OLD | NEW |
(Empty) | |
| 1 $$ This is a pump file for generating file templates. Pump is a python |
| 2 $$ script that is part of the Google Test suite of utilities. Description |
| 3 $$ can be found here: |
| 4 $$ |
| 5 $$ http://code.google.com/p/googletest/wiki/PumpManual |
| 6 $$ |
| 7 |
| 8 $var MAX_ARITY = 6 |
| 9 |
| 10 // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| 11 // Use of this source code is governed by a BSD-style license that can be |
| 12 // found in the LICENSE file. |
| 13 |
| 14 #ifndef BASE_UBER_CALLBACK_H_ |
| 15 #define BASE_UBER_CALLBACK_H_ |
| 16 #pragma once |
| 17 |
| 18 #include "base/uber_callback_helpers.h" |
| 19 |
| 20 // New, super-duper, unified Callback system. This will eventually replace |
| 21 // NewRunnableMethod, NewRunnableFunction, CreateFunctor, and CreateCallback |
| 22 // systems currently in the Chromium code base. |
| 23 // |
| 24 // WHAT IS THIS: |
| 25 // |
| 26 // The templated Callback class is a generalized funciton object. Together |
| 27 // with the Prebind() function in prebind.h, they provide a type-safe method |
| 28 // for performing currying of arguments, and createing a "closure." |
| 29 // |
| 30 // In programing languages, a closure is a first-class function where all its |
| 31 // parameters have been bound (usually via currying). Closures are well |
| 32 // suited for representing, and passing around a unit of delayed execution. |
| 33 // They are used in Chromium code to schedule tasks on different MessageLoops. |
| 34 // |
| 35 // EXAMPLE USAGE: |
| 36 // |
| 37 // /* Binding a class method. */ |
| 38 // class Ref : public RefCountedThreadSafe<Ref> { |
| 39 // int Foo() { return 3; } |
| 40 // }; |
| 41 // scoped_refptr<Ref> ref = new Ref(); |
| 42 // Callback<int(void)> ref_cb = Prebind(&Ref::Foo, ref.get()); |
| 43 // LOG(INFO) << ref_cb.Run(); // Prints out 3. |
| 44 // |
| 45 // /* Binding a class method in a non-refcounted class. */ |
| 46 // class NoRef { |
| 47 // int Foo() { return 4; } |
| 48 // }; |
| 49 // NoRef no_ref; |
| 50 // Callback<int(void)> no_ref_cb = Prebind(&NoRef::Foo, Unretained(&no_ref)); |
| 51 // LOG(INFO) << ref_cb.Run(); // Prints out 4. |
| 52 // |
| 53 // /* Binding a normal function. */ |
| 54 // int Return5() { return 5; } |
| 55 // Callback<int(int)> func_cb = Prebind(&Return5); |
| 56 // LOG(INFO) << func_cb.Run(5); // Prints 5. |
| 57 // |
| 58 // /* Binding a reference. */ |
| 59 // int Identity(int n) { return n; } |
| 60 // int value = 1; |
| 61 // Callback<int(void)> bound_copy_cb = Prebind(&Identity, value); |
| 62 // Callback<int(void)> bound_ref_cb = Prebind(&Identity, ConstRef(value)); |
| 63 // LOG(INFO) << bound_copy_cb.Run(); // Prints 1. |
| 64 // LOG(INFO) << bound_ref_cb.Run(); // Prints 1. |
| 65 // value = 2; |
| 66 // LOG(INFO) << bound_copy_cb.Run(); // Prints 1. |
| 67 // LOG(INFO) << bound_ref_cb.Run(); // Prints 2. |
| 68 // |
| 69 // |
| 70 // WHERE IS THIS DESIGN FROM: |
| 71 // |
| 72 // The design Callback and Prebind is heavily influenced by C++'s |
| 73 // tr1::function/tr1::bind, and by the "Google Callback" system used inside |
| 74 // Google. |
| 75 // |
| 76 // |
| 77 // HOW THE IMPLEMENTATION WORKS: |
| 78 // |
| 79 // There are three main components to the system: |
| 80 // 1) The Callback classes. |
| 81 // 2) The Prebind() functions. |
| 82 // 3) The arguments wrappers (eg., Unretained() and ConstRef()). |
| 83 // |
| 84 // The Callback classes represent a generic function pointer. Internally, |
| 85 // it stores a refcounted piece of state that represents the target function |
| 86 // and all its bound parameters. Each Callback specialization has a templated |
| 87 // constructor that takes an InvokerStorageHolder<> object. In the context of |
| 88 // the constructor, the static type of this InvokerStorageHolder<> object |
| 89 // uniquely identifies the function it is representing, all its bound |
