Index: src/ia32/code-stubs-ia32.cc |
=================================================================== |
--- src/ia32/code-stubs-ia32.cc (revision 6082) |
+++ src/ia32/code-stubs-ia32.cc (working copy) |
@@ -2472,41 +2472,66 @@ |
void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
- // Input on stack: |
- // esp[4]: argument (should be number). |
- // esp[0]: return address. |
- // Test that eax is a number. |
+ // TAGGED case: |
+ // Input: |
+ // esp[4]: tagged number input argument (should be number). |
+ // esp[0]: return address. |
+ // Output: |
+ // eax: tagged double result. |
+ // UNTAGGED case: |
+ // Input:: |
+ // esp[0]: return address. |
+ // xmm1: untagged double input argument |
+ // Output: |
+ // xmm1: untagged double result. |
+ |
Label runtime_call; |
Label runtime_call_clear_stack; |
- NearLabel input_not_smi; |
- NearLabel loaded; |
- __ mov(eax, Operand(esp, kPointerSize)); |
- __ test(eax, Immediate(kSmiTagMask)); |
- __ j(not_zero, &input_not_smi); |
- // Input is a smi. Untag and load it onto the FPU stack. |
- // Then load the low and high words of the double into ebx, edx. |
- STATIC_ASSERT(kSmiTagSize == 1); |
- __ sar(eax, 1); |
- __ sub(Operand(esp), Immediate(2 * kPointerSize)); |
- __ mov(Operand(esp, 0), eax); |
- __ fild_s(Operand(esp, 0)); |
- __ fst_d(Operand(esp, 0)); |
- __ pop(edx); |
- __ pop(ebx); |
- __ jmp(&loaded); |
- __ bind(&input_not_smi); |
- // Check if input is a HeapNumber. |
- __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
- __ cmp(Operand(ebx), Immediate(Factory::heap_number_map())); |
- __ j(not_equal, &runtime_call); |
- // Input is a HeapNumber. Push it on the FPU stack and load its |
- // low and high words into ebx, edx. |
- __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
- __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); |
- __ mov(ebx, FieldOperand(eax, HeapNumber::kMantissaOffset)); |
+ Label skip_cache; |
+ Label call_runtime; |
+ const bool tagged = (argument_type_ == TAGGED); |
+ if (tagged) { |
+ // Test that eax is a number. |
+ NearLabel input_not_smi; |
+ NearLabel loaded; |
+ __ mov(eax, Operand(esp, kPointerSize)); |
+ __ test(eax, Immediate(kSmiTagMask)); |
+ __ j(not_zero, &input_not_smi); |
+ // Input is a smi. Untag and load it onto the FPU stack. |
+ // Then load the low and high words of the double into ebx, edx. |
+ STATIC_ASSERT(kSmiTagSize == 1); |
+ __ sar(eax, 1); |
+ __ sub(Operand(esp), Immediate(2 * kPointerSize)); |
+ __ mov(Operand(esp, 0), eax); |
+ __ fild_s(Operand(esp, 0)); |
+ __ fst_d(Operand(esp, 0)); |
+ __ pop(edx); |
+ __ pop(ebx); |
+ __ jmp(&loaded); |
+ __ bind(&input_not_smi); |
+ // Check if input is a HeapNumber. |
+ __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
+ __ cmp(Operand(ebx), Immediate(Factory::heap_number_map())); |
+ __ j(not_equal, &runtime_call); |
+ // Input is a HeapNumber. Push it on the FPU stack and load its |
+ // low and high words into ebx, edx. |
+ __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
+ __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); |
+ __ mov(ebx, FieldOperand(eax, HeapNumber::kMantissaOffset)); |
- __ bind(&loaded); |
- // ST[0] == double value |
+ __ bind(&loaded); |
+ } else { // UNTAGGED. |
+ if (CpuFeatures::IsSupported(SSE4_1)) { |
+ CpuFeatures::Scope sse4_scope(SSE4_1); |
+ __ pextrd(Operand(edx), xmm1, 0x1); // copy xmm1[63..32] to edx. |
+ } else { |
+ __ pshufd(xmm0, xmm1, 0x1); |
+ __ movd(Operand(edx), xmm0); |
+ } |
+ __ movd(Operand(ebx), xmm1); |
+ } |
+ |
+ // ST[0] or xmm1 == double value |
// ebx = low 32 bits of double value |
// edx = high 32 bits of double value |
// Compute hash (the shifts are arithmetic): |
@@ -2522,7 +2547,7 @@ |
ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize)); |
__ and_(Operand(ecx), Immediate(TranscendentalCache::kCacheSize - 1)); |
- // ST[0] == double value. |
+ // ST[0] or xmm1 == double value. |
// ebx = low 32 bits of double value. |
// edx = high 32 bits of double value. |
// ecx = TranscendentalCache::hash(double value). |
@@ -2559,31 +2584,72 @@ |
__ j(not_equal, &cache_miss); |
// Cache hit! |
__ mov(eax, Operand(ecx, 2 * kIntSize)); |
- __ fstp(0); |
- __ ret(kPointerSize); |
+ if (tagged) { |
+ __ fstp(0); |
+ __ ret(kPointerSize); |
+ } else { // UNTAGGED. |
