OLD | NEW |
1 // Copyright (c) 1994-2006 Sun Microsystems Inc. | 1 // Copyright (c) 1994-2006 Sun Microsystems Inc. |
2 // All Rights Reserved. | 2 // All Rights Reserved. |
3 // | 3 // |
4 // Redistribution and use in source and binary forms, with or without | 4 // Redistribution and use in source and binary forms, with or without |
5 // modification, are permitted provided that the following conditions | 5 // modification, are permitted provided that the following conditions |
6 // are met: | 6 // are met: |
7 // | 7 // |
8 // - Redistributions of source code must retain the above copyright notice, | 8 // - Redistributions of source code must retain the above copyright notice, |
9 // this list of conditions and the following disclaimer. | 9 // this list of conditions and the following disclaimer. |
10 // | 10 // |
(...skipping 12 matching lines...) Expand all Loading... |
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | 23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | 24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | 25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | 26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
31 // OF THE POSSIBILITY OF SUCH DAMAGE. | 31 // OF THE POSSIBILITY OF SUCH DAMAGE. |
32 | 32 |
33 // The original source code covered by the above license above has been modified | 33 // The original source code covered by the above license above has been |
34 // significantly by Google Inc. | 34 // modified significantly by Google Inc. |
35 // Copyright 2006-2008 the V8 project authors. All rights reserved. | 35 // Copyright 2010 the V8 project authors. All rights reserved. |
36 | 36 |
37 #include "v8.h" | 37 #include "v8.h" |
38 | 38 |
39 #include "arm/assembler-thumb2-inl.h" | 39 #include "arm/assembler-thumb2-inl.h" |
40 #include "serialize.h" | 40 #include "serialize.h" |
41 | 41 |
42 namespace v8 { | 42 namespace v8 { |
43 namespace internal { | 43 namespace internal { |
44 | 44 |
45 // Safe default is no features. | 45 // Safe default is no features. |
46 unsigned CpuFeatures::supported_ = 0; | 46 unsigned CpuFeatures::supported_ = 0; |
47 unsigned CpuFeatures::enabled_ = 0; | 47 unsigned CpuFeatures::enabled_ = 0; |
48 unsigned CpuFeatures::found_by_runtime_probing_ = 0; | 48 unsigned CpuFeatures::found_by_runtime_probing_ = 0; |
49 | 49 |
50 void CpuFeatures::Probe() { | 50 void CpuFeatures::Probe() { |
51 // If the compiler is allowed to use vfp then we can use vfp too in our | 51 // If the compiler is allowed to use vfp then we can use vfp too in our |
52 // code generation. | 52 // code generation. |
53 #if !defined(__arm__) | 53 #if !defined(__arm__) |
54 // For the simulator=arm build, always use VFP since the arm simulator has | 54 // For the simulator=arm build, use VFP when FLAG_enable_vfp3 is enabled. |
55 // VFP support. | 55 if (FLAG_enable_vfp3) { |
56 supported_ |= 1u << VFP3; | 56 supported_ |= 1u << VFP3; |
| 57 } |
| 58 // For the simulator=arm build, use ARMv7 when FLAG_enable_armv7 is enabled |
| 59 if (FLAG_enable_armv7) { |
| 60 supported_ |= 1u << ARMv7; |
| 61 } |
57 #else | 62 #else |
58 if (Serializer::enabled()) { | 63 if (Serializer::enabled()) { |
59 supported_ |= OS::CpuFeaturesImpliedByPlatform(); | 64 supported_ |= OS::CpuFeaturesImpliedByPlatform(); |
60 return; // No features if we might serialize. | 65 return; // No features if we might serialize. |
61 } | 66 } |
62 | 67 |
63 if (OS::ArmCpuHasFeature(VFP3)) { | 68 if (OS::ArmCpuHasFeature(VFP3)) { |
64 // This implementation also sets the VFP flags if | 69 // This implementation also sets the VFP flags if |
65 // runtime detection of VFP returns true. | 70 // runtime detection of VFP returns true. |
66 supported_ |= 1u << VFP3; | 71 supported_ |= 1u << VFP3; |
