OLD | NEW |
---|---|
(Empty) | |
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 // This defines a set of argument wrappers and related factory methods that | |
6 // can be used specify the refcounting and reference semantics of arguments | |
7 // that are bound by the Bind() function in base/bind.h. | |
8 // | |
9 // The public functions are base::Unretained() and base::ConstRef(). | |
10 // Unretained() allows Bind() to bind a non-refcounted class. | |
11 // ConstRef() allows binding a constant reference to an argument rather | |
12 // than a copy. | |
13 // | |
14 // | |
15 // EXAMPLE OF Unretained(): | |
16 // | |
17 // class Foo { | |
18 // public: | |
19 // void func() { cout << "Foo:f" << endl; | |
20 // }; | |
21 // | |
22 // // In some function somewhere. | |
23 // Foo foo; | |
24 // Callback<void(void)> foo_callback = | |
25 // Bind(&Foo::func, Unretained(&foo)); | |
26 // foo_callback.Run(); // Prints "Foo:f". | |
27 // | |
28 // Without the Unretained() wrapper on |&foo|, the above call would fail | |
29 // to compile because Foo does not support the AddRef() and Release() methods. | |
30 // | |
31 // | |
32 // EXAMPLE OF ConstRef(); | |
33 // void foo(int arg) { cout << arg << endl } | |
34 // | |
35 // int n = 1; | |
36 // Callback<void(void)> no_ref = Bind(&foo, n); | |
37 // Callback<void(void)> has_ref = Bind(&foo, ConstRef(n)); | |
38 // | |
39 // no_ref.Run(); // Prints "1" | |
40 // has_ref.Run(); // Prints "1" | |
41 // | |
42 // n = 2; | |
43 // no_ref.Run(); // Prints "1" | |
44 // has_ref.Run(); // Prints "2" | |
45 // | |
46 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all | |
47 // its bound callbacks. | |
48 // | |
49 | |
50 #ifndef BASE_BIND_HELPERS_H_ | |
51 #define BASE_BIND_HELPERS_H_ | |
52 #pragma once | |
53 | |
54 #include "base/basictypes.h" | |
55 #include "base/template_util.h" | |
56 | |
57 namespace base { | |
58 namespace internal { | |
59 | |
60 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T | |
61 // for the existence of AddRef() and Release() functions of the correct | |
62 // signature. | |
63 // | |
64 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error | |
65 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-templat e-to-check-for-a-functions-existence | |
66 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison | |
67 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-memb er-functions | |
68 // | |
69 // The last link in particular show the method used below. | |
70 // | |
71 // For SFINAE to work with inherited methods, we need to pull some extra ticks | |
willchan no longer on Chromium
2011/02/15 01:17:14
ticks=>tricks
awong
2011/02/15 01:27:06
Done.
| |
72 // with multiple inheritance. In the more standard formulation, the overloads | |
73 // of Check would be: | |
74 // | |
75 // template <typename C> | |
76 // Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*); | |
77 // | |
78 // template <typename C> | |
79 // No NotTheCheckWeWant(...); | |
80 // | |
81 // static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes); | |
82 // | |
83 // The problem here is that template resolution will not match | |
84 // C::TargetFunc if TargetFunc does not exist directly in C. That is, if | |
85 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match, | |
86 // |value| will be false. This formulation only checks for whether or | |
87 // not TargetFunc exist directly in the class being introspected. | |
88 // | |
89 // To get around this, we play a dirty trick with multiple inheritance. | |
90 // First, We create a class BaseMixin that declares each function that we | |
91 // want to probe for. Then we create a class Base that inherits from both T | |
92 // (the class we wish to probe) and BaseMixin. Note that the function | |
93 // signature in BaseMixin does not need to match the signature of the function | |
94 // we are probing for; thus it's easiest to just use void(void). | |
95 // | |
96 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an | |
97 // ambiguous resolution between BaseMixin and T. This lets us write the | |
98 // following: | |
99 // | |
100 // template <typename C> | |
101 // No GoodCheck(Helper<&C::TargetFunc>*); | |
102 // | |
103 // template <typename C> | |
104 // Yes GoodCheck(...); | |
105 // | |
106 // static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes); | |
107 // | |
108 // Notice here that the variadic version of GoodCheck() returns Yes here | |
109 // instead of No like the previous one. Also notice that we calculate |value| | |
110 // by specializing GoodCheck() on Base instead of T. | |
111 // | |
112 // We've reverse the roles of the variadic, and the function using Helper. | |
113 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid | |
114 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve | |
115 // to the variadic version if T has TargetFunc. If T::TargetFunc does not | |
116 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution | |
117 // will prefer GoodCheck(Helper<&C::TargetFunc>*). | |
118 // | |
119 // This method of SFINAE will correctly probe for inherited names, but it cannot | |
120 // typecheck those names. It's still a good enough sanity check though. | |
121 // | |
122 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008. | |
123 // | |
124 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted | |
125 // this works well. | |
126 template <typename T> | |
127 class SupportsAddRefAndRelease { | |
128 typedef char Yes[1]; | |
129 typedef char No[2]; | |
130 | |
131 struct BaseMixin { | |
132 void AddRef(); | |
133 void Release(); | |
134 }; | |
135 | |
136 struct Base : public T, public BaseMixin { | |
137 }; | |
138 | |
139 template <void(BaseMixin::*)(void)> struct Helper {}; | |
140 | |
141 template <typename C> | |
142 static No& Check(Helper<&C::AddRef>*, Helper<&C::Release>*); | |
143 | |
144 template <typename > | |
145 static Yes& Check(...); | |
146 | |
147 public: | |
148 static const bool value = sizeof(Check<Base>(0,0)) == sizeof(Yes); | |
149 }; | |
150 | |
151 | |
152 // Helpers to assert that arguments of a recounted type are bound with a | |
153 // scoped_refptr. | |
154 template <bool IsClasstype, typename T> | |
155 struct UnsafeBindtoRefCountedArgHelper : false_type { | |
156 }; | |
157 | |
158 template <typename T> | |
159 struct UnsafeBindtoRefCountedArgHelper<true, T> | |
160 : integral_constant<bool, SupportsAddRefAndRelease<T>::value> { | |
161 }; | |
162 | |
163 template <typename T> | |
164 struct UnsafeBindtoRefCountedArg | |
165 : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> { | |
166 }; | |
167 | |
168 | |
169 template <typename T> | |
170 class UnretainedWrapper { | |
171 public: | |
172 explicit UnretainedWrapper(T* o) : obj_(o) {} | |
173 T* get() { return obj_; } | |
174 private: | |
175 T* obj_; | |
176 }; | |
177 | |
178 template <typename T> | |
179 class ConstRefWrapper { | |
180 public: | |
181 explicit ConstRefWrapper(const T& o) : ptr_(&o) {} | |
182 const T& get() { return *ptr_; } | |
183 private: | |
184 const T* ptr_; | |
185 }; | |
186 | |
187 | |
188 // Unwrap the stored parameters for the wrappers above. | |
189 template <typename T> | |
190 T Unwrap(T o) { return o; } | |
191 | |
192 template <typename T> | |
193 T* Unwrap(UnretainedWrapper<T> unretained) { return unretained.get(); } | |
194 | |
195 template <typename T> | |
196 const T& Unwrap(ConstRefWrapper<T> const_ref) { | |
197 return const_ref.get(); | |
198 } | |
199 | |
200 | |
201 // Utility for handling different refcounting semantics in the Bind() | |
202 // function. | |
203 template <typename ref, typename T> | |
204 struct MaybeRefcount; | |
205 | |
206 template <typename T> | |
207 struct MaybeRefcount<base::false_type, T> { | |
208 static void AddRef(const T&) {} | |
209 static void Release(const T&) {} | |
210 }; | |
211 | |
212 template <typename T, size_t n> | |
213 struct MaybeRefcount<base::false_type, T[n]> { | |
214 static void AddRef(const T*) {} | |
215 static void Release(const T*) {} | |
216 }; | |
217 | |
218 template <typename T> | |
219 struct MaybeRefcount<base::true_type, UnretainedWrapper<T> > { | |
220 static void AddRef(const UnretainedWrapper<T>&) {} | |
221 static void Release(const UnretainedWrapper<T>&) {} | |
222 }; | |
223 | |
224 template <typename T> | |
225 struct MaybeRefcount<base::true_type, T*> { | |
226 static void AddRef(T* o) { o->AddRef(); } | |
227 static void Release(T* o) { o->Release(); } | |
228 }; | |
229 | |
230 template <typename T> | |
231 struct MaybeRefcount<base::true_type, const T*> { | |
232 static void AddRef(const T* o) { o->AddRef(); } | |
233 static void Release(const T* o) { o->Release(); } | |
234 }; | |
235 | |
236 | |
237 // This is a typetraits object that's used to convert an argument type into a | |
238 // type suitable for storage. In particular, it strips off references, and | |
239 // converts arrays to pointers. | |
240 // | |
241 // This array type becomes an issue because we are passing bound parameters by | |
242 // const reference. In this case, we end up passing an actual array type in the | |
243 // initializer list which C++ does not allow. This will break passing of | |
244 // C-string literals. | |
245 template <typename T> | |
246 struct BindType { | |
247 typedef T StorageType; | |
248 }; | |
249 | |
250 // This should almost be impossible to trigger unless someone manually | |
251 // specifies type of the bind parameters. However, in case they do, | |
252 // this will guard against us accidentally storing a reference parameter. | |
253 template <typename T> | |
254 struct BindType<T&> { | |
255 typedef T StorageType; | |
256 }; | |
257 | |
258 // Note that for array types, we implicitly add a const in the conversion. This | |
259 // means that it is not possible to bind array arguments to functions that take | |
260 // a non-const pointer. Trying to specialize the template based on a "const | |
261 // T[n]" does not seem to match correctly, so we are stuck with this | |
262 // restriction. | |
263 template <typename T, size_t n> | |
264 struct BindType<T[n]> { | |
265 typedef const T* StorageType; | |
266 }; | |
267 | |
268 template <typename T> | |
269 struct BindType<T[]> { | |
270 typedef const T* StorageType; | |
271 }; | |
272 | |
273 } // namespace internal | |
274 | |
275 template <typename T> | |
276 inline internal::UnretainedWrapper<T> Unretained(T* o) { | |
277 return internal::UnretainedWrapper<T>(o); | |
278 } | |
279 | |
280 template <typename T> | |
281 inline internal::ConstRefWrapper<T> ConstRef(const T& o) { | |
282 return internal::ConstRefWrapper<T>(o); | |
283 } | |
284 | |
285 } // namespace base | |
286 | |
287 #endif // BASE_BIND_HELPERS_H_ | |
OLD | NEW |