Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1)

Side by Side Diff: src/arm/disasm-arm.cc

Issue 6274009: ARM: Merging constants in simulator and assembler header files and other clea... (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge/
Patch Set: Created 9 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
1 // Copyright 2010 the V8 project authors. All rights reserved. 1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without 2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are 3 // modification, are permitted provided that the following conditions are
4 // met: 4 // met:
5 // 5 //
6 // * Redistributions of source code must retain the above copyright 6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer. 7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above 8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following 9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided 10 // disclaimer in the documentation and/or other materials provided
(...skipping 82 matching lines...) Expand 10 before | Expand all | Expand 10 after
93 93
94 private: 94 private:
95 // Bottleneck functions to print into the out_buffer. 95 // Bottleneck functions to print into the out_buffer.
96 void PrintChar(const char ch); 96 void PrintChar(const char ch);
97 void Print(const char* str); 97 void Print(const char* str);
98 98
99 // Printing of common values. 99 // Printing of common values.
100 void PrintRegister(int reg); 100 void PrintRegister(int reg);
101 void PrintSRegister(int reg); 101 void PrintSRegister(int reg);
102 void PrintDRegister(int reg); 102 void PrintDRegister(int reg);
103 int FormatVFPRegister(Instr* instr, const char* format); 103 int FormatVFPRegister(Instruction* instr, const char* format);
104 void PrintMovwMovt(Instr* instr); 104 void PrintMovwMovt(Instruction* instr);
105 int FormatVFPinstruction(Instr* instr, const char* format); 105 int FormatVFPinstruction(Instruction* instr, const char* format);
106 void PrintCondition(Instr* instr); 106 void PrintCondition(Instruction* instr);
107 void PrintShiftRm(Instr* instr); 107 void PrintShiftRm(Instruction* instr);
108 void PrintShiftImm(Instr* instr); 108 void PrintShiftImm(Instruction* instr);
109 void PrintShiftSat(Instr* instr); 109 void PrintShiftSat(Instruction* instr);
110 void PrintPU(Instr* instr); 110 void PrintPU(Instruction* instr);
111 void PrintSoftwareInterrupt(SoftwareInterruptCodes svc); 111 void PrintSoftwareInterrupt(SoftwareInterruptCodes svc);
112 112
113 // Handle formatting of instructions and their options. 113 // Handle formatting of instructions and their options.
114 int FormatRegister(Instr* instr, const char* option); 114 int FormatRegister(Instruction* instr, const char* option);
115 int FormatOption(Instr* instr, const char* option); 115 int FormatOption(Instruction* instr, const char* option);
116 void Format(Instr* instr, const char* format); 116 void Format(Instruction* instr, const char* format);
117 void Unknown(Instr* instr); 117 void Unknown(Instruction* instr);
118 118
119 // Each of these functions decodes one particular instruction type, a 3-bit 119 // Each of these functions decodes one particular instruction type, a 3-bit
120 // field in the instruction encoding. 120 // field in the instruction encoding.
121 // Types 0 and 1 are combined as they are largely the same except for the way 121 // Types 0 and 1 are combined as they are largely the same except for the way
122 // they interpret the shifter operand. 122 // they interpret the shifter operand.
123 void DecodeType01(Instr* instr); 123 void DecodeType01(Instruction* instr);
124 void DecodeType2(Instr* instr); 124 void DecodeType2(Instruction* instr);
125 void DecodeType3(Instr* instr); 125 void DecodeType3(Instruction* instr);
126 void DecodeType4(Instr* instr); 126 void DecodeType4(Instruction* instr);
127 void DecodeType5(Instr* instr); 127 void DecodeType5(Instruction* instr);
128 void DecodeType6(Instr* instr); 128 void DecodeType6(Instruction* instr);
129 // Type 7 includes special Debugger instructions. 129 // Type 7 includes special Debugger instructions.
130 int DecodeType7(Instr* instr); 130 int DecodeType7(Instruction* instr);
131 // For VFP support. 131 // For VFP support.
132 void DecodeTypeVFP(Instr* instr); 132 void DecodeTypeVFP(Instruction* instr);
133 void DecodeType6CoprocessorIns(Instr* instr); 133 void DecodeType6CoprocessorIns(Instruction* instr);
134 134
135 void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instr* instr); 135 void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
136 void DecodeVCMP(Instr* instr); 136 void DecodeVCMP(Instruction* instr);
137 void DecodeVCVTBetweenDoubleAndSingle(Instr* instr); 137 void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
138 void DecodeVCVTBetweenFloatingPointAndInteger(Instr* instr); 138 void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
139 139
140 const disasm::NameConverter& converter_; 140 const disasm::NameConverter& converter_;
141 v8::internal::Vector<char> out_buffer_; 141 v8::internal::Vector<char> out_buffer_;
142 int out_buffer_pos_; 142 int out_buffer_pos_;
143 143
144 DISALLOW_COPY_AND_ASSIGN(Decoder); 144 DISALLOW_COPY_AND_ASSIGN(Decoder);
145 }; 145 };
146 146
147 147
148 // Support for assertions in the Decoder formatting functions. 148 // Support for assertions in the Decoder formatting functions.
(...skipping 13 matching lines...) Expand all
162 while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) { 162 while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
163 PrintChar(cur); 163 PrintChar(cur);
164 cur = *str++; 164 cur = *str++;
165 } 165 }
166 out_buffer_[out_buffer_pos_] = 0; 166 out_buffer_[out_buffer_pos_] = 0;
167 } 167 }
168 168
169 169
170 // These condition names are defined in a way to match the native disassembler 170 // These condition names are defined in a way to match the native disassembler
171 // formatting. See for example the command "objdump -d <binary file>". 171 // formatting. See for example the command "objdump -d <binary file>".
172 static const char* cond_names[max_condition] = { 172 static const char* cond_names[number_of_conditions] = {
173 "eq", "ne", "cs" , "cc" , "mi" , "pl" , "vs" , "vc" , 173 "eq", "ne", "cs" , "cc" , "mi" , "pl" , "vs" , "vc" ,
174 "hi", "ls", "ge", "lt", "gt", "le", "", "invalid", 174 "hi", "ls", "ge", "lt", "gt", "le", "", "invalid",
175 }; 175 };
176 176
177 177
178 // Print the condition guarding the instruction. 178 // Print the condition guarding the instruction.
179 void Decoder::PrintCondition(Instr* instr) { 179 void Decoder::PrintCondition(Instruction* instr) {
180 Print(cond_names[instr->ConditionField()]); 180 Print(cond_names[instr->ConditionValue()]);
181 } 181 }
182 182
183 183
184 // Print the register name according to the active name converter. 184 // Print the register name according to the active name converter.
185 void Decoder::PrintRegister(int reg) { 185 void Decoder::PrintRegister(int reg) {
186 Print(converter_.NameOfCPURegister(reg)); 186 Print(converter_.NameOfCPURegister(reg));
187 } 187 }
188 188
189 // Print the VFP S register name according to the active name converter. 189 // Print the VFP S register name according to the active name converter.
190 void Decoder::PrintSRegister(int reg) { 190 void Decoder::PrintSRegister(int reg) {
191 Print(assembler::arm::VFPRegisters::Name(reg, false)); 191 Print(assembler::arm::VFPRegisters::Name(reg, false));
192 } 192 }
193 193
194 // Print the VFP D register name according to the active name converter. 194 // Print the VFP D register name according to the active name converter.
195 void Decoder::PrintDRegister(int reg) { 195 void Decoder::PrintDRegister(int reg) {
196 Print(assembler::arm::VFPRegisters::Name(reg, true)); 196 Print(assembler::arm::VFPRegisters::Name(reg, true));
197 } 197 }
198 198
199 199
200 // These shift names are defined in a way to match the native disassembler 200 // These shift names are defined in a way to match the native disassembler
201 // formatting. See for example the command "objdump -d <binary file>". 201 // formatting. See for example the command "objdump -d <binary file>".
202 static const char* shift_names[max_shift] = { 202 static const char* shift_names[number_of_shifts] = {
203 "lsl", "lsr", "asr", "ror" 203 "lsl", "lsr", "asr", "ror"
204 }; 204 };
205 205
206 206
207 // Print the register shift operands for the instruction. Generally used for 207 // Print the register shift operands for the instruction. Generally used for
208 // data processing instructions. 208 // data processing instructions.