67 found_by_runtime_probing_ |= 1u << VFP3; | 72 found_by_runtime_probing_ |= 1u << VFP3; |
68 } | 73 } |
| 74 |
| 75 if (OS::ArmCpuHasFeature(ARMv7)) { |
| 76 supported_ |= 1u << ARMv7; |
| 77 found_by_runtime_probing_ |= 1u << ARMv7; |
| 78 } |
69 #endif | 79 #endif |
70 } | 80 } |
71 | 81 |
72 | 82 |
73 // ----------------------------------------------------------------------------- | 83 // ----------------------------------------------------------------------------- |
74 // Implementation of Register and CRegister | 84 // Implementation of Register and CRegister |
75 | 85 |
76 Register no_reg = { -1 }; | 86 Register no_reg = { -1 }; |
77 | 87 |
78 Register r0 = { 0 }; | 88 Register r0 = { 0 }; |
79 Register r1 = { 1 }; | 89 Register r1 = { 1 }; |
80 Register r2 = { 2 }; | 90 Register r2 = { 2 }; |
81 Register r3 = { 3 }; | 91 Register r3 = { 3 }; |
82 Register r4 = { 4 }; | 92 Register r4 = { 4 }; |
83 Register r5 = { 5 }; | 93 Register r5 = { 5 }; |
84 Register r6 = { 6 }; | 94 Register r6 = { 6 }; |
85 Register r7 = { 7 }; | 95 Register r7 = { 7 }; |
86 Register r8 = { 8 }; | 96 Register r8 = { 8 }; // Used as context register. |
87 Register r9 = { 9 }; | 97 Register r9 = { 9 }; |
88 Register r10 = { 10 }; | 98 Register r10 = { 10 }; // Used as roots register. |
89 Register fp = { 11 }; | 99 Register fp = { 11 }; |
90 Register ip = { 12 }; | 100 Register ip = { 12 }; |
91 Register sp = { 13 }; | 101 Register sp = { 13 }; |
92 Register lr = { 14 }; | 102 Register lr = { 14 }; |
93 Register pc = { 15 }; | 103 Register pc = { 15 }; |
94 | 104 |
95 | 105 |
96 CRegister no_creg = { -1 }; | 106 CRegister no_creg = { -1 }; |
97 | 107 |
98 CRegister cr0 = { 0 }; | 108 CRegister cr0 = { 0 }; |
(...skipping 158 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
257 ASSERT(is_uint5(shift_imm)); | 267 ASSERT(is_uint5(shift_imm)); |
258 rn_ = rn; | 268 rn_ = rn; |
259 rm_ = rm; | 269 rm_ = rm; |
260 shift_op_ = shift_op; | 270 shift_op_ = shift_op; |
261 shift_imm_ = shift_imm & 31; | 271 shift_imm_ = shift_imm & 31; |
262 am_ = am; | 272 am_ = am; |
263 } | 273 } |
264 | 274 |
265 | 275 |
266 // ----------------------------------------------------------------------------- | 276 // ----------------------------------------------------------------------------- |
267 // Implementation of Assembler | 277 // Implementation of Assembler. |
268 | 278 |
269 // Instruction encoding bits | 279 // Instruction encoding bits. |
270 enum { | 280 enum { |
271 H = 1 << 5, // halfword (or byte) | 281 H = 1 << 5, // halfword (or byte) |
272 S6 = 1 << 6, // signed (or unsigned) | 282 S6 = 1 << 6, // signed (or unsigned) |
273 L = 1 << 20, // load (or store) | 283 L = 1 << 20, // load (or store) |
274 S = 1 << 20, // set condition code (or leave unchanged) | 284 S = 1 << 20, // set condition code (or leave unchanged) |
275 W = 1 << 21, // writeback base register (or leave unchanged) | 285 W = 1 << 21, // writeback base register (or leave unchanged) |
276 A = 1 << 21, // accumulate in multiply instruction (or not) | 286 A = 1 << 21, // accumulate in multiply instruction (or not) |
277 B = 1 << 22, // unsigned byte (or word) | 287 B = 1 << 22, // unsigned byte (or word) |
278 N = 1 << 22, // long (or short) | 288 N = 1 << 22, // long (or short) |
279 U = 1 << 23, // positive (or negative) offset/index | 289 U = 1 << 23, // positive (or negative) offset/index |
(...skipping 12 matching lines...) Expand all Loading... |
292 B19 = 1 << 19, | 302 B19 = 1 << 19, |
293 B20 = 1 << 20, | 303 B20 = 1 << 20, |
294 B21 = 1 << 21, | 304 B21 = 1 << 21, |
295 B22 = 1 << 22, | 305 B22 = 1 << 22, |
296 B23 = 1 << 23, | 306 B23 = 1 << 23, |
297 B24 = 1 << 24, | 307 B24 = 1 << 24, |
