| Index: src/arm/constants-arm.h
|
| ===================================================================
|
| --- src/arm/constants-arm.h (revision 6474)
|
| +++ src/arm/constants-arm.h (working copy)
|
| @@ -86,8 +86,8 @@
|
| #define USE_BLX 1
|
| #endif
|
|
|
| -namespace assembler {
|
| -namespace arm {
|
| +namespace v8 {
|
| +namespace internal {
|
|
|
| // Number of registers in normal ARM mode.
|
| static const int kNumRegisters = 16;
|
| @@ -102,6 +102,9 @@
|
| static const int kPCRegister = 15;
|
| static const int kNoRegister = -1;
|
|
|
| +// -----------------------------------------------------------------------------
|
| +// Conditions.
|
| +
|
| // Defines constants and accessor classes to assemble, disassemble and
|
| // simulate ARM instructions.
|
| //
|
| @@ -111,93 +114,262 @@
|
| // Constants for specific fields are defined in their respective named enums.
|
| // General constants are in an anonymous enum in class Instr.
|
|
|
| -typedef unsigned char byte;
|
| -
|
| // Values for the condition field as defined in section A3.2
|
| enum Condition {
|
| - no_condition = -1,
|
| - EQ = 0, // equal
|
| - NE = 1, // not equal
|
| - CS = 2, // carry set/unsigned higher or same
|
| - CC = 3, // carry clear/unsigned lower
|
| - MI = 4, // minus/negative
|
| - PL = 5, // plus/positive or zero
|
| - VS = 6, // overflow
|
| - VC = 7, // no overflow
|
| - HI = 8, // unsigned higher
|
| - LS = 9, // unsigned lower or same
|
| - GE = 10, // signed greater than or equal
|
| - LT = 11, // signed less than
|
| - GT = 12, // signed greater than
|
| - LE = 13, // signed less than or equal
|
| - AL = 14, // always (unconditional)
|
| - special_condition = 15, // special condition (refer to section A3.2.1)
|
| - max_condition = 16
|
| + kNoCondition = -1,
|
| +
|
| + eq = 0 << 28, // Z set Equal.
|
| + ne = 1 << 28, // Z clear Not equal.
|
| + cs = 2 << 28, // C set Unsigned higher or same.
|
| + cc = 3 << 28, // C clear Unsigned lower.
|
| + mi = 4 << 28, // N set Negative.
|
| + pl = 5 << 28, // N clear Positive or zero.
|
| + vs = 6 << 28, // V set Overflow.
|
| + vc = 7 << 28, // V clear No overflow.
|
| + hi = 8 << 28, // C set, Z clear Unsigned higher.
|
| + ls = 9 << 28, // C clear or Z set Unsigned lower or same.
|
| + ge = 10 << 28, // N == V Greater or equal.
|
| + lt = 11 << 28, // N != V Less than.
|
| + gt = 12 << 28, // Z clear, N == V Greater than.
|
| + le = 13 << 28, // Z set or N != V Less then or equal
|
| + al = 14 << 28, // Always.
|
| +
|
| + kSpecialCondition = 15 << 28, // Special condition (refer to section A3.2.1).
|
| + kNumberOfConditions = 16,
|
| +
|
| + // Aliases.
|
| + hs = cs, // C set Unsigned higher or same.
|
| + lo = cc // C clear Unsigned lower.
|
| };
|
|
|
|
|
| +inline Condition NegateCondition(Condition cond) {
|
| + ASSERT(cond != al);
|
| + return static_cast<Condition>(cond ^ ne);
|
| +}
|
| +
|
| +
|
| +// Corresponds to transposing the operands of a comparison.
|
| +inline Condition ReverseCondition(Condition cond) {
|
| + switch (cond) {
|
| + case lo:
|
| + return hi;
|
| + case hi:
|
| + return lo;
|
| + case hs:
|
| + return ls;
|
| + case ls:
|
| + return hs;
|
| + case lt:
|
| + return gt;
|
| + case gt:
|
| + return lt;
|
| + case ge:
|
| + return le;
|
| + case le:
|
| + return ge;
|
| + default:
|
| + return cond;
|
| + };
|
| +}
|
| +
|
| +
|
| +// -----------------------------------------------------------------------------
|
| +// Instructions encoding.
