Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include <algorithm> | 5 #include <algorithm> |
| 6 | 6 |
| 7 #include "skia/ext/convolver.h" | 7 #include "skia/ext/convolver.h" |
| 8 #include "third_party/skia/include/core/SkTypes.h" | 8 #include "third_party/skia/include/core/SkTypes.h" |
| 9 | 9 |
| 10 #if defined(ARCH_CPU_X86_FAMILY) | |
| 11 #include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h | |
| 12 #endif | |
| 13 | |
| 10 namespace skia { | 14 namespace skia { |
| 11 | 15 |
| 12 namespace { | 16 namespace { |
| 13 | 17 |
| 14 // Converts the argument to an 8-bit unsigned value by clamping to the range | 18 // Converts the argument to an 8-bit unsigned value by clamping to the range |
| 15 // 0-255. | 19 // 0-255. |
| 16 inline unsigned char ClampTo8(int a) { | 20 inline unsigned char ClampTo8(int a) { |
| 17 if (static_cast<unsigned>(a) < 256) | 21 if (static_cast<unsigned>(a) < 256) |
| 18 return a; // Avoid the extra check in the common case. | 22 return a; // Avoid the extra check in the common case. |
| 19 if (a < 0) | 23 if (a < 0) |
| (...skipping 172 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 192 if (has_alpha) | 196 if (has_alpha) |
| 193 accum[3] >>= ConvolutionFilter1D::kShiftBits; | 197 accum[3] >>= ConvolutionFilter1D::kShiftBits; |
| 194 | 198 |
| 195 // Store the new pixel. | 199 // Store the new pixel. |
| 196 out_row[byte_offset + 0] = ClampTo8(accum[0]); | 200 out_row[byte_offset + 0] = ClampTo8(accum[0]); |
| 197 out_row[byte_offset + 1] = ClampTo8(accum[1]); | 201 out_row[byte_offset + 1] = ClampTo8(accum[1]); |
| 198 out_row[byte_offset + 2] = ClampTo8(accum[2]); | 202 out_row[byte_offset + 2] = ClampTo8(accum[2]); |
| 199 if (has_alpha) { | 203 if (has_alpha) { |
| 200 unsigned char alpha = ClampTo8(accum[3]); | 204 unsigned char alpha = ClampTo8(accum[3]); |
| 201 | 205 |
| 202 // Make sure the alpha channel doesn't come out larger than any of the | 206 // Make sure the alpha channel doesn't come out smaller than any of the |
| 203 // color channels. We use premultipled alpha channels, so this should | 207 // color channels. We use premultipled alpha channels, so this should |
| 204 // never happen, but rounding errors will cause this from time to time. | 208 // never happen, but rounding errors will cause this from time to time. |
| 205 // These "impossible" colors will cause overflows (and hence random pixel | 209 // These "impossible" colors will cause overflows (and hence random pixel |
| 206 // values) when the resulting bitmap is drawn to the screen. | 210 // values) when the resulting bitmap is drawn to the screen. |
| 207 // | 211 // |
| 208 // We only need to do this when generating the final output row (here). | 212 // We only need to do this when generating the final output row (here). |
| 209 int max_color_channel = std::max(out_row[byte_offset + 0], | 213 int max_color_channel = std::max(out_row[byte_offset + 0], |
| 210 std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); | 214 std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); |
| 211 if (alpha < max_color_channel) | 215 if (alpha < max_color_channel) |
| 212 out_row[byte_offset + 3] = max_color_channel; | 216 out_row[byte_offset + 3] = max_color_channel; |
| 213 else | 217 else |
| 214 out_row[byte_offset + 3] = alpha; | 218 out_row[byte_offset + 3] = alpha; |
| 215 } else { | 219 } else { |
| 216 // No alpha channel, the image is opaque. | 220 // No alpha channel, the image is opaque. |
| 217 out_row[byte_offset + 3] = 0xff; | 221 out_row[byte_offset + 3] = 0xff; |
| 218 } | 222 } |
| 219 } | 223 } |
| 220 } | 224 } |
| 221 | 225 |
| 226 | |
| 227 // Convolves horizontally along a single row. The row data is given in | |
| 228 // |src_data| and continues for the num_values() of the filter. | |
| 229 void ConvolveHorizontally_SSE2(const unsigned char* src_data, | |
| 230 const ConvolutionFilter1D& filter, | |
| 231 unsigned char* out_row) { | |
| 232 #ifdef ARCH_CPU_X86_FAMILY | |
| 233 int num_values = filter.num_values(); | |
| 234 | |
| 235 int filter_offset, filter_length; | |
| 236 __m128i zero = _mm_setzero_si128(); | |
| 237 __m128i mask[4]; | |
|
brettw
2011/02/21 04:45:45
What's mask[0] for? Can you provide a comment for
jiesun
2011/02/22 21:37:03
yes, mask[0] is not used.
