Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(5)

Side by Side Diff: src/grisu3.cc

Issue 619005: Fast algorithm for double->string conversion. (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge/
Patch Set: '' Created 10 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/grisu3.h ('k') | src/powers_ten.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "grisu3.h"
31
32 #include "cached_powers.h"
33 #include "diy_fp.h"
34 #include "double.h"
35
36 namespace v8 {
37 namespace internal {
38
39 template <int alpha = -60, int gamma = -32>
40 class Grisu3 {
41 public:
42 // Provides a decimal representation of v.
43 // Returns true if it succeeds, otherwise the result can not be trusted.
44 // There will be *length digits inside the buffer (not null-terminated).
45 // If the function returns true then
46 // v == (double) (buffer * 10^decimal_exponent).
47 // The digits in the buffer are the shortest representation possible: no
48 // 0.099999999999 instead of 0.1.
49 // The last digit will be closest to the actual v. That is, even if several
50 // digits might correctly yield 'v' when read again, the closest will be
51 // computed.
52 static bool grisu3(double v,
53 char* buffer, int* length, int* decimal_exponent);
54
55 private:
56 // Rounds the buffer according to the rest.
57 // If there is too much imprecision to round then false is returned.
58 // Similarily false is returned when the buffer is not within Delta.
59 static bool RoundWeed(char* buffer, int len, uint64_t wp_W, uint64_t Delta,
60 uint64_t rest, uint64_t ten_kappa, uint64_t ulp);
61 // Dispatches to the a specialized digit-generation routine. The chosen
62 // routine depends on w.e (which in turn depends on alpha and gamma).
63 // Currently there is only one digit-generation routine, but it would be easy
64 // to add others.
65 static bool DigitGen(DiyFp low, DiyFp w, DiyFp high,
66 char* buffer, int* len, int* kappa);
67 // Generates w's digits. The result is the shortest in the interval low-high.
68 // All DiyFp are assumed to be imprecise and this function takes this
69 // imprecision into account. If the function cannot compute the best
70 // representation (due to the imprecision) then false is returned.
71 static bool DigitGen_m60_m32(DiyFp low, DiyFp w, DiyFp high,
72 char* buffer, int* length, int* kappa);
73 };
74
75
76 template<int alpha, int gamma>
77 bool Grisu3<alpha, gamma>::grisu3(
78 double v, char* buffer, int* length, int* decimal_exponent) {
79 DiyFp w = Double(v).AsNormalizedDiyFp();
80 // boundary_minus and boundary_plus are the boundaries between v and its
81 // neighbors. Any number strictly between boundary_minus and boundary_plus
82 // will round to v when read as double.
83 // Grisu3 will never output representations that lie exactly on a boundary.
84 DiyFp boundary_minus, boundary_plus;
85 Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
86 ASSERT(boundary_plus.e() == w.e());
87 DiyFp ten_mk; // Cached power of ten: 10^-k
88 int mk; // -k
89 GetCachedPower(w.e() + DiyFp::kSignificandSize, alpha, gamma, &mk, &ten_mk);
90 ASSERT(alpha <= w.e() + ten_mk.e() + DiyFp::kSignificandSize &&
91 gamma >= w.e() + ten_mk.e() + DiyFp::kSignificandSize);
92 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
93 // 64 bit significand and ten_mk is thus only precise up to 64 bits.
94
95 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
96 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
97 // off by a small amount.
98 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
99 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
100 // (f-1) * 2^e < w*10^k < (f+1) * 2^e
101 DiyFp scaled_w = DiyFp::Times(w, ten_mk);
102 ASSERT(scaled_w.e() ==
103 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
104 // In theory it would be possible to avoid some recomputations by computing
105 // the difference between w and boundary_minus/plus (a power of 2) and to
106 // compute scaled_boundary_minus/plus by subtracting/adding from
107 // scaled_w. However the code becomes much less readable and the speed
108 // enhancements are not terriffic.
109 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
110 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
111
112 // DigitGen will generate the digits of scaled_w. Therefore we have
113 // v == (double) (scaled_w * 10^-mk).
114 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
115 // integer than it will be updated. For instance if scaled_w == 1.23 then
116 // the buffer will be filled with "123" und the decimal_exponent will be
117 // decreased by 2.
118 int kappa;
119 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
120 buffer, length, &kappa);
121 *decimal_exponent = -mk + kappa;
122 return result;
123 }
124
125 // Generates the digits of input number w.
126 // w is a floating-point number (DiyFp), consisting of a significand and an
127 // exponent. Its exponent is bounded by alpha and gamma. Typically alpha >= -63
128 // and gamma <= 3.
