OLD | NEW |
1 // Copyright 2006-2008 the V8 project authors. All rights reserved. | 1 // Copyright 2006-2008 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
(...skipping 1319 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1330 __ Ret(); | 1330 __ Ret(); |
1331 | 1331 |
1332 StubRuntimeCallHelper call_helper; | 1332 StubRuntimeCallHelper call_helper; |
1333 char_at_generator.GenerateSlow(masm, call_helper); | 1333 char_at_generator.GenerateSlow(masm, call_helper); |
1334 | 1334 |
1335 __ bind(&miss); | 1335 __ bind(&miss); |
1336 GenerateMiss(masm); | 1336 GenerateMiss(masm); |
1337 } | 1337 } |
1338 | 1338 |
1339 | 1339 |
1340 // Convert unsigned integer with specified number of leading zeroes in binary | |
1341 // representation to IEEE 754 double. | |
1342 // Integer to convert is passed in register hiword. | |
1343 // Resulting double is returned in registers hiword:loword. | |
1344 // This functions does not work correctly for 0. | |
1345 static void GenerateUInt2Double(MacroAssembler* masm, | |
1346 Register hiword, | |
1347 Register loword, | |
1348 Register scratch, | |
1349 int leading_zeroes) { | |
1350 const int meaningful_bits = kBitsPerInt - leading_zeroes - 1; | |
1351 const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits; | |
1352 | |
1353 const int mantissa_shift_for_hi_word = | |
1354 meaningful_bits - HeapNumber::kMantissaBitsInTopWord; | |
1355 | |
1356 const int mantissa_shift_for_lo_word = | |
1357 kBitsPerInt - mantissa_shift_for_hi_word; | |
1358 | |
1359 __ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift)); | |
1360 if (mantissa_shift_for_hi_word > 0) { | |
1361 __ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word)); | |
1362 __ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word)); | |
1363 } else { | |
1364 __ mov(loword, Operand(0, RelocInfo::NONE)); | |
1365 __ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word)); | |
1366 } | |
1367 | |
1368 // If least significant bit of biased exponent was not 1 it was corrupted | |
1369 // by most significant bit of mantissa so we should fix that. | |
1370 if (!(biased_exponent & 1)) { | |
1371 __ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift)); | |
1372 } | |
1373 } | |
1374 | |
1375 | |
1376 void KeyedLoadIC::GenerateExternalArray(MacroAssembler* masm, | |
1377 ExternalArrayType array_type) { | |
1378 // ---------- S t a t e -------------- | |
1379 // -- lr : return address | |
1380 // -- r0 : key | |
1381 // -- r1 : receiver | |
1382 // ----------------------------------- | |
1383 Label slow, failed_allocation; | |
1384 | |
1385 Register key = r0; | |
1386 Register receiver = r1; | |
1387 | |
1388 // Check that the object isn't a smi | |
1389 __ BranchOnSmi(receiver, &slow); | |
1390 | |
1391 // Check that the key is a smi. | |
1392 __ BranchOnNotSmi(key, &slow); | |
1393 | |
1394 // Check that the object is a JS object. Load map into r2. | |
1395 __ CompareObjectType(receiver, r2, r3, FIRST_JS_OBJECT_TYPE); | |
1396 __ b(lt, &slow); | |
1397 | |
1398 // Check that the receiver does not require access checks. We need | |
1399 // to check this explicitly since this generic stub does not perform | |
1400 // map checks. | |
1401 __ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset)); | |
1402 __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded)); | |
1403 __ b(ne, &slow); | |
1404 | |
1405 // Check that the elements array is the appropriate type of | |
1406 // ExternalArray. | |
1407 __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset)); | |
1408 __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset)); | |
1409 __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type)); | |
1410 __ cmp(r2, ip); | |
1411 __ b(ne, &slow); | |
1412 | |