| |
| 238 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); | |
| 239 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); | |
| 240 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); | |
| 241 | |
| 242 for (int out_x = 0; out_x < num_values; out_x += 1) { | |
| 243 const ConvolutionFilter1D::Fixed* filter_values = | |
| 244 filter.FilterForValue(out_x, &filter_offset, &filter_length); | |
| 245 | |
| 246 __m128i accum = _mm_setzero_si128(); | |
| 247 | |
| 248 const __m128i* row_to_filter = | |
|
brettw
2011/02/21 04:45:45
Can you comment what this means?
jiesun
2011/02/22 21:37:03
Done.
| |
| 249 reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]); | |
| 250 // Four filter taps per iteration. | |
| 251 for (int j = 0; j < filter_length >> 2; ++j) { | |
| 252 __m128i coeff, coeff16; | |
|
brettw
2011/02/21 04:45:45
For each of the "blocks" of SSE code you're writte
jiesun
2011/02/22 21:37:03
Done.
| |
| 253 // [16] xx xx xx xx c3 c2 c1 c0 | |
| 254 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
| 255 // [16] xx xx xx xx c1 c1 c0 c0 | |
| 256 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
| 257 // [16] c1 c1 c1 c1 c0 c0 c0 c0 | |
| 258 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
| 259 | |
| 260 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
| 261 __m128i src8 = _mm_loadu_si128(row_to_filter); | |
| 262 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
| 263 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
| 264 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 265 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 266 // [32] a0*c0 b0*c0 g0*c0 r0*c0 | |
| 267 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 268 accum = _mm_add_epi32(accum, t); | |
| 269 // [32] a1*c1 b1*c1 g1*c1 r1*c1 | |
| 270 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 271 accum = _mm_add_epi32(accum, t); | |
| 272 | |
| 273 // [16] xx xx xx xx c3 c3 c2 c2 | |
| 274 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
| 275 // [16] c3 c3 c3 c3 c2 c2 c2 c2 | |
| 276 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
| 277 // [16] a3 g3 b3 r3 a2 g2 b2 r2 | |
| 278 src16 = _mm_unpackhi_epi8(src8, zero); | |
| 279 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 280 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 281 // [32] a2*c2 b2*c2 g2*c2 r2*c2 | |
| 282 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 283 accum = _mm_add_epi32(accum, t); | |
| 284 // [32] a3*c3 b3*c3 g3*c3 r3*c3 | |
| 285 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 286 accum = _mm_add_epi32(accum, t); | |
| 287 | |
| 288 row_to_filter += 1; | |
| 289 filter_values += 4; | |
| 290 } | |
| 291 | |
| 292 // remaining | |
|
brettw
2011/02/21 04:45:45
Can you provide a better comment here?
jiesun
2011/02/22 21:37:03
Done.