|
| +
|
| +// Instr is merely used by the Assembler to distinguish 32bit integers
|
| +// representing instructions from usual 32 bit values.
|
| +// Instruction objects are pointers to 32bit values, and provide methods to
|
| +// access the various ISA fields.
|
| +typedef int32_t Instr;
|
| +
|
| +
|
| // Opcodes for Data-processing instructions (instructions with a type 0 and 1)
|
| // as defined in section A3.4
|
| enum Opcode {
|
| - no_operand = -1,
|
| - AND = 0, // Logical AND
|
| - EOR = 1, // Logical Exclusive OR
|
| - SUB = 2, // Subtract
|
| - RSB = 3, // Reverse Subtract
|
| - ADD = 4, // Add
|
| - ADC = 5, // Add with Carry
|
| - SBC = 6, // Subtract with Carry
|
| - RSC = 7, // Reverse Subtract with Carry
|
| - TST = 8, // Test
|
| - TEQ = 9, // Test Equivalence
|
| - CMP = 10, // Compare
|
| - CMN = 11, // Compare Negated
|
| - ORR = 12, // Logical (inclusive) OR
|
| - MOV = 13, // Move
|
| - BIC = 14, // Bit Clear
|
| - MVN = 15, // Move Not
|
| - max_operand = 16
|
| + AND = 0 << 21, // Logical AND.
|
| + EOR = 1 << 21, // Logical Exclusive OR.
|
| + SUB = 2 << 21, // Subtract.
|
| + RSB = 3 << 21, // Reverse Subtract.
|
| + ADD = 4 << 21, // Add.
|
| + ADC = 5 << 21, // Add with Carry.
|
| + SBC = 6 << 21, // Subtract with Carry.
|
| + RSC = 7 << 21, // Reverse Subtract with Carry.
|
| + TST = 8 << 21, // Test.
|
| + TEQ = 9 << 21, // Test Equivalence.
|
| + CMP = 10 << 21, // Compare.
|
| + CMN = 11 << 21, // Compare Negated.
|
| + ORR = 12 << 21, // Logical (inclusive) OR.
|
| + MOV = 13 << 21, // Move.
|
| + BIC = 14 << 21, // Bit Clear.
|
| + MVN = 15 << 21 // Move Not.
|
| };
|
|
|
|
|
| // The bits for bit 7-4 for some type 0 miscellaneous instructions.
|
| enum MiscInstructionsBits74 {
|
| // With bits 22-21 01.
|
| - BX = 1,
|
| - BXJ = 2,
|
| - BLX = 3,
|
| - BKPT = 7,
|
| + BX = 1 << 4,
|
| + BXJ = 2 << 4,
|
| + BLX = 3 << 4,
|
| + BKPT = 7 << 4,
|
|
|
| // With bits 22-21 11.
|
| - CLZ = 1
|
| + CLZ = 1 << 4
|
| };
|
|
|
|
|
| +// Instruction encoding bits and masks.
|
| +enum {
|
| + H = 1 << 5, // Halfword (or byte).
|
| + S6 = 1 << 6, // Signed (or unsigned).
|
| + L = 1 << 20, // Load (or store).
|
| + S = 1 << 20, // Set condition code (or leave unchanged).
|
| + W = 1 << 21, // Writeback base register (or leave unchanged).
|
| + A = 1 << 21, // Accumulate in multiply instruction (or not).
|
| + B = 1 << 22, // Unsigned byte (or word).
|
| + N = 1 << 22, // Long (or short).
|
| + U = 1 << 23, // Positive (or negative) offset/index.
|
| + P = 1 << 24, // Offset/pre-indexed addressing (or post-indexed addressing).
|
| + I = 1 << 25, // Immediate shifter operand (or not).
|
| +
|
| + B4 = 1 << 4,
|
| + B5 = 1 << 5,
|
| + B6 = 1 << 6,
|
| + B7 = 1 << 7,
|
| + B8 = 1 << 8,
|
| + B9 = 1 << 9,
|
| + B12 = 1 << 12,
|
| + B16 = 1 << 16,
|
| + B18 = 1 << 18,
|
| + B19 = 1 << 19,
|
| + B20 = 1 << 20,
|
| + B21 = 1 << 21,
|
| + B22 = 1 << 22,
|
| + B23 = 1 << 23,
|
| + B24 = 1 << 24,
|
| + B25 = 1 << 25,
|
| + B26 = 1 << 26,
|
| + B27 = 1 << 27,
|
| + B28 = 1 << 28,
|
| +
|
| + // Instruction bit masks.