129 // Returns false if it fails, in which case the generated digits in the buffer
130 // should not be used.
131 // Preconditions:
132 // * low, w and high are correct up to 1 ulp (unit in the last place). That
133 // is, their error must be less that a unit of their last digits.
134 // * low.e() == w.e() == high.e()
135 // * low < w < high, and taking into account their error: low~ <= high~
136 // * alpha <= w.e() <= gamma
137 // Postconditions: returns false if procedure fails.
138 // otherwise:
139 // * buffer is not null-terminated, but len contains the number of digits.
140 // * buffer contains the shortest possible decimal digit-sequence
141 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
142 // correct values of low and high (without their error).
143 // * if more than one decimal representation gives the minimal number of
144 // decimal digits then the one closest to W (where W is the correct value
145 // of w) is chosen.
146 // Remark: this procedure takes into account the imprecision of its input
147 // numbers. If the precision is not enough to guarantee all the postconditions
148 // then false is returned. This usually happens rarely (~0.5%).
149 template<int alpha, int gamma>
150 bool Grisu3<alpha, gamma>::DigitGen(
151 DiyFp low, DiyFp w, DiyFp high, char* buffer, int* len, int* kappa) {
152 ASSERT(low.e() == w.e() && w.e() == high.e());
153 ASSERT(low.f() + 1 <= high.f() - 1);
154 ASSERT(alpha <= w.e() && w.e() <= gamma);
155 // The following tests use alpha and gamma to avoid unnecessary dynamic tests.
156 if ((alpha >= -60 && gamma <= -32) || // -60 <= w.e() <= -32
157 (alpha <= -32 && gamma >= -60 && // Alpha/gamma overlaps -60/-32 region.
158 -60 <= w.e() && w.e() <= -32)) {
159 return DigitGen_m60_m32(low, w, high, buffer, len, kappa);
160 } else {
161 // A simple adaption of the special case -60/-32 would allow greater ranges
162 // of alpha/gamma and thus reduce the number of precomputed cached powers of
163 // ten.
164 UNIMPLEMENTED();
165 return false;
166 }
167 }
168
169 static const uint32_t kTen4 = 10000;
170 static const uint32_t kTen5 = 100000;
171 static const uint32_t kTen6 = 1000000;
172 static const uint32_t kTen7 = 10000000;
173 static const uint32_t kTen8 = 100000000;
174 static const uint32_t kTen9 = 1000000000;
175
176 // Returns the biggest power of ten that is <= than the given number. We
177 // furthermore receive the maximum number of bits 'number' has.
178 // If number_bits == 0 then 0^-1 is returned
179 // The number of bits must be <= 32.
180 static void BiggestPowerTen(uint32_t number, int number_bits,
181 uint32_t* power, int* exponent) {
182 switch (number_bits) {
183 case 32:
184 case 31:
185 case 30:
186 if (kTen9 <= number) {
187 *power = kTen9;
188 *exponent = 9;
189 break;
190 } // else fallthrough
191 case 29:
192 case 28:
193 case 27:
194 if (kTen8 <= number) {
195 *power = kTen8;
196 *exponent = 8;
197 break;
198 } // else fallthrough
199 case 26:
200 case 25:
201 case 24:
202 if (kTen7 <= number) {
203 *power = kTen7;
204 *exponent = 7;
205 break;
206 } // else fallthrough
207 case 23:
208 case 22:
209 case 21:
210 case 20:
211 if (kTen6 <= number) {
212 *power = kTen6;
213 *exponent = 6;
214 break;
215 } // else fallthrough
216 case 19:
217 case 18:
218 case 17:
219 if (kTen5 <= number) {
220 *power = kTen5;
221 *exponent = 5;
222 break;
223 } // else fallthrough
224 case 16:
225 case 15:
226 case 14:
227 if (kTen4 <= number) {
228 *power = kTen4;
229 *exponent = 4;
230 break;
231 } // else fallthrough
232 case 13:
233 case 12:
234 case 11:
235 case 10:
236 if (1000 <= number) {
237 *power = 1000;
238 *exponent = 3;
239 break;
240 } // else fallthrough
241 case 9:
242 case 8:
243 case 7:
244 if (100 <= number) {
245 *power = 100;
246 *exponent = 2;
247 break;
248 } // else fallthrough
249 case 6:
250 case 5:
251 case 4:
252 if (10 <= number) {
253 *power = 10;
254 *exponent = 1;
255 break;
256 } // else fallthrough
257 case 3:
258 case 2:
259 case 1:
260 if (1 <= number) {
261 *power = 1;
262 *exponent = 0;
263 break;
264 } // else fallthrough
265 case 0:
266 *power = 0;
267 *exponent = -1;
268 break;
269 default:
270 // Following assignments are here to silence compiler warnings.