209 void Decoder::PrintShiftRm(Instr* instr) { 209 void Decoder::PrintShiftRm(Instruction* instr) {
210 Shift shift = instr->ShiftField(); 210 ShiftOp shift = instr->ShiftField();
211 int shift_amount = instr->ShiftAmountField(); 211 int shift_index = instr->ShiftValue();
212 int rm = instr->RmField(); 212 int shift_amount = instr->ShiftAmountValue();
213 int rm = instr->RmValue();
213 214
214 PrintRegister(rm); 215 PrintRegister(rm);
215 216
216 if ((instr->RegShiftField() == 0) && (shift == LSL) && (shift_amount == 0)) { 217 if ((instr->RegShiftValue() == 0) && (shift == LSL) && (shift_amount == 0)) {
217 // Special case for using rm only. 218 // Special case for using rm only.
218 return; 219 return;
219 } 220 }
220 if (instr->RegShiftField() == 0) { 221 if (instr->RegShiftValue() == 0) {
221 // by immediate 222 // by immediate
222 if ((shift == ROR) && (shift_amount == 0)) { 223 if ((shift == ROR) && (shift_amount == 0)) {
223 Print(", RRX"); 224 Print(", RRX");
224 return; 225 return;
225 } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { 226 } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
226 shift_amount = 32; 227 shift_amount = 32;
227 } 228 }
228 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_, 229 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
229 ", %s #%d", 230 ", %s #%d",
230 shift_names[shift], shift_amount); 231 shift_names[shift_index],
232 shift_amount);
231 } else { 233 } else {
232 // by register 234 // by register
233 int rs = instr->RsField(); 235 int rs = instr->RsValue();
234 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_, 236 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
235 ", %s ", shift_names[shift]); 237 ", %s ", shift_names[shift_index]);
236 PrintRegister(rs); 238 PrintRegister(rs);
237 } 239 }
238 } 240 }
239 241
240 242
241 // Print the immediate operand for the instruction. Generally used for data 243 // Print the immediate operand for the instruction. Generally used for data
242 // processing instructions. 244 // processing instructions.
243 void Decoder::PrintShiftImm(Instr* instr) { 245 void Decoder::PrintShiftImm(Instruction* instr) {
244 int rotate = instr->RotateField() * 2; 246 int rotate = instr->RotateValue() * 2;
245 int immed8 = instr->Immed8Field(); 247 int immed8 = instr->Immed8Value();
246 int imm = (immed8 >> rotate) | (immed8 << (32 - rotate)); 248 int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
247 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_, 249 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
248 "#%d", imm); 250 "#%d", imm);
249 } 251 }
250 252
251 253
252 // Print the optional shift and immediate used by saturating instructions. 254 // Print the optional shift and immediate used by saturating instructions.
253 void Decoder::PrintShiftSat(Instr* instr) { 255 void Decoder::PrintShiftSat(Instruction* instr) {
254 int shift = instr->Bits(11, 7); 256 int shift = instr->Bits(11, 7);
255 if (shift > 0) { 257 if (shift > 0) {
256 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_, 258 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
257 ", %s #%d", 259 ", %s #%d",
258 shift_names[instr->Bit(6) * 2], 260 shift_names[instr->Bit(6) * 2],
259 instr->Bits(11, 7)); 261 instr->Bits(11, 7));
260 } 262 }
261 } 263 }
262 264
263 265
264 // Print PU formatting to reduce complexity of FormatOption. 266 // Print PU formatting to reduce complexity of FormatOption.
265 void Decoder::PrintPU(Instr* instr) { 267 void Decoder::PrintPU(Instruction* instr) {
266 switch (instr->PUField()) { 268 switch (instr->PUField()) {
267 case 0: { 269 case da_x: {
268 Print("da"); 270 Print("da");
269 break; 271 break;
270 } 272 }
271 case 1: { 273 case ia_x: {
272 Print("ia"); 274 Print("ia");
273 break; 275 break;
274 } 276 }
275 case 2: { 277 case db_x: {
276 Print("db"); 278 Print("db");
277 break; 279 break;
278 } 280 }
279 case 3: { 281 case ib_x: {
280 Print("ib"); 282 Print("ib");
281 break; 283 break;
282 } 284 }
283 default: { 285 default: {
284 UNREACHABLE(); 286 UNREACHABLE();
285 break; 287 break;
286 } 288 }
287 } 289 }
288 } 290 }
289 291
290 292
291 // Print SoftwareInterrupt codes. Factoring this out reduces the complexity of 293 // Print SoftwareInterrupt codes. Factoring this out reduces the complexity of
292 // the FormatOption method. 294 // the FormatOption method.
293 void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes svc) { 295 void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes svc) {
294 switch (svc) { 296 switch (svc) {
295 case call_rt_redirected: 297 case call_rt_redirected:
296 Print("call_rt_redirected"); 298 Print("call_rt_redirected");
297 return; 299 return;
298 case break_point: 300 case break_point:
299 Print("break_point"); 301 Print("break_point");
300 return; 302 return;
301 default: 303 default:
302 if (svc >= stop) { 304 if (svc >= stop_code) {
303 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_, 305 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
304 "%d - 0x%x", 306 "%d - 0x%x",
305 svc & kStopCodeMask, 307 svc & kStopCodeMask,
306 svc & kStopCodeMask); 308 svc & kStopCodeMask);
307 } else { 309 } else {
308 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_, 310 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
309 "%d", 311 "%d",
310 svc); 312 svc);
311 } 313 }
312 return; 314 return;
313 } 315 }
314 } 316 }
315 317
316 318
317 // Handle all register based formatting in this function to reduce the 319 // Handle all register based formatting in this function to reduce the
318 // complexity of FormatOption. 320 // complexity of FormatOption.
319 int Decoder::FormatRegister(Instr* instr, const char* format) { 321 int Decoder::FormatRegister(Instruction* instr, const char* format) {
320 ASSERT(format[0] == 'r'); 322 ASSERT(format[0] == 'r');
321 if (format[1] == 'n') { // 'rn: Rn register 323 if (format[1] == 'n') { // 'rn: Rn register
322 int reg = instr->RnField(); 324 int reg = instr->RnValue();
323 PrintRegister(reg); 325 PrintRegister(reg);
324 return 2; 326 return 2;
325 } else if (format[1] == 'd') { // 'rd: Rd register 327 } else if (format[1] == 'd') { // 'rd: Rd register
326 int reg = instr->RdField(); 328 int reg = instr->RdValue();
327 PrintRegister(reg); 329 PrintRegister(reg);
328 return 2; 330 return 2;
329 } else if (format[1] == 's') { // 'rs: Rs register 331 } else if (format[1] == 's') { // 'rs: Rs register
330 int reg = instr->RsField(); 332 int reg = instr->RsValue();
331 PrintRegister(reg); 333 PrintRegister(reg);
332 return 2; 334 return 2;
333 } else if (format[1] == 'm') { // 'rm: Rm register 335 } else if (format[1] == 'm') { // 'rm: Rm register
334 int reg = instr->RmField(); 336 int reg = instr->RmValue();
335 PrintRegister(reg); 337 PrintRegister(reg);
336 return 2; 338 return 2;
337 } else if (format[1] == 't') { // 'rt: Rt register 339 } else if (format[1] == 't') { // 'rt: Rt register
338 int reg = instr->RtField(); 340 int reg = instr->RtValue();
339 PrintRegister(reg); 341 PrintRegister(reg);
340 return 2; 342 return 2;
341 } else if (format[1] == 'l') { 343 } else if (format[1] == 'l') {
342 // 'rlist: register list for load and store multiple instructions 344 // 'rlist: register list for load and store multiple instructions
343 ASSERT(STRING_STARTS_WITH(format, "rlist")); 345 ASSERT(STRING_STARTS_WITH(format, "rlist"));
344 int rlist = instr->RlistField(); 346 int rlist = instr->RlistValue();
345 int reg = 0; 347 int reg = 0;
346 Print("{"); 348 Print("{");
347 // Print register list in ascending order, by scanning the bit mask. 349 // Print register list in ascending order, by scanning the bit mask.
348 while (rlist != 0) { 350 while (rlist != 0) {
349 if ((rlist & 1) != 0) { 351 if ((rlist & 1) != 0) {
350 PrintRegister(reg); 352 PrintRegister(reg);
351 if ((rlist >> 1) != 0) { 353 if ((rlist >> 1) != 0) {
352 Print(", "); 354 Print(", ");
353 } 355 }
354 } 356 }
355 reg++; 357 reg++;
356 rlist >>= 1; 358 rlist >>= 1;
357 } 359 }
358 Print("}"); 360 Print("}");
359 return 5; 361 return 5;
360 } 362 }
361 UNREACHABLE(); 363 UNREACHABLE();
362 return -1; 364 return -1;
363 } 365 }
364 366
365 367
366 // Handle all VFP register based formatting in this function to reduce the 368 // Handle all VFP register based formatting in this function to reduce the
367 // complexity of FormatOption. 369 // complexity of FormatOption.
