| Index: src/arm/stub-cache-arm.cc
|
| ===================================================================
|
| --- src/arm/stub-cache-arm.cc (revision 6375)
|
| +++ src/arm/stub-cache-arm.cc (working copy)
|
| @@ -902,7 +902,112 @@
|
| }
|
|
|
|
|
| +// Convert and store int passed in register ival to IEEE 754 single precision
|
| +// floating point value at memory location (dst + 4 * wordoffset)
|
| +// If VFP3 is available use it for conversion.
|
| +static void StoreIntAsFloat(MacroAssembler* masm,
|
| + Register dst,
|
| + Register wordoffset,
|
| + Register ival,
|
| + Register fval,
|
| + Register scratch1,
|
| + Register scratch2) {
|
| + if (CpuFeatures::IsSupported(VFP3)) {
|
| + CpuFeatures::Scope scope(VFP3);
|
| + __ vmov(s0, ival);
|
| + __ add(scratch1, dst, Operand(wordoffset, LSL, 2));
|
| + __ vcvt_f32_s32(s0, s0);
|
| + __ vstr(s0, scratch1, 0);
|
| + } else {
|
| + Label not_special, done;
|
| + // Move sign bit from source to destination. This works because the sign
|
| + // bit in the exponent word of the double has the same position and polarity
|
| + // as the 2's complement sign bit in a Smi.
|
| + ASSERT(kBinary32SignMask == 0x80000000u);
|
|
|
| + __ and_(fval, ival, Operand(kBinary32SignMask), SetCC);
|
| + // Negate value if it is negative.
|
| + __ rsb(ival, ival, Operand(0, RelocInfo::NONE), LeaveCC, ne);
|
| +
|
| + // We have -1, 0 or 1, which we treat specially. Register ival contains
|
| + // absolute value: it is either equal to 1 (special case of -1 and 1),
|
| + // greater than 1 (not a special case) or less than 1 (special case of 0).
|
| + __ cmp(ival, Operand(1));
|
| + __ b(gt, ¬_special);
|
| +
|
| + // For 1 or -1 we need to or in the 0 exponent (biased).
|
| + static const uint32_t exponent_word_for_1 =
|
| + kBinary32ExponentBias << kBinary32ExponentShift;
|
| +
|
| + __ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq);
|
| + __ b(&done);
|
| +
|
| + __ bind(¬_special);
|
| + // Count leading zeros.
|
| + // Gets the wrong answer for 0, but we already checked for that case above.
|
| + Register zeros = scratch2;
|
| + __ CountLeadingZeros(zeros, ival, scratch1);
|
| +
|
| + // Compute exponent and or it into the exponent register.
|
| + __ rsb(scratch1,
|
| + zeros,
|
| + Operand((kBitsPerInt - 1) + kBinary32ExponentBias));
|
| +
|
| + __ orr(fval,
|
| + fval,
|
| + Operand(scratch1, LSL, kBinary32ExponentShift));
|
| +
|
| + // Shift up the source chopping the top bit off.
|
| + __ add(zeros, zeros, Operand(1));
|
| + // This wouldn't work for 1 and -1 as the shift would be 32 which means 0.
|
| + __ mov(ival, Operand(ival, LSL, zeros));
|
| + // And the top (top 20 bits).
|
| + __ orr(fval,
|
| + fval,
|
| + Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits));
|
| +
|
| + __ bind(&done);
|
| + __ str(fval, MemOperand(dst, wordoffset, LSL, 2));
|
| + }
|
| +}
|
| +
|
| +
|
| +// Convert unsigned integer with specified number of leading zeroes in binary
|
| +// representation to IEEE 754 double.
|
| +// Integer to convert is passed in register hiword.
|
| +// Resulting double is returned in registers hiword:loword.
|
| +// This functions does not work correctly for 0.
|
| +static void GenerateUInt2Double(MacroAssembler* masm,
|
| + Register hiword,
|
| + Register loword,
|
| + Register scratch,
|
| + int leading_zeroes) {
|
| + const int meaningful_bits = kBitsPerInt - leading_zeroes - 1;
|
| + const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits;
|
| +
|
| + const int mantissa_shift_for_hi_word =
|
| + meaningful_bits - HeapNumber::kMantissaBitsInTopWord;
|
| +
|
| + const int mantissa_shift_for_lo_word =
|
| + kBitsPerInt - mantissa_shift_for_hi_word;
|
| +
|
| + __ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift));
|
| + if (mantissa_shift_for_hi_word > 0) {
|
| + __ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word));
|
| + __ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word));
|
| + } else {
|
| + __ mov(loword, Operand(0, RelocInfo::NONE));
|
| + __ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word));
|
| + }
|
| +
|
| + // If least significant bit of biased exponent was not 1 it was corrupted
|
| + // by most significant bit of mantissa so we should fix that.
|
| + if (!(biased_exponent & 1)) {
|
| + __ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift));
|
| + }
|
| +}
|
| +
|
| +
|
| #undef __
|
| #define __ ACCESS_MASM(masm())
|
|
|
| @@ -3406,12 +3511,12 @@
|
|
|
| __ bind(&box_int_0);
|
| // Integer does not have leading zeros.
|
| - GenerateUInt2Double(masm, hiword, loword, r4, 0);
|
| + GenerateUInt2Double(masm(), hiword, loword, r4, 0);
|
| __ b(&done);
|
|
|
| __ bind(&box_int_1);
|
| // Integer has one leading zero.
|
| - GenerateUInt2Double(masm, hiword, loword, r4, 1);
|
| + GenerateUInt2Double(masm(), hiword, loword, r4, 1);
|
|
|
|
|
| __ bind(&done);
|
| @@ -3595,7 +3700,7 @@
|
| break;
|
| case kExternalFloatArray:
|
| // Perform int-to-float conversion and store to memory.
|
| - StoreIntAsFloat(masm, r3, r4, r5, r6, r7, r9);
|
| + StoreIntAsFloat(masm(), r3, r4, r5, r6, r7, r9);
|
| break;
|
| default:
|
| UNREACHABLE();
|
|
|