OLD | NEW |
1 // Copyright (c) 2010 The Chromium Authors. All rights reserved. | 1 // This file was GENERATED by command: |
| 2 // pump.py callback.h.pump |
| 3 // DO NOT EDIT BY HAND!!! |
| 4 |
| 5 |
| 6 // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 7 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 8 // found in the LICENSE file. |
4 | 9 |
5 #ifndef BASE_CALLBACK_H_ | 10 #ifndef BASE_CALLBACK_H_ |
6 #define BASE_CALLBACK_H_ | 11 #define BASE_CALLBACK_H_ |
7 #pragma once | 12 #pragma once |
8 | 13 |
9 #include "base/tuple.h" | 14 #include "base/callback_helpers.h" |
10 #include "base/raw_scoped_refptr_mismatch_checker.h" | 15 #include "base/callback_old.h" |
11 | 16 |
12 // Callback -------------------------------------------------------------------- | 17 // New, super-duper, unified Callback system. This will eventually replace |
13 // | 18 // NewRunnableMethod, NewRunnableFunction, CreateFunctor, and CreateCallback |
14 // A Callback is like a Task but with unbound parameters. It is basically an | 19 // systems currently in the Chromium code base. |
15 // object-oriented function pointer. | 20 // |
16 // | 21 // WHAT IS THIS: |
17 // Callbacks are designed to work with Tuples. A set of helper functions and | 22 // |
18 // classes is provided to hide the Tuple details from the consumer. Client | 23 // The templated Callback class is a generalized function object. Together |
19 // code will generally work with the CallbackRunner base class, which merely | 24 // with the Bind() function in bind.h, they provide a type-safe method for |
20 // provides a Run method and is returned by the New* functions. This allows | 25 // performing currying of arguments, and creating a "closure." |
21 // users to not care which type of class implements the callback, only that it | 26 // |
22 // has a certain number and type of arguments. | 27 // In programing languages, a closure is a first-class function where all its |
23 // | 28 // parameters have been bound (usually via currying). Closures are well |
24 // The implementation of this is done by CallbackImpl, which inherits | 29 // suited for representing, and passing around a unit of delayed execution. |
25 // CallbackStorage to store the data. This allows the storage of the data | 30 // They are used in Chromium code to schedule tasks on different MessageLoops. |
26 // (requiring the class type T) to be hidden from users, who will want to call | 31 // |
27 // this regardless of the implementor's type T. | 32 // |
28 // | 33 // MEMORY MANAGEMENT AND PASSING |
29 // Note that callbacks currently have no facility for cancelling or abandoning | 34 // |
30 // them. We currently handle this at a higher level for cases where this is | 35 // The Callback objects themselves should be passed by const-reference, and |
31 // necessary. The pointer in a callback must remain valid until the callback | 36 // stored by copy. They internally store their state via a refcounted class |
32 // is made. | 37 // and thus do not need to be deleted. |
33 // | 38 // |
34 // Like Task, the callback executor is responsible for deleting the callback | 39 // The reason to pass via a const-reference is to avoid unnecessary |
35 // pointer once the callback has executed. | 40 // AddRef/Release pairs to the internal state. |
36 // | 41 // |
37 // Example client usage: | 42 // |
38 // void Object::DoStuff(int, string); | 43 // EXAMPLE USAGE: |
39 // Callback2<int, string>::Type* callback = | 44 // |
40 // NewCallback(obj, &Object::DoStuff); | 45 // /* Binding a normal function. */ |
41 // callback->Run(5, string("hello")); | 46 // int Return5() { return 5; } |