1413 // Check that the index is in range. | |
1414 __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset)); | |
1415 __ cmp(ip, Operand(key, ASR, kSmiTagSize)); | |
1416 // Unsigned comparison catches both negative and too-large values. | |
1417 __ b(lo, &slow); | |
1418 | |
1419 // r3: elements array | |
1420 __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset)); | |
1421 // r3: base pointer of external storage | |
1422 | |
1423 // We are not untagging smi key and instead work with it | |
1424 // as if it was premultiplied by 2. | |
1425 ASSERT((kSmiTag == 0) && (kSmiTagSize == 1)); | |
1426 | |
1427 Register value = r2; | |
1428 switch (array_type) { | |
1429 case kExternalByteArray: | |
1430 __ ldrsb(value, MemOperand(r3, key, LSR, 1)); | |
1431 break; | |
1432 case kExternalUnsignedByteArray: | |
1433 __ ldrb(value, MemOperand(r3, key, LSR, 1)); | |
1434 break; | |
1435 case kExternalShortArray: | |
1436 __ ldrsh(value, MemOperand(r3, key, LSL, 0)); | |
1437 break; | |
1438 case kExternalUnsignedShortArray: | |
1439 __ ldrh(value, MemOperand(r3, key, LSL, 0)); | |
1440 break; | |
1441 case kExternalIntArray: | |
1442 case kExternalUnsignedIntArray: | |
1443 __ ldr(value, MemOperand(r3, key, LSL, 1)); | |
1444 break; | |
1445 case kExternalFloatArray: | |
1446 if (CpuFeatures::IsSupported(VFP3)) { | |
1447 CpuFeatures::Scope scope(VFP3); | |
1448 __ add(r2, r3, Operand(key, LSL, 1)); | |
1449 __ vldr(s0, r2, 0); | |
1450 } else { | |
1451 __ ldr(value, MemOperand(r3, key, LSL, 1)); | |
1452 } | |
1453 break; | |
1454 default: | |
1455 UNREACHABLE(); | |
1456 break; | |
1457 } | |
1458 | |
1459 // For integer array types: | |
1460 // r2: value | |
1461 // For floating-point array type | |
1462 // s0: value (if VFP3 is supported) | |
1463 // r2: value (if VFP3 is not supported) | |
1464 | |
1465 if (array_type == kExternalIntArray) { | |
1466 // For the Int and UnsignedInt array types, we need to see whether | |
1467 // the value can be represented in a Smi. If not, we need to convert | |
1468 // it to a HeapNumber. | |
1469 Label box_int; | |
1470 __ cmp(value, Operand(0xC0000000)); | |
1471 __ b(mi, &box_int); | |
1472 // Tag integer as smi and return it. | |
1473 __ mov(r0, Operand(value, LSL, kSmiTagSize)); | |
1474 __ Ret(); | |
1475 | |
1476 __ bind(&box_int); | |
1477 // Allocate a HeapNumber for the result and perform int-to-double | |
1478 // conversion. Don't touch r0 or r1 as they are needed if allocation | |
1479 // fails. | |
1480 __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); | |
1481 __ AllocateHeapNumber(r5, r3, r4, r6, &slow); | |
1482 // Now we can use r0 for the result as key is not needed any more. | |
1483 __ mov(r0, r5); | |
1484 | |
1485 if (CpuFeatures::IsSupported(VFP3)) { | |
1486 CpuFeatures::Scope scope(VFP3); | |
1487 __ vmov(s0, value); | |
1488 __ vcvt_f64_s32(d0, s0); | |
1489 __ sub(r3, r0, Operand(kHeapObjectTag)); | |
1490 __ vstr(d0, r3, HeapNumber::kValueOffset); | |
1491 __ Ret(); | |
1492 } else { | |
1493 WriteInt32ToHeapNumberStub stub(value, r0, r3); | |
1494 __ TailCallStub(&stub); | |
1495 } | |
1496 } else if (array_type == kExternalUnsignedIntArray) { | |
1497 // The test is different for unsigned int values. Since we need | |
1498 // the value to be in the range of a positive smi, we can't | |
1499 // handle either of the top two bits being set in the value. | |
1500 if (CpuFeatures::IsSupported(VFP3)) { | |
1501 CpuFeatures::Scope scope(VFP3); | |
1502 Label box_int, done; | |
1503 __ tst(value, Operand(0xC0000000)); | |
1504 __ b(ne, &box_int); | |
1505 // Tag integer as smi and return it. | |
1506 __ mov(r0, Operand(value, LSL, kSmiTagSize)); | |
1507 __ Ret(); | |
1508 | |
1509 __ bind(&box_int); | |
1510 __ vmov(s0, value); | |