| |
| 293 int r = filter_length&3; | |
| 294 if (r) { | |
| 295 // Note: filter_values must be padded to align_up(filter_offset, 8). | |
| 296 __m128i coeff, coeff16; | |
| 297 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
| 298 // Mask out extra filter taps. | |
| 299 coeff = _mm_and_si128(coeff, mask[r]); | |
| 300 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
| 301 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
| 302 | |
| 303 // Note: line buffer must be padded to align_up(filter_offset, 16). | |
| 304 // We resolve this by use C-version for the last horizontal line. | |
| 305 __m128i src8 = _mm_loadu_si128(row_to_filter); | |
| 306 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
| 307 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 308 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 309 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 310 accum = _mm_add_epi32(accum, t); | |
| 311 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 312 accum = _mm_add_epi32(accum, t); | |
| 313 | |
| 314 src16 = _mm_unpackhi_epi8(src8, zero); | |
| 315 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
| 316 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
| 317 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 318 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 319 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 320 accum = _mm_add_epi32(accum, t); | |
| 321 } | |
| 322 | |
| 323 // shift right for fix point implementation before saturation. | |
| 324 accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits); | |
| 325 accum = _mm_packs_epi32(accum, zero); | |
| 326 accum = _mm_packus_epi16(accum, zero); | |
| 327 | |
| 328 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum); | |
| 329 out_row += 4; | |
| 330 } | |
| 331 #endif | |
| 332 } | |
| 333 | |
| 334 // Convolves horizontally along four rows. The row data is given in | |
| 335 // |src_data| and continues for the num_values() of the filter. | |
| 336 void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4], | |
| 337 const ConvolutionFilter1D& filter, | |
| 338 unsigned char* out_row[4]) { | |
| 339 #ifdef ARCH_CPU_X86_FAMILY | |
| 340 int width = filter.num_values(); | |
| 341 | |
| 342 int filter_offset, filter_length; | |
| 343 __m128i zero = _mm_setzero_si128(); | |
| 344 __m128i mask[4]; | |
| 345 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); | |
| 346 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); | |
| 347 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); | |
| 348 | |
| 349 for (int i = 0; i < width; ++i) { | |
| 350 const ConvolutionFilter1D::Fixed* filter_values = | |
| 351 filter.FilterForValue(i, &filter_offset, &filter_length); | |
| 352 | |
| 353 // four pixels in a column per iteration. | |
| 354 __m128i accum0 = _mm_setzero_si128(); | |
| 355 __m128i accum1 = _mm_setzero_si128(); | |
| 356 __m128i accum2 = _mm_setzero_si128(); | |
| 357 __m128i accum3 = _mm_setzero_si128(); | |
| 358 int start = (filter_offset<<2); | |
| 359 for (int j = 0; j < (filter_length >> 2); ++j) { | |
| 360 __m128i coeff, coeff16lo, coeff16hi; | |
| 361 // [16] xx xx xx xx c3 c2 c1 c0 | |
| 362 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
| 363 // [16] xx xx xx xx c1 c1 c0 c0 | |
| 364 coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
| 365 // [16] c1 c1 c1 c1 c0 c0 c0 c0 | |
| 366 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); | |
| 367 // [16] xx xx xx xx c3 c3 c2 c2 | |
| 368 coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
| 369 // [16] c3 c3 c3 c3 c2 c2 c2 c2 | |
| 370 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); | |
| 371 | |
| 372 __m128i src8, src16, mul_hi, mul_lo, t; | |
| 373 | |
| 374 #define ITERATION(src, accum) \ | |
| 375 src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \ | |
| 376 src16 = _mm_unpacklo_epi8(src8, zero); \ | |
| 377 mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ | |
| 378 mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ | |
| 379 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ | |
| 380 accum = _mm_add_epi32(accum, t); \ | |
| 381 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ | |
| 382 accum = _mm_add_epi32(accum, t); \ | |
| 383 src16 = _mm_unpackhi_epi8(src8, zero); \ | |
| 384 mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ | |
| 385 mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ | |
| 386 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ | |
| 387 accum = _mm_add_epi32(accum, t); \ | |
| 388 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ | |
| 389 accum = _mm_add_epi32(accum, t) | |
| 390 | |
| 391 ITERATION(src_data[0]+start, accum0); | |
| 392 ITERATION(src_data[1]+start, accum1); | |
| 393 ITERATION(src_data[2]+start, accum2); | |
| 394 ITERATION(src_data[3]+start, accum3); | |
| 395 | |
| 396 start += 16; | |
| 397 filter_values += 4; | |
| 398 } | |
| 399 | |
| 400 int r = filter_length&3; | |
| 401 if (r) { | |
| 402 // Note: filter_values must be padded to align_up(filter_offset, 8); | |
| 403 __m128i coeff; | |
| 404 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
| 405 // Mask out extra filter taps. | |
| 406 coeff = _mm_and_si128(coeff, mask[r]); | |
| 407 | |
| 408 __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
| 409 /* c1 c1 c1 c1 c0 c0 c0 c0 */ | |
| 410 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); | |
| 411 __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
| 412 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); | |
| 413 | |
| 414 __m128i src8, src16, mul_hi, mul_lo, t; | |
| 415 | |
| 416 ITERATION(src_data[0]+start, accum0); | |
| 417 ITERATION(src_data[1]+start, accum1); | |
| 418 ITERATION(src_data[2]+start, accum2); | |
| 419 ITERATION(src_data[3]+start, accum3); | |
| 420 } | |
| 421 | |
| 422 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); | |
| 423 accum0 = _mm_packs_epi32(accum0, zero); | |
| 424 accum0 = _mm_packus_epi16(accum0, zero); | |
| 425 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); | |
| 426 accum1 = _mm_packs_epi32(accum1, zero); | |
| 427 accum1 = _mm_packus_epi16(accum1, zero); | |
| 428 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); | |
| 429 accum2 = _mm_packs_epi32(accum2, zero); | |
| 430 accum2 = _mm_packus_epi16(accum2, zero); | |
| 431 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); | |
| 432 accum3 = _mm_packs_epi32(accum3, zero); | |
| 433 accum3 = _mm_packus_epi16(accum3, zero); | |
| 434 | |
| 435 *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0); | |
| 436 *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1); | |
| 437 *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2); | |
| 438 *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3); | |
| 439 | |
| 440 out_row[0] += 4; | |
| 441 out_row[1] += 4; | |
| 442 out_row[2] += 4; | |
| 443 out_row[3] += 4; | |
| 444 } | |
| 445 #endif | |
| 446 } | |
| 447 | |
| 448 template<bool has_alpha> | |
| 449 void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, | |
| 450 int filter_length, | |
|
brettw
2011/02/21 04:45:45
Check indentation
jiesun
2011/02/22 21:37:03
Done.
| |
| 451 unsigned char* const* source_data_rows, | |
| 452 int pixel_width, | |
| 453 unsigned char* out_row) { | |
| 454 #ifdef ARCH_CPU_X86_FAMILY | |
| 455 int width = pixel_width & ~3; | |
| 456 | |
| 457 __m128i zero = _mm_setzero_si128(); | |
| 458 __m128i accum0, accum1, accum2, accum3, coeff16; | |
| 459 const __m128i* src; | |
| 460 for (int i = 0; i < width; i += 4) { // Four pixels per iteration. | |
| 461 accum0 = _mm_setzero_si128(); | |
| 462 accum1 = _mm_setzero_si128(); | |
| 463 accum2 = _mm_setzero_si128(); | |
| 464 accum3 = _mm_setzero_si128(); | |
| 465 for (int j = 0; j < filter_length; ++j) { | |
| 466 coeff16 = _mm_set1_epi16(filter_values[j]); | |
| 467 | |
| 468 // aligned load due to row_buffer is 16 byte aligned. | |
| 469 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
| 470 src = reinterpret_cast<const __m128i*>(&source_data_rows[j][i<<2]); | |
| 471 __m128i src8 = _mm_loadu_si128(src); | |
| 472 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
| 473 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
| 474 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 475 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 476 // [32] a0 b0 g0 r0 | |
| 477 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 478 accum0 = _mm_add_epi32(accum0, t); | |
| 479 // [32] a1 b1 g1 r1 | |
| 480 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 481 accum1 = _mm_add_epi32(accum1, t); | |
| 482 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
| 483 src16 = _mm_unpackhi_epi8(src8, zero); | |