42 // delete callback; | 47 // base::Callback<int(int)> func_cb = base::Bind(&Return5); |
43 // or, equivalently, using tuples directly: | 48 // LOG(INFO) << func_cb.Run(5); // Prints 5. |
44 // CallbackRunner<Tuple2<int, string> >* callback = | 49 // |
45 // NewCallback(obj, &Object::DoStuff); | 50 // void PrintHi() { LOG(INFO) << "hi."; } |
46 // callback->RunWithParams(MakeTuple(5, string("hello"))); | 51 // base::Closure void_func_cb = base::Bind(&PrintHi); |
47 // | 52 // LOG(INFO) << void_func_cb.Run(); // Prints: hi. |
48 // There is also a 0-args version that returns a value. Example: | 53 // |
49 // int Object::GetNextInt(); | 54 // /* Binding a class method. */ |
50 // CallbackWithReturnValue<int>::Type* callback = | 55 // class Ref : public RefCountedThreadSafe<Ref> { |
51 // NewCallbackWithReturnValue(obj, &Object::GetNextInt); | 56 // public: |
52 // int next_int = callback->Run(); | 57 // int Foo() { return 3; } |
53 // delete callback; | 58 // void PrintBye() { LOG(INFO) << "bye."; } |
54 | 59 // }; |
55 // Base for all Callbacks that handles storage of the pointers. | 60 // scoped_refptr<Ref> ref = new Ref(); |
56 template <class T, typename Method> | 61 // base::Callback<int(void)> ref_cb = base::Bind(&Ref::Foo, ref.get()); |
57 class CallbackStorage { | 62 // LOG(INFO) << ref_cb.Run(); // Prints out 3. |
58 public: | 63 // |
59 CallbackStorage(T* obj, Method meth) : obj_(obj), meth_(meth) { | 64 // base::Closure void_ref_cb = base::Bind(&Ref::PrintBye, ref.get()); |
60 } | 65 // void_ref_cb.Run(); // Prints: bye. |
61 | 66 // |
62 protected: | 67 // /* Binding a class method in a non-refcounted class. |
63 T* obj_; | 68 // * |
64 Method meth_; | 69 // * WARNING: You must be sure the referee outlives the callback! |
65 }; | 70 // * This is particularly important if you post a closure to a |
66 | 71 // * MessageLoop because then it becomes hard to know what the |
67 // Interface that is exposed to the consumer, that does the actual calling | 72 // * lifetime of the referee needs to be. |
68 // of the method. | 73 // */ |
69 template <typename Params> | 74 // class NoRef { |
70 class CallbackRunner { | 75 // public: |
71 public: | 76 // int Foo() { return 4; } |
72 typedef Params TupleType; | 77 // void PrintWhy() { LOG(INFO) << "why???"; } |
73 | 78 // }; |
74 virtual ~CallbackRunner() {} | 79 // NoRef no_ref; |
75 virtual void RunWithParams(const Params& params) = 0; | 80 // base::Callback<int(void)> base::no_ref_cb = |
76 | 81 // base::Bind(&NoRef::Foo, base::Unretained(&no_ref)); |
77 // Convenience functions so callers don't have to deal with Tuples. | 82 // LOG(INFO) << ref_cb.Run(); // Prints out 4. |
78 inline void Run() { | 83 // |
79 RunWithParams(Tuple0()); | 84 // base::Closure void_no_ref_cb = |
80 } | 85 // base::Bind(&NoRef::PrintWhy, base::Unretained(no_ref)); |
81 | 86 // void_no_ref_cb.Run(); // Prints: why??? |
82 template <typename Arg1> | 87 // |
83 inline void Run(const Arg1& a) { | 88 // /* Binding a reference. */ |
84 RunWithParams(Params(a)); | 89 // int Identity(int n) { return n; } |
85 } | 90 // int value = 1; |
86 | 91 // base::Callback<int(void)> bound_copy_cb = base::Bind(&Identity, value); |
87 template <typename Arg1, typename Arg2> | 92 // base::Callback<int(void)> bound_ref_cb = |
88 inline void Run(const Arg1& a, const Arg2& b) { | 93 // base::Bind(&Identity, base::ConstRef(value)); |
89 RunWithParams(Params(a, b)); | 94 // LOG(INFO) << bound_copy_cb.Run(); // Prints 1. |
90 } | 95 // LOG(INFO) << bound_ref_cb.Run(); // Prints 1. |
91 | 96 // value = 2; |
92 template <typename Arg1, typename Arg2, typename Arg3> | 97 // LOG(INFO) << bound_copy_cb.Run(); // Prints 1. |
