OLD | NEW |
(Empty) | |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 #include "v8.h" |
| 29 |
| 30 #include "grisu3.h" |
| 31 |
| 32 #include "cached_powers.h" |
| 33 #include "diy_fp.h" |
| 34 #include "double.h" |
| 35 |
| 36 namespace v8 { |
| 37 namespace internal { |
| 38 |
| 39 template <int alpha = -60, int gamma = -32> |
| 40 class Grisu3 { |
| 41 public: |
| 42 // Provides a decimal representation of v. |
| 43 // Returns true if it succeeds, otherwise the result can not be trusted. |
| 44 // There will be *length digits inside the buffer (not null-terminated). |
| 45 // If the function returns true then |
| 46 // v == (double) (buffer * 10^decimal_exponent). |
| 47 // The digits in the buffer are the shortest representation possible: no |
| 48 // 0.099999999999 instead of 0.1. |
| 49 // The last digit will be closest to the actual v. That is, even if several |
| 50 // digits might correctly yield 'v' when read again, the closest will be |
| 51 // computed. |
| 52 static bool grisu3(double v, |
| 53 char* buffer, int* length, int* decimal_exponent); |
| 54 |
| 55 private: |
| 56 // Rounds the buffer according to the rest. |
| 57 // If there is too much imprecision to round then false is returned. |
| 58 // Similarily false is returned when the buffer is not within Delta. |
| 59 static bool RoundWeed(char* buffer, int len, uint64_t wp_W, uint64_t Delta, |
| 60 uint64_t rest, uint64_t ten_kappa, uint64_t ulp); |
| 61 // Dispatches to the a specialized digit-generation routine. The chosen |
| 62 // routine depends on w.e (which in turn depends on alpha and gamma). |
| 63 // Currently there is only one digit-generation routine, but it would be easy |
| 64 // to add others. |
| 65 static bool DigitGen(DiyFp low, DiyFp w, DiyFp high, |
| 66 char* buffer, int* len, int* kappa); |
| 67 // Generates w's digits. The result is the shortest in the interval low-high. |
| 68 // All DiyFp are assumed to be imprecise and this function takes this |
| 69 // imprecision into account. If the function cannot compute the best |
| 70 // representation (due to the imprecision) then false is returned. |
| 71 static bool DigitGen_m60_m32(DiyFp low, DiyFp w, DiyFp high, |
| 72 char* buffer, int* length, int* kappa); |
| 73 }; |
| 74 |
| 75 |
| 76 template<int alpha, int gamma> |
| 77 bool Grisu3<alpha, gamma>::grisu3( |
| 78 double v, char* buffer, int* length, int* decimal_exponent) { |
| 79 DiyFp w = Double(v).AsNormalizedDiyFp(); |
| 80 // boundary_minus and boundary_plus are the boundaries between v and its |
| 81 // neighbors. Any number strictly between boundary_minus and boundary_plus |
| 82 // will round to v when read as double. |
| 83 // Grisu3 will never output representations that lie exactly on a boundary. |
| 84 DiyFp boundary_minus, boundary_plus; |
| 85 Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| 86 ASSERT(boundary_plus.e() == w.e()); |
| 87 DiyFp ten_mk; // Cached power of ten: 10^-k |
| 88 int mk; // -k |
| 89 GetCachedPower(w.e() + DiyFp::kSignificandSize, alpha, gamma, &mk, &ten_mk); |
| 90 ASSERT(alpha <= w.e() + ten_mk.e() + DiyFp::kSignificandSize && |
| 91 gamma >= w.e() + ten_mk.e() + DiyFp::kSignificandSize); |
| 92 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a |
| 93 // 64 bit significand and ten_mk is thus only precise up to 64 bits. |
| 94 |
| 95 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated |
| 96 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now |
| 97 // off by a small amount. |
| 98 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. |
| 99 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then |
| 100 // (f-1) * 2^e < w*10^k < (f+1) * 2^e |
| 101 DiyFp scaled_w = DiyFp::Times(w, ten_mk); |
| 102 ASSERT(scaled_w.e() == |
| 103 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); |
| 104 // In theory it would be possible to avoid some recomputations by computing |
| 105 // the difference between w and boundary_minus/plus (a power of 2) and to |