|
| + kCondMask = 15 << 28,
|
| + kALUMask = 0x6f << 21,
|
| + kRdMask = 15 << 12, // In str instruction.
|
| + kCoprocessorMask = 15 << 8,
|
| + kOpCodeMask = 15 << 21, // In data-processing instructions.
|
| + kImm24Mask = (1 << 24) - 1,
|
| + kOff12Mask = (1 << 12) - 1
|
| +};
|
| +
|
| +
|
| +// -----------------------------------------------------------------------------
|
| +// Addressing modes and instruction variants.
|
| +
|
| +// Condition code updating mode.
|
| +enum SBit {
|
| + SetCC = 1 << 20, // Set condition code.
|
| + LeaveCC = 0 << 20 // Leave condition code unchanged.
|
| +};
|
| +
|
| +
|
| +// Status register selection.
|
| +enum SRegister {
|
| + CPSR = 0 << 22,
|
| + SPSR = 1 << 22
|
| +};
|
| +
|
| +
|
| // Shifter types for Data-processing operands as defined in section A5.1.2.
|
| -enum Shift {
|
| - no_shift = -1,
|
| - LSL = 0, // Logical shift left
|
| - LSR = 1, // Logical shift right
|
| - ASR = 2, // Arithmetic shift right
|
| - ROR = 3, // Rotate right
|
| - max_shift = 4
|
| +enum ShiftOp {
|
| + LSL = 0 << 5, // Logical shift left.
|
| + LSR = 1 << 5, // Logical shift right.
|
| + ASR = 2 << 5, // Arithmetic shift right.
|
| + ROR = 3 << 5, // Rotate right.
|
| +
|
| + // RRX is encoded as ROR with shift_imm == 0.
|
| + // Use a special code to make the distinction. The RRX ShiftOp is only used
|
| + // as an argument, and will never actually be encoded. The Assembler will
|
| + // detect it and emit the correct ROR shift operand with shift_imm == 0.
|
| + RRX = -1,
|
| + kNumberOfShifts = 4
|
| };
|
|
|
|
|
| +// Status register fields.
|
| +enum SRegisterField {
|
| + CPSR_c = CPSR | 1 << 16,
|
| + CPSR_x = CPSR | 1 << 17,
|
| + CPSR_s = CPSR | 1 << 18,
|
| + CPSR_f = CPSR | 1 << 19,
|
| + SPSR_c = SPSR | 1 << 16,
|
| + SPSR_x = SPSR | 1 << 17,
|
| + SPSR_s = SPSR | 1 << 18,
|
| + SPSR_f = SPSR | 1 << 19
|
| +};
|
| +
|
| +// Status register field mask (or'ed SRegisterField enum values).
|
| +typedef uint32_t SRegisterFieldMask;
|
| +
|
| +
|
| +// Memory operand addressing mode.
|
| +enum AddrMode {
|
| + // Bit encoding P U W.
|
| + Offset = (8|4|0) << 21, // Offset (without writeback to base).
|
| + PreIndex = (8|4|1) << 21, // Pre-indexed addressing with writeback.
|
| + PostIndex = (0|4|0) << 21, // Post-indexed addressing with writeback.
|
| + NegOffset = (8|0|0) << 21, // Negative offset (without writeback to base).
|
| + NegPreIndex = (8|0|1) << 21, // Negative pre-indexed with writeback.
|
| + NegPostIndex = (0|0|0) << 21 // Negative post-indexed with writeback.
|
| +};
|
| +
|
| +
|
| +// Load/store multiple addressing mode.
|
| +enum BlockAddrMode {
|
| + // Bit encoding P U W .
|
| + da = (0|0|0) << 21, // Decrement after.
|
| + ia = (0|4|0) << 21, // Increment after.
|
| + db = (8|0|0) << 21, // Decrement before.
|
| + ib = (8|4|0) << 21, // Increment before.