93 inline void Run(const Arg1& a, const Arg2& b, const Arg3& c) { | 98 // LOG(INFO) << bound_ref_cb.Run(); // Prints 2. |
94 RunWithParams(Params(a, b, c)); | 99 // |
95 } | 100 // |
96 | 101 // WHERE IS THIS DESIGN FROM: |
97 template <typename Arg1, typename Arg2, typename Arg3, typename Arg4> | 102 // |
98 inline void Run(const Arg1& a, const Arg2& b, const Arg3& c, const Arg4& d) { | 103 // The design Callback and Bind is heavily influenced by C++'s |
99 RunWithParams(Params(a, b, c, d)); | 104 // tr1::function/tr1::bind, and by the "Google Callback" system used inside |
100 } | 105 // Google. |
101 | 106 // |
102 template <typename Arg1, typename Arg2, typename Arg3, | 107 // |
103 typename Arg4, typename Arg5> | 108 // HOW THE IMPLEMENTATION WORKS: |
104 inline void Run(const Arg1& a, const Arg2& b, const Arg3& c, | 109 // |
105 const Arg4& d, const Arg5& e) { | 110 // There are three main components to the system: |
106 RunWithParams(Params(a, b, c, d, e)); | 111 // 1) The Callback classes. |
107 } | 112 // 2) The Bind() functions. |
108 }; | 113 // 3) The arguments wrappers (eg., Unretained() and ConstRef()). |
109 | 114 // |
110 template <class T, typename Method, typename Params> | 115 // The Callback classes represent a generic function pointer. Internally, |
111 class CallbackImpl : public CallbackStorage<T, Method>, | 116 // it stores a refcounted piece of state that represents the target function |
112 public CallbackRunner<Params> { | 117 // and all its bound parameters. Each Callback specialization has a templated |
113 public: | 118 // constructor that takes an InvokerStorageHolder<> object. In the context of |
114 CallbackImpl(T* obj, Method meth) : CallbackStorage<T, Method>(obj, meth) { | 119 // the constructor, the static type of this InvokerStorageHolder<> object |
115 } | 120 // uniquely identifies the function it is representing, all its bound |
116 virtual void RunWithParams(const Params& params) { | 121 // parameters, and a DoInvoke() that is capable of invoking the target. |
117 // use "this->" to force C++ to look inside our templatized base class; see | 122 // |
118 // Effective C++, 3rd Ed, item 43, p210 for details. | 123 // Callback's constructor is takes the InvokerStorageHolder<> that has the |
119 DispatchToMethod(this->obj_, this->meth_, params); | 124 // full static type and erases the target function type, and the bound |
120 } | 125 // parameters. It does this by storing a pointer to the specific DoInvoke() |
121 }; | 126 // function, and upcasting the state of InvokerStorageHolder<> to a |
122 | 127 // InvokerStorageBase. This is safe as long as this InvokerStorageBase pointer |
123 // 0-arg implementation | 128 // is only used with the stored DoInvoke() pointer. |
124 struct Callback0 { | 129 // |
125 typedef CallbackRunner<Tuple0> Type; | 130 // To create InvokerStorageHolder<> objects, we use the Bind() functions. |
126 }; | 131 // These functions, along with a set of internal templates, are reponsible for |
127 | 132 // |
128 template <class T> | 133 // - Unwrapping the function signature into return type, and parameters |
129 typename Callback0::Type* NewCallback(T* object, void (T::*method)()) { | 134 // - Determining the number of parameters that are bound |
130 return new CallbackImpl<T, void (T::*)(), Tuple0 >(object, method); | 135 // - Creating the storage for the bound parameters |
131 } | 136 // - Performing compile-time asserts to avoid error-prone behavior |
132 | 137 // - Returning an InvokerStorageHolder<> with an DoInvoke() that has an arity |
133 // 1-arg implementation | 138 // matching the number of unbound parameters, and knows the correct |
134 template <typename Arg1> | 139 // refcounting semantics for the target object if we are binding a class |