+ __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
+ __ Ret(); |
+ } |
__ bind(&cache_miss); |
// Update cache with new value. |
// We are short on registers, so use no_reg as scratch. |
// This gives slightly larger code. |
- __ AllocateHeapNumber(eax, edi, no_reg, &runtime_call_clear_stack); |
+ if (tagged) { |
+ __ AllocateHeapNumber(eax, edi, no_reg, &runtime_call_clear_stack); |
+ } else { // UNTAGGED. |
+ __ AllocateHeapNumber(eax, edi, no_reg, &skip_cache); |
+ __ sub(Operand(esp), Immediate(kDoubleSize)); |
+ __ movdbl(Operand(esp, 0), xmm1); |
+ __ fld_d(Operand(esp, 0)); |
+ __ add(Operand(esp), Immediate(kDoubleSize)); |
+ } |
GenerateOperation(masm); |
__ mov(Operand(ecx, 0), ebx); |
__ mov(Operand(ecx, kIntSize), edx); |
__ mov(Operand(ecx, 2 * kIntSize), eax); |
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
- __ ret(kPointerSize); |
+ if (tagged) { |
+ __ ret(kPointerSize); |
+ } else { // UNTAGGED. |
+ __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
+ __ Ret(); |
- __ bind(&runtime_call_clear_stack); |
- __ fstp(0); |
- __ bind(&runtime_call); |
- __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1); |
+ // Skip cache and return answer directly, only in untagged case. |
+ __ bind(&skip_cache); |
+ __ sub(Operand(esp), Immediate(kDoubleSize)); |
+ __ movdbl(Operand(esp, 0), xmm1); |
+ __ fld_d(Operand(esp, 0)); |
+ GenerateOperation(masm); |
+ __ fstp_d(Operand(esp, 0)); |
+ __ movdbl(xmm1, Operand(esp, 0)); |
+ __ add(Operand(esp), Immediate(kDoubleSize)); |
+ __ Ret(); |
+ } |
+ |
+ // Call runtime, doing whatever allocation and cleanup is necessary. |
+ if (tagged) { |
+ __ bind(&runtime_call_clear_stack); |
+ __ fstp(0); |
+ __ bind(&runtime_call); |
+ __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1); |
+ } else { // UNTAGGED. |
+ __ bind(&call_runtime); |
+ __ AllocateHeapNumber(eax, edi, no_reg, &skip_cache); |
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm1); |
+ __ EnterInternalFrame(); |
+ __ push(eax); |
+ __ CallRuntime(RuntimeFunction(), 1); |
+ __ LeaveInternalFrame(); |
+ __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
+ __ Ret(); |
+ } |
} |
Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { |
switch (type_) { |
- // Add more cases when necessary. |
case TranscendentalCache::SIN: return Runtime::kMath_sin; |
case TranscendentalCache::COS: return Runtime::kMath_cos; |
case TranscendentalCache::LOG: return Runtime::kMath_log; |
@@ -2596,14 +2662,14 @@ |
void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm) { |
// Only free register is edi. |
- // Input value is on FP stack, and also in ebx/edx. Address of result |
- // (a newly allocated HeapNumber) is in eax. |
- NearLabel done; |
+ // Input value is on FP stack, and also in ebx/edx. |
+ // Input value is possibly in xmm1. |
+ // Address of result (a newly allocated HeapNumber) may be in eax. |
if (type_ == TranscendentalCache::SIN || type_ == TranscendentalCache::COS) { |
// Both fsin and fcos require arguments in the range +/-2^63 and |
// return NaN for infinities and NaN. They can share all code except |
// the actual fsin/fcos operation. |
- NearLabel in_range; |
+ NearLabel in_range, done; |
// If argument is outside the range -2^63..2^63, fsin/cos doesn't |
// work. We must reduce it to the appropriate range. |
__ mov(edi, edx); |
@@ -2683,145 +2749,6 @@ |
} |
-void TranscendentalCacheSSE2Stub::Generate(MacroAssembler* masm) { |
- // Input on stack: |
- // esp[0]: return address. |
- // Input in registers: |
- // xmm1: untagged double input argument. |
- // Output: |
- // xmm1: untagged double result. |
- Label skip_cache; |
- Label call_runtime; |
- |
- // Input is an untagged double in xmm1. |
- // Compute hash (the shifts are arithmetic): |
- // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); |
- if (CpuFeatures::IsSupported(SSE4_1)) { |
- CpuFeatures::Scope sse4_scope(SSE4_1); |
- __ pextrd(Operand(edx), xmm1, 0x1); // copy xmm1[63..32] to edx. |
- } else { |
- __ pshufd(xmm0, xmm1, 0x1); |
- __ movd(Operand(edx), xmm0); |
- } |
- __ movd(Operand(ebx), xmm1); |
- |
- // xmm1 = double value |
- // ebx = low 32 bits of double value |
- // edx = high 32 bits of double value |
- // Compute hash (the shifts are arithmetic): |
- // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); |
- __ mov(ecx, ebx); |
- __ xor_(ecx, Operand(edx)); |
- __ mov(eax, ecx); |
- __ sar(eax, 16); |
- __ xor_(ecx, Operand(eax)); |
- __ mov(eax, ecx); |
- __ sar(eax, 8); |
- __ xor_(ecx, Operand(eax)); |
- ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize)); |
- __ and_(Operand(ecx), Immediate(TranscendentalCache::kCacheSize - 1)); |
- |
- // xmm1 = double value. |
- // ebx = low 32 bits of double value. |
- // edx = high 32 bits of double value. |
- // ecx = TranscendentalCache::hash(double value). |
- __ mov(eax, |
- Immediate(ExternalReference::transcendental_cache_array_address())); |
- // Eax points to cache array. |
- __ mov(eax, Operand(eax, type_ * sizeof(TranscendentalCache::caches_[0]))); |
- // Eax points to the cache for the type type_. |
- // If NULL, the cache hasn't been initialized yet, so go through runtime. |
- __ test(eax, Operand(eax)); |
- __ j(zero, &call_runtime); |
-#ifdef DEBUG |
- // Check that the layout of cache elements match expectations. |
- { TranscendentalCache::Element test_elem[2]; |
- char* elem_start = reinterpret_cast<char*>(&test_elem[0]); |
- char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); |
- char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); |
- char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); |
- char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); |
- CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. |
- CHECK_EQ(0, elem_in0 - elem_start); |
- CHECK_EQ(kIntSize, elem_in1 - elem_start); |
- CHECK_EQ(2 * kIntSize, elem_out - elem_start); |
- } |
-#endif |
- // Find the address of the ecx'th entry in the cache, i.e., &eax[ecx*12]. |
- __ lea(ecx, Operand(ecx, ecx, times_2, 0)); |
- __ lea(ecx, Operand(eax, ecx, times_4, 0)); |
- // Check if cache matches: Double value is stored in uint32_t[2] array. |
- NearLabel cache_miss; |
- __ cmp(ebx, Operand(ecx, 0)); |
- __ j(not_equal, &cache_miss); |
- __ cmp(edx, Operand(ecx, kIntSize)); |
- __ j(not_equal, &cache_miss); |
- // Cache hit! |
- __ mov(eax, Operand(ecx, 2 * kIntSize)); |
- __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
- __ Ret(); |
- |
- __ bind(&cache_miss); |
- // Update cache with new value. |
- // We are short on registers, so use no_reg as scratch. |
- // This gives slightly larger code. |
- __ AllocateHeapNumber(eax, edi, no_reg, &skip_cache); |
- __ sub(Operand(esp), Immediate(kDoubleSize)); |
- __ movdbl(Operand(esp, 0), xmm1); |
- __ fld_d(Operand(esp, 0)); |
- __ add(Operand(esp), Immediate(kDoubleSize)); |
- GenerateOperation(masm); |
- __ mov(Operand(ecx, 0), ebx); |
- __ mov(Operand(ecx, kIntSize), edx); |
- __ mov(Operand(ecx, 2 * kIntSize), eax); |
- __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
- __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
- __ Ret(); |
- |
- __ bind(&skip_cache); |
- __ sub(Operand(esp), Immediate(kDoubleSize)); |
- __ movdbl(Operand(esp, 0), xmm1); |
- __ fld_d(Operand(esp, 0)); |
- GenerateOperation(masm); |
- __ fstp_d(Operand(esp, 0)); |
- __ movdbl(xmm1, Operand(esp, 0)); |
- __ add(Operand(esp), Immediate(kDoubleSize)); |
- __ Ret(); |
- |
- __ bind(&call_runtime); |
- __ AllocateHeapNumber(eax, edi, no_reg, &skip_cache); |
- __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm1); |
- __ EnterInternalFrame(); |
- __ push(eax); |
- __ CallRuntime(RuntimeFunction(), 1); |
- __ LeaveInternalFrame(); |
- __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
- __ Ret(); |
-} |
- |
- |
-Runtime::FunctionId TranscendentalCacheSSE2Stub::RuntimeFunction() { |
- switch (type_) { |
- // Add more cases when necessary. |
- case TranscendentalCache::LOG: return Runtime::kMath_log; |
- default: |
- UNIMPLEMENTED(); |
- return Runtime::kAbort; |
- } |
-} |
- |
- |
-void TranscendentalCacheSSE2Stub::GenerateOperation(MacroAssembler* masm) { |
- // Only free register is edi. |
- // Input value is on FP stack and in xmm1. |
- |
- ASSERT(type_ == TranscendentalCache::LOG); |
- __ fldln2(); |
- __ fxch(); |
- __ fyl2x(); |
-} |
- |
- |
// Get the integer part of a heap number. Surprisingly, all this bit twiddling |
// is faster than using the built-in instructions on floating point registers. |
// Trashes edi and ebx. Dest is ecx. Source cannot be ecx or one of the |