| 106 // compute scaled_boundary_minus/plus by subtracting/adding from |
| 107 // scaled_w. However the code becomes much less readable and the speed |
| 108 // enhancements are not terriffic. |
| 109 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); |
| 110 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); |
| 111 |
| 112 // DigitGen will generate the digits of scaled_w. Therefore we have |
| 113 // v == (double) (scaled_w * 10^-mk). |
| 114 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an |
| 115 // integer than it will be updated. For instance if scaled_w == 1.23 then |
| 116 // the buffer will be filled with "123" und the decimal_exponent will be |
| 117 // decreased by 2. |
| 118 int kappa; |
| 119 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, |
| 120 buffer, length, &kappa); |
| 121 *decimal_exponent = -mk + kappa; |
| 122 return result; |
| 123 } |
| 124 |
| 125 // Generates the digits of input number w. |
| 126 // w is a floating-point number (DiyFp), consisting of a significand and an |
| 127 // exponent. Its exponent is bounded by alpha and gamma. Typically alpha >= -63 |
| 128 // and gamma <= 3. |
| 129 // Returns false if it fails, in which case the generated digits in the buffer |
| 130 // should not be used. |
| 131 // Preconditions: |
| 132 // * low, w and high are correct up to 1 ulp (unit in the last place). That |
| 133 // is, their error must be less that a unit of their last digits. |
| 134 // * low.e() == w.e() == high.e() |
| 135 // * low < w < high, and taking into account their error: low~ <= high~ |
| 136 // * alpha <= w.e() <= gamma |
| 137 // Postconditions: returns false if procedure fails. |
| 138 // otherwise: |
| 139 // * buffer is not null-terminated, but len contains the number of digits. |
| 140 // * buffer contains the shortest possible decimal digit-sequence |
| 141 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the |
| 142 // correct values of low and high (without their error). |
| 143 // * if more than one decimal representation gives the minimal number of |
| 144 // decimal digits then the one closest to W (where W is the correct value |
| 145 // of w) is chosen. |
| 146 // Remark: this procedure takes into account the imprecision of its input |
| 147 // numbers. If the precision is not enough to guarantee all the postconditions |
| 148 // then false is returned. This usually happens rarely (~0.5%). |
| 149 template<int alpha, int gamma> |
| 150 bool Grisu3<alpha, gamma>::DigitGen( |
| 151 DiyFp low, DiyFp w, DiyFp high, char* buffer, int* len, int* kappa) { |
| 152 ASSERT(low.e() == w.e() && w.e() == high.e()); |
| 153 ASSERT(low.f() + 1 <= high.f() - 1); |
| 154 ASSERT(alpha <= w.e() && w.e() <= gamma); |
| 155 // The following tests use alpha and gamma to avoid unnecessary dynamic tests. |
| 156 if ((alpha >= -60 && gamma <= -32) || // -60 <= w.e() <= -32 |
| 157 (alpha <= -32 && gamma >= -60 && // Alpha/gamma overlaps -60/-32 region. |
| 158 -60 <= w.e() && w.e() <= -32)) { |
| 159 return DigitGen_m60_m32(low, w, high, buffer, len, kappa); |
| 160 } else { |
| 161 // A simple adaption of the special case -60/-32 would allow greater ranges |
| 162 // of alpha/gamma and thus reduce the number of precomputed cached powers of |
| 163 // ten. |
| 164 UNIMPLEMENTED(); |
| 165 return false; |
| 166 } |
| 167 } |
| 168 |
| 169 static const uint32_t kTen4 = 10000; |
| 170 static const uint32_t kTen5 = 100000; |
| 171 static const uint32_t kTen6 = 1000000; |
| 172 static const uint32_t kTen7 = 10000000; |
| 173 static const uint32_t kTen8 = 100000000; |
| 174 static const uint32_t kTen9 = 1000000000; |
| 175 |
| 176 // Returns the biggest power of ten that is <= than the given number. We |
| 177 // furthermore receive the maximum number of bits 'number' has. |
| 178 // If number_bits == 0 then 0^-1 is returned |
| 179 // The number of bits must be <= 32. |
| 180 static void BiggestPowerTen(uint32_t number, int number_bits, |
| 181 uint32_t* power, int* exponent) { |
| 182 switch (number_bits) { |