368 int Decoder::FormatVFPRegister(Instr* instr, const char* format) { 370 int Decoder::FormatVFPRegister(Instruction* instr, const char* format) {
369 ASSERT((format[0] == 'S') || (format[0] == 'D')); 371 ASSERT((format[0] == 'S') || (format[0] == 'D'));
370 372
371 if (format[1] == 'n') { 373 if (format[1] == 'n') {
372 int reg = instr->VnField(); 374 int reg = instr->VnValue();
373 if (format[0] == 'S') PrintSRegister(((reg << 1) | instr->NField())); 375 if (format[0] == 'S') PrintSRegister(((reg << 1) | instr->NValue()));
374 if (format[0] == 'D') PrintDRegister(reg); 376 if (format[0] == 'D') PrintDRegister(reg);
375 return 2; 377 return 2;
376 } else if (format[1] == 'm') { 378 } else if (format[1] == 'm') {
377 int reg = instr->VmField(); 379 int reg = instr->VmValue();
378 if (format[0] == 'S') PrintSRegister(((reg << 1) | instr->MField())); 380 if (format[0] == 'S') PrintSRegister(((reg << 1) | instr->MValue()));
379 if (format[0] == 'D') PrintDRegister(reg); 381 if (format[0] == 'D') PrintDRegister(reg);
380 return 2; 382 return 2;
381 } else if (format[1] == 'd') { 383 } else if (format[1] == 'd') {
382 int reg = instr->VdField(); 384 int reg = instr->VdValue();
383 if (format[0] == 'S') PrintSRegister(((reg << 1) | instr->DField())); 385 if (format[0] == 'S') PrintSRegister(((reg << 1) | instr->DValue()));
384 if (format[0] == 'D') PrintDRegister(reg); 386 if (format[0] == 'D') PrintDRegister(reg);
385 return 2; 387 return 2;
386 } 388 }
387 389
388 UNREACHABLE(); 390 UNREACHABLE();
389 return -1; 391 return -1;
390 } 392 }
391 393
392 394
393 int Decoder::FormatVFPinstruction(Instr* instr, const char* format) { 395 int Decoder::FormatVFPinstruction(Instruction* instr, const char* format) {
394 Print(format); 396 Print(format);
395 return 0; 397 return 0;
396 } 398 }
397 399
398 400
399 // Print the movw or movt instruction. 401 // Print the movw or movt instruction.
400 void Decoder::PrintMovwMovt(Instr* instr) { 402 void Decoder::PrintMovwMovt(Instruction* instr) {
401 int imm = instr->ImmedMovwMovtField(); 403 int imm = instr->ImmedMovwMovtValue();
402 int rd = instr->RdField(); 404 int rd = instr->RdValue();
403 PrintRegister(rd); 405 PrintRegister(rd);
404 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_, 406 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
405 ", #%d", imm); 407 ", #%d", imm);
406 } 408 }
407 409
408 410
409 // FormatOption takes a formatting string and interprets it based on 411 // FormatOption takes a formatting string and interprets it based on
410 // the current instructions. The format string points to the first 412 // the current instructions. The format string points to the first
411 // character of the option string (the option escape has already been 413 // character of the option string (the option escape has already been
412 // consumed by the caller.) FormatOption returns the number of 414 // consumed by the caller.) FormatOption returns the number of
413 // characters that were consumed from the formatting string. 415 // characters that were consumed from the formatting string.
414 int Decoder::FormatOption(Instr* instr, const char* format) { 416 int Decoder::FormatOption(Instruction* instr, const char* format) {
415 switch (format[0]) { 417 switch (format[0]) {
416 case 'a': { // 'a: accumulate multiplies 418 case 'a': { // 'a: accumulate multiplies
417 if (instr->Bit(21) == 0) { 419 if (instr->Bit(21) == 0) {
418 Print("ul"); 420 Print("ul");
419 } else { 421 } else {
420 Print("la"); 422 Print("la");
421 } 423 }
422 return 1; 424 return 1;
423 } 425 }
424 case 'b': { // 'b: byte loads or stores 426 case 'b': { // 'b: byte loads or stores
(...skipping 82 matching lines...) Expand 10 before | Expand all | Expand 10 after
507 reinterpret_cast<byte*>(instr->InstructionBits() & 0x0fffffff); 509 reinterpret_cast<byte*>(instr->InstructionBits() & 0x0fffffff);
508 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_, 510 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
509 "%s", converter_.NameInCode(str)); 511 "%s", converter_.NameInCode(str));
510 return 3; 512 return 3;
511 } 513 }
512 case 'o': { 514 case 'o': {
513 if ((format[3] == '1') && (format[4] == '2')) { 515 if ((format[3] == '1') && (format[4] == '2')) {
514 // 'off12: 12-bit offset for load and store instructions 516 // 'off12: 12-bit offset for load and store instructions
515 ASSERT(STRING_STARTS_WITH(format, "off12")); 517 ASSERT(STRING_STARTS_WITH(format, "off12"));
516 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_, 518 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
517 "%d", instr->Offset12Field()); 519 "%d", instr->Offset12Value());
518 return 5; 520 return 5;
519 } else if (format[3] == '0') { 521 } else if (format[3] == '0') {
520 // 'off0to3and8to19 16-bit immediate encoded in bits 19-8 and 3-0. 522 // 'off0to3and8to19 16-bit immediate encoded in bits 19-8 and 3-0.
521 ASSERT(STRING_STARTS_WITH(format, "off0to3and8to19")); 523 ASSERT(STRING_STARTS_WITH(format, "off0to3and8to19"));
522 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_, 524 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
523 "%d", 525 "%d",
524 (instr->Bits(19, 8) << 4) + 526 (instr->Bits(19, 8) << 4) +
525 instr->Bits(3, 0)); 527 instr->Bits(3, 0));
526 return 15; 528 return 15;
527 } 529 }
528 // 'off8: 8-bit offset for extra load and store instructions 530 // 'off8: 8-bit offset for extra load and store instructions
529 ASSERT(STRING_STARTS_WITH(format, "off8")); 531 ASSERT(STRING_STARTS_WITH(format, "off8"));
530 int offs8 = (instr->ImmedHField() << 4) | instr->ImmedLField(); 532 int offs8 = (instr->ImmedHValue() << 4) | instr->ImmedLValue();
531 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_, 533 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
532 "%d", offs8); 534 "%d", offs8);
533 return 4; 535 return 4;
534 } 536 }
535 case 'p': { // 'pu: P and U bits for load and store instructions 537 case 'p': { // 'pu: P and U bits for load and store instructions
536 ASSERT(STRING_STARTS_WITH(format, "pu")); 538 ASSERT(STRING_STARTS_WITH(format, "pu"));
537 PrintPU(instr); 539 PrintPU(instr);
538 return 2; 540 return 2;
539 } 541 }
540 case 'r': { 542 case 'r': {
541 return FormatRegister(instr, format); 543 return FormatRegister(instr, format);
542 } 544 }
543 case 's': { 545 case 's': {
544 if (format[1] == 'h') { // 'shift_op or 'shift_rm or 'shift_sat. 546 if (format[1] == 'h') { // 'shift_op or 'shift_rm or 'shift_sat.
545 if (format[6] == 'o') { // 'shift_op 547 if (format[6] == 'o') { // 'shift_op
546 ASSERT(STRING_STARTS_WITH(format, "shift_op")); 548 ASSERT(STRING_STARTS_WITH(format, "shift_op"));
547 if (instr->TypeField() == 0) { 549 if (instr->TypeValue() == 0) {
548 PrintShiftRm(instr); 550 PrintShiftRm(instr);
549 } else { 551 } else {
550 ASSERT(instr->TypeField() == 1); 552 ASSERT(instr->TypeValue() == 1);
551 PrintShiftImm(instr); 553 PrintShiftImm(instr);
552 } 554 }
553 return 8; 555 return 8;
554 } else if (format[6] == 's') { // 'shift_sat. 556 } else if (format[6] == 's') { // 'shift_sat.