135 struct Callback1 { | 140 // method. |
136 typedef CallbackRunner<Tuple1<Arg1> > Type; | 141 // |
137 }; | 142 // The Bind functions do the above using type-inference, and template |
138 | 143 // specializations. |
139 template <class T, typename Arg1> | 144 // |
140 typename Callback1<Arg1>::Type* NewCallback(T* object, | 145 // By default Bind() will store copies of all bound parameters, and attempt |
141 void (T::*method)(Arg1)) { | 146 // to refcount a target object if the function being bound is a class method. |
142 return new CallbackImpl<T, void (T::*)(Arg1), Tuple1<Arg1> >(object, method); | 147 // |
143 } | 148 // To change this behavior, we introduce a set of argument wrappers |
144 | 149 // (eg. Unretained(), and ConstRef()). These are simple container templates |
145 // 2-arg implementation | 150 // that are passed by value, and wrap a pointer to argument. See the |
146 template <typename Arg1, typename Arg2> | 151 // file-level comment in base/bind_helpers.h for more info. |
147 struct Callback2 { | 152 // |
148 typedef CallbackRunner<Tuple2<Arg1, Arg2> > Type; | 153 // These types are passed to the Unwrap() functions, and the MaybeRefcount() |
149 }; | 154 // functions respectively to modify the behavior of Bind(). The Unwrap() |
150 | 155 // and MaybeRefcount() functions change behavior by doing partial |
151 template <class T, typename Arg1, typename Arg2> | 156 // specialization based on whether or not a parameter is a wrapper type. |
152 typename Callback2<Arg1, Arg2>::Type* NewCallback( | 157 // |
153 T* object, | 158 // ConstRef() is similar to tr1::cref. Unretained() is specific to Chromium. |
154 void (T::*method)(Arg1, Arg2)) { | 159 // |
155 return new CallbackImpl<T, void (T::*)(Arg1, Arg2), | 160 // |
156 Tuple2<Arg1, Arg2> >(object, method); | 161 // WHY NOT TR1 FUNCTION/BIND? |
157 } | 162 // |
158 | 163 // Direct use of tr1::function and tr1::bind was considered, but ultimately |
159 // 3-arg implementation | 164 // rejected because of the number of copy constructors invocations involved |
160 template <typename Arg1, typename Arg2, typename Arg3> | 165 // in the binding of arguments during construction, and the forwarding of |
161 struct Callback3 { | 166 // arguments during invocation. These copies will no longer be an issue in |
162 typedef CallbackRunner<Tuple3<Arg1, Arg2, Arg3> > Type; | 167 // C++0x because C++0x will support rvalue reference allowing for the compiler |
163 }; | 168 // to avoid these copies. However, waiting for C++0x is not an option. |
164 | 169 // |
165 template <class T, typename Arg1, typename Arg2, typename Arg3> | 170 // Measured with valgrind on gcc version 4.4.3 (Ubuntu 4.4.3-4ubuntu5), the |
166 typename Callback3<Arg1, Arg2, Arg3>::Type* NewCallback( | 171 // tr1::bind call itself will invoke a non-trivial copy constructor three times |
167 T* object, | 172 // for each bound parameter. Also, each when passing a tr1::function, each |
168 void (T::*method)(Arg1, Arg2, Arg3)) { | 173 // bound argument will be copied again. |
169 return new CallbackImpl<T, void (T::*)(Arg1, Arg2, Arg3), | 174 // |
170 Tuple3<Arg1, Arg2, Arg3> >(object, method); | 175 // In addition to the copies taken at binding and invocation, copying a |
171 } | 176 // tr1::function causes a copy to be made of all the bound parameters and |
172 | 177 // state. |
173 // 4-arg implementation | 178 // |
174 template <typename Arg1, typename Arg2, typename Arg3, typename Arg4> | 179 // Furthermore, in Chromium, it is desirable for the Callback to take a |
175 struct Callback4 { | 180 // reference on a target object when representing a class method call. This |