|
| + da_w = (0|0|1) << 21, // Decrement after with writeback to base.
|
| + ia_w = (0|4|1) << 21, // Increment after with writeback to base.
|
| + db_w = (8|0|1) << 21, // Decrement before with writeback to base.
|
| + ib_w = (8|4|1) << 21, // Increment before with writeback to base.
|
| +
|
| + // Alias modes for comparison when writeback does not matter.
|
| + da_x = (0|0|0) << 21, // Decrement after.
|
| + ia_x = (0|4|0) << 21, // Increment after.
|
| + db_x = (8|0|0) << 21, // Decrement before.
|
| + ib_x = (8|4|0) << 21 // Increment before.
|
| +};
|
| +
|
| +
|
| +// Coprocessor load/store operand size.
|
| +enum LFlag {
|
| + Long = 1 << 22, // Long load/store coprocessor.
|
| + Short = 0 << 22 // Short load/store coprocessor.
|
| +};
|
| +
|
| +
|
| +// -----------------------------------------------------------------------------
|
| +// Supervisor Call (svc) specific support.
|
| +
|
| // Special Software Interrupt codes when used in the presence of the ARM
|
| // simulator.
|
| // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
|
| // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
|
| enum SoftwareInterruptCodes {
|
| // transition to C code
|
| - call_rt_redirected = 0x10,
|
| + kCallRtRedirected= 0x10,
|
| // break point
|
| - break_point = 0x20,
|
| + kBreakpoint= 0x20,
|
| // stop
|
| - stop = 1 << 23
|
| + kStopCode = 1 << 23
|
| };
|
| -static const int32_t kStopCodeMask = stop - 1;
|
| -static const uint32_t kMaxStopCode = stop - 1;
|
| +static const uint32_t kStopCodeMask = kStopCode - 1;
|
| +static const uint32_t kMaxStopCode = kStopCode - 1;
|
| +static const int32_t kDefaultStopCode = -1;
|
|
|
|
|
| // Type of VFP register. Determines register encoding.
|
| @@ -206,6 +378,20 @@
|
| kDoublePrecision = 1
|
| };
|
|
|
| +
|
| +// VFP FPSCR constants.
|
| +static const uint32_t kVFPExceptionMask = 0xf;
|
| +static const uint32_t kVFPRoundingModeMask = 3 << 22;
|
| +static const uint32_t kVFPFlushToZeroMask = 1 << 24;
|
| +static const uint32_t kVFPRoundToMinusInfinityBits = 2 << 22;
|
| +static const uint32_t kVFPInvalidExceptionBit = 1;
|
| +
|
| +static const uint32_t kVFPNConditionFlagBit = 1 << 31;
|
| +static const uint32_t kVFPZConditionFlagBit = 1 << 30;
|
| +static const uint32_t kVFPCConditionFlagBit = 1 << 29;
|
| +static const uint32_t kVFPVConditionFlagBit = 1 << 28;
|
| +
|
| +
|
| // VFP rounding modes. See ARM DDI 0406B Page A2-29.
|
| enum FPSCRRoundingModes {
|
| RN, // Round to Nearest.
|
| @@ -214,22 +400,91 @@
|
| RZ // Round towards zero.
|
| };
|
|
|
| -typedef int32_t instr_t;
|
|
|
| +// -----------------------------------------------------------------------------
|
| +// Hints.
|
|
|
| -// The class Instr enables access to individual fields defined in the ARM
|
| +// Branch hints are not used on the ARM. They are defined so that they can
|
| +// appear in shared function signatures, but will be ignored in ARM
|
| +// implementations.
|
| +enum Hint { no_hint };
|
| +
|
| +// Hints are not used on the arm. Negating is trivial.
|
| +inline Hint NegateHint(Hint ignored) { return no_hint; }
|
| +
|
| +
|
| +// -----------------------------------------------------------------------------
|
| +// Specific instructions, constants, and masks.
|
| +// These constants are declared in assembler-arm.cc, as they use named registers
|
| +// and other constants.
|
| +
|
| +
|
| +// add(sp, sp, 4) instruction (aka Pop())
|
| +extern const Instr kPopInstruction;
|
| +
|
| +// str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
|
| +// register r is not encoded.