298 B25 = 1 << 25, | 308 B25 = 1 << 25, |
299 B26 = 1 << 26, | 309 B26 = 1 << 26, |
300 B27 = 1 << 27, | 310 B27 = 1 << 27, |
301 | 311 |
302 // Instruction bit masks | 312 // Instruction bit masks. |
303 RdMask = 15 << 12, // in str instruction | 313 RdMask = 15 << 12, // in str instruction |
304 CondMask = 15 << 28, | 314 CondMask = 15 << 28, |
305 CoprocessorMask = 15 << 8, | 315 CoprocessorMask = 15 << 8, |
306 OpCodeMask = 15 << 21, // in data-processing instructions | 316 OpCodeMask = 15 << 21, // in data-processing instructions |
307 Imm24Mask = (1 << 24) - 1, | 317 Imm24Mask = (1 << 24) - 1, |
308 Off12Mask = (1 << 12) - 1, | 318 Off12Mask = (1 << 12) - 1, |
309 // Reserved condition | 319 // Reserved condition. |
310 nv = 15 << 28 | 320 nv = 15 << 28 |
311 }; | 321 }; |
312 | 322 |
313 | 323 |
314 // add(sp, sp, 4) instruction (aka Pop()) | 324 // add(sp, sp, 4) instruction (aka Pop()) |
315 static const Instr kPopInstruction = | 325 static const Instr kPopInstruction = |
316 al | 4 * B21 | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12; | 326 al | 4 * B21 | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12; |
317 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r)) | 327 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r)) |
318 // register r is not encoded. | 328 // register r is not encoded. |
319 static const Instr kPushRegPattern = | 329 static const Instr kPushRegPattern = |
320 al | B26 | 4 | NegPreIndex | sp.code() * B16; | 330 al | B26 | 4 | NegPreIndex | sp.code() * B16; |
321 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r)) | 331 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r)) |
322 // register r is not encoded. | 332 // register r is not encoded. |
323 static const Instr kPopRegPattern = | 333 static const Instr kPopRegPattern = |
324 al | B26 | L | 4 | PostIndex | sp.code() * B16; | 334 al | B26 | L | 4 | PostIndex | sp.code() * B16; |
325 // mov lr, pc | 335 // mov lr, pc |
326 const Instr kMovLrPc = al | 13*B21 | pc.code() | lr.code() * B12; | 336 const Instr kMovLrPc = al | 13*B21 | pc.code() | lr.code() * B12; |
327 // ldr pc, [pc, #XXX] | 337 // ldr pc, [pc, #XXX] |
328 const Instr kLdrPCPattern = al | B26 | L | pc.code() * B16; | 338 const Instr kLdrPCPattern = al | B26 | L | pc.code() * B16; |
329 | 339 |
330 // spare_buffer_ | 340 // Spare buffer. |
331 static const int kMinimalBufferSize = 4*KB; | 341 static const int kMinimalBufferSize = 4*KB; |
332 static byte* spare_buffer_ = NULL; | 342 static byte* spare_buffer_ = NULL; |
333 | 343 |
334 Assembler::Assembler(void* buffer, int buffer_size) { | 344 Assembler::Assembler(void* buffer, int buffer_size) { |
335 if (buffer == NULL) { | 345 if (buffer == NULL) { |
336 // do our own buffer management | 346 // Do our own buffer management. |
337 if (buffer_size <= kMinimalBufferSize) { | 347 if (buffer_size <= kMinimalBufferSize) { |
338 buffer_size = kMinimalBufferSize; | 348 buffer_size = kMinimalBufferSize; |
339 | 349 |
340 if (spare_buffer_ != NULL) { | 350 if (spare_buffer_ != NULL) { |
341 buffer = spare_buffer_; | 351 buffer = spare_buffer_; |
342 spare_buffer_ = NULL; | 352 spare_buffer_ = NULL; |
343 } | 353 } |
344 } | 354 } |
345 if (buffer == NULL) { | 355 if (buffer == NULL) { |
346 buffer_ = NewArray<byte>(buffer_size); | 356 buffer_ = NewArray<byte>(buffer_size); |
347 } else { | 357 } else { |
348 buffer_ = static_cast<byte*>(buffer); | 358 buffer_ = static_cast<byte*>(buffer); |
349 } | 359 } |
350 buffer_size_ = buffer_size; | 360 buffer_size_ = buffer_size; |
351 own_buffer_ = true; | 361 own_buffer_ = true; |
352 | 362 |
353 } else { | 363 } else { |
354 // use externally provided buffer instead | 364 // Use externally provided buffer instead. |