555 ASSERT(STRING_STARTS_WITH(format, "shift_sat")); 557 ASSERT(STRING_STARTS_WITH(format, "shift_sat"));
556 PrintShiftSat(instr); 558 PrintShiftSat(instr);
557 return 9; 559 return 9;
558 } else { // 'shift_rm 560 } else { // 'shift_rm
559 ASSERT(STRING_STARTS_WITH(format, "shift_rm")); 561 ASSERT(STRING_STARTS_WITH(format, "shift_rm"));
560 PrintShiftRm(instr); 562 PrintShiftRm(instr);
561 return 8; 563 return 8;
562 } 564 }
563 } else if (format[1] == 'v') { // 'svc 565 } else if (format[1] == 'v') { // 'svc
564 ASSERT(STRING_STARTS_WITH(format, "svc")); 566 ASSERT(STRING_STARTS_WITH(format, "svc"));
565 PrintSoftwareInterrupt(instr->SvcField()); 567 PrintSoftwareInterrupt(instr->SvcValue());
566 return 3; 568 return 3;
567 } else if (format[1] == 'i') { // 'sign: signed extra loads and stores 569 } else if (format[1] == 'i') { // 'sign: signed extra loads and stores
568 ASSERT(STRING_STARTS_WITH(format, "sign")); 570 ASSERT(STRING_STARTS_WITH(format, "sign"));
569 if (instr->HasSign()) { 571 if (instr->HasSign()) {
570 Print("s"); 572 Print("s");
571 } 573 }
572 return 4; 574 return 4;
573 } 575 }
574 // 's: S field of data processing instructions 576 // 's: S field of data processing instructions
575 if (instr->HasS()) { 577 if (instr->HasS()) {
576 Print("s"); 578 Print("s");
577 } 579 }
578 return 1; 580 return 1;
579 } 581 }
580 case 't': { // 'target: target of branch instructions 582 case 't': { // 'target: target of branch instructions
581 ASSERT(STRING_STARTS_WITH(format, "target")); 583 ASSERT(STRING_STARTS_WITH(format, "target"));
582 int off = (instr->SImmed24Field() << 2) + 8; 584 int off = (instr->SImmed24Value() << 2) + 8;
583 out_buffer_pos_ += v8i::OS::SNPrintF( 585 out_buffer_pos_ += v8i::OS::SNPrintF(
584 out_buffer_ + out_buffer_pos_, 586 out_buffer_ + out_buffer_pos_,
585 "%+d -> %s", 587 "%+d -> %s",
586 off, 588 off,
587 converter_.NameOfAddress(reinterpret_cast<byte*>(instr) + off)); 589 converter_.NameOfAddress(reinterpret_cast<byte*>(instr) + off));
588 return 6; 590 return 6;
589 } 591 }
590 case 'u': { // 'u: signed or unsigned multiplies 592 case 'u': { // 'u: signed or unsigned multiplies
591 // The manual gets the meaning of bit 22 backwards in the multiply 593 // The manual gets the meaning of bit 22 backwards in the multiply
592 // instruction overview on page A3.16.2. The instructions that 594 // instruction overview on page A3.16.2. The instructions that
(...skipping 33 matching lines...) Expand 10 before | Expand all | Expand 10 after
626 } 628 }
627 } 629 }
628 UNREACHABLE(); 630 UNREACHABLE();
629 return -1; 631 return -1;
630 } 632 }
631 633
632 634
633 // Format takes a formatting string for a whole instruction and prints it into 635 // Format takes a formatting string for a whole instruction and prints it into
634 // the output buffer. All escaped options are handed to FormatOption to be 636 // the output buffer. All escaped options are handed to FormatOption to be
635 // parsed further. 637 // parsed further.
636 void Decoder::Format(Instr* instr, const char* format) { 638 void Decoder::Format(Instruction* instr, const char* format) {
637 char cur = *format++; 639 char cur = *format++;
638 while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) { 640 while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
639 if (cur == '\'') { // Single quote is used as the formatting escape. 641 if (cur == '\'') { // Single quote is used as the formatting escape.
640 format += FormatOption(instr, format); 642 format += FormatOption(instr, format);
641 } else { 643 } else {
642 out_buffer_[out_buffer_pos_++] = cur; 644 out_buffer_[out_buffer_pos_++] = cur;
643 } 645 }
644 cur = *format++; 646 cur = *format++;
645 } 647 }
646 out_buffer_[out_buffer_pos_] = '\0'; 648 out_buffer_[out_buffer_pos_] = '\0';
647 } 649 }
648 650
649 651
650 // For currently unimplemented decodings the disassembler calls Unknown(instr) 652 // For currently unimplemented decodings the disassembler calls Unknown(instr)
651 // which will just print "unknown" of the instruction bits. 653 // which will just print "unknown" of the instruction bits.
652 void Decoder::Unknown(Instr* instr) { 654 void Decoder::Unknown(Instruction* instr) {
653 Format(instr, "unknown"); 655 Format(instr, "unknown");
654 } 656 }
655 657
656 658
657 void Decoder::DecodeType01(Instr* instr) { 659 void Decoder::DecodeType01(Instruction* instr) {
658 int type = instr->TypeField(); 660 int type = instr->TypeValue();
659 if ((type == 0) && instr->IsSpecialType0()) { 661 if ((type == 0) && instr->IsSpecialType0()) {
660 // multiply instruction or extra loads and stores 662 // multiply instruction or extra loads and stores
661 if (instr->Bits(7, 4) == 9) { 663 if (instr->Bits(7, 4) == 9) {
662 if (instr->Bit(24) == 0) { 664 if (instr->Bit(24) == 0) {
663 // multiply instructions 665 // multiply instructions
664 if (instr->Bit(23) == 0) { 666 if (instr->Bit(23) == 0) {
665 if (instr->Bit(21) == 0) { 667 if (instr->Bit(21) == 0) {
666 // The MUL instruction description (A 4.1.33) refers to Rd as being 668 // The MUL instruction description (A 4.1.33) refers to Rd as being
667 // the destination for the operation, but it confusingly uses the 669 // the destination for the operation, but it confusingly uses the
668 // Rn field to encode it. 670 // Rn field to encode it.
(...skipping 13 matching lines...) Expand all
682 // RdHi == Rn field 684 // RdHi == Rn field
683 // The order of registers is: <RdLo>, <RdHi>, <Rm>, <Rs> 685 // The order of registers is: <RdLo>, <RdHi>, <Rm>, <Rs>
684 Format(instr, "'um'al'cond's 'rd, 'rn, 'rm, 'rs"); 686 Format(instr, "'um'al'cond's 'rd, 'rn, 'rm, 'rs");
685 } 687 }
686 } else { 688 } else {
687 Unknown(instr); // not used by V8 689 Unknown(instr); // not used by V8
688 } 690 }
689 } else if ((instr->Bit(20) == 0) && ((instr->Bits(7, 4) & 0xd) == 0xd)) { 691 } else if ((instr->Bit(20) == 0) && ((instr->Bits(7, 4) & 0xd) == 0xd)) {
690 // ldrd, strd 692 // ldrd, strd
691 switch (instr->PUField()) { 693 switch (instr->PUField()) {
692 case 0: { 694 case da_x: {
693 if (instr->Bit(22) == 0) { 695 if (instr->Bit(22) == 0) {
694 Format(instr, "'memop'cond's 'rd, ['rn], -'rm"); 696 Format(instr, "'memop'cond's 'rd, ['rn], -'rm");
695 } else { 697 } else {
696 Format(instr, "'memop'cond's 'rd, ['rn], #-'off8"); 698 Format(instr, "'memop'cond's 'rd, ['rn], #-'off8");
697 } 699 }
698 break; 700 break;
699 } 701 }
700 case 1: { 702 case ia_x: {
701 if (instr->Bit(22) == 0) { 703 if (instr->Bit(22) == 0) {
702 Format(instr, "'memop'cond's 'rd, ['rn], +'rm"); 704 Format(instr, "'memop'cond's 'rd, ['rn], +'rm");
703 } else { 705 } else {
704 Format(instr, "'memop'cond's 'rd, ['rn], #+'off8"); 706 Format(instr, "'memop'cond's 'rd, ['rn], #+'off8");
705 } 707 }
706 break; 708 break;
707 } 709 }
708 case 2: { 710 case db_x: {
709 if (instr->Bit(22) == 0) { 711 if (instr->Bit(22) == 0) {
710 Format(instr, "'memop'cond's 'rd, ['rn, -'rm]'w"); 712 Format(instr, "'memop'cond's 'rd, ['rn, -'rm]'w");
711 } else { 713 } else {
712 Format(instr, "'memop'cond's 'rd, ['rn, #-'off8]'w"); 714 Format(instr, "'memop'cond's 'rd, ['rn, #-'off8]'w");
713 } 715 }
714 break; 716 break;
715 } 717 }
716 case 3: { 718 case ib_x: {
717 if (instr->Bit(22) == 0) { 719 if (instr->Bit(22) == 0) {
718 Format(instr, "'memop'cond's 'rd, ['rn, +'rm]'w"); 720 Format(instr, "'memop'cond's 'rd, ['rn, +'rm]'w");
719 } else { 721 } else {
720 Format(instr, "'memop'cond's 'rd, ['rn, #+'off8]'w"); 722 Format(instr, "'memop'cond's 'rd, ['rn, #+'off8]'w");
721 } 723 }
722 break; 724 break;
723 } 725 }
724 default: { 726 default: {
725 // The PU field is a 2-bit field. 727 // The PU field is a 2-bit field.