| 183 case 32: |
| 184 case 31: |
| 185 case 30: |
| 186 if (kTen9 <= number) { |
| 187 *power = kTen9; |
| 188 *exponent = 9; |
| 189 break; |
| 190 } // else fallthrough |
| 191 case 29: |
| 192 case 28: |
| 193 case 27: |
| 194 if (kTen8 <= number) { |
| 195 *power = kTen8; |
| 196 *exponent = 8; |
| 197 break; |
| 198 } // else fallthrough |
| 199 case 26: |
| 200 case 25: |
| 201 case 24: |
| 202 if (kTen7 <= number) { |
| 203 *power = kTen7; |
| 204 *exponent = 7; |
| 205 break; |
| 206 } // else fallthrough |
| 207 case 23: |
| 208 case 22: |
| 209 case 21: |
| 210 case 20: |
| 211 if (kTen6 <= number) { |
| 212 *power = kTen6; |
| 213 *exponent = 6; |
| 214 break; |
| 215 } // else fallthrough |
| 216 case 19: |
| 217 case 18: |
| 218 case 17: |
| 219 if (kTen5 <= number) { |
| 220 *power = kTen5; |
| 221 *exponent = 5; |
| 222 break; |
| 223 } // else fallthrough |
| 224 case 16: |
| 225 case 15: |
| 226 case 14: |
| 227 if (kTen4 <= number) { |
| 228 *power = kTen4; |
| 229 *exponent = 4; |
| 230 break; |
| 231 } // else fallthrough |
| 232 case 13: |
| 233 case 12: |
| 234 case 11: |
| 235 case 10: |
| 236 if (1000 <= number) { |
| 237 *power = 1000; |
| 238 *exponent = 3; |
| 239 break; |
| 240 } // else fallthrough |
| 241 case 9: |
| 242 case 8: |
| 243 case 7: |
| 244 if (100 <= number) { |
| 245 *power = 100; |
| 246 *exponent = 2; |
| 247 break; |
| 248 } // else fallthrough |
| 249 case 6: |
| 250 case 5: |
| 251 case 4: |
| 252 if (10 <= number) { |
| 253 *power = 10; |
| 254 *exponent = 1; |
| 255 break; |
| 256 } // else fallthrough |
| 257 case 3: |
| 258 case 2: |
| 259 case 1: |
| 260 if (1 <= number) { |
| 261 *power = 1; |
| 262 *exponent = 0; |
| 263 break; |
| 264 } // else fallthrough |
| 265 case 0: |
| 266 *power = 0; |
| 267 *exponent = -1; |
| 268 break; |
| 269 default: |
| 270 // Following assignments are here to silence compiler warnings. |
| 271 *power = 0; |
| 272 *exponent = 0; |
| 273 UNREACHABLE(); |
| 274 } |
| 275 } |
| 276 |
| 277 |
| 278 // Same comments as for DigitGen but with additional precondition: |
| 279 // -60 <= w.e() <= -32 |
| 280 // |
| 281 // Say, for the sake of example, that |
| 282 // w.e() == -48, and w.f() == 0x1234567890abcdef |
| 283 // w's value can be computed by w.f() * 2^w.e() |
| 284 // We can obtain w's integral digits by simply shifting w.f() by -w.e(). |
| 285 // -> w's integral part is 0x1234 |
| 286 // w's fractional part is therefore 0x567890abcdef. |
| 287 // Printing w's integral part is easy (simply print 0x1234 in decimal). |
| 288 // In order to print its fraction we repeatedly multiply the fraction by 10 and |
| 289 // get each digit. Example the first digit after the comma would be computed by |
| 290 // (0x567890abcdef * 10) >> 48. -> 3 |
| 291 // The whole thing becomes slightly more complicated because we want to stop |
| 292 // once we have enough digits. That is, once the digits inside the buffer |
| 293 // represent 'w' we can stop. Everything inside the interval low - high |
| 294 // represents w. However we have to pay attention to low, high and w's |
| 295 // imprecision. |
| 296 template<int alpha, int gamma> |
| 297 bool Grisu3<alpha, gamma>::DigitGen_m60_m32( |
| 298 DiyFp low, DiyFp w, DiyFp high, char* buffer, int* length, int* kappa) { |
| 299 // low, w and high are imprecise, but by less than one ulp (unit in the last |
| 300 // place). |
| 301 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that |
| 302 // the new numbers are outside of the interval we want the final |
| 303 // representation to lie in. |
| 304 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield |
| 305 // numbers that are certain to lie in the interval. We will use this fact |
| 306 // later on. |
| 307 // We will now start by generating the digits within the uncertain |
| 308 // interval. Later we will weed out representations that lie outside the safe |
| 309 // interval and thus _might_ lie outside the correct interval. |
| 310 uint64_t unit = 1; |