176 typedef CallbackRunner<Tuple4<Arg1, Arg2, Arg3, Arg4> > Type; | 181 // is not supported by tr1. |
177 }; | 182 // |
178 | 183 // Lastly, tr1::function and tr1::bind has a more general and flexible API. |
179 template <class T, typename Arg1, typename Arg2, typename Arg3, typename Arg4> | 184 // This includes things like argument reordering by use of |
180 typename Callback4<Arg1, Arg2, Arg3, Arg4>::Type* NewCallback( | 185 // tr1::bind::placeholder, support for non-const reference parameters, and some |
181 T* object, | 186 // limited amount of subtyping of the tr1::function object (eg., |
182 void (T::*method)(Arg1, Arg2, Arg3, Arg4)) { | 187 // tr1::function<int(int)> is convertible to tr1::function<void(int)>). |
183 return new CallbackImpl<T, void (T::*)(Arg1, Arg2, Arg3, Arg4), | 188 // |
184 Tuple4<Arg1, Arg2, Arg3, Arg4> >(object, method); | 189 // These are not features that are required in Chromium. Some of them, such as |
185 } | 190 // allowing for reference parameters, and subtyping of functions, may actually |
186 | 191 // because a source of errors. Removing support for these features actually |
187 // 5-arg implementation | 192 // allows for a simpler implementation, and a terser Currying API. |
188 template <typename Arg1, typename Arg2, typename Arg3, | 193 // |
189 typename Arg4, typename Arg5> | 194 // |
190 struct Callback5 { | 195 // WHY NOT GOOGLE CALLBACKS? |
191 typedef CallbackRunner<Tuple5<Arg1, Arg2, Arg3, Arg4, Arg5> > Type; | 196 // |
192 }; | 197 // The Google callback system also does not support refcounting. Furthermore, |
193 | 198 // its implementation has a number of strange edge cases with respect to type |
194 template <class T, typename Arg1, typename Arg2, | 199 // conversion of its arguments. In particular, the argument's constness must |
195 typename Arg3, typename Arg4, typename Arg5> | 200 // at times match exactly the function signature, or the type-inference might |
196 typename Callback5<Arg1, Arg2, Arg3, Arg4, Arg5>::Type* NewCallback( | 201 // break. Given the above, writing a custom solution was easier. |
197 T* object, | 202 // |
198 void (T::*method)(Arg1, Arg2, Arg3, Arg4, Arg5)) { | 203 // |
199 return new CallbackImpl<T, void (T::*)(Arg1, Arg2, Arg3, Arg4, Arg5), | 204 // MISSING FUNCTIONALITY |
200 Tuple5<Arg1, Arg2, Arg3, Arg4, Arg5> >(object, method); | 205 // - Invoking the return of Bind. Bind(&foo).Run() does not work; |
201 } | 206 // - Binding arrays to functions that take a non-const pointer. |
202 | 207 // Example: |
203 // An UnboundMethod is a wrapper for a method where the actual object is | 208 // void Foo(const char* ptr); |
204 // provided at Run dispatch time. | 209 // void Bar(char* ptr); |
205 template <class T, class Method, class Params> | 210 // Bind(&Foo, "test"); |
206 class UnboundMethod { | 211 // Bind(&Bar, "test"); // This fails because ptr is not const. |
207 public: | 212 |
208 UnboundMethod(Method m, const Params& p) : m_(m), p_(p) { | 213 namespace base { |
209 COMPILE_ASSERT( | 214 |
210 (base::internal::ParamsUseScopedRefptrCorrectly<Params>::value), | 215 // First, we forward declare the Callback class template. This informs the |
211 badunboundmethodparams); | 216 // compiler that the template only has 1 type parameter which is the function |
212 } | 217 // signature that the Callback is representing. |
213 void Run(T* obj) const { | 218 // |
214 DispatchToMethod(obj, m_, p_); | 219 // After this, create template specializations for 0-6 parameters. Note that |
215 } | 220 // even though the template typelist grows, the specialization still |
216 private: | 221 // only has one type: the function signature. |