271 *power = 0;
272 *exponent = 0;
273 UNREACHABLE();
274 }
275 }
276
277
278 // Same comments as for DigitGen but with additional precondition:
279 // -60 <= w.e() <= -32
280 //
281 // Say, for the sake of example, that
282 // w.e() == -48, and w.f() == 0x1234567890abcdef
283 // w's value can be computed by w.f() * 2^w.e()
284 // We can obtain w's integral digits by simply shifting w.f() by -w.e().
285 // -> w's integral part is 0x1234
286 // w's fractional part is therefore 0x567890abcdef.
287 // Printing w's integral part is easy (simply print 0x1234 in decimal).
288 // In order to print its fraction we repeatedly multiply the fraction by 10 and
289 // get each digit. Example the first digit after the comma would be computed by
290 // (0x567890abcdef * 10) >> 48. -> 3
291 // The whole thing becomes slightly more complicated because we want to stop
292 // once we have enough digits. That is, once the digits inside the buffer
293 // represent 'w' we can stop. Everything inside the interval low - high
294 // represents w. However we have to pay attention to low, high and w's
295 // imprecision.
296 template<int alpha, int gamma>
297 bool Grisu3<alpha, gamma>::DigitGen_m60_m32(
298 DiyFp low, DiyFp w, DiyFp high, char* buffer, int* length, int* kappa) {
299 // low, w and high are imprecise, but by less than one ulp (unit in the last
300 // place).
301 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
302 // the new numbers are outside of the interval we want the final
303 // representation to lie in.
304 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
305 // numbers that are certain to lie in the interval. We will use this fact
306 // later on.
307 // We will now start by generating the digits within the uncertain
308 // interval. Later we will weed out representations that lie outside the safe
309 // interval and thus _might_ lie outside the correct interval.
310 uint64_t unit = 1;
311 DiyFp too_low = DiyFp(low.f() - unit, low.e());
312 DiyFp too_high = DiyFp(high.f() + unit, high.e());
313 // too_low and too_high are guaranteed to lie outside the interval we want the
314 // generated number in.
315 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
316 // We now cut the input number into two parts: the integral digits and the
317 // fractionals. We will not write any decimal separator though, but adapt
318 // kappa instead.
319 // Reminder: we are currently computing the digits (stored inside the buffer)
320 // such that: too_low < buffer * 10^kappa < too_high
321 // We use too_high for the digit_generation and stop as soon as possible.
322 // If we stop early we effectively round down.
323 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
324 uint32_t integrals = too_high.f() >> -one.e(); // Division by one.
325 uint64_t fractionals = too_high.f() & (one.f() - 1); // Modulo by one.
326 uint32_t divider;
327 int divider_exponent;
328 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
329 &divider, &divider_exponent);
330 *kappa = divider_exponent + 1;
331 *length = 0;
332 // Loop invariant: buffer = too_high / 10^kappa (integer division)
333 // The invariant holds for the first iteration: kappa has been initialized
334 // with the divider exponent + 1. And the divider is the biggest power of ten
335 // that fits into the bits that had been reserved for the integrals.
336 while (*kappa > 0) {
337 int digit = integrals / divider;
338 buffer[*length] = '0' + digit;
339 (*length)++;
340 integrals %= divider;
341 (*kappa)--;
342 // Note that kappa now equals the exponent of the divider and that the
343 // invariant thus holds again.
344 uint64_t rest =
345 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
346 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
347 // Reminder: unsafe_interval.e() == one.e()
348 if (rest < unsafe_interval.f()) {
349 // Rounding down (by not emitting the remaining digits) yields a number
350 // that lies within the unsafe interval.
351 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
352 unsafe_interval.f(), rest,
353 static_cast<uint64_t>(divider) << -one.e(), unit);
354 }
355 divider /= 10;
356 }
357
358 // The integrals have been generated. We are at the point of the decimal
359 // separator. In the following loop we simply multiply the remaining digits by
360 // 10 and divide by one. We just need to pay attention to multiply associated
361 // data (like the interval or 'unit'), too.
362 // Instead of multiplying by 10 we multiply by 5 (cheaper operation) and
363 // increase its (imaginary) exponent. At the same time we decrease the
364 // divider's (one's) exponent and shift its significand.
365 // Basically, if fractionals was a DiyFp (with fractionals.e == one.e):
366 // fractionals.f *= 10;
367 // fractionals.f >>= 1; fractionals.e++; // value remains unchanged.
368 // one.f >>= 1; one.e++; // value remains unchanged.
