OLD | NEW |
(Empty) | |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 #ifndef V8_DIY_FP_H_ |
| 29 #define V8_DIY_FP_H_ |
| 30 |
| 31 namespace v8 { |
| 32 namespace internal { |
| 33 |
| 34 // This "Do It Yourself Floating Point" class implements a floating-point number |
| 35 // with a uint64 significand and an int exponent. Normalized DiyFp numbers will |
| 36 // have the most significant bit of the significand set. |
| 37 // Multiplication and Subtraction do not normalize their results. |
| 38 // DiyFp are not designed to contain special doubles (NaN and Infinity). |
| 39 class DiyFp { |
| 40 public: |
| 41 static const int kSignificandSize = 64; |
| 42 |
| 43 DiyFp() : f_(0), e_(0) {} |
| 44 DiyFp(uint64_t f, int e) : f_(f), e_(e) {} |
| 45 |
| 46 // this = this - other. |
| 47 // The exponents of both numbers must be the same and the significand of this |
| 48 // must be bigger than the significand of other. |
| 49 // The result will not be normalized. |
| 50 void Subtract(const DiyFp& other) { |
| 51 ASSERT(e_ == other.e_); |
| 52 ASSERT(f_ >= other.f_); |
| 53 f_ -= other.f_; |
| 54 } |
| 55 |
| 56 // Returns a - b. |
| 57 // The exponents of both numbers must be the same and this must be bigger |
| 58 // than other. The result will not be normalized. |
| 59 static DiyFp Minus(const DiyFp& a, const DiyFp& b) { |
| 60 DiyFp result = a; |
| 61 result.Subtract(b); |
| 62 return result; |
| 63 } |
| 64 |
| 65 |
| 66 // this = this * other. |
| 67 void Multiply(const DiyFp& other) { |
| 68 // Simply "emulates" a 128 bit multiplication. |
| 69 // However: the resulting number only contains 64 bits. The least |
| 70 // significant 64 bits are only used for rounding the most significant 64 |
| 71 // bits. |
| 72 const uint64_t kM32 = 0xFFFFFFFFu; |
| 73 uint64_t a = f_ >> 32; |
| 74 uint64_t b = f_ & kM32; |
| 75 uint64_t c = other.f_ >> 32; |
| 76 uint64_t d = other.f_ & kM32; |
| 77 uint64_t ac = a * c; |
| 78 uint64_t bc = b * c; |
| 79 uint64_t ad = a * d; |
| 80 uint64_t bd = b * d; |
| 81 uint64_t tmp = (bd >> 32) + (ad & kM32) + (bc & kM32); |
| 82 tmp += 1U << 31; // round |
| 83 uint64_t result_f = ac + (ad >> 32) + (bc >> 32) + (tmp >> 32); |
| 84 e_ += other.e_ + 64; |
| 85 f_ = result_f; |
| 86 } |
| 87 |
| 88 // returns a * b; |
| 89 static DiyFp Times(const DiyFp& a, const DiyFp& b) { |
| 90 DiyFp result = a; |
| 91 result.Multiply(b); |
| 92 return result; |
| 93 } |
| 94 |
| 95 void Normalize() { |
| 96 ASSERT(f_ != 0); |
| 97 uint64_t f = f_; |
| 98 int e = e_; |
| 99 |
| 100 // This method is mainly called for normalizing boundaries. In general |
| 101 // boundaries need to be shifted by 10 bits. We thus optimize for this case. |
| 102 const uint64_t k10MSBits = V8_2PART_UINT64_C(0xFFC00000, 00000000); |
| 103 while ((f & k10MSBits) == 0) { |
| 104 f <<= 10; |
| 105 e -= 10; |
| 106 } |
| 107 while ((f & kUint64MSB) == 0) { |
| 108 f <<= 1; |
| 109 e--; |
| 110 } |
| 111 f_ = f; |
| 112 e_ = e; |
| 113 } |
| 114 |
| 115 static DiyFp Normalize(const DiyFp& a) { |
| 116 DiyFp result = a; |
| 117 result.Normalize(); |
| 118 return result; |
| 119 } |
| 120 |
| 121 uint64_t f() const { return f_; } |
| 122 int e() const { return e_; } |
| 123 |
| 124 void set_f(uint64_t new_value) { f_ = new_value; } |
| 125 void set_e(int new_value) { e_ = new_value; } |
| 126 |
| 127 private: |
| 128 static const uint64_t kUint64MSB = V8_2PART_UINT64_C(0x80000000, 00000000); |
| 129 |
| 130 uint64_t f_; |
| 131 int e_; |
| 132 }; |
| 133 |
| 134 } } // namespace v8::internal |
| 135 |
| 136 #endif // V8_DIY_FP_H_ |
OLD | NEW |