| 484 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 485 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 486 // [32] a2 b2 g2 r2 | |
| 487 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 488 accum2 = _mm_add_epi32(accum2, t); | |
| 489 // [32] a3 b3 g3 r3 | |
| 490 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 491 accum3 = _mm_add_epi32(accum3, t); | |
| 492 } | |
| 493 | |
| 494 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); | |
| 495 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); | |
| 496 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); | |
| 497 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); | |
| 498 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
| 499 accum0 = _mm_packs_epi32(accum0, accum1); | |
| 500 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
| 501 accum2 = _mm_packs_epi32(accum2, accum3); | |
| 502 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
| 503 accum0 = _mm_packus_epi16(accum0, accum2); | |
| 504 if (has_alpha) { | |
| 505 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 | |
| 506 __m128i a = _mm_srli_epi32(accum0, 8); | |
| 507 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
| 508 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. | |
| 509 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 | |
| 510 a = _mm_srli_epi32(accum0, 16); | |
| 511 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
| 512 b = _mm_max_epu8(a, b); // Max of r and g and b. | |
| 513 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 | |
| 514 b = _mm_slli_epi32(b, 24); | |
| 515 accum0 = _mm_max_epu8(b, accum0); | |
| 516 } else { | |
| 517 __m128i mask = _mm_set1_epi32(0xff000000); | |
| 518 accum0 = _mm_or_si128(accum0, mask); | |
| 519 } | |
| 520 _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); | |
| 521 out_row += 16; | |
| 522 } | |
| 523 | |
| 524 if (pixel_width & 3) { | |
| 525 accum0 = _mm_setzero_si128(); | |
| 526 accum1 = _mm_setzero_si128(); | |
| 527 accum2 = _mm_setzero_si128(); | |
| 528 for (int j = 0; j < filter_length; ++j) { | |
| 529 coeff16 = _mm_set1_epi16(filter_values[j]); | |
| 530 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
| 531 src = reinterpret_cast<const __m128i*>(&source_data_rows[j][width<<2]); | |
| 532 __m128i src8 = _mm_loadu_si128(src); | |
| 533 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
| 534 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
| 535 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 536 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 537 // [32] a0 b0 g0 r0 | |
| 538 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 539 accum0 = _mm_add_epi32(accum0, t); | |
| 540 // [32] a1 b1 g1 r1 | |
| 541 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 542 accum1 = _mm_add_epi32(accum1, t); | |
| 543 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
| 544 src16 = _mm_unpackhi_epi8(src8, zero); | |
| 545 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 546 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 547 // [32] a2 b2 g2 r2 | |
| 548 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 549 accum2 = _mm_add_epi32(accum2, t); | |
| 550 } | |
| 551 | |
| 552 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); | |
| 553 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); | |
| 554 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); | |
| 555 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
| 556 accum0 = _mm_packs_epi32(accum0, accum1); | |
| 557 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
| 558 accum2 = _mm_packs_epi32(accum2, zero); | |
| 559 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
| 560 accum0 = _mm_packus_epi16(accum0, accum2); | |
| 561 if (has_alpha) { | |
| 562 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 | |
| 563 __m128i a = _mm_srli_epi32(accum0, 8); | |
| 564 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
| 565 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. | |
| 566 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 | |
| 567 a = _mm_srli_epi32(accum0, 16); | |
| 568 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
| 569 b = _mm_max_epu8(a, b); // Max of r and g and b. | |
| 570 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 | |
| 571 b = _mm_slli_epi32(b, 24); | |
| 572 accum0 = _mm_max_epu8(b, accum0); | |
| 573 } else { | |