369 // and we have again fractionals.e == one.e which allows us to divide
370 // fractionals.f() by one.f()
371 // We simply combine the *= 10 and the >>= 1.
372 while (true) {
373 fractionals *= 5;
374 unit *= 5;
375 unsafe_interval.set_f(unsafe_interval.f() * 5);
376 unsafe_interval.set_e(unsafe_interval.e() + 1); // Will be optimized out.
377 one.set_f(one.f() >> 1);
378 one.set_e(one.e() + 1);
379 int digit = fractionals >> -one.e(); // Integer division by one.
380 buffer[*length] = '0' + digit;
381 (*length)++;
382 fractionals &= one.f() - 1; // Modulo by one.
383 (*kappa)--;
384 if (fractionals < unsafe_interval.f()) {
385 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
386 unsafe_interval.f(), fractionals, one.f(), unit);
387 }
388 }
389 }
390
391
392 // Rounds the given generated digits in the buffer and weeds out generated
393 // digits that are not in the safe interval, or where we cannot find a rounded
394 // representation.
395 // Input: * buffer containing the digits of too_high / 10^kappa
396 // * the buffer's length
397 // * distance_too_high_w == (too_high - w).f() * unit
398 // * unsafe_interval == (too_high - too_low).f() * unit
399 // * rest = (too_high - buffer * 10^kappa).f() * unit
400 // * ten_kappa = 10^kappa * unit
401 // * unit = the common multiplier
402 // Output: returns true on success.
403 // Modifies the generated digits in the buffer to approach (round towards) w.
404 template<int alpha, int gamma>
405 bool Grisu3<alpha, gamma>::RoundWeed(
406 char* buffer, int length, uint64_t distance_too_high_w,
407 uint64_t unsafe_interval, uint64_t rest, uint64_t ten_kappa,
408 uint64_t unit) {
409 uint64_t small_distance = distance_too_high_w - unit;
410 uint64_t big_distance = distance_too_high_w + unit;
411 // Let w- = too_high - big_distance, and
412 // w+ = too_high - small_distance.
413 // Note: w- < w < w+
414 //
415 // The real w (* unit) must lie somewhere inside the interval
416 // ]w-; w+[ (often written as "(w-; w+)")
417
418 // Basically the buffer currently contains a number in the unsafe interval
419 // ]too_low; too_high[ with too_low < w < too_high
420 //
421 // By generating the digits of too_high we got the biggest last digit.
422 // In the case that w+ < buffer < too_high we try to decrement the buffer.
423 // This way the buffer approaches (rounds towards) w.
424 // There are 3 conditions that stop the decrementation process:
425 // 1) the buffer is already below w+
426 // 2) decrementing the buffer would make it leave the unsafe interval
427 // 3) decrementing the buffer would yield a number below w+ and farther away
428 // than the current number. In other words:
429 // (buffer{-1} < w+) && w+ - buffer{-1} > buffer - w+
430 // Instead of using the buffer directly we use its distance to too_high.
431 // Conceptually rest ~= too_high - buffer
432 while (rest < small_distance && // Negated condition 1
433 unsafe_interval - rest >= ten_kappa && // Negated condition 2
434 (rest + ten_kappa < small_distance || // buffer{-1} > w+
435 small_distance - rest >= rest + ten_kappa - small_distance)) {
436 buffer[length - 1]--;
437 rest += ten_kappa;
438 }
439
440 // We have approached w+ as much as possible. We now test if approaching w-
441 // would require changing the buffer. If yes, then we have two possible
442 // representations close to w, but we cannot decide which one is closer.
443 if (rest < big_distance &&
444 unsafe_interval - rest >= ten_kappa &&
445 (rest + ten_kappa < big_distance ||
446 big_distance - rest > rest + ten_kappa - big_distance)) {
447 return false;
448 }
449
450 // Weeding test.
451 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
452 // Since too_low = too_high - unsafe_interval this is equivalent too
453 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
454 // Conceptually we have: rest ~= too_high - buffer
455 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
456 }
457
458
459 bool grisu3(double v,
460 char* buffer, int* sign, int* length, int* decimal_point) {
461 ASSERT(v != 0);
462 ASSERT(!Double(v).IsSpecial());
463
464 if (v < 0) {
465 v = -v;
466 *sign = 1;
467 } else {
468 *sign = 0;
469 }
470 int decimal_exponent;
471 bool result = Grisu3<-60, -32>::grisu3(v, buffer, length, &decimal_exponent);
472 *decimal_point = *length + decimal_exponent;
473 buffer[*length] = '\0';
474 return result;
475 }
476
477 } } // namespace v8::internal
OLDNEW
« no previous file with comments | « src/grisu3.h ('k') | src/powers_ten.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698