726 UNREACHABLE(); 728 UNREACHABLE();
727 break; 729 break;
728 } 730 }
729 } 731 }
730 } else { 732 } else {
731 // extra load/store instructions 733 // extra load/store instructions
732 switch (instr->PUField()) { 734 switch (instr->PUField()) {
733 case 0: { 735 case da_x: {
734 if (instr->Bit(22) == 0) { 736 if (instr->Bit(22) == 0) {
735 Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm"); 737 Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
736 } else { 738 } else {
737 Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8"); 739 Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
738 } 740 }
739 break; 741 break;
740 } 742 }
741 case 1: { 743 case ia_x: {
742 if (instr->Bit(22) == 0) { 744 if (instr->Bit(22) == 0) {
743 Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm"); 745 Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
744 } else { 746 } else {
745 Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8"); 747 Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
746 } 748 }
747 break; 749 break;
748 } 750 }
749 case 2: { 751 case db_x: {
750 if (instr->Bit(22) == 0) { 752 if (instr->Bit(22) == 0) {
751 Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w"); 753 Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
752 } else { 754 } else {
753 Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w"); 755 Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
754 } 756 }
755 break; 757 break;
756 } 758 }
757 case 3: { 759 case ib_x: {
758 if (instr->Bit(22) == 0) { 760 if (instr->Bit(22) == 0) {
759 Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w"); 761 Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
760 } else { 762 } else {
761 Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w"); 763 Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
762 } 764 }
763 break; 765 break;
764 } 766 }
765 default: { 767 default: {
766 // The PU field is a 2-bit field. 768 // The PU field is a 2-bit field.
767 UNREACHABLE(); 769 UNREACHABLE();
768 break; 770 break;
769 } 771 }
770 } 772 }
771 return; 773 return;
772 } 774 }
773 } else if ((type == 0) && instr->IsMiscType0()) { 775 } else if ((type == 0) && instr->IsMiscType0()) {
774 if (instr->Bits(22, 21) == 1) { 776 if (instr->Bits(22, 21) == 1) {
775 switch (instr->Bits(7, 4)) { 777 switch (instr->BitField(7, 4)) {
776 case BX: 778 case BX:
777 Format(instr, "bx'cond 'rm"); 779 Format(instr, "bx'cond 'rm");
778 break; 780 break;
779 case BLX: 781 case BLX:
780 Format(instr, "blx'cond 'rm"); 782 Format(instr, "blx'cond 'rm");
781 break; 783 break;
782 case BKPT: 784 case BKPT:
783 Format(instr, "bkpt 'off0to3and8to19"); 785 Format(instr, "bkpt 'off0to3and8to19");
784 break; 786 break;
785 default: 787 default:
786 Unknown(instr); // not used by V8 788 Unknown(instr); // not used by V8
787 break; 789 break;
788 } 790 }
789 } else if (instr->Bits(22, 21) == 3) { 791 } else if (instr->Bits(22, 21) == 3) {
790 switch (instr->Bits(7, 4)) { 792 switch (instr->BitField(7, 4)) {
791 case CLZ: 793 case CLZ:
792 Format(instr, "clz'cond 'rd, 'rm"); 794 Format(instr, "clz'cond 'rd, 'rm");
793 break; 795 break;
794 default: 796 default:
795 Unknown(instr); // not used by V8 797 Unknown(instr); // not used by V8
796 break; 798 break;
797 } 799 }
798 } else { 800 } else {
799 Unknown(instr); // not used by V8 801 Unknown(instr); // not used by V8
800 } 802 }
(...skipping 86 matching lines...) Expand 10 before | Expand all | Expand 10 after
887 default: { 889 default: {
888 // The Opcode field is a 4-bit field. 890 // The Opcode field is a 4-bit field.
889 UNREACHABLE(); 891 UNREACHABLE();
890 break; 892 break;
891 } 893 }
892 } 894 }
893 } 895 }
894 } 896 }
895 897
896 898
897 void Decoder::DecodeType2(Instr* instr) { 899 void Decoder::DecodeType2(Instruction* instr) {
898 switch (instr->PUField()) { 900 switch (instr->PUField()) {
899 case 0: { 901 case da_x: {
900 if (instr->HasW()) { 902 if (instr->HasW()) {
901 Unknown(instr); // not used in V8 903 Unknown(instr); // not used in V8
902 } 904 }
903 Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); 905 Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
904 break; 906 break;
905 } 907 }
906 case 1: { 908 case ia_x: {
907 if (instr->HasW()) { 909 if (instr->HasW()) {
908 Unknown(instr); // not used in V8 910 Unknown(instr); // not used in V8
909 } 911 }
910 Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); 912 Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
911 break; 913 break;
912 } 914 }
913 case 2: { 915 case db_x: {
914 Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); 916 Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
915 break; 917 break;
916 } 918 }
917 case 3: { 919 case ib_x: {
918 Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); 920 Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
919 break; 921 break;
920 } 922 }
921 default: { 923 default: {
922 // The PU field is a 2-bit field. 924 // The PU field is a 2-bit field.
923 UNREACHABLE(); 925 UNREACHABLE();
924 break; 926 break;
925 } 927 }
926 } 928 }
927 } 929 }
928 930
929 931
930 void Decoder::DecodeType3(Instr* instr) { 932 void Decoder::DecodeType3(Instruction* instr) {
931 switch (instr->PUField()) { 933 switch (instr->PUField()) {
932 case 0: { 934 case da_x: {
933 ASSERT(!instr->HasW()); 935 ASSERT(!instr->HasW());
934 Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); 936 Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
935 break; 937 break;
936 } 938 }
937 case 1: { 939 case ia_x: {
938 if (instr->HasW()) { 940 if (instr->HasW()) {
939 ASSERT(instr->Bits(5, 4) == 0x1); 941 ASSERT(instr->Bits(5, 4) == 0x1);
940 if (instr->Bit(22) == 0x1) { 942 if (instr->Bit(22) == 0x1) {
941 Format(instr, "usat 'rd, #'imm05@16, 'rm'shift_sat"); 943 Format(instr, "usat 'rd, #'imm05@16, 'rm'shift_sat");
942 } else { 944 } else {
943 UNREACHABLE(); // SSAT. 945 UNREACHABLE(); // SSAT.
944 } 946 }
945 } else { 947 } else {
946 Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm"); 948 Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm");
947 } 949 }
948 break; 950 break;
949 } 951 }
950 case 2: { 952 case db_x: {
951 Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w"); 953 Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
952 break; 954 break;
953 } 955 }
954 case 3: { 956 case ib_x: {
955 if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) { 957 if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) {
956 uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16)); 958 uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16));
957 uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); 959 uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
958 uint32_t msbit = widthminus1 + lsbit; 960 uint32_t msbit = widthminus1 + lsbit;
959 if (msbit <= 31) { 961 if (msbit <= 31) {
960 if (instr->Bit(22)) { 962 if (instr->Bit(22)) {
961 Format(instr, "ubfx'cond 'rd, 'rm, 'f"); 963 Format(instr, "ubfx'cond 'rd, 'rm, 'f");
962 } else { 964 } else {
963 Format(instr, "sbfx'cond 'rd, 'rm, 'f"); 965 Format(instr, "sbfx'cond 'rd, 'rm, 'f");
964 } 966 }
965 } else { 967 } else {
966 UNREACHABLE(); 968 UNREACHABLE();
967 } 969 }
968 } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) { 970 } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) {
969 uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); 971 uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
970 uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16)); 972 uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16));
971 if (msbit >= lsbit) { 973 if (msbit >= lsbit) {
972 if (instr->RmField() == 15) { 974 if (instr->RmValue() == 15) {
973 Format(instr, "bfc'cond 'rd, 'f"); 975 Format(instr, "bfc'cond 'rd, 'f");
974 } else { 976 } else {
975 Format(instr, "bfi'cond 'rd, 'rm, 'f"); 977 Format(instr, "bfi'cond 'rd, 'rm, 'f");
976 } 978 }
977 } else { 979 } else {
978 UNREACHABLE(); 980 UNREACHABLE();
979 } 981 }
980 } else { 982 } else {
981 Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w"); 983 Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
982 } 984 }
983 break; 985 break;
984 } 986 }
985 default: { 987 default: {
986 // The PU field is a 2-bit field. 988 // The PU field is a 2-bit field.