355 ASSERT(buffer_size > 0); | 365 ASSERT(buffer_size > 0); |
356 buffer_ = static_cast<byte*>(buffer); | 366 buffer_ = static_cast<byte*>(buffer); |
357 buffer_size_ = buffer_size; | 367 buffer_size_ = buffer_size; |
358 own_buffer_ = false; | 368 own_buffer_ = false; |
359 } | 369 } |
360 | 370 |
361 // setup buffer pointers | 371 // Setup buffer pointers. |
362 ASSERT(buffer_ != NULL); | 372 ASSERT(buffer_ != NULL); |
363 pc_ = buffer_; | 373 pc_ = buffer_; |
364 reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); | 374 reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); |
365 num_prinfo_ = 0; | 375 num_prinfo_ = 0; |
366 next_buffer_check_ = 0; | 376 next_buffer_check_ = 0; |
367 no_const_pool_before_ = 0; | 377 no_const_pool_before_ = 0; |
368 last_const_pool_end_ = 0; | 378 last_const_pool_end_ = 0; |
369 last_bound_pos_ = 0; | 379 last_bound_pos_ = 0; |
370 current_statement_position_ = RelocInfo::kNoPosition; | 380 current_statement_position_ = RelocInfo::kNoPosition; |
371 current_position_ = RelocInfo::kNoPosition; | 381 current_position_ = RelocInfo::kNoPosition; |
372 written_statement_position_ = current_statement_position_; | 382 written_statement_position_ = current_statement_position_; |
373 written_position_ = current_position_; | 383 written_position_ = current_position_; |
374 } | 384 } |
375 | 385 |
376 | 386 |
377 Assembler::~Assembler() { | 387 Assembler::~Assembler() { |
378 if (own_buffer_) { | 388 if (own_buffer_) { |
379 if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { | 389 if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { |
380 spare_buffer_ = buffer_; | 390 spare_buffer_ = buffer_; |
381 } else { | 391 } else { |
382 DeleteArray(buffer_); | 392 DeleteArray(buffer_); |
383 } | 393 } |
384 } | 394 } |
385 } | 395 } |
386 | 396 |
387 | 397 |
388 void Assembler::GetCode(CodeDesc* desc) { | 398 void Assembler::GetCode(CodeDesc* desc) { |
389 // emit constant pool if necessary | 399 // Emit constant pool if necessary. |
390 CheckConstPool(true, false); | 400 CheckConstPool(true, false); |
391 ASSERT(num_prinfo_ == 0); | 401 ASSERT(num_prinfo_ == 0); |
392 | 402 |
393 // setup desc | 403 // Setup code descriptor. |
394 desc->buffer = buffer_; | 404 desc->buffer = buffer_; |
395 desc->buffer_size = buffer_size_; | 405 desc->buffer_size = buffer_size_; |
396 desc->instr_size = pc_offset(); | 406 desc->instr_size = pc_offset(); |
397 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); | 407 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
398 } | 408 } |
399 | 409 |
400 | 410 |
401 void Assembler::Align(int m) { | 411 void Assembler::Align(int m) { |
402 ASSERT(m >= 4 && IsPowerOf2(m)); | 412 ASSERT(m >= 4 && IsPowerOf2(m)); |
403 while ((pc_offset() & (m - 1)) != 0) { | 413 while ((pc_offset() & (m - 1)) != 0) { |
(...skipping 128 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
532 // Keep track of the last bound label so we don't eliminate any instructions | 542 // Keep track of the last bound label so we don't eliminate any instructions |
533 // before a bound label. | 543 // before a bound label. |
534 if (pos > last_bound_pos_) | 544 if (pos > last_bound_pos_) |
535 last_bound_pos_ = pos; | 545 last_bound_pos_ = pos; |
536 } | 546 } |
537 | 547 |
538 | 548 |
539 void Assembler::link_to(Label* L, Label* appendix) { | 549 void Assembler::link_to(Label* L, Label* appendix) { |
540 if (appendix->is_linked()) { | 550 if (appendix->is_linked()) { |
541 if (L->is_linked()) { | 551 if (L->is_linked()) { |
542 // append appendix to L's list | 552 // Append appendix to L's list. |
543 int fixup_pos; | 553 int fixup_pos; |
544 int link = L->pos(); | 554 int link = L->pos(); |
545 do { | 555 do { |
546 fixup_pos = link; | 556 fixup_pos = link; |