|
| +extern const Instr kPushRegPattern;
|
| +
|
| +// ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
|
| +// register r is not encoded.
|
| +extern const Instr kPopRegPattern;
|
| +
|
| +// mov lr, pc
|
| +extern const Instr kMovLrPc;
|
| +// ldr rd, [pc, #offset]
|
| +extern const Instr kLdrPCMask;
|
| +extern const Instr kLdrPCPattern;
|
| +// blxcc rm
|
| +extern const Instr kBlxRegMask;
|
| +
|
| +extern const Instr kBlxRegPattern;
|
| +
|
| +extern const Instr kMovMvnMask;
|
| +extern const Instr kMovMvnPattern;
|
| +extern const Instr kMovMvnFlip;
|
| +extern const Instr kMovLeaveCCMask;
|
| +extern const Instr kMovLeaveCCPattern;
|
| +extern const Instr kMovwMask;
|
| +extern const Instr kMovwPattern;
|
| +extern const Instr kMovwLeaveCCFlip;
|
| +extern const Instr kCmpCmnMask;
|
| +extern const Instr kCmpCmnPattern;
|
| +extern const Instr kCmpCmnFlip;
|
| +extern const Instr kAddSubFlip;
|
| +extern const Instr kAndBicFlip;
|
| +
|
| +// A mask for the Rd register for push, pop, ldr, str instructions.
|
| +extern const Instr kLdrRegFpOffsetPattern;
|
| +
|
| +extern const Instr kStrRegFpOffsetPattern;
|
| +
|
| +extern const Instr kLdrRegFpNegOffsetPattern;
|
| +
|
| +extern const Instr kStrRegFpNegOffsetPattern;
|
| +
|
| +extern const Instr kLdrStrInstrTypeMask;
|
| +extern const Instr kLdrStrInstrArgumentMask;
|
| +extern const Instr kLdrStrOffsetMask;
|
| +
|
| +
|
| +// -----------------------------------------------------------------------------
|
| +// Instruction abstraction.
|
| +
|
| +// The class Instruction enables access to individual fields defined in the ARM
|
| // architecture instruction set encoding as described in figure A3-1.
|
| +// Note that the Assembler uses typedef int32_t Instr.
|
| //
|
| // Example: Test whether the instruction at ptr does set the condition code
|
| // bits.
|
| //
|
| // bool InstructionSetsConditionCodes(byte* ptr) {
|
| -// Instr* instr = Instr::At(ptr);
|
| -// int type = instr->TypeField();
|
| +// Instruction* instr = Instruction::At(ptr);
|
| +// int type = instr->TypeValue();
|
| // return ((type == 0) || (type == 1)) && instr->HasS();
|
| // }
|
| //
|
| -class Instr {
|
| +class Instruction {
|
| public:
|
| enum {
|
| kInstrSize = 4,
|
| @@ -237,14 +492,24 @@
|
| kPCReadOffset = 8
|
| };
|
|
|
| + // Helper macro to define static accessors.
|
| + // We use the cast to char* trick to bypass the strict anti-aliasing rules.
|
| + #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
|
| + static inline return_type Name(Instr instr) { \
|
| + char* temp = reinterpret_cast<char*>(&instr); \
|
| + return reinterpret_cast<Instruction*>(temp)->Name(); \
|
| + }
|
| +
|
| + #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
|
| +
|
| // Get the raw instruction bits.
|
| - inline instr_t InstructionBits() const {
|
| - return *reinterpret_cast<const instr_t*>(this);
|
| + inline Instr InstructionBits() const {
|
| + return *reinterpret_cast<const Instr*>(this);
|
| }
|
|
|
| // Set the raw instruction bits to value.
|
| - inline void SetInstructionBits(instr_t value) {
|
| - *reinterpret_cast<instr_t*>(this) = value;
|
| + inline void SetInstructionBits(Instr value) {
|
| + *reinterpret_cast<Instr*>(this) = value;
|
| }
|
|
|
| // Read one particular bit out of the instruction bits.
|
| @@ -252,93 +517,141 @@
|
| return (InstructionBits() >> nr) & 1;
|
| }
|
|
|
| - // Read a bit field out of the instruction bits.
|
| + // Read a bit field's value out of the instruction bits.