| 90 // parameters, and a DoInvoke that is capable of invoking the target. |
| 91 // |
| 92 // Callback's constructor is takes the InvokerStorageHolder<> that has the |
| 93 // full static type and erases the target function type, and the bound |
| 94 // parameters. It does this by storing a pointer to the specific DoInvoke |
| 95 // function, and upcasting the state of InvokerStorageHolder<> to a |
| 96 // InvokerStorageBase. This is safe as long as this InvokerStorageBase pointer |
| 97 // is only used with the stored DoInvoke pointer. |
| 98 // |
| 99 // To create InvokerStorageHolder<> objects, we use the Prebind() functions. |
| 100 // These functions, along with a set of internal templates, are reponsible for |
| 101 // |
| 102 // - Unwrapping the function signature into return type, and parameters |
| 103 // - Determining the number of parameters that are bound |
| 104 // - Creating the storage for the bound parameters |
| 105 // - Performing compile-time asserts to avoid error-prone behavior |
| 106 // - Returning an InvokerStorageHolder<> with an DoInvoke that has an arity |
| 107 // matching the number of unbound parameters, and knows the correct |
| 108 // refcounting semantics for the target object if we are binding a class |
| 109 // method. |
| 110 // |
| 111 // The Prebind functions do the above using type-inference, and template |
| 112 // specializations. |
| 113 // |
| 114 // By default Prebind() will store copies of all bound parameters, and attempt |
| 115 // to refcount a target object if the function being bound is a class method. |
| 116 // |
| 117 // To change this behavior, we introduce a set of argument wrappers |
| 118 // (eg. Unretained(), and ConstRef()). These are simple container templates |
| 119 // that are passed by value, and wrap a pointer to argument. |
| 120 // |
| 121 // ConstRef() allows Prebind()'s storage to preserve copy-semantics even if we |
| 122 // wish to pass the invoked object a reference to the bound parameter. |
| 123 // |
| 124 // Unretained() allows us to tag an object for different refcounting semantics. |
| 125 // |
| 126 // These types are passed to the Unwrap() functions, and the MaybeRefcount() |
| 127 // functions respectively to modify the behavior of Prebind(). The Unwrap() |
| 128 // and MaybeRefcount() functions change behavior by doing partial |
| 129 // specialization based on whether or not a parameter is a wrapper type. |
| 130 // |
| 131 // ConstRef() is similar to tr1::cref. Unretained() is specific to Chromium. |
| 132 // |
| 133 // |
| 134 // WHY NOT TR1 FUNCTION/BIND? |
| 135 // |
| 136 // Direct use of tr1::function and tr1::bind was considered, but ultimately |
| 137 // rejected because of the number of copy constructors invocations involved |
| 138 // in the binding of arguments during construction, and the forwarding of |
| 139 // arguments during invocation. These copies will no longer be an issue in |
| 140 // C++0x because C++0x will support rvalue reference allowing for the compiler |
| 141 // to avoid these copies. However, waiting for C++0x is not an option. |
| 142 // |
| 143 // Measured with valgrind on gcc version 4.4.3 (Ubuntu 4.4.3-4ubuntu5), the |
| 144 // tr1::bind call itself will invoke a non-trivial copy constructor three times |
| 145 // for each bound parameter. Also, each when passing a tr1::function, each |
| 146 // bound argument will be copied again. |
| 147 // |
| 148 // In addition to the copies taken at binding and invocation, copying a |
| 149 // tr1::function causes a copy to be made of all the bound parameters and |
| 150 // state. |
| 151 // |
| 152 // Furthermore, in Chromium, it is desirable for the Callback to take a |
| 153 // reference on a target object when representing a class method call. This |
| 154 // is not supported by tr1. |
| 155 // |
| 156 // Lastly, tr1::function and tr1::bind has a more general and flexible API. |
| 157 // This includes things like argument reordering by use of |