| 574 __m128i mask = _mm_set1_epi32(0xff000000); | |
| 575 accum0 = _mm_or_si128(accum0, mask); | |
| 576 } | |
| 577 | |
| 578 for (int i = width; i < pixel_width; ++i) { | |
| 579 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0); | |
| 580 accum0 = _mm_srli_si128(accum0, 4); | |
| 581 out_row += 4; | |
| 582 } | |
| 583 } | |
| 584 #endif | |
| 585 } | |
| 586 | |
| 222 } // namespace | 587 } // namespace |
| 223 | 588 |
| 224 // ConvolutionFilter1D --------------------------------------------------------- | 589 // ConvolutionFilter1D --------------------------------------------------------- |
| 225 | 590 |
| 226 ConvolutionFilter1D::ConvolutionFilter1D() | 591 ConvolutionFilter1D::ConvolutionFilter1D() |
| 227 : max_filter_(0) { | 592 : max_filter_(0) { |
| 228 } | 593 } |
| 229 | 594 |
| 230 ConvolutionFilter1D::~ConvolutionFilter1D() { | 595 ConvolutionFilter1D::~ConvolutionFilter1D() { |
| 231 } | 596 } |
| (...skipping 45 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 277 // We pushed filter_length elements onto filter_values_ | 642 // We pushed filter_length elements onto filter_values_ |
| 278 instance.data_location = (static_cast<int>(filter_values_.size()) - | 643 instance.data_location = (static_cast<int>(filter_values_.size()) - |
| 279 filter_length); | 644 filter_length); |
| 280 instance.offset = filter_offset; | 645 instance.offset = filter_offset; |
| 281 instance.length = filter_length; | 646 instance.length = filter_length; |
| 282 filters_.push_back(instance); | 647 filters_.push_back(instance); |
| 283 | 648 |
| 284 max_filter_ = std::max(max_filter_, filter_length); | 649 max_filter_ = std::max(max_filter_, filter_length); |
| 285 } | 650 } |
| 286 | 651 |
| 287 // BGRAConvolve2D ------------------------------------------------------------- | 652 void BGRAConvolve2D_C(const unsigned char* source_data, |
| 288 | 653 int source_byte_row_stride, |
| 289 void BGRAConvolve2D(const unsigned char* source_data, | 654 bool source_has_alpha, |
| 290 int source_byte_row_stride, | 655 const ConvolutionFilter1D& filter_x, |
| 291 bool source_has_alpha, | 656 const ConvolutionFilter1D& filter_y, |
| 292 const ConvolutionFilter1D& filter_x, | 657 int output_byte_row_stride, |
| 293 const ConvolutionFilter1D& filter_y, | 658 unsigned char* output) { |
| 294 int output_byte_row_stride, | |
| 295 unsigned char* output) { | |
| 296 int max_y_filter_size = filter_y.max_filter(); | 659 int max_y_filter_size = filter_y.max_filter(); |
| 297 | 660 |
| 298 // The next row in the input that we will generate a horizontally | 661 // The next row in the input that we will generate a horizontally |
| 299 // convolved row for. If the filter doesn't start at the beginning of the | 662 // convolved row for. If the filter doesn't start at the beginning of the |
| 300 // image (this is the case when we are only resizing a subset), then we | 663 // image (this is the case when we are only resizing a subset), then we |
| 301 // don't want to generate any output rows before that. Compute the starting | 664 // don't want to generate any output rows before that. Compute the starting |
| 302 // row for convolution as the first pixel for the first vertical filter. | 665 // row for convolution as the first pixel for the first vertical filter. |
| 303 int filter_offset, filter_length; | 666 int filter_offset, filter_length; |
| 304 const ConvolutionFilter1D::Fixed* filter_values = | 667 const ConvolutionFilter1D::Fixed* filter_values = |
| 305 filter_y.FilterForValue(0, &filter_offset, &filter_length); | 668 filter_y.FilterForValue(0, &filter_offset, &filter_length); |
| 306 int next_x_row = filter_offset; | 669 int next_x_row = filter_offset; |
| 307 | 670 |
| 308 // We loop over each row in the input doing a horizontal convolution. This | 671 // We loop over each row in the input doing a horizontal convolution. This |
| 309 // will result in a horizontally convolved image. We write the results into | 672 // will result in a horizontally convolved image. We write the results into |
| 310 // a circular buffer of convolved rows and do vertical convolution as rows | 673 // a circular buffer of convolved rows and do vertical convolution as rows |
| 311 // are available. This prevents us from having to store the entire | 674 // are available. This prevents us from having to store the entire |