| 311 DiyFp too_low = DiyFp(low.f() - unit, low.e()); |
| 312 DiyFp too_high = DiyFp(high.f() + unit, high.e()); |
| 313 // too_low and too_high are guaranteed to lie outside the interval we want the |
| 314 // generated number in. |
| 315 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low); |
| 316 // We now cut the input number into two parts: the integral digits and the |
| 317 // fractionals. We will not write any decimal separator though, but adapt |
| 318 // kappa instead. |
| 319 // Reminder: we are currently computing the digits (stored inside the buffer) |
| 320 // such that: too_low < buffer * 10^kappa < too_high |
| 321 // We use too_high for the digit_generation and stop as soon as possible. |
| 322 // If we stop early we effectively round down. |
| 323 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); |
| 324 uint32_t integrals = too_high.f() >> -one.e(); // Division by one. |
| 325 uint64_t fractionals = too_high.f() & (one.f() - 1); // Modulo by one. |
| 326 uint32_t divider; |
| 327 int divider_exponent; |
| 328 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), |
| 329 ÷r, ÷r_exponent); |
| 330 *kappa = divider_exponent + 1; |
| 331 *length = 0; |
| 332 // Loop invariant: buffer = too_high / 10^kappa (integer division) |
| 333 // The invariant holds for the first iteration: kappa has been initialized |
| 334 // with the divider exponent + 1. And the divider is the biggest power of ten |
| 335 // that fits into the bits that had been reserved for the integrals. |
| 336 while (*kappa > 0) { |
| 337 int digit = integrals / divider; |
| 338 buffer[*length] = '0' + digit; |
| 339 (*length)++; |
| 340 integrals %= divider; |
| 341 (*kappa)--; |
| 342 // Note that kappa now equals the exponent of the divider and that the |
| 343 // invariant thus holds again. |
| 344 uint64_t rest = |
| 345 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; |
| 346 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e()) |
| 347 // Reminder: unsafe_interval.e() == one.e() |
| 348 if (rest < unsafe_interval.f()) { |
| 349 // Rounding down (by not emitting the remaining digits) yields a number |
| 350 // that lies within the unsafe interval. |
| 351 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), |
| 352 unsafe_interval.f(), rest, |
| 353 static_cast<uint64_t>(divider) << -one.e(), unit); |
| 354 } |
| 355 divider /= 10; |
| 356 } |
| 357 |
| 358 // The integrals have been generated. We are at the point of the decimal |
| 359 // separator. In the following loop we simply multiply the remaining digits by |
| 360 // 10 and divide by one. We just need to pay attention to multiply associated |
| 361 // data (like the interval or 'unit'), too. |
| 362 // Instead of multiplying by 10 we multiply by 5 (cheaper operation) and |
| 363 // increase its (imaginary) exponent. At the same time we decrease the |
| 364 // divider's (one's) exponent and shift its significand. |
| 365 // Basically, if fractionals was a DiyFp (with fractionals.e == one.e): |
| 366 // fractionals.f *= 10; |
| 367 // fractionals.f >>= 1; fractionals.e++; // value remains unchanged. |
| 368 // one.f >>= 1; one.e++; // value remains unchanged. |
| 369 // and we have again fractionals.e == one.e which allows us to divide |
| 370 // fractionals.f() by one.f() |
| 371 // We simply combine the *= 10 and the >>= 1. |
| 372 while (true) { |
| 373 fractionals *= 5; |
| 374 unit *= 5; |
| 375 unsafe_interval.set_f(unsafe_interval.f() * 5); |
| 376 unsafe_interval.set_e(unsafe_interval.e() + 1); // Will be optimized out. |
| 377 one.set_f(one.f() >> 1); |
| 378 one.set_e(one.e() + 1); |
| 379 int digit = fractionals >> -one.e(); // Integer division by one. |
| 380 buffer[*length] = '0' + digit; |
| 381 (*length)++; |
| 382 fractionals &= one.f() - 1; // Modulo by one. |
| 383 (*kappa)--; |
| 384 if (fractionals < unsafe_interval.f()) { |
| 385 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit, |
| 386 unsafe_interval.f(), fractionals, one.f(), unit); |
| 387 } |
| 388 } |