| 158 // tr1::bind::placeholder, support for non-const reference parameters, and some |
| 159 // limited amount of subtyping of the tr1::function object (eg., |
| 160 // tr1::function<int(int)> is convertable to tr1::function<void(int)>). |
| 161 // |
| 162 // These are not features that are required in Chromium. Some of them, such as |
| 163 // allowing for reference parameters, and subtyping of functions, may actually |
| 164 // because a source of errors. Removing support for these features actually |
| 165 // allows for a simpler implementation, and a terser Currying API. |
| 166 // |
| 167 // |
| 168 // WHY NOT GOOGLE CALLBACKS? |
| 169 // |
| 170 // The Google callback system also does not support refcounting. Furthermore, |
| 171 // its implementation has a number of strange edge cases with respect to type |
| 172 // convesrion of its arguments. In particular, the argument's constness must |
| 173 // at times match exactly the function signature, or the type-inference might |
| 174 // break. Given the above, writing a custom solution was easier. |
| 175 // |
| 176 // |
| 177 // MISSING FUNCTIONALITY |
| 178 // - Invoking the return of Prebind. Prebind(&foo).Run() does not work; |
| 179 // - Binding arrays to functions that take a non-const pointer. |
| 180 // Example: |
| 181 // void Foo(const char* ptr); |
| 182 // void Bar(char* ptr); |
| 183 // Prebind(&Foo, "test"); |
| 184 // Prebind(&Bar, "tesT"); // This fails because ptr is not const. |
| 185 |
| 186 namespace base { |
| 187 |
| 188 // First, we forward declare the Callback class template. This informs the |
| 189 // compiler that the template only has 1 type parameter which is the function |
| 190 // signature that the Callback is representing. |
| 191 // |
| 192 // After this, create template specializations for 0-$(MAX_ARITY) parameters. No
te that |
| 193 // even though the template typelist grows, the specialization still |
| 194 // only has one type: the function signature. |
| 195 // |
| 196 // Also, note that the templated constructor should *not* be explicit. This is |
| 197 // to allow for a natural assignment syntax from the result of Prebind(), which |
| 198 // is not the same type as Callback(). See the description of Prebind for |
| 199 // details. |
| 200 template <typename Sig> |
| 201 class Callback; |
| 202 |
| 203 |
| 204 $range ARITY 0..MAX_ARITY |
| 205 $for ARITY [[ |
| 206 $range ARG 1..ARITY |
| 207 |
| 208 $if ARITY == 0 [[ |
| 209 template <typename R> |
| 210 class Callback<R(void)> { |
| 211 ]] $else [[ |
| 212 template <typename R, $for ARG , [[typename A$(ARG)]]> |
| 213 class Callback<R($for ARG , [[A$(ARG)]])> { |
| 214 ]] |
| 215 |
| 216 public: |
| 217 Callback() : polymorphic_invoke_(NULL) { } |
| 218 |
| 219 typedef R(*PolymorphicInvoke)(internal::InvokerStorageBase*[[]] |
| 220 $if ARITY != 0 [[, ]] $for ARG , [[const A$(ARG)&]]); |
| 221 |
| 222 template <typename T> |
| 223 Callback(const internal::InvokerStorageHolder<T>& invoker_holder) |
| 224 : polymorphic_invoke_(&T::FunctionTraits::DoInvoke) { |
| 225 invoker_storage_.swap(invoker_holder.invoker_storage_); |
| 226 } |
| 227 |
| 228 |
| 229 $if ARITY == 0 [[ |
| 230 R Run(void) { |
| 231 ]] $else [[ |
| 232 R Run($for ARG , [[const A$(ARG)& a$(ARG)]]) { |
| 233 ]] |
| 234 |
| 235 return polymorphic_invoke_(invoker_storage_.get()[[]] |
| 236 $if ARITY != 0 [[, ]] $for ARG , [[a$(ARG)]]); |
| 237 } |
| 238 |
| 239 private: |
| 240 scoped_refptr<internal::InvokerStorageBase> invoker_storage_; |
| 241 PolymorphicInvoke polymorphic_invoke_; |
| 242 }; |
| 243 |
| 244 |
| 245 ]] $$ for ARITY |
| 246 |
| 247 // Syntactic sugar to make Callbacks<void(void)> easier to declare since it |
| 248 // will be used in a lot of APIs with delayed execution. |
| 249 typedef Callback<void(void)> Closure; |
| 250 |
| 251 } // namespace base |
| 252 |
| 253 #endif // BASE_UBER_CALLBACK_H |
OLD | NEW |