|
| inline int Bits(int hi, int lo) const {
|
| return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
|
| }
|
|
|
| + // Read a bit field out of the instruction bits.
|
| + inline int BitField(int hi, int lo) const {
|
| + return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
|
| + }
|
|
|
| + // Static support.
|
| +
|
| + // Read one particular bit out of the instruction bits.
|
| + static inline int Bit(Instr instr, int nr) {
|
| + return (instr >> nr) & 1;
|
| + }
|
| +
|
| + // Read the value of a bit field out of the instruction bits.
|
| + static inline int Bits(Instr instr, int hi, int lo) {
|
| + return (instr >> lo) & ((2 << (hi - lo)) - 1);
|
| + }
|
| +
|
| +
|
| + // Read a bit field out of the instruction bits.
|
| + static inline int BitField(Instr instr, int hi, int lo) {
|
| + return instr & (((2 << (hi - lo)) - 1) << lo);
|
| + }
|
| +
|
| +
|
| // Accessors for the different named fields used in the ARM encoding.
|
| // The naming of these accessor corresponds to figure A3-1.
|
| + //
|
| + // Two kind of accessors are declared:
|
| + // - <Name>Field() will return the raw field, ie the field's bits at their
|
| + // original place in the instruction encoding.
|
| + // eg. if instr is the 'addgt r0, r1, r2' instruction, encoded as 0xC0810002
|
| + // ConditionField(instr) will return 0xC0000000.
|
| + // - <Name>Value() will return the field value, shifted back to bit 0.
|
| + // eg. if instr is the 'addgt r0, r1, r2' instruction, encoded as 0xC0810002
|
| + // ConditionField(instr) will return 0xC.
|
| +
|
| +
|
| // Generally applicable fields
|
| - inline Condition ConditionField() const {
|
| + inline Condition ConditionValue() const {
|
| return static_cast<Condition>(Bits(31, 28));
|
| }
|
| - inline int TypeField() const { return Bits(27, 25); }
|
| + inline Condition ConditionField() const {
|
| + return static_cast<Condition>(BitField(31, 28));
|
| + }
|
| + DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue);
|
| + DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
|
|
|
| - inline int RnField() const { return Bits(19, 16); }
|
| - inline int RdField() const { return Bits(15, 12); }
|
| + inline int TypeValue() const { return Bits(27, 25); }
|
|
|
| - inline int CoprocessorField() const { return Bits(11, 8); }
|
| + inline int RnValue() const { return Bits(19, 16); }
|
| + inline int RdValue() const { return Bits(15, 12); }
|
| + DECLARE_STATIC_ACCESSOR(RdValue);
|
| +
|
| + inline int CoprocessorValue() const { return Bits(11, 8); }
|
| // Support for VFP.
|
| // Vn(19-16) | Vd(15-12) | Vm(3-0)
|
| - inline int VnField() const { return Bits(19, 16); }
|
| - inline int VmField() const { return Bits(3, 0); }
|
| - inline int VdField() const { return Bits(15, 12); }
|
| - inline int NField() const { return Bit(7); }
|
| - inline int MField() const { return Bit(5); }
|
| - inline int DField() const { return Bit(22); }
|
| - inline int RtField() const { return Bits(15, 12); }
|
| - inline int PField() const { return Bit(24); }
|
| - inline int UField() const { return Bit(23); }
|
| - inline int Opc1Field() const { return (Bit(23) << 2) | Bits(21, 20); }
|
| - inline int Opc2Field() const { return Bits(19, 16); }
|
| - inline int Opc3Field() const { return Bits(7, 6); }
|
| - inline int SzField() const { return Bit(8); }
|
| - inline int VLField() const { return Bit(20); }
|
| - inline int VCField() const { return Bit(8); }
|
| - inline int VAField() const { return Bits(23, 21); }
|
| - inline int VBField() const { return Bits(6, 5); }
|
| - inline int VFPNRegCode(VFPRegPrecision pre) {
|
| - return VFPGlueRegCode(pre, 16, 7);
|
| + inline int VnValue() const { return Bits(19, 16); }
|
| + inline int VmValue() const { return Bits(3, 0); }
|
| + inline int VdValue() const { return Bits(15, 12); }
|
| + inline int NValue() const { return Bit(7); }
|