| 312 // intermediate image and helps cache coherency. | 675 // intermediate image and helps cache coherency. |
| 313 CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size, | 676 CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size, |
| 314 filter_offset); | 677 filter_offset); |
| 315 | 678 |
| 316 // Loop over every possible output row, processing just enough horizontal | 679 // Loop over every possible output row, processing just enough horizontal |
| 317 // convolutions to run each subsequent vertical convolution. | 680 // convolutions to run each subsequent vertical convolution. |
| 318 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); | 681 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); |
| 319 int num_output_rows = filter_y.num_values(); | 682 int num_output_rows = filter_y.num_values(); |
| 683 | |
| 684 int last_filter_offset, last_filter_length; | |
| 685 filter_y.FilterForValue(num_output_rows-1, &last_filter_offset, | |
| 686 &last_filter_length); | |
| 687 | |
| 320 for (int out_y = 0; out_y < num_output_rows; out_y++) { | 688 for (int out_y = 0; out_y < num_output_rows; out_y++) { |
| 321 filter_values = filter_y.FilterForValue(out_y, | 689 filter_values = filter_y.FilterForValue(out_y, |
| 322 &filter_offset, &filter_length); | 690 &filter_offset, &filter_length); |
| 323 | 691 |
| 324 // Generate output rows until we have enough to run the current filter. | 692 // Generate output rows until we have enough to run the current filter. |
| 325 while (next_x_row < filter_offset + filter_length) { | 693 while (next_x_row < filter_offset + filter_length) { |
| 326 if (source_has_alpha) { | 694 if (source_has_alpha) { |
| 327 ConvolveHorizontally<true>( | 695 ConvolveHorizontally<true>( |
| 328 &source_data[next_x_row * source_byte_row_stride], | 696 &source_data[next_x_row * source_byte_row_stride], |
| 329 filter_x, row_buffer.AdvanceRow()); | 697 filter_x, row_buffer.AdvanceRow()); |
| (...skipping 17 matching lines...) Expand all Loading... | |
| 347 // needs. | 715 // needs. |
| 348 unsigned char* const* first_row_for_filter = | 716 unsigned char* const* first_row_for_filter = |
| 349 &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; | 717 &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; |
| 350 | 718 |
| 351 if (source_has_alpha) { | 719 if (source_has_alpha) { |
| 352 ConvolveVertically<true>(filter_values, filter_length, | 720 ConvolveVertically<true>(filter_values, filter_length, |
| 353 first_row_for_filter, | 721 first_row_for_filter, |
| 354 filter_x.num_values(), cur_output_row); | 722 filter_x.num_values(), cur_output_row); |
| 355 } else { | 723 } else { |
| 356 ConvolveVertically<false>(filter_values, filter_length, | 724 ConvolveVertically<false>(filter_values, filter_length, |
| 357 first_row_for_filter, | 725 first_row_for_filter, |
| 358 filter_x.num_values(), cur_output_row); | 726 filter_x.num_values(), cur_output_row); |
| 359 } | 727 } |
| 360 } | 728 } |
| 361 } | 729 } |
| 362 | 730 |
| 731 // BGRAConvolve2D ------------------------------------------------------------- | |
| 732 | |
| 733 void BGRAConvolve2D_SSE2(const unsigned char* source_data, | |
| 734 int source_byte_row_stride, | |
| 735 bool source_has_alpha, | |
| 736 const ConvolutionFilter1D& filter_x, | |
| 737 const ConvolutionFilter1D& filter_y, | |
| 738 int output_byte_row_stride, | |
| 739 unsigned char* output) { | |
| 740 int max_y_filter_size = filter_y.max_filter(); | |
| 741 | |
| 742 // The next row in the input that we will generate a horizontally | |
| 743 // convolved row for. If the filter doesn't start at the beginning of the | |
| 744 // image (this is the case when we are only resizing a subset), then we | |
| 745 // don't want to generate any output rows before that. Compute the starting | |
| 746 // row for convolution as the first pixel for the first vertical filter. | |
| 747 int filter_offset, filter_length; | |
| 748 const ConvolutionFilter1D::Fixed* filter_values = | |
| 749 filter_y.FilterForValue(0, &filter_offset, &filter_length); | |
| 750 int next_x_row = filter_offset; | |
| 751 | |
| 752 // We loop over each row in the input doing a horizontal convolution. This | |
| 753 // will result in a horizontally convolved image. We write the results into | |
| 754 // a circular buffer of convolved rows and do vertical convolution as rows | |