547 link = target_at(fixup_pos); | 557 link = target_at(fixup_pos); |
548 } while (link > 0); | 558 } while (link > 0); |
549 ASSERT(link == kEndOfChain); | 559 ASSERT(link == kEndOfChain); |
550 target_at_put(fixup_pos, appendix->pos()); | 560 target_at_put(fixup_pos, appendix->pos()); |
551 } else { | 561 } else { |
552 // L is empty, simply use appendix | 562 // L is empty, simply use appendix. |
553 *L = *appendix; | 563 *L = *appendix; |
554 } | 564 } |
555 } | 565 } |
556 appendix->Unuse(); // appendix should not be used anymore | 566 appendix->Unuse(); // appendix should not be used anymore |
557 } | 567 } |
558 | 568 |
559 | 569 |
560 void Assembler::bind(Label* L) { | 570 void Assembler::bind(Label* L) { |
561 ASSERT(!L->is_bound()); // label can only be bound once | 571 ASSERT(!L->is_bound()); // label can only be bound once |
562 bind_to(L, pc_offset()); | 572 bind_to(L, pc_offset()); |
563 } | 573 } |
564 | 574 |
565 | 575 |
566 void Assembler::next(Label* L) { | 576 void Assembler::next(Label* L) { |
567 ASSERT(L->is_linked()); | 577 ASSERT(L->is_linked()); |
568 int link = target_at(L->pos()); | 578 int link = target_at(L->pos()); |
569 if (link > 0) { | 579 if (link > 0) { |
570 L->link_to(link); | 580 L->link_to(link); |
571 } else { | 581 } else { |
572 ASSERT(link == kEndOfChain); | 582 ASSERT(link == kEndOfChain); |
573 L->Unuse(); | 583 L->Unuse(); |
574 } | 584 } |
575 } | 585 } |
576 | 586 |
577 | 587 |
578 // Low-level code emission routines depending on the addressing mode | 588 // Low-level code emission routines depending on the addressing mode. |
579 static bool fits_shifter(uint32_t imm32, | 589 static bool fits_shifter(uint32_t imm32, |
580 uint32_t* rotate_imm, | 590 uint32_t* rotate_imm, |
581 uint32_t* immed_8, | 591 uint32_t* immed_8, |
582 Instr* instr) { | 592 Instr* instr) { |
583 // imm32 must be unsigned | 593 // imm32 must be unsigned. |
584 for (int rot = 0; rot < 16; rot++) { | 594 for (int rot = 0; rot < 16; rot++) { |
585 uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot)); | 595 uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot)); |
586 if ((imm8 <= 0xff)) { | 596 if ((imm8 <= 0xff)) { |
587 *rotate_imm = rot; | 597 *rotate_imm = rot; |
588 *immed_8 = imm8; | 598 *immed_8 = imm8; |
589 return true; | 599 return true; |
590 } | 600 } |
591 } | 601 } |
592 // if the opcode is mov or mvn and if ~imm32 fits, change the opcode | 602 // If the opcode is mov or mvn and if ~imm32 fits, change the opcode. |
593 if (instr != NULL && (*instr & 0xd*B21) == 0xd*B21) { | 603 if (instr != NULL && (*instr & 0xd*B21) == 0xd*B21) { |
594 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) { | 604 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) { |
595 *instr ^= 0x2*B21; | 605 *instr ^= 0x2*B21; |
596 return true; | 606 return true; |
597 } | 607 } |
598 } | 608 } |
599 return false; | 609 return false; |
600 } | 610 } |
601 | 611 |
602 | 612 |
(...skipping 16 matching lines...) Expand all Loading... |
619 } | 629 } |
620 | 630 |
621 | 631 |
622 void Assembler::addrmod1(Instr instr, | 632 void Assembler::addrmod1(Instr instr, |
623 Register rn, | 633 Register rn, |
624 Register rd, | 634 Register rd, |
625 const Operand& x) { | 635 const Operand& x) { |
626 CheckBuffer(); | 636 CheckBuffer(); |
627 ASSERT((instr & ~(CondMask | OpCodeMask | S)) == 0); | 637 ASSERT((instr & ~(CondMask | OpCodeMask | S)) == 0); |
628 if (!x.rm_.is_valid()) { | 638 if (!x.rm_.is_valid()) { |
629 // immediate | 639 // Immediate. |
630 uint32_t rotate_imm; | 640 uint32_t rotate_imm; |
631 uint32_t immed_8; | 641 uint32_t immed_8; |
632 if (MustUseIp(x.rmode_) || | 642 if (MustUseIp(x.rmode_) || |