| + inline int MValue() const { return Bit(5); }
|
| + inline int DValue() const { return Bit(22); }
|
| + inline int RtValue() const { return Bits(15, 12); }
|
| + inline int PValue() const { return Bit(24); }
|
| + inline int UValue() const { return Bit(23); }
|
| + inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
|
| + inline int Opc2Value() const { return Bits(19, 16); }
|
| + inline int Opc3Value() const { return Bits(7, 6); }
|
| + inline int SzValue() const { return Bit(8); }
|
| + inline int VLValue() const { return Bit(20); }
|
| + inline int VCValue() const { return Bit(8); }
|
| + inline int VAValue() const { return Bits(23, 21); }
|
| + inline int VBValue() const { return Bits(6, 5); }
|
| + inline int VFPNRegValue(VFPRegPrecision pre) {
|
| + return VFPGlueRegValue(pre, 16, 7);
|
| }
|
| - inline int VFPMRegCode(VFPRegPrecision pre) {
|
| - return VFPGlueRegCode(pre, 0, 5);
|
| + inline int VFPMRegValue(VFPRegPrecision pre) {
|
| + return VFPGlueRegValue(pre, 0, 5);
|
| }
|
| - inline int VFPDRegCode(VFPRegPrecision pre) {
|
| - return VFPGlueRegCode(pre, 12, 22);
|
| + inline int VFPDRegValue(VFPRegPrecision pre) {
|
| + return VFPGlueRegValue(pre, 12, 22);
|
| }
|
|
|
| // Fields used in Data processing instructions
|
| - inline Opcode OpcodeField() const {
|
| + inline int OpcodeValue() const {
|
| return static_cast<Opcode>(Bits(24, 21));
|
| }
|
| - inline int SField() const { return Bit(20); }
|
| + inline Opcode OpcodeField() const {
|
| + return static_cast<Opcode>(BitField(24, 21));
|
| + }
|
| + inline int SValue() const { return Bit(20); }
|
| // with register
|
| - inline int RmField() const { return Bits(3, 0); }
|
| - inline Shift ShiftField() const { return static_cast<Shift>(Bits(6, 5)); }
|
| - inline int RegShiftField() const { return Bit(4); }
|
| - inline int RsField() const { return Bits(11, 8); }
|
| - inline int ShiftAmountField() const { return Bits(11, 7); }
|
| + inline int RmValue() const { return Bits(3, 0); }
|
| + inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
|
| + inline ShiftOp ShiftField() const {
|
| + return static_cast<ShiftOp>(BitField(6, 5));
|
| + }
|
| + inline int RegShiftValue() const { return Bit(4); }
|
| + inline int RsValue() const { return Bits(11, 8); }
|
| + inline int ShiftAmountValue() const { return Bits(11, 7); }
|
| // with immediate
|
| - inline int RotateField() const { return Bits(11, 8); }
|
| - inline int Immed8Field() const { return Bits(7, 0); }
|
| - inline int Immed4Field() const { return Bits(19, 16); }
|
| - inline int ImmedMovwMovtField() const {
|
| - return Immed4Field() << 12 | Offset12Field(); }
|
| + inline int RotateValue() const { return Bits(11, 8); }
|
| + inline int Immed8Value() const { return Bits(7, 0); }
|
| + inline int Immed4Value() const { return Bits(19, 16); }
|
| + inline int ImmedMovwMovtValue() const {
|
| + return Immed4Value() << 12 | Offset12Value(); }
|
|
|
| // Fields used in Load/Store instructions
|
| - inline int PUField() const { return Bits(24, 23); }
|
| - inline int BField() const { return Bit(22); }
|
| - inline int WField() const { return Bit(21); }
|
| - inline int LField() const { return Bit(20); }
|
| + inline int PUValue() const { return Bits(24, 23); }
|
| + inline int PUField() const { return BitField(24, 23); }
|
| + inline int BValue() const { return Bit(22); }
|
| + inline int WValue() const { return Bit(21); }
|
| + inline int LValue() const { return Bit(20); }
|
| // with register uses same fields as Data processing instructions above
|
| // with immediate
|
| - inline int Offset12Field() const { return Bits(11, 0); }
|
| + inline int Offset12Value() const { return Bits(11, 0); }
|
| // multiple
|
| - inline int RlistField() const { return Bits(15, 0); }
|
| + inline int RlistValue() const { return Bits(15, 0); }
|
| // extra loads and stores
|
| - inline int SignField() const { return Bit(6); }
|
| - inline int HField() const { return Bit(5); }
|
| - inline int ImmedHField() const { return Bits(11, 8); }
|
| - inline int ImmedLField() const { return Bits(3, 0); }
|
| + inline int SignValue() const { return Bit(6); }
|
| + inline int HValue() const { return Bit(5); }
|
| + inline int ImmedHValue() const { return Bits(11, 8); }
|
| + inline int ImmedLValue() const { return Bits(3, 0); }
|
|
|
| // Fields used in Branch instructions
|
| - inline int LinkField() const { return Bit(24); }
|
| - inline int SImmed24Field() const { return ((InstructionBits() << 8) >> 8); }
|
| + inline int LinkValue() const { return Bit(24); }
|
| + inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
|
|
|
| // Fields used in Software interrupt instructions
|
| - inline SoftwareInterruptCodes SvcField() const {
|
| + inline SoftwareInterruptCodes SvcValue() const {
|
| return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
|
| }
|
|
|
| @@ -354,42 +667,45 @@
|
|
|
| // Test for a stop instruction.
|
| inline bool IsStop() const {
|
| - return (TypeField() == 7) && (Bit(24) == 1) && (SvcField() >= stop);
|
| + return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
|
| }
|
|
|
| // Special accessors that test for existence of a value.
|
| - inline bool HasS() const { return SField() == 1; }
|
| - inline bool HasB() const { return BField() == 1; }
|
| - inline bool HasW() const { return WField() == 1; }
|
| - inline bool HasL() const { return LField() == 1; }
|
| - inline bool HasU() const { return UField() == 1; }
|
| - inline bool HasSign() const { return SignField() == 1; }
|
| - inline bool HasH() const { return HField() == 1; }
|
| - inline bool HasLink() const { return LinkField() == 1; }
|
| + inline bool HasS() const { return SValue() == 1; }
|
| + inline bool HasB() const { return BValue() == 1; }
|
| + inline bool HasW() const { return WValue() == 1; }
|
| + inline bool HasL() const { return LValue() == 1; }
|
| + inline bool HasU() const { return UValue() == 1; }
|
| + inline bool HasSign() const { return SignValue() == 1; }
|
| + inline bool HasH() const { return HValue() == 1; }
|
| + inline bool HasLink() const { return LinkValue() == 1; }
|
|
|
| // Decoding the double immediate in the vmov instruction.
|
| double DoubleImmedVmov() const;
|
|
|
| // Instructions are read of out a code stream. The only way to get a
|
| // reference to an instruction is to convert a pointer. There is no way
|
| - // to allocate or create instances of class Instr.
|
| - // Use the At(pc) function to create references to Instr.
|
| - static Instr* At(byte* pc) { return reinterpret_cast<Instr*>(pc); }
|
| + // to allocate or create instances of class Instruction.
|
| + // Use the At(pc) function to create references to Instruction.
|
| + static Instruction* At(byte* pc) {
|
| + return reinterpret_cast<Instruction*>(pc);
|
| + }
|
|
|
| +
|
| private:
|
| // Join split register codes, depending on single or double precision.
|
| // four_bit is the position of the least-significant bit of the four
|
| // bit specifier. one_bit is the position of the additional single bit
|
| // specifier.
|
| - inline int VFPGlueRegCode(VFPRegPrecision pre, int four_bit, int one_bit) {
|
| + inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
|
| if (pre == kSinglePrecision) {
|
| return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
|
| }
|
| return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
|
| }
|
|
|
| - // We need to prevent the creation of instances of class Instr.
|
| - DISALLOW_IMPLICIT_CONSTRUCTORS(Instr);
|
| + // We need to prevent the creation of instances of class Instruction.
|
| + DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
|
| };
|
|
|
|
|
| @@ -428,6 +744,6 @@
|
| };
|
|
|
|
|
| -} } // namespace assembler::arm
|
| +} } // namespace v8::internal
|
|
|
| #endif // V8_ARM_CONSTANTS_ARM_H_
|
|
|