217 Method m_; | 222 template <typename Sig> |
218 Params p_; | 223 class Callback; |
219 }; | 224 |
220 | 225 template <typename R> |
221 // Return value implementation with no args. | 226 class Callback<R(void)> { |
222 template <typename ReturnValue> | 227 public: |
223 struct CallbackWithReturnValue { | 228 typedef R(*PolymorphicInvoke)(internal::InvokerStorageBase*); |
224 class Type { | 229 |
225 public: | 230 Callback() : polymorphic_invoke_(NULL) { } |
226 virtual ~Type() {} | 231 |
227 virtual ReturnValue Run() = 0; | 232 // We pass InvokerStorageHolder by const ref to avoid incurring an |
228 }; | 233 // unnecessary AddRef/Unref pair even though we will modify the object. |
229 }; | 234 // We cannot use a normal reference because the compiler will warn |
230 | 235 // since this is often used on a return value, which is a temporary. |
231 template <class T, typename Method, typename ReturnValue> | 236 // |
232 class CallbackWithReturnValueImpl | 237 // Note that this constructor CANNOT be explicit, and that Bind() CANNOT |
233 : public CallbackStorage<T, Method>, | 238 // return the exact Callback<> type. See base/bind.h for details. |
234 public CallbackWithReturnValue<ReturnValue>::Type { | 239 template <typename T> |
235 public: | 240 Callback(const internal::InvokerStorageHolder<T>& invoker_holder) |
236 CallbackWithReturnValueImpl(T* obj, Method meth) | 241 : polymorphic_invoke_(&T::FunctionTraits::DoInvoke) { |
237 : CallbackStorage<T, Method>(obj, meth) {} | 242 invoker_storage_.swap(invoker_holder.invoker_storage_); |
238 | 243 } |
239 virtual ReturnValue Run() { | 244 |
240 return (this->obj_->*(this->meth_))(); | 245 R Run(void) const { |
241 } | 246 return polymorphic_invoke_(invoker_storage_.get()); |
242 | 247 } |
243 protected: | 248 |
244 virtual ~CallbackWithReturnValueImpl() {} | 249 private: |
245 }; | 250 scoped_refptr<internal::InvokerStorageBase> invoker_storage_; |
246 | 251 PolymorphicInvoke polymorphic_invoke_; |
247 template <class T, typename ReturnValue> | 252 }; |
248 typename CallbackWithReturnValue<ReturnValue>::Type* | 253 |
249 NewCallbackWithReturnValue(T* object, ReturnValue (T::*method)()) { | 254 template <typename R, typename A1> |
250 return new CallbackWithReturnValueImpl<T, ReturnValue (T::*)(), ReturnValue>( | 255 class Callback<R(A1)> { |
251 object, method); | 256 public: |
252 } | 257 typedef R(*PolymorphicInvoke)(internal::InvokerStorageBase*, const A1&); |
| 258 |
| 259 Callback() : polymorphic_invoke_(NULL) { } |
| 260 |
| 261 // We pass InvokerStorageHolder by const ref to avoid incurring an |
| 262 // unnecessary AddRef/Unref pair even though we will modify the object. |
| 263 // We cannot use a normal reference because the compiler will warn |
| 264 // since this is often used on a return value, which is a temporary. |
| 265 // |
| 266 // Note that this constructor CANNOT be explicit, and that Bind() CANNOT |
| 267 // return the exact Callback<> type. See base/bind.h for details. |
| 268 template <typename T> |
| 269 Callback(const internal::InvokerStorageHolder<T>& invoker_holder) |
| 270 : polymorphic_invoke_(&T::FunctionTraits::DoInvoke) { |
| 271 invoker_storage_.swap(invoker_holder.invoker_storage_); |
| 272 } |
| 273 |
| 274 R Run(const A1& a1) const { |
| 275 return polymorphic_invoke_(invoker_storage_.get(), a1); |
| 276 } |
| 277 |
| 278 private: |
| 279 scoped_refptr<internal::InvokerStorageBase> invoker_storage_; |
| 280 PolymorphicInvoke polymorphic_invoke_; |
| 281 }; |
| 282 |
| 283 template <typename R, typename A1, typename A2> |
| 284 class Callback<R(A1, A2)> { |
| 285 public: |
| 286 typedef R(*PolymorphicInvoke)(internal::InvokerStorageBase*, const A1&, |