633 !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) { | 643 !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) { |
634 // The immediate operand cannot be encoded as a shifter operand, so load | 644 // The immediate operand cannot be encoded as a shifter operand, so load |
635 // it first to register ip and change the original instruction to use ip. | 645 // it first to register ip and change the original instruction to use ip. |
636 // However, if the original instruction is a 'mov rd, x' (not setting the | 646 // However, if the original instruction is a 'mov rd, x' (not setting the |
637 // condition code), then replace it with a 'ldr rd, [pc]' | 647 // condition code), then replace it with a 'ldr rd, [pc]'. |
638 RecordRelocInfo(x.rmode_, x.imm32_); | 648 RecordRelocInfo(x.rmode_, x.imm32_); |
639 CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed | 649 CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed |
640 Condition cond = static_cast<Condition>(instr & CondMask); | 650 Condition cond = static_cast<Condition>(instr & CondMask); |
641 if ((instr & ~CondMask) == 13*B21) { // mov, S not set | 651 if ((instr & ~CondMask) == 13*B21) { // mov, S not set |
642 ldr(rd, MemOperand(pc, 0), cond); | 652 ldr(rd, MemOperand(pc, 0), cond); |
643 } else { | 653 } else { |
644 ldr(ip, MemOperand(pc, 0), cond); | 654 ldr(ip, MemOperand(pc, 0), cond); |
645 addrmod1(instr, rn, rd, Operand(ip)); | 655 addrmod1(instr, rn, rd, Operand(ip)); |
646 } | 656 } |
647 return; | 657 return; |
648 } | 658 } |
649 instr |= I | rotate_imm*B8 | immed_8; | 659 instr |= I | rotate_imm*B8 | immed_8; |
650 } else if (!x.rs_.is_valid()) { | 660 } else if (!x.rs_.is_valid()) { |
651 // immediate shift | 661 // Immediate shift. |
652 instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); | 662 instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); |
653 } else { | 663 } else { |
654 // register shift | 664 // Register shift. |
655 ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc)); | 665 ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc)); |
656 instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code(); | 666 instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code(); |
657 } | 667 } |
658 emit(instr | rn.code()*B16 | rd.code()*B12); | 668 emit(instr | rn.code()*B16 | rd.code()*B12); |
659 if (rn.is(pc) || x.rm_.is(pc)) | 669 if (rn.is(pc) || x.rm_.is(pc)) |
660 // block constant pool emission for one instruction after reading pc | 670 // Block constant pool emission for one instruction after reading pc. |
661 BlockConstPoolBefore(pc_offset() + kInstrSize); | 671 BlockConstPoolBefore(pc_offset() + kInstrSize); |
662 } | 672 } |
663 | 673 |
664 | 674 |
665 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) { | 675 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) { |
666 ASSERT((instr & ~(CondMask | B | L)) == B26); | 676 ASSERT((instr & ~(CondMask | B | L)) == B26); |
667 int am = x.am_; | 677 int am = x.am_; |
668 if (!x.rm_.is_valid()) { | 678 if (!x.rm_.is_valid()) { |
669 // immediate offset | 679 // Immediate offset. |
670 int offset_12 = x.offset_; | 680 int offset_12 = x.offset_; |
671 if (offset_12 < 0) { | 681 if (offset_12 < 0) { |
672 offset_12 = -offset_12; | 682 offset_12 = -offset_12; |
673 am ^= U; | 683 am ^= U; |
674 } | 684 } |
675 if (!is_uint12(offset_12)) { | 685 if (!is_uint12(offset_12)) { |
676 // immediate offset cannot be encoded, load it first to register ip | 686 // Immediate offset cannot be encoded, load it first to register ip |
677 // rn (and rd in a load) should never be ip, or will be trashed | 687 // rn (and rd in a load) should never be ip, or will be trashed. |
678 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); | 688 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); |