987 UNREACHABLE(); 989 UNREACHABLE();
988 break; 990 break;
989 } 991 }
990 } 992 }
991 } 993 }
992 994
993 995
994 void Decoder::DecodeType4(Instr* instr) { 996 void Decoder::DecodeType4(Instruction* instr) {
995 ASSERT(instr->Bit(22) == 0); // Privileged mode currently not supported. 997 ASSERT(instr->Bit(22) == 0); // Privileged mode currently not supported.
996 if (instr->HasL()) { 998 if (instr->HasL()) {
997 Format(instr, "ldm'cond'pu 'rn'w, 'rlist"); 999 Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
998 } else { 1000 } else {
999 Format(instr, "stm'cond'pu 'rn'w, 'rlist"); 1001 Format(instr, "stm'cond'pu 'rn'w, 'rlist");
1000 } 1002 }
1001 } 1003 }
1002 1004
1003 1005
1004 void Decoder::DecodeType5(Instr* instr) { 1006 void Decoder::DecodeType5(Instruction* instr) {
1005 Format(instr, "b'l'cond 'target"); 1007 Format(instr, "b'l'cond 'target");
1006 } 1008 }
1007 1009
1008 1010
1009 void Decoder::DecodeType6(Instr* instr) { 1011 void Decoder::DecodeType6(Instruction* instr) {
1010 DecodeType6CoprocessorIns(instr); 1012 DecodeType6CoprocessorIns(instr);
1011 } 1013 }
1012 1014
1013 1015
1014 int Decoder::DecodeType7(Instr* instr) { 1016 int Decoder::DecodeType7(Instruction* instr) {
1015 if (instr->Bit(24) == 1) { 1017 if (instr->Bit(24) == 1) {
1016 if (instr->SvcField() >= stop) { 1018 if (instr->SvcValue() >= stop_code) {
1017 Format(instr, "stop'cond 'svc"); 1019 Format(instr, "stop'cond 'svc");
1018 // Also print the stop message. Its address is encoded 1020 // Also print the stop message. Its address is encoded
1019 // in the following 4 bytes. 1021 // in the following 4 bytes.
1020 out_buffer_pos_ += 1022 out_buffer_pos_ +=
1021 v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_, 1023 v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
1022 "\n %p %08x stop message: %s", 1024 "\n %p %08x stop message: %s",
1023 reinterpret_cast<int32_t*>(instr + Instr::kInstrSize), 1025 reinterpret_cast<int32_t*>(instr
1024 *reinterpret_cast<char**>(instr + Instr::kInstrSize), 1026 + Instruction::kInstrSize),
1025 *reinterpret_cast<char**>(instr + Instr::kInstrSize)); 1027 *reinterpret_cast<char**>(instr
1026 // We have decoded 2 * Instr::kInstrSize bytes. 1028 + Instruction::kInstrSize),
1027 return 2 * Instr::kInstrSize; 1029 *reinterpret_cast<char**>(instr
1030 + Instruction::kInstrSize));
1031 // We have decoded 2 * Instruction::kInstrSize bytes.
1032 return 2 * Instruction::kInstrSize;
1028 } else { 1033 } else {
1029 Format(instr, "svc'cond 'svc"); 1034 Format(instr, "svc'cond 'svc");
1030 } 1035 }
1031 } else { 1036 } else {
1032 DecodeTypeVFP(instr); 1037 DecodeTypeVFP(instr);
1033 } 1038 }
1034 return Instr::kInstrSize; 1039 return Instruction::kInstrSize;
1035 } 1040 }
1036 1041
1037 1042
1038 // void Decoder::DecodeTypeVFP(Instr* instr) 1043 // void Decoder::DecodeTypeVFP(Instruction* instr)
1039 // vmov: Sn = Rt 1044 // vmov: Sn = Rt
1040 // vmov: Rt = Sn 1045 // vmov: Rt = Sn
1041 // vcvt: Dd = Sm 1046 // vcvt: Dd = Sm
1042 // vcvt: Sd = Dm 1047 // vcvt: Sd = Dm
1043 // Dd = vadd(Dn, Dm) 1048 // Dd = vadd(Dn, Dm)
1044 // Dd = vsub(Dn, Dm) 1049 // Dd = vsub(Dn, Dm)
1045 // Dd = vmul(Dn, Dm) 1050 // Dd = vmul(Dn, Dm)
1046 // Dd = vdiv(Dn, Dm) 1051 // Dd = vdiv(Dn, Dm)
1047 // vcmp(Dd, Dm) 1052 // vcmp(Dd, Dm)
1048 // vmrs 1053 // vmrs
1049 // vmsr 1054 // vmsr
1050 // Dd = vsqrt(Dm) 1055 // Dd = vsqrt(Dm)
1051 void Decoder::DecodeTypeVFP(Instr* instr) { 1056 void Decoder::DecodeTypeVFP(Instruction* instr) {
1052 ASSERT((instr->TypeField() == 7) && (instr->Bit(24) == 0x0) ); 1057 ASSERT((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) );
1053 ASSERT(instr->Bits(11, 9) == 0x5); 1058 ASSERT(instr->Bits(11, 9) == 0x5);
1054 1059
1055 if (instr->Bit(4) == 0) { 1060 if (instr->Bit(4) == 0) {
1056 if (instr->Opc1Field() == 0x7) { 1061 if (instr->Opc1Value() == 0x7) {
1057 // Other data processing instructions 1062 // Other data processing instructions
1058 if ((instr->Opc2Field() == 0x0) && (instr->Opc3Field() == 0x1)) { 1063 if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) {
1059 // vmov register to register. 1064 // vmov register to register.
1060 if (instr->SzField() == 0x1) { 1065 if (instr->SzValue() == 0x1) {
1061 Format(instr, "vmov.f64'cond 'Dd, 'Dm"); 1066 Format(instr, "vmov.f64'cond 'Dd, 'Dm");
1062 } else { 1067 } else {
1063 Format(instr, "vmov.f32'cond 'Sd, 'Sm"); 1068 Format(instr, "vmov.f32'cond 'Sd, 'Sm");
1064 } 1069 }
1065 } else if ((instr->Opc2Field() == 0x7) && (instr->Opc3Field() == 0x3)) { 1070 } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) {
1066 DecodeVCVTBetweenDoubleAndSingle(instr); 1071 DecodeVCVTBetweenDoubleAndSingle(instr);
1067 } else if ((instr->Opc2Field() == 0x8) && (instr->Opc3Field() & 0x1)) { 1072 } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) {
1068 DecodeVCVTBetweenFloatingPointAndInteger(instr); 1073 DecodeVCVTBetweenFloatingPointAndInteger(instr);
1069 } else if (((instr->Opc2Field() >> 1) == 0x6) && 1074 } else if (((instr->Opc2Value() >> 1) == 0x6) &&
1070 (instr->Opc3Field() & 0x1)) { 1075 (instr->Opc3Value() & 0x1)) {
1071 DecodeVCVTBetweenFloatingPointAndInteger(instr); 1076 DecodeVCVTBetweenFloatingPointAndInteger(instr);
1072 } else if (((instr->Opc2Field() == 0x4) || (instr->Opc2Field() == 0x5)) && 1077 } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
1073 (instr->Opc3Field() & 0x1)) { 1078 (instr->Opc3Value() & 0x1)) {
1074 DecodeVCMP(instr); 1079 DecodeVCMP(instr);
1075 } else if (((instr->Opc2Field() == 0x1)) && (instr->Opc3Field() == 0x3)) { 1080 } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) {
1076 Format(instr, "vsqrt.f64'cond 'Dd, 'Dm"); 1081 Format(instr, "vsqrt.f64'cond 'Dd, 'Dm");
1077 } else if (instr->Opc3Field() == 0x0) { 1082 } else if (instr->Opc3Value() == 0x0) {