1511 // Allocate a HeapNumber for the result and perform int-to-double | |
1512 // conversion. Don't use r0 and r1 as AllocateHeapNumber clobbers all | |
1513 // registers - also when jumping due to exhausted young space. | |
1514 __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); | |
1515 __ AllocateHeapNumber(r2, r3, r4, r6, &slow); | |
1516 | |
1517 __ vcvt_f64_u32(d0, s0); | |
1518 __ sub(r1, r2, Operand(kHeapObjectTag)); | |
1519 __ vstr(d0, r1, HeapNumber::kValueOffset); | |
1520 | |
1521 __ mov(r0, r2); | |
1522 __ Ret(); | |
1523 } else { | |
1524 // Check whether unsigned integer fits into smi. | |
1525 Label box_int_0, box_int_1, done; | |
1526 __ tst(value, Operand(0x80000000)); | |
1527 __ b(ne, &box_int_0); | |
1528 __ tst(value, Operand(0x40000000)); | |
1529 __ b(ne, &box_int_1); | |
1530 // Tag integer as smi and return it. | |
1531 __ mov(r0, Operand(value, LSL, kSmiTagSize)); | |
1532 __ Ret(); | |
1533 | |
1534 Register hiword = value; // r2. | |
1535 Register loword = r3; | |
1536 | |
1537 __ bind(&box_int_0); | |
1538 // Integer does not have leading zeros. | |
1539 GenerateUInt2Double(masm, hiword, loword, r4, 0); | |
1540 __ b(&done); | |
1541 | |
1542 __ bind(&box_int_1); | |
1543 // Integer has one leading zero. | |
1544 GenerateUInt2Double(masm, hiword, loword, r4, 1); | |
1545 | |
1546 | |
1547 __ bind(&done); | |
1548 // Integer was converted to double in registers hiword:loword. | |
1549 // Wrap it into a HeapNumber. Don't use r0 and r1 as AllocateHeapNumber | |
1550 // clobbers all registers - also when jumping due to exhausted young | |
1551 // space. | |
1552 __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); | |
1553 __ AllocateHeapNumber(r4, r5, r7, r6, &slow); | |
1554 | |
1555 __ str(hiword, FieldMemOperand(r4, HeapNumber::kExponentOffset)); | |
1556 __ str(loword, FieldMemOperand(r4, HeapNumber::kMantissaOffset)); | |
1557 | |
1558 __ mov(r0, r4); | |
1559 __ Ret(); | |
1560 } | |
1561 } else if (array_type == kExternalFloatArray) { | |
1562 // For the floating-point array type, we need to always allocate a | |
1563 // HeapNumber. | |
1564 if (CpuFeatures::IsSupported(VFP3)) { | |
1565 CpuFeatures::Scope scope(VFP3); | |
1566 // Allocate a HeapNumber for the result. Don't use r0 and r1 as | |
1567 // AllocateHeapNumber clobbers all registers - also when jumping due to | |
1568 // exhausted young space. | |
1569 __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); | |
1570 __ AllocateHeapNumber(r2, r3, r4, r6, &slow); | |
1571 __ vcvt_f64_f32(d0, s0); | |
1572 __ sub(r1, r2, Operand(kHeapObjectTag)); | |
1573 __ vstr(d0, r1, HeapNumber::kValueOffset); | |
1574 | |
1575 __ mov(r0, r2); | |
1576 __ Ret(); | |
1577 } else { | |
1578 // Allocate a HeapNumber for the result. Don't use r0 and r1 as | |
1579 // AllocateHeapNumber clobbers all registers - also when jumping due to | |
1580 // exhausted young space. | |
1581 __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); | |
1582 __ AllocateHeapNumber(r3, r4, r5, r6, &slow); | |
1583 // VFP is not available, do manual single to double conversion. | |
1584 | |
1585 // r2: floating point value (binary32) | |
1586 // r3: heap number for result | |
1587 | |
1588 // Extract mantissa to r0. OK to clobber r0 now as there are no jumps to | |
1589 // the slow case from here. | |
1590 __ and_(r0, value, Operand(kBinary32MantissaMask)); | |
1591 | |
1592 // Extract exponent to r1. OK to clobber r1 now as there are no jumps to | |
1593 // the slow case from here. | |
1594 __ mov(r1, Operand(value, LSR, kBinary32MantissaBits)); | |
1595 __ and_(r1, r1, Operand(kBinary32ExponentMask >> kBinary32MantissaBits)); | |
1596 | |
1597 Label exponent_rebiased; | |
1598 __ teq(r1, Operand(0x00, RelocInfo::NONE)); | |