| 755 // are available. This prevents us from having to store the entire | |
| 756 // intermediate image and helps cache coherency. | |
| 757 // We will need four extra rows to allow horizontal convolution could be done | |
| 758 // simultaneously. | |
| 759 int row_buffer_width = (filter_x.num_values() + 15) & ~0xF; | |
| 760 int row_buffer_height = max_y_filter_size + 4; | |
| 761 CircularRowBuffer row_buffer(row_buffer_width, | |
| 762 row_buffer_height, | |
| 763 filter_offset); | |
| 764 | |
| 765 // Loop over every possible output row, processing just enough horizontal | |
| 766 // convolutions to run each subsequent vertical convolution. | |
| 767 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); | |
| 768 int num_output_rows = filter_y.num_values(); | |
| 769 | |
| 770 int last_filter_offset, last_filter_length; | |
| 771 filter_y.FilterForValue(num_output_rows-1, &last_filter_offset, | |
| 772 &last_filter_length); | |
| 773 | |
| 774 for (int out_y = 0; out_y < num_output_rows; out_y++) { | |
| 775 filter_values = filter_y.FilterForValue(out_y, | |
| 776 &filter_offset, &filter_length); | |
| 777 | |
| 778 // Generate output rows until we have enough to run the current filter. | |
| 779 while (next_x_row < filter_offset + filter_length) { | |
| 780 if (next_x_row + 3 < last_filter_offset + last_filter_length - 1) { | |
| 781 const unsigned char* src[4]; | |
| 782 unsigned char* out_row[4]; | |
| 783 for (int i = 0; i < 4; ++i) { | |
| 784 src[i] = &source_data[(next_x_row+i) * source_byte_row_stride]; | |
| 785 out_row[i] = row_buffer.AdvanceRow(); | |
| 786 } | |
| 787 ConvolveHorizontally4_SSE2(src, filter_x, out_row); | |
| 788 next_x_row+=4; | |
| 789 } else { | |
| 790 // For the last row, SSE2 load possibly to access data beyond the | |
| 791 // image area. therefore we use C version here. Hacking into skia | |
| 792 // to add line paddings is not something in my mind. | |
| 793 if (next_x_row == last_filter_offset + last_filter_length - 1) { | |
| 794 if (source_has_alpha) | |
| 795 ConvolveHorizontally<true>( | |
| 796 &source_data[next_x_row * source_byte_row_stride], | |
| 797 filter_x, row_buffer.AdvanceRow()); | |
| 798 else | |
| 799 ConvolveHorizontally<false>( | |
| 800 &source_data[next_x_row * source_byte_row_stride], | |
| 801 filter_x, row_buffer.AdvanceRow()); | |
| 802 } else { | |
| 803 ConvolveHorizontally_SSE2( | |
| 804 &source_data[next_x_row * source_byte_row_stride], | |
| 805 filter_x, row_buffer.AdvanceRow()); | |
| 806 } | |
| 807 next_x_row++; | |
| 808 } | |
| 809 } | |
| 810 | |
| 811 // Compute where in the output image this row of final data will go. | |
| 812 unsigned char* cur_output_row = &output[out_y * output_byte_row_stride]; | |
| 813 | |
| 814 // Get the list of rows that the circular buffer has, in order. | |
| 815 int first_row_in_circular_buffer; | |
| 816 unsigned char* const* rows_to_convolve = | |
| 817 row_buffer.GetRowAddresses(&first_row_in_circular_buffer); | |
| 818 | |
| 819 // Now compute the start of the subset of those rows that the filter | |
| 820 // needs. | |
| 821 unsigned char* const* first_row_for_filter = | |
| 822 &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; | |
| 823 | |
| 824 if (source_has_alpha) { | |
| 825 ConvolveVertically_SSE2<true>(filter_values, filter_length, | |
| 826 first_row_for_filter, | |
| 827 filter_x.num_values(), cur_output_row); | |
| 828 } else { | |
| 829 ConvolveVertically_SSE2<false>(filter_values, filter_length, | |
| 830 first_row_for_filter, | |
| 831 filter_x.num_values(), cur_output_row); | |
| 832 } | |
| 833 } | |
| 834 } | |
| 835 | |
| 836 void BGRAConvolve2D(const unsigned char* source_data, | |
| 837 int source_byte_row_stride, | |
| 838 bool source_has_alpha, | |
| 839 const ConvolutionFilter1D& filter_x, | |
| 840 const ConvolutionFilter1D& filter_y, | |
| 841 int output_byte_row_stride, | |
| 842 unsigned char* output) { | |
| 843 base::CPU cpu; | |
| 844 if (cpu.has_sse2()) { | |
| 845 BGRAConvolve2D_SSE2(source_data, source_byte_row_stride, source_has_alpha, | |
| 846 filter_x, filter_y, output_byte_row_stride, output); | |
| 847 } else { | |
| 848 BGRAConvolve2D_C(source_data, source_byte_row_stride, source_has_alpha, | |
| 849 filter_x, filter_y, output_byte_row_stride, output); | |
| 850 } | |
| 851 } | |
| 852 | |
| 363 } // namespace skia | 853 } // namespace skia |
| OLD | NEW |