1078 if (instr->SzField() == 0x1) { 1083 if (instr->SzValue() == 0x1) {
1079 Format(instr, "vmov.f64'cond 'Dd, 'd"); 1084 Format(instr, "vmov.f64'cond 'Dd, 'd");
1080 } else { 1085 } else {
1081 Unknown(instr); // Not used by V8. 1086 Unknown(instr); // Not used by V8.
1082 } 1087 }
1083 } else { 1088 } else {
1084 Unknown(instr); // Not used by V8. 1089 Unknown(instr); // Not used by V8.
1085 } 1090 }
1086 } else if (instr->Opc1Field() == 0x3) { 1091 } else if (instr->Opc1Value() == 0x3) {
1087 if (instr->SzField() == 0x1) { 1092 if (instr->SzValue() == 0x1) {
1088 if (instr->Opc3Field() & 0x1) { 1093 if (instr->Opc3Value() & 0x1) {
1089 Format(instr, "vsub.f64'cond 'Dd, 'Dn, 'Dm"); 1094 Format(instr, "vsub.f64'cond 'Dd, 'Dn, 'Dm");
1090 } else { 1095 } else {
1091 Format(instr, "vadd.f64'cond 'Dd, 'Dn, 'Dm"); 1096 Format(instr, "vadd.f64'cond 'Dd, 'Dn, 'Dm");
1092 } 1097 }
1093 } else { 1098 } else {
1094 Unknown(instr); // Not used by V8. 1099 Unknown(instr); // Not used by V8.
1095 } 1100 }
1096 } else if ((instr->Opc1Field() == 0x2) && !(instr->Opc3Field() & 0x1)) { 1101 } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) {
1097 if (instr->SzField() == 0x1) { 1102 if (instr->SzValue() == 0x1) {
1098 Format(instr, "vmul.f64'cond 'Dd, 'Dn, 'Dm"); 1103 Format(instr, "vmul.f64'cond 'Dd, 'Dn, 'Dm");
1099 } else { 1104 } else {
1100 Unknown(instr); // Not used by V8. 1105 Unknown(instr); // Not used by V8.
1101 } 1106 }
1102 } else if ((instr->Opc1Field() == 0x4) && !(instr->Opc3Field() & 0x1)) { 1107 } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) {
1103 if (instr->SzField() == 0x1) { 1108 if (instr->SzValue() == 0x1) {
1104 Format(instr, "vdiv.f64'cond 'Dd, 'Dn, 'Dm"); 1109 Format(instr, "vdiv.f64'cond 'Dd, 'Dn, 'Dm");
1105 } else { 1110 } else {
1106 Unknown(instr); // Not used by V8. 1111 Unknown(instr); // Not used by V8.
1107 } 1112 }
1108 } else { 1113 } else {
1109 Unknown(instr); // Not used by V8. 1114 Unknown(instr); // Not used by V8.
1110 } 1115 }
1111 } else { 1116 } else {
1112 if ((instr->VCField() == 0x0) && 1117 if ((instr->VCValue() == 0x0) &&
1113 (instr->VAField() == 0x0)) { 1118 (instr->VAValue() == 0x0)) {
1114 DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr); 1119 DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
1115 } else if ((instr->VCField() == 0x0) && 1120 } else if ((instr->VCValue() == 0x0) &&
1116 (instr->VAField() == 0x7) && 1121 (instr->VAValue() == 0x7) &&
1117 (instr->Bits(19, 16) == 0x1)) { 1122 (instr->Bits(19, 16) == 0x1)) {
1118 if (instr->VLField() == 0) { 1123 if (instr->VLValue() == 0) {
1119 if (instr->Bits(15, 12) == 0xF) { 1124 if (instr->Bits(15, 12) == 0xF) {
1120 Format(instr, "vmsr'cond FPSCR, APSR"); 1125 Format(instr, "vmsr'cond FPSCR, APSR");
1121 } else { 1126 } else {
1122 Format(instr, "vmsr'cond FPSCR, 'rt"); 1127 Format(instr, "vmsr'cond FPSCR, 'rt");
1123 } 1128 }
1124 } else { 1129 } else {
1125 if (instr->Bits(15, 12) == 0xF) { 1130 if (instr->Bits(15, 12) == 0xF) {
1126 Format(instr, "vmrs'cond APSR, FPSCR"); 1131 Format(instr, "vmrs'cond APSR, FPSCR");
1127 } else { 1132 } else {
1128 Format(instr, "vmrs'cond 'rt, FPSCR"); 1133 Format(instr, "vmrs'cond 'rt, FPSCR");
1129 } 1134 }
1130 } 1135 }
1131 } 1136 }
1132 } 1137 }
1133 } 1138 }
1134 1139
1135 1140
1136 void Decoder::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instr* instr) { 1141 void Decoder::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(
1137 ASSERT((instr->Bit(4) == 1) && (instr->VCField() == 0x0) && 1142 Instruction* instr) {
1138 (instr->VAField() == 0x0)); 1143 ASSERT((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) &&
1144 (instr->VAValue() == 0x0));
1139 1145
1140 bool to_arm_register = (instr->VLField() == 0x1); 1146 bool to_arm_register = (instr->VLValue() == 0x1);
1141 1147
1142 if (to_arm_register) { 1148 if (to_arm_register) {
1143 Format(instr, "vmov'cond 'rt, 'Sn"); 1149 Format(instr, "vmov'cond 'rt, 'Sn");
1144 } else { 1150 } else {
1145 Format(instr, "vmov'cond 'Sn, 'rt"); 1151 Format(instr, "vmov'cond 'Sn, 'rt");
1146 } 1152 }
1147 } 1153 }
1148 1154
1149 1155
1150 void Decoder::DecodeVCMP(Instr* instr) { 1156 void Decoder::DecodeVCMP(Instruction* instr) {
1151 ASSERT((instr->Bit(4) == 0) && (instr->Opc1Field() == 0x7)); 1157 ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
1152 ASSERT(((instr->Opc2Field() == 0x4) || (instr->Opc2Field() == 0x5)) && 1158 ASSERT(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
1153 (instr->Opc3Field() & 0x1)); 1159 (instr->Opc3Value() & 0x1));
1154 1160
1155 // Comparison. 1161 // Comparison.
1156 bool dp_operation = (instr->SzField() == 1); 1162 bool dp_operation = (instr->SzValue() == 1);
1157 bool raise_exception_for_qnan = (instr->Bit(7) == 0x1); 1163 bool raise_exception_for_qnan = (instr->Bit(7) == 0x1);
1158 1164
1159 if (dp_operation && !raise_exception_for_qnan) { 1165 if (dp_operation && !raise_exception_for_qnan) {
1160 if (instr->Opc2Field() == 0x4) { 1166 if (instr->Opc2Value() == 0x4) {
1161 Format(instr, "vcmp.f64'cond 'Dd, 'Dm"); 1167 Format(instr, "vcmp.f64'cond 'Dd, 'Dm");
1162 } else if (instr->Opc2Field() == 0x5) { 1168 } else if (instr->Opc2Value() == 0x5) {