| 287 const A2&); |
| 288 |
| 289 Callback() : polymorphic_invoke_(NULL) { } |
| 290 |
| 291 // We pass InvokerStorageHolder by const ref to avoid incurring an |
| 292 // unnecessary AddRef/Unref pair even though we will modify the object. |
| 293 // We cannot use a normal reference because the compiler will warn |
| 294 // since this is often used on a return value, which is a temporary. |
| 295 // |
| 296 // Note that this constructor CANNOT be explicit, and that Bind() CANNOT |
| 297 // return the exact Callback<> type. See base/bind.h for details. |
| 298 template <typename T> |
| 299 Callback(const internal::InvokerStorageHolder<T>& invoker_holder) |
| 300 : polymorphic_invoke_(&T::FunctionTraits::DoInvoke) { |
| 301 invoker_storage_.swap(invoker_holder.invoker_storage_); |
| 302 } |
| 303 |
| 304 R Run(const A1& a1, |
| 305 const A2& a2) const { |
| 306 return polymorphic_invoke_(invoker_storage_.get(), a1, |
| 307 a2); |
| 308 } |
| 309 |
| 310 private: |
| 311 scoped_refptr<internal::InvokerStorageBase> invoker_storage_; |
| 312 PolymorphicInvoke polymorphic_invoke_; |
| 313 }; |
| 314 |
| 315 template <typename R, typename A1, typename A2, typename A3> |
| 316 class Callback<R(A1, A2, A3)> { |
| 317 public: |
| 318 typedef R(*PolymorphicInvoke)(internal::InvokerStorageBase*, const A1&, |
| 319 const A2&, |
| 320 const A3&); |
| 321 |
| 322 Callback() : polymorphic_invoke_(NULL) { } |
| 323 |
| 324 // We pass InvokerStorageHolder by const ref to avoid incurring an |
| 325 // unnecessary AddRef/Unref pair even though we will modify the object. |
| 326 // We cannot use a normal reference because the compiler will warn |
| 327 // since this is often used on a return value, which is a temporary. |
| 328 // |
| 329 // Note that this constructor CANNOT be explicit, and that Bind() CANNOT |
| 330 // return the exact Callback<> type. See base/bind.h for details. |
| 331 template <typename T> |
| 332 Callback(const internal::InvokerStorageHolder<T>& invoker_holder) |
| 333 : polymorphic_invoke_(&T::FunctionTraits::DoInvoke) { |
| 334 invoker_storage_.swap(invoker_holder.invoker_storage_); |
| 335 } |
| 336 |
| 337 R Run(const A1& a1, |
| 338 const A2& a2, |
| 339 const A3& a3) const { |
| 340 return polymorphic_invoke_(invoker_storage_.get(), a1, |
| 341 a2, |
| 342 a3); |
| 343 } |
| 344 |
| 345 private: |
| 346 scoped_refptr<internal::InvokerStorageBase> invoker_storage_; |
| 347 PolymorphicInvoke polymorphic_invoke_; |
| 348 }; |
| 349 |
| 350 template <typename R, typename A1, typename A2, typename A3, typename A4> |
| 351 class Callback<R(A1, A2, A3, A4)> { |
| 352 public: |
| 353 typedef R(*PolymorphicInvoke)(internal::InvokerStorageBase*, const A1&, |
| 354 const A2&, |
| 355 const A3&, |
| 356 const A4&); |
| 357 |
| 358 Callback() : polymorphic_invoke_(NULL) { } |
| 359 |
| 360 // We pass InvokerStorageHolder by const ref to avoid incurring an |
| 361 // unnecessary AddRef/Unref pair even though we will modify the object. |
| 362 // We cannot use a normal reference because the compiler will warn |
| 363 // since this is often used on a return value, which is a temporary. |
| 364 // |
| 365 // Note that this constructor CANNOT be explicit, and that Bind() CANNOT |
| 366 // return the exact Callback<> type. See base/bind.h for details. |
| 367 template <typename T> |
| 368 Callback(const internal::InvokerStorageHolder<T>& invoker_holder) |
| 369 : polymorphic_invoke_(&T::FunctionTraits::DoInvoke) { |
| 370 invoker_storage_.swap(invoker_holder.invoker_storage_); |
| 371 } |
| 372 |
| 373 R Run(const A1& a1, |
| 374 const A2& a2, |
| 375 const A3& a3, |
| 376 const A4& a4) const { |