1599 __ b(eq, &exponent_rebiased); | |
1600 | |
1601 __ teq(r1, Operand(0xff)); | |
1602 __ mov(r1, Operand(0x7ff), LeaveCC, eq); | |
1603 __ b(eq, &exponent_rebiased); | |
1604 | |
1605 // Rebias exponent. | |
1606 __ add(r1, | |
1607 r1, | |
1608 Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias)); | |
1609 | |
1610 __ bind(&exponent_rebiased); | |
1611 __ and_(r2, value, Operand(kBinary32SignMask)); | |
1612 value = no_reg; | |
1613 __ orr(r2, r2, Operand(r1, LSL, HeapNumber::kMantissaBitsInTopWord)); | |
1614 | |
1615 // Shift mantissa. | |
1616 static const int kMantissaShiftForHiWord = | |
1617 kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord; | |
1618 | |
1619 static const int kMantissaShiftForLoWord = | |
1620 kBitsPerInt - kMantissaShiftForHiWord; | |
1621 | |
1622 __ orr(r2, r2, Operand(r0, LSR, kMantissaShiftForHiWord)); | |
1623 __ mov(r0, Operand(r0, LSL, kMantissaShiftForLoWord)); | |
1624 | |
1625 __ str(r2, FieldMemOperand(r3, HeapNumber::kExponentOffset)); | |
1626 __ str(r0, FieldMemOperand(r3, HeapNumber::kMantissaOffset)); | |
1627 | |
1628 __ mov(r0, r3); | |
1629 __ Ret(); | |
1630 } | |
1631 | |
1632 } else { | |
1633 // Tag integer as smi and return it. | |
1634 __ mov(r0, Operand(value, LSL, kSmiTagSize)); | |
1635 __ Ret(); | |
1636 } | |
1637 | |
1638 // Slow case, key and receiver still in r0 and r1. | |
1639 __ bind(&slow); | |
1640 __ IncrementCounter(&Counters::keyed_load_external_array_slow, 1, r2, r3); | |
1641 GenerateRuntimeGetProperty(masm); | |
1642 } | |
1643 | |
1644 | |
1645 void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) { | 1340 void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) { |
1646 // ---------- S t a t e -------------- | 1341 // ---------- S t a t e -------------- |
1647 // -- lr : return address | 1342 // -- lr : return address |
1648 // -- r0 : key | 1343 // -- r0 : key |
1649 // -- r1 : receiver | 1344 // -- r1 : receiver |
1650 // ----------------------------------- | 1345 // ----------------------------------- |
1651 Label slow; | 1346 Label slow; |
1652 | 1347 |
1653 // Check that the receiver isn't a smi. | 1348 // Check that the receiver isn't a smi. |
1654 __ BranchOnSmi(r1, &slow); | 1349 __ BranchOnSmi(r1, &slow); |
(...skipping 176 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1831 __ tst(value, Operand(kSmiTagMask)); | 1526 __ tst(value, Operand(kSmiTagMask)); |
1832 __ Ret(eq); | 1527 __ Ret(eq); |
1833 // Update write barrier for the elements array address. | 1528 // Update write barrier for the elements array address. |
1834 __ sub(r4, r5, Operand(elements)); | 1529 __ sub(r4, r5, Operand(elements)); |
1835 __ RecordWrite(elements, Operand(r4), r5, r6); | 1530 __ RecordWrite(elements, Operand(r4), r5, r6); |
1836 | 1531 |
1837 __ Ret(); | 1532 __ Ret(); |
1838 } | 1533 } |
1839 | 1534 |
1840 | 1535 |
1841 // Convert and store int passed in register ival to IEEE 754 single precision | |
1842 // floating point value at memory location (dst + 4 * wordoffset) | |
1843 // If VFP3 is available use it for conversion. | |
1844 static void StoreIntAsFloat(MacroAssembler* masm, | |
1845 Register dst, | |
1846 Register wordoffset, | |
1847 Register ival, | |
1848 Register fval, | |
1849 Register scratch1, | |
1850 Register scratch2) { | |
1851 if (CpuFeatures::IsSupported(VFP3)) { | |
1852 CpuFeatures::Scope scope(VFP3); | |
1853 __ vmov(s0, ival); | |
1854 __ add(scratch1, dst, Operand(wordoffset, LSL, 2)); | |
1855 __ vcvt_f32_s32(s0, s0); | |
1856 __ vstr(s0, scratch1, 0); | |
1857 } else { | |
1858 Label not_special, done; | |
1859 // Move sign bit from source to destination. This works because the sign | |
1860 // bit in the exponent word of the double has the same position and polarity | |