1163 Format(instr, "vcmp.f64'cond 'Dd, #0.0"); 1169 Format(instr, "vcmp.f64'cond 'Dd, #0.0");
1164 } else { 1170 } else {
1165 Unknown(instr); // invalid 1171 Unknown(instr); // invalid
1166 } 1172 }
1167 } else { 1173 } else {
1168 Unknown(instr); // Not used by V8. 1174 Unknown(instr); // Not used by V8.
1169 } 1175 }
1170 } 1176 }
1171 1177
1172 1178
1173 void Decoder::DecodeVCVTBetweenDoubleAndSingle(Instr* instr) { 1179 void Decoder::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) {
1174 ASSERT((instr->Bit(4) == 0) && (instr->Opc1Field() == 0x7)); 1180 ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
1175 ASSERT((instr->Opc2Field() == 0x7) && (instr->Opc3Field() == 0x3)); 1181 ASSERT((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3));
1176 1182
1177 bool double_to_single = (instr->SzField() == 1); 1183 bool double_to_single = (instr->SzValue() == 1);
1178 1184
1179 if (double_to_single) { 1185 if (double_to_single) {
1180 Format(instr, "vcvt.f32.f64'cond 'Sd, 'Dm"); 1186 Format(instr, "vcvt.f32.f64'cond 'Sd, 'Dm");
1181 } else { 1187 } else {
1182 Format(instr, "vcvt.f64.f32'cond 'Dd, 'Sm"); 1188 Format(instr, "vcvt.f64.f32'cond 'Dd, 'Sm");
1183 } 1189 }
1184 } 1190 }
1185 1191
1186 1192
1187 void Decoder::DecodeVCVTBetweenFloatingPointAndInteger(Instr* instr) { 1193 void Decoder::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) {
1188 ASSERT((instr->Bit(4) == 0) && (instr->Opc1Field() == 0x7)); 1194 ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
1189 ASSERT(((instr->Opc2Field() == 0x8) && (instr->Opc3Field() & 0x1)) || 1195 ASSERT(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) ||
1190 (((instr->Opc2Field() >> 1) == 0x6) && (instr->Opc3Field() & 0x1))); 1196 (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1)));
1191 1197
1192 bool to_integer = (instr->Bit(18) == 1); 1198 bool to_integer = (instr->Bit(18) == 1);
1193 bool dp_operation = (instr->SzField() == 1); 1199 bool dp_operation = (instr->SzValue() == 1);
1194 if (to_integer) { 1200 if (to_integer) {
1195 bool unsigned_integer = (instr->Bit(16) == 0); 1201 bool unsigned_integer = (instr->Bit(16) == 0);
1196 1202
1197 if (dp_operation) { 1203 if (dp_operation) {
1198 if (unsigned_integer) { 1204 if (unsigned_integer) {
1199 Format(instr, "vcvt.u32.f64'cond 'Sd, 'Dm"); 1205 Format(instr, "vcvt.u32.f64'cond 'Sd, 'Dm");
1200 } else { 1206 } else {
1201 Format(instr, "vcvt.s32.f64'cond 'Sd, 'Dm"); 1207 Format(instr, "vcvt.s32.f64'cond 'Sd, 'Dm");
1202 } 1208 }
1203 } else { 1209 } else {
(...skipping 21 matching lines...) Expand all
1225 } 1231 }
1226 } 1232 }
1227 } 1233 }
1228 1234
1229 1235
1230 // Decode Type 6 coprocessor instructions. 1236 // Decode Type 6 coprocessor instructions.
1231 // Dm = vmov(Rt, Rt2) 1237 // Dm = vmov(Rt, Rt2)
1232 // <Rt, Rt2> = vmov(Dm) 1238 // <Rt, Rt2> = vmov(Dm)
1233 // Ddst = MEM(Rbase + 4*offset). 1239 // Ddst = MEM(Rbase + 4*offset).
1234 // MEM(Rbase + 4*offset) = Dsrc. 1240 // MEM(Rbase + 4*offset) = Dsrc.
1235 void Decoder::DecodeType6CoprocessorIns(Instr* instr) { 1241 void Decoder::DecodeType6CoprocessorIns(Instruction* instr) {
1236 ASSERT((instr->TypeField() == 6)); 1242 ASSERT(instr->TypeValue() == 6);
1237 1243
1238 if (instr->CoprocessorField() == 0xA) { 1244 if (instr->CoprocessorValue() == 0xA) {
1239 switch (instr->OpcodeField()) { 1245 switch (instr->OpcodeValue()) {
1240 case 0x8: 1246 case 0x8:
1241 case 0xA: 1247 case 0xA:
1242 if (instr->HasL()) { 1248 if (instr->HasL()) {
1243 Format(instr, "vldr'cond 'Sd, ['rn - 4*'imm08@00]"); 1249 Format(instr, "vldr'cond 'Sd, ['rn - 4*'imm08@00]");
1244 } else { 1250 } else {
1245 Format(instr, "vstr'cond 'Sd, ['rn - 4*'imm08@00]"); 1251 Format(instr, "vstr'cond 'Sd, ['rn - 4*'imm08@00]");
1246 } 1252 }
1247 break; 1253 break;
1248 case 0xC: 1254 case 0xC:
1249 case 0xE: 1255 case 0xE:
1250 if (instr->HasL()) { 1256 if (instr->HasL()) {
1251 Format(instr, "vldr'cond 'Sd, ['rn + 4*'imm08@00]"); 1257 Format(instr, "vldr'cond 'Sd, ['rn + 4*'imm08@00]");
1252 } else { 1258 } else {
1253 Format(instr, "vstr'cond 'Sd, ['rn + 4*'imm08@00]"); 1259 Format(instr, "vstr'cond 'Sd, ['rn + 4*'imm08@00]");
1254 } 1260 }
1255 break; 1261 break;
1256 default: 1262 default:
1257 Unknown(instr); // Not used by V8. 1263 Unknown(instr); // Not used by V8.
1258 break; 1264 break;
1259 } 1265 }
1260 } else if (instr->CoprocessorField() == 0xB) { 1266 } else if (instr->CoprocessorValue() == 0xB) {
1261 switch (instr->OpcodeField()) { 1267 switch (instr->OpcodeValue()) {
1262 case 0x2: 1268 case 0x2:
1263 // Load and store double to two GP registers 1269 // Load and store double to two GP registers
1264 if (instr->Bits(7, 4) != 0x1) { 1270 if (instr->Bits(7, 4) != 0x1) {
1265 Unknown(instr); // Not used by V8. 1271 Unknown(instr); // Not used by V8.
1266 } else if (instr->HasL()) { 1272 } else if (instr->HasL()) {
1267 Format(instr, "vmov'cond 'rt, 'rn, 'Dm"); 1273 Format(instr, "vmov'cond 'rt, 'rn, 'Dm");
1268 } else { 1274 } else {
1269 Format(instr, "vmov'cond 'Dm, 'rt, 'rn"); 1275 Format(instr, "vmov'cond 'Dm, 'rt, 'rn");
1270 } 1276 }
1271 break; 1277 break;
(...skipping 16 matching lines...) Expand all
1288 break; 1294 break;
1289 } 1295 }
1290 } else { 1296 } else {
1291 UNIMPLEMENTED(); // Not used by V8. 1297 UNIMPLEMENTED(); // Not used by V8.
1292 } 1298 }
1293 } 1299 }
1294 1300
1295 1301
1296 // Disassemble the instruction at *instr_ptr into the output buffer. 1302 // Disassemble the instruction at *instr_ptr into the output buffer.
1297 int Decoder::InstructionDecode(byte* instr_ptr) { 1303 int Decoder::InstructionDecode(byte* instr_ptr) {
1298 Instr* instr = Instr::At(instr_ptr); 1304 Instruction* instr = Instruction::At(instr_ptr);
1299 // Print raw instruction bytes. 1305 // Print raw instruction bytes.
1300 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_, 1306 out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
1301 "%08x ", 1307 "%08x ",
1302 instr->InstructionBits()); 1308 instr->InstructionBits());
1303 if (instr->ConditionField() == special_condition) { 1309 if (instr->ConditionField() == special_condition) {
1304 UNIMPLEMENTED(); 1310 UNIMPLEMENTED();
1305 return Instr::kInstrSize; 1311 return Instruction::kInstrSize;
1306 } 1312 }
1307 switch (instr->TypeField()) { 1313 switch (instr->TypeValue()) {
1308 case 0: 1314 case 0:
1309 case 1: { 1315 case 1: {
1310 DecodeType01(instr); 1316 DecodeType01(instr);
1311 break; 1317 break;
1312 } 1318 }
1313 case 2: { 1319 case 2: {
1314 DecodeType2(instr); 1320 DecodeType2(instr);
1315 break; 1321 break;
1316 } 1322 }
1317 case 3: { 1323 case 3: {
(...skipping 14 matching lines...) Expand all
1332 } 1338 }
1333 case 7: { 1339 case 7: {
1334 return DecodeType7(instr); 1340 return DecodeType7(instr);
1335 } 1341 }
1336 default: { 1342 default: {
1337 // The type field is 3-bits in the ARM encoding. 1343 // The type field is 3-bits in the ARM encoding.
1338 UNREACHABLE(); 1344 UNREACHABLE();
1339 break; 1345 break;
1340 } 1346 }
1341 } 1347 }
1342 return Instr::kInstrSize; 1348 return Instruction::kInstrSize;
1343 } 1349 }
1344 1350
1345 1351
1346 } } // namespace assembler::arm 1352 } } // namespace assembler::arm
1347 1353
1348 1354
1349 1355
1350 //------------------------------------------------------------------------------ 1356 //------------------------------------------------------------------------------
1351 1357
1352 namespace disasm { 1358 namespace disasm {
(...skipping 73 matching lines...) Expand 10 before | Expand all | Expand 10 after
1426 pc += d.InstructionDecode(buffer, pc); 1432 pc += d.InstructionDecode(buffer, pc);
1427 fprintf(f, "%p %08x %s\n", 1433 fprintf(f, "%p %08x %s\n",
1428 prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer.start()); 1434 prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer.start());
1429 } 1435 }
1430 } 1436 }
1431 1437
1432 1438
1433 } // namespace disasm 1439 } // namespace disasm
1434 1440
1435 #endif // V8_TARGET_ARCH_ARM 1441 #endif // V8_TARGET_ARCH_ARM
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698