| 377 return polymorphic_invoke_(invoker_storage_.get(), a1, |
| 378 a2, |
| 379 a3, |
| 380 a4); |
| 381 } |
| 382 |
| 383 private: |
| 384 scoped_refptr<internal::InvokerStorageBase> invoker_storage_; |
| 385 PolymorphicInvoke polymorphic_invoke_; |
| 386 }; |
| 387 |
| 388 template <typename R, typename A1, typename A2, typename A3, typename A4, |
| 389 typename A5> |
| 390 class Callback<R(A1, A2, A3, A4, A5)> { |
| 391 public: |
| 392 typedef R(*PolymorphicInvoke)(internal::InvokerStorageBase*, const A1&, |
| 393 const A2&, |
| 394 const A3&, |
| 395 const A4&, |
| 396 const A5&); |
| 397 |
| 398 Callback() : polymorphic_invoke_(NULL) { } |
| 399 |
| 400 // We pass InvokerStorageHolder by const ref to avoid incurring an |
| 401 // unnecessary AddRef/Unref pair even though we will modify the object. |
| 402 // We cannot use a normal reference because the compiler will warn |
| 403 // since this is often used on a return value, which is a temporary. |
| 404 // |
| 405 // Note that this constructor CANNOT be explicit, and that Bind() CANNOT |
| 406 // return the exact Callback<> type. See base/bind.h for details. |
| 407 template <typename T> |
| 408 Callback(const internal::InvokerStorageHolder<T>& invoker_holder) |
| 409 : polymorphic_invoke_(&T::FunctionTraits::DoInvoke) { |
| 410 invoker_storage_.swap(invoker_holder.invoker_storage_); |
| 411 } |
| 412 |
| 413 R Run(const A1& a1, |
| 414 const A2& a2, |
| 415 const A3& a3, |
| 416 const A4& a4, |
| 417 const A5& a5) const { |
| 418 return polymorphic_invoke_(invoker_storage_.get(), a1, |
| 419 a2, |
| 420 a3, |
| 421 a4, |
| 422 a5); |
| 423 } |
| 424 |
| 425 private: |
| 426 scoped_refptr<internal::InvokerStorageBase> invoker_storage_; |
| 427 PolymorphicInvoke polymorphic_invoke_; |
| 428 }; |
| 429 |
| 430 template <typename R, typename A1, typename A2, typename A3, typename A4, |
| 431 typename A5, typename A6> |
| 432 class Callback<R(A1, A2, A3, A4, A5, A6)> { |
| 433 public: |
| 434 typedef R(*PolymorphicInvoke)(internal::InvokerStorageBase*, const A1&, |
| 435 const A2&, |
| 436 const A3&, |
| 437 const A4&, |
| 438 const A5&, |
| 439 const A6&); |
| 440 |
| 441 Callback() : polymorphic_invoke_(NULL) { } |
| 442 |
| 443 // We pass InvokerStorageHolder by const ref to avoid incurring an |
| 444 // unnecessary AddRef/Unref pair even though we will modify the object. |
| 445 // We cannot use a normal reference because the compiler will warn |
| 446 // since this is often used on a return value, which is a temporary. |
| 447 // |
| 448 // Note that this constructor CANNOT be explicit, and that Bind() CANNOT |
| 449 // return the exact Callback<> type. See base/bind.h for details. |
| 450 template <typename T> |
| 451 Callback(const internal::InvokerStorageHolder<T>& invoker_holder) |
| 452 : polymorphic_invoke_(&T::FunctionTraits::DoInvoke) { |
| 453 invoker_storage_.swap(invoker_holder.invoker_storage_); |
| 454 } |
| 455 |
| 456 R Run(const A1& a1, |
| 457 const A2& a2, |
| 458 const A3& a3, |
| 459 const A4& a4, |
| 460 const A5& a5, |
| 461 const A6& a6) const { |
| 462 return polymorphic_invoke_(invoker_storage_.get(), a1, |
| 463 a2, |
| 464 a3, |
| 465 a4, |
| 466 a5, |
| 467 a6); |
| 468 } |
| 469 |
| 470 private: |
| 471 scoped_refptr<internal::InvokerStorageBase> invoker_storage_; |
| 472 PolymorphicInvoke polymorphic_invoke_; |
| 473 }; |
| 474 |
| 475 |
| 476 // Syntactic sugar to make Callbacks<void(void)> easier to declare since it |
| 477 // will be used in a lot of APIs with delayed execution. |
| 478 typedef Callback<void(void)> Closure; |
| 479 |
| 480 } // namespace base |
253 | 481 |
254 #endif // BASE_CALLBACK_H | 482 #endif // BASE_CALLBACK_H |
OLD | NEW |