679 mov(ip, Operand(x.offset_), LeaveCC, | 689 mov(ip, Operand(x.offset_), LeaveCC, |
680 static_cast<Condition>(instr & CondMask)); | 690 static_cast<Condition>(instr & CondMask)); |
681 addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_)); | 691 addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_)); |
682 return; | 692 return; |
683 } | 693 } |
684 ASSERT(offset_12 >= 0); // no masking needed | 694 ASSERT(offset_12 >= 0); // no masking needed |
685 instr |= offset_12; | 695 instr |= offset_12; |
686 } else { | 696 } else { |
687 // register offset (shift_imm_ and shift_op_ are 0) or scaled | 697 // Register offset (shift_imm_ and shift_op_ are 0) or scaled |
688 // register offset the constructors make sure than both shift_imm_ | 698 // register offset the constructors make sure than both shift_imm_ |
689 // and shift_op_ are initialized | 699 // and shift_op_ are initialized. |
690 ASSERT(!x.rm_.is(pc)); | 700 ASSERT(!x.rm_.is(pc)); |
691 instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); | 701 instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); |
692 } | 702 } |
693 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback | 703 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback |
694 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); | 704 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); |
695 } | 705 } |
696 | 706 |
697 | 707 |
698 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) { | 708 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) { |
699 ASSERT((instr & ~(CondMask | L | S6 | H)) == (B4 | B7)); | 709 ASSERT((instr & ~(CondMask | L | S6 | H)) == (B4 | B7)); |
700 ASSERT(x.rn_.is_valid()); | 710 ASSERT(x.rn_.is_valid()); |
701 int am = x.am_; | 711 int am = x.am_; |
702 if (!x.rm_.is_valid()) { | 712 if (!x.rm_.is_valid()) { |
703 // immediate offset | 713 // Immediate offset. |
704 int offset_8 = x.offset_; | 714 int offset_8 = x.offset_; |
705 if (offset_8 < 0) { | 715 if (offset_8 < 0) { |
706 offset_8 = -offset_8; | 716 offset_8 = -offset_8; |
707 am ^= U; | 717 am ^= U; |
708 } | 718 } |
709 if (!is_uint8(offset_8)) { | 719 if (!is_uint8(offset_8)) { |
710 // immediate offset cannot be encoded, load it first to register ip | 720 // Immediate offset cannot be encoded, load it first to register ip |
711 // rn (and rd in a load) should never be ip, or will be trashed | 721 // rn (and rd in a load) should never be ip, or will be trashed. |
712 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); | 722 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); |
713 mov(ip, Operand(x.offset_), LeaveCC, | 723 mov(ip, Operand(x.offset_), LeaveCC, |
714 static_cast<Condition>(instr & CondMask)); | 724 static_cast<Condition>(instr & CondMask)); |
715 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); | 725 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); |
716 return; | 726 return; |
717 } | 727 } |
718 ASSERT(offset_8 >= 0); // no masking needed | 728 ASSERT(offset_8 >= 0); // no masking needed |
719 instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf); | 729 instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf); |
720 } else if (x.shift_imm_ != 0) { | 730 } else if (x.shift_imm_ != 0) { |
721 // scaled register offset not supported, load index first | 731 // Scaled register offset not supported, load index first |
722 // rn (and rd in a load) should never be ip, or will be trashed | 732 // rn (and rd in a load) should never be ip, or will be trashed. |
723 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); | 733 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); |
724 mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC, | 734