| 389 } |
| 390 |
| 391 |
| 392 // Rounds the given generated digits in the buffer and weeds out generated |
| 393 // digits that are not in the safe interval, or where we cannot find a rounded |
| 394 // representation. |
| 395 // Input: * buffer containing the digits of too_high / 10^kappa |
| 396 // * the buffer's length |
| 397 // * distance_too_high_w == (too_high - w).f() * unit |
| 398 // * unsafe_interval == (too_high - too_low).f() * unit |
| 399 // * rest = (too_high - buffer * 10^kappa).f() * unit |
| 400 // * ten_kappa = 10^kappa * unit |
| 401 // * unit = the common multiplier |
| 402 // Output: returns true on success. |
| 403 // Modifies the generated digits in the buffer to approach (round towards) w. |
| 404 template<int alpha, int gamma> |
| 405 bool Grisu3<alpha, gamma>::RoundWeed( |
| 406 char* buffer, int length, uint64_t distance_too_high_w, |
| 407 uint64_t unsafe_interval, uint64_t rest, uint64_t ten_kappa, |
| 408 uint64_t unit) { |
| 409 uint64_t small_distance = distance_too_high_w - unit; |
| 410 uint64_t big_distance = distance_too_high_w + unit; |
| 411 // Let w- = too_high - big_distance, and |
| 412 // w+ = too_high - small_distance. |
| 413 // Note: w- < w < w+ |
| 414 // |
| 415 // The real w (* unit) must lie somewhere inside the interval |
| 416 // ]w-; w+[ (often written as "(w-; w+)") |
| 417 |
| 418 // Basically the buffer currently contains a number in the unsafe interval |
| 419 // ]too_low; too_high[ with too_low < w < too_high |
| 420 // |
| 421 // By generating the digits of too_high we got the biggest last digit. |
| 422 // In the case that w+ < buffer < too_high we try to decrement the buffer. |
| 423 // This way the buffer approaches (rounds towards) w. |
| 424 // There are 3 conditions that stop the decrementation process: |
| 425 // 1) the buffer is already below w+ |
| 426 // 2) decrementing the buffer would make it leave the unsafe interval |
| 427 // 3) decrementing the buffer would yield a number below w+ and farther away |
| 428 // than the current number. In other words: |
| 429 // (buffer{-1} < w+) && w+ - buffer{-1} > buffer - w+ |
| 430 // Instead of using the buffer directly we use its distance to too_high. |
| 431 // Conceptually rest ~= too_high - buffer |
| 432 while (rest < small_distance && // Negated condition 1 |
| 433 unsafe_interval - rest >= ten_kappa && // Negated condition 2 |
| 434 (rest + ten_kappa < small_distance || // buffer{-1} > w+ |
| 435 small_distance - rest >= rest + ten_kappa - small_distance)) { |
| 436 buffer[length - 1]--; |
| 437 rest += ten_kappa; |
| 438 } |
| 439 |
| 440 // We have approached w+ as much as possible. We now test if approaching w- |
| 441 // would require changing the buffer. If yes, then we have two possible |
| 442 // representations close to w, but we cannot decide which one is closer. |
| 443 if (rest < big_distance && |
| 444 unsafe_interval - rest >= ten_kappa && |
| 445 (rest + ten_kappa < big_distance || |
| 446 big_distance - rest > rest + ten_kappa - big_distance)) { |
| 447 return false; |
| 448 } |
| 449 |
| 450 // Weeding test. |
| 451 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] |
| 452 // Since too_low = too_high - unsafe_interval this is equivalent too |
| 453 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] |
| 454 // Conceptually we have: rest ~= too_high - buffer |
| 455 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); |
| 456 } |
| 457 |
| 458 |
| 459 bool grisu3(double v, |
| 460 char* buffer, int* sign, int* length, int* decimal_point) { |
| 461 ASSERT(v != 0); |
| 462 ASSERT(!Double(v).IsSpecial()); |
| 463 |
| 464 if (v < 0) { |
| 465 v = -v; |
| 466 *sign = 1; |
| 467 } else { |
| 468 *sign = 0; |
| 469 } |
| 470 int decimal_exponent; |
| 471 bool result = Grisu3<-60, -32>::grisu3(v, buffer, length, &decimal_exponent); |
| 472 *decimal_point = *length + decimal_exponent; |
| 473 buffer[*length] = '\0'; |
| 474 return result; |
| 475 } |
| 476 |
| 477 } } // namespace v8::internal |
OLD | NEW |