1861 // as the 2's complement sign bit in a Smi. | |
1862 ASSERT(kBinary32SignMask == 0x80000000u); | |
1863 | |
1864 __ and_(fval, ival, Operand(kBinary32SignMask), SetCC); | |
1865 // Negate value if it is negative. | |
1866 __ rsb(ival, ival, Operand(0, RelocInfo::NONE), LeaveCC, ne); | |
1867 | |
1868 // We have -1, 0 or 1, which we treat specially. Register ival contains | |
1869 // absolute value: it is either equal to 1 (special case of -1 and 1), | |
1870 // greater than 1 (not a special case) or less than 1 (special case of 0). | |
1871 __ cmp(ival, Operand(1)); | |
1872 __ b(gt, ¬_special); | |
1873 | |
1874 // For 1 or -1 we need to or in the 0 exponent (biased). | |
1875 static const uint32_t exponent_word_for_1 = | |
1876 kBinary32ExponentBias << kBinary32ExponentShift; | |
1877 | |
1878 __ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq); | |
1879 __ b(&done); | |
1880 | |
1881 __ bind(¬_special); | |
1882 // Count leading zeros. | |
1883 // Gets the wrong answer for 0, but we already checked for that case above. | |
1884 Register zeros = scratch2; | |
1885 __ CountLeadingZeros(zeros, ival, scratch1); | |
1886 | |
1887 // Compute exponent and or it into the exponent register. | |
1888 __ rsb(scratch1, | |
1889 zeros, | |
1890 Operand((kBitsPerInt - 1) + kBinary32ExponentBias)); | |
1891 | |
1892 __ orr(fval, | |
1893 fval, | |
1894 Operand(scratch1, LSL, kBinary32ExponentShift)); | |
1895 | |
1896 // Shift up the source chopping the top bit off. | |
1897 __ add(zeros, zeros, Operand(1)); | |
1898 // This wouldn't work for 1 and -1 as the shift would be 32 which means 0. | |
1899 __ mov(ival, Operand(ival, LSL, zeros)); | |
1900 // And the top (top 20 bits). | |
1901 __ orr(fval, | |
1902 fval, | |
1903 Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits)); | |
1904 | |
1905 __ bind(&done); | |
1906 __ str(fval, MemOperand(dst, wordoffset, LSL, 2)); | |
1907 } | |
1908 } | |
1909 | |
1910 | |
1911 static bool IsElementTypeSigned(ExternalArrayType array_type) { | |
1912 switch (array_type) { | |
1913 case kExternalByteArray: | |
1914 case kExternalShortArray: | |
1915 case kExternalIntArray: | |
1916 return true; | |
1917 | |
1918 case kExternalUnsignedByteArray: | |
1919 case kExternalUnsignedShortArray: | |
1920 case kExternalUnsignedIntArray: | |
1921 return false; | |
1922 | |
1923 default: | |
1924 UNREACHABLE(); | |
1925 return false; | |
1926 } | |
1927 } | |
1928 | |
1929 | |
1930 void KeyedStoreIC::GenerateExternalArray(MacroAssembler* masm, | |
1931 ExternalArrayType array_type) { | |
1932 // ---------- S t a t e -------------- | |
1933 // -- r0 : value | |
1934 // -- r1 : key | |
1935 // -- r2 : receiver | |
1936 // -- lr : return address | |
1937 // ----------------------------------- | |
1938 Label slow, check_heap_number; | |
1939 | |
1940 // Register usage. | |
1941 Register value = r0; | |
1942 Register key = r1; | |
1943 Register receiver = r2; | |
1944 // r3 mostly holds the elements array or the destination external array. | |
1945 | |
1946 // Check that the object isn't a smi. | |
1947 __ BranchOnSmi(receiver, &slow); | |
1948 | |
1949 // Check that the object is a JS object. Load map into r3. | |
1950 __ CompareObjectType(receiver, r3, r4, FIRST_JS_OBJECT_TYPE); | |
1951 __ b(le, &slow); | |
1952 | |
1953 // Check that the receiver does not require access checks. We need | |
1954 // to do this because this generic stub does not perform map checks. | |
1955 __ ldrb(ip, FieldMemOperand(r3, Map::kBitFieldOffset)); | |
1956 __ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded)); | |
1957 __ b(ne, &slow); | |
1958 | |
1959 // Check that the key is a smi. | |
1960 __ BranchOnNotSmi(key, &slow); | |
1961 | |
1962 // Check that the elements array is the appropriate type of ExternalArray. | |
1963 __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset)); | |
1964 __ ldr(r4, FieldMemOperand(r3, HeapObject::kMapOffset)); | |
1965 __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type)); | |
1966 __ cmp(r4, ip); | |
1967 __ b(ne, &slow); | |
1968 | |
1969 // Check that the index is in range. | |
1970 __ mov(r4, Operand(key, ASR, kSmiTagSize)); // Untag the index. | |
1971 __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset)); | |
1972 __ cmp(r4, ip); | |
1973 // Unsigned comparison catches both negative and too-large values. | |
1974 __ b(hs, &slow); | |
1975 | |
1976 // Handle both smis and HeapNumbers in the fast path. Go to the | |
1977 // runtime for all other kinds of values. | |
1978 // r3: external array. | |
1979 // r4: key (integer). | |
1980 __ BranchOnNotSmi(value, &check_heap_number); | |
1981 __ mov(r5, Operand(value, ASR, kSmiTagSize)); // Untag the value. | |
1982 __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset)); | |
1983 | |
1984 // r3: base pointer of external storage. | |
1985 // r4: key (integer). | |
1986 // r5: value (integer). | |
1987 switch (array_type) { | |
1988 case kExternalByteArray: | |
1989 case kExternalUnsignedByteArray: | |
1990 __ strb(r5, MemOperand(r3, r4, LSL, 0)); | |
1991 break; | |
1992 case kExternalShortArray: | |
1993 case kExternalUnsignedShortArray: | |
1994 __ strh(r5, MemOperand(r3, r4, LSL, 1)); | |
1995 break; | |
1996 case kExternalIntArray: | |
1997 case kExternalUnsignedIntArray: | |
1998 __ str(r5, MemOperand(r3, r4, LSL, 2)); | |
1999 break; | |
2000 case kExternalFloatArray: | |
2001 // Perform int-to-float conversion and store to memory. | |
2002 StoreIntAsFloat(masm, r3, r4, r5, r6, r7, r9); | |
2003 break; | |
2004 default: | |
2005 UNREACHABLE(); | |
2006 break; | |
2007 } | |
2008 | |
2009 // Entry registers are intact, r0 holds the value which is the return value. | |
2010 __ Ret(); | |
2011 | |
2012 | |
2013 // r3: external array. | |
2014 // r4: index (integer). | |
2015 __ bind(&check_heap_number); | |
2016 __ CompareObjectType(value, r5, r6, HEAP_NUMBER_TYPE); | |
2017 __ b(ne, &slow); | |
2018 | |
2019 __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset)); | |
2020 | |
2021 // r3: base pointer of external storage. | |
2022 // r4: key (integer). | |
2023 | |
2024 // The WebGL specification leaves the behavior of storing NaN and | |
2025 // +/-Infinity into integer arrays basically undefined. For more | |
2026 // reproducible behavior, convert these to zero. | |
2027 if (CpuFeatures::IsSupported(VFP3)) { | |
2028 CpuFeatures::Scope scope(VFP3); | |
2029 | |
2030 | |
2031 if (array_type == kExternalFloatArray) { | |
2032 // vldr requires offset to be a multiple of 4 so we can not | |
2033 // include -kHeapObjectTag into it. | |
2034 __ sub(r5, r0, Operand(kHeapObjectTag)); | |
2035 __ vldr(d0, r5, HeapNumber::kValueOffset); | |
2036 __ add(r5, r3, Operand(r4, LSL, 2)); | |
2037 __ vcvt_f32_f64(s0, d0); | |
2038 __ vstr(s0, r5, 0); | |
2039 } else { | |
2040 // Need to perform float-to-int conversion. | |
2041 // Test for NaN or infinity (both give zero). | |
2042 __ ldr(r6, FieldMemOperand(r5, HeapNumber::kExponentOffset)); | |
2043 | |
2044 // Hoisted load. vldr requires offset to be a multiple of 4 so we can not | |
2045 // include -kHeapObjectTag into it. | |
2046 __ sub(r5, r0, Operand(kHeapObjectTag)); | |
2047 __ vldr(d0, r5, HeapNumber::kValueOffset); | |
2048 | |
2049 __ Sbfx(r6, r6, HeapNumber::kExponentShift, HeapNumber::kExponentBits); | |
2050 // NaNs and Infinities have all-one exponents so they sign extend to -1. | |
2051 __ cmp(r6, Operand(-1)); | |
2052 __ mov(r5, Operand(Smi::FromInt(0)), LeaveCC, eq); | |
2053 | |
2054 // Not infinity or NaN simply convert to int. | |
2055 if (IsElementTypeSigned(array_type)) { | |
2056 __ vcvt_s32_f64(s0, d0, Assembler::RoundToZero, ne); | |
2057 } else { | |
2058 __ vcvt_u32_f64(s0, d0, Assembler::RoundToZero, ne); | |
2059 } | |
2060 __ vmov(r5, s0, ne); | |
2061 | |
2062 switch (array_type) { | |
2063 case kExternalByteArray: | |
2064 case kExternalUnsignedByteArray: | |
2065 __ strb(r5, MemOperand(r3, r4, LSL, 0)); | |
2066 break; | |
2067 case kExternalShortArray: | |
2068 case kExternalUnsignedShortArray: | |
2069 __ strh(r5, MemOperand(r3, r4, LSL, 1)); | |
2070 break; | |
2071 case kExternalIntArray: | |
2072 case kExternalUnsignedIntArray: | |
2073 __ str(r5, MemOperand(r3, r4, LSL, 2)); | |
2074 break; | |
2075 default: | |
2076 UNREACHABLE(); | |
2077 break; | |
2078 } | |
2079 } | |
2080 | |
2081 // Entry registers are intact, r0 holds the value which is the return value. | |
2082 __ Ret(); | |
2083 } else { | |
2084 // VFP3 is not available do manual conversions. | |
2085 __ ldr(r5, FieldMemOperand(value, HeapNumber::kExponentOffset)); | |
2086 __ ldr(r6, FieldMemOperand(value, HeapNumber::kMantissaOffset)); | |
2087 | |
2088 if (array_type == kExternalFloatArray) { | |
2089 Label done, nan_or_infinity_or_zero; | |
2090 static const int kMantissaInHiWordShift = | |
2091 kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord; | |
2092 | |
2093 static const int kMantissaInLoWordShift = | |
2094 kBitsPerInt - kMantissaInHiWordShift; | |
2095 | |
2096 // Test for all special exponent values: zeros, subnormal numbers, NaNs | |
2097 // and infinities. All these should be converted to 0. | |
2098 __ mov(r7, Operand(HeapNumber::kExponentMask)); | |
2099 __ and_(r9, r5, Operand(r7), SetCC); | |
2100 __ b(eq, &nan_or_infinity_or_zero); | |
2101 | |
2102 __ teq(r9, Operand(r7)); | |
2103 __ mov(r9, Operand(kBinary32ExponentMask), LeaveCC, eq); | |
2104 __ b(eq, &nan_or_infinity_or_zero); | |
2105 | |
2106 // Rebias exponent. | |
2107 __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift)); | |
2108 __ add(r9, | |
2109 r9, | |
2110 Operand(kBinary32ExponentBias - HeapNumber::kExponentBias)); | |
2111 | |
2112 __ cmp(r9, Operand(kBinary32MaxExponent)); | |
2113 __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, gt); | |
2114 __ orr(r5, r5, Operand(kBinary32ExponentMask), LeaveCC, gt); | |
2115 __ b(gt, &done); | |
2116 | |
2117 __ cmp(r9, Operand(kBinary32MinExponent)); | |
2118 __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, lt); | |
2119 __ b(lt, &done); | |
2120 | |
2121 __ and_(r7, r5, Operand(HeapNumber::kSignMask)); | |
2122 __ and_(r5, r5, Operand(HeapNumber::kMantissaMask)); | |
2123 __ orr(r7, r7, Operand(r5, LSL, kMantissaInHiWordShift)); | |
2124 __ orr(r7, r7, Operand(r6, LSR, kMantissaInLoWordShift)); | |
2125 __ orr(r5, r7, Operand(r9, LSL, kBinary32ExponentShift)); | |
2126 | |
2127 __ bind(&done); | |
2128 __ str(r5, MemOperand(r3, r4, LSL, 2)); | |
2129 // Entry registers are intact, r0 holds the value which is the return | |
2130 // value. | |
2131 __ Ret(); | |
2132 | |
2133 __ bind(&nan_or_infinity_or_zero); | |
2134 __ and_(r7, r5, Operand(HeapNumber::kSignMask)); | |
2135 __ and_(r5, r5, Operand(HeapNumber::kMantissaMask)); | |
2136 __ orr(r9, r9, r7); | |
2137 __ orr(r9, r9, Operand(r5, LSL, kMantissaInHiWordShift)); | |
2138 __ orr(r5, r9, Operand(r6, LSR, kMantissaInLoWordShift)); | |
2139 __ b(&done); | |
2140 } else { | |
2141 bool is_signed_type = IsElementTypeSigned(array_type); | |
2142 int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt; | |
2143 int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000; | |
2144 | |
2145 Label done, sign; | |
2146 | |
2147 // Test for all special exponent values: zeros, subnormal numbers, NaNs | |
2148 // and infinities. All these should be converted to 0. | |
2149 __ mov(r7, Operand(HeapNumber::kExponentMask)); | |
2150 __ and_(r9, r5, Operand(r7), SetCC); | |
2151 __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq); | |
2152 __ b(eq, &done); | |
2153 | |
2154 __ teq(r9, Operand(r7)); | |
2155 __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq); | |
2156 __ b(eq, &done); | |
2157 | |
2158 // Unbias exponent. | |
2159 __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift)); | |
2160 __ sub(r9, r9, Operand(HeapNumber::kExponentBias), SetCC); | |
2161 // If exponent is negative than result is 0. | |
2162 __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, mi); | |
2163 __ b(mi, &done); | |
2164 | |
2165 // If exponent is too big than result is minimal value. | |
2166 __ cmp(r9, Operand(meaningfull_bits - 1)); | |
2167 __ mov(r5, Operand(min_value), LeaveCC, ge); | |
2168 __ b(ge, &done); | |
2169 | |
2170 __ and_(r7, r5, Operand(HeapNumber::kSignMask), SetCC); | |
2171 __ and_(r5, r5, Operand(HeapNumber::kMantissaMask)); | |
2172 __ orr(r5, r5, Operand(1u << HeapNumber::kMantissaBitsInTopWord)); | |
2173 | |
2174 __ rsb(r9, r9, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC); | |
2175 __ mov(r5, Operand(r5, LSR, r9), LeaveCC, pl); | |
2176 __ b(pl, &sign); | |
2177 | |
2178 __ rsb(r9, r9, Operand(0, RelocInfo::NONE)); | |
2179 __ mov(r5, Operand(r5, LSL, r9)); | |
2180 __ rsb(r9, r9, Operand(meaningfull_bits)); | |
2181 __ orr(r5, r5, Operand(r6, LSR, r9)); | |
2182 | |
2183 __ bind(&sign); | |
2184 __ teq(r7, Operand(0, RelocInfo::NONE)); | |
2185 __ rsb(r5, r5, Operand(0, RelocInfo::NONE), LeaveCC, ne); | |
2186 | |
2187 __ bind(&done); | |
2188 switch (array_type) { | |
2189 case kExternalByteArray: | |
2190 case kExternalUnsignedByteArray: | |
2191 __ strb(r5, MemOperand(r3, r4, LSL, 0)); | |
2192 break; | |
2193 case kExternalShortArray: | |
2194 case kExternalUnsignedShortArray: | |
2195 __ strh(r5, MemOperand(r3, r4, LSL, 1)); | |
2196 break; | |
2197 case kExternalIntArray: | |
2198 case kExternalUnsignedIntArray: | |
2199 __ str(r5, MemOperand(r3, r4, LSL, 2)); | |
2200 break; | |
2201 default: | |
2202 UNREACHABLE(); | |
2203 break; | |
2204 } | |
2205 } | |
2206 } | |
2207 | |
2208 // Slow case: call runtime. | |
2209 __ bind(&slow); | |
2210 | |
2211 // Entry registers are intact. | |
2212 // r0: value | |
2213 // r1: key | |
2214 // r2: receiver | |
2215 GenerateRuntimeSetProperty(masm); | |
2216 } | |
2217 | |
2218 | |
2219 void StoreIC::GenerateMegamorphic(MacroAssembler* masm) { | 1536 void StoreIC::GenerateMegamorphic(MacroAssembler* masm) { |
2220 // ----------- S t a t e ------------- | 1537 // ----------- S t a t e ------------- |
2221 // -- r0 : value | 1538 // -- r0 : value |
2222 // -- r1 : receiver | 1539 // -- r1 : receiver |
2223 // -- r2 : name | 1540 // -- r2 : name |
2224 // -- lr : return address | 1541 // -- lr : return address |
2225 // ----------------------------------- | 1542 // ----------------------------------- |
2226 | 1543 |
2227 // Get the receiver from the stack and probe the stub cache. | 1544 // Get the receiver from the stack and probe the stub cache. |
2228 Code::Flags flags = Code::ComputeFlags(Code::STORE_IC, | 1545 Code::Flags flags = Code::ComputeFlags(Code::STORE_IC, |
(...skipping 158 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2387 | 1704 |
2388 | 1705 |
2389 void PatchInlinedSmiCode(Address address) { | 1706 void PatchInlinedSmiCode(Address address) { |
2390 UNIMPLEMENTED(); | 1707 UNIMPLEMENTED(); |
2391 } | 1708 } |
2392 | 1709 |
2393 | 1710 |
2394 } } // namespace v8::internal | 1711 } } // namespace v8::internal |
2395 | 1712 |
2396 #endif // V8_TARGET_ARCH_ARM | 1713 #endif // V8_TARGET_ARCH_ARM |
OLD | NEW |