 next_x_row++;
871 }
872 }
873
874 // Compute where in the output image this row of final data will go.
875 unsigned char* cur_output_row = &output[out_y * output_byte_row_stride];
876
877 // Get the list of rows that the circular buffer has, in order.
878 int first_row_in_circular_buffer;
879 unsigned char* const* rows_to_convolve =
880 row_buffer.GetRowAddresses(&first_row_in_circular_buffer);
881
882 // Now compute the start of the subset of those rows that the filter
883 // needs.
884 unsigned char* const* first_row_for_filter =
885 &rows_to_convolve[filter_offset - first_row_in_circular_buffer];
886
887 if (source_has_alpha) {
888 ConvolveVertically_SSE2<true>(filter_values, filter_length,
889 first_row_for_filter,
890 filter_x.num_values(), cur_output_row);
891 } else {
892 ConvolveVertically_SSE2<false>(filter_values, filter_length,
893 first_row_for_filter,
894 filter_x.num_values(), cur_output_row);
895 }
896 }
897 }
898
899 void BGRAConvolve2D(const unsigned char* source_data,
900 int source_byte_row_stride,
901 bool source_has_alpha,
902 const ConvolutionFilter1D& filter_x,
903 const ConvolutionFilter1D& filter_y,
904 int output_byte_row_stride,
905 unsigned char* output) {
906 base::CPU cpu;
907 if (cpu.has_sse2()) {
908 BGRAConvolve2D_SSE2(source_data, source_byte_row_stride, source_has_alpha,
909 filter_x, filter_y, output_byte_row_stride, output);
910 } else {
911 BGRAConvolve2D_C(source_data, source_byte_row_stride, source_has_alpha,
912 filter_x, filter_y, output_byte_row_stride, output);
913 }
914 }
915
363 } // namespace skia 916 } // namespace skia
OLDNEW
« skia/ext/convolver.h ('K') | « skia/ext/convolver.h ('k') | skia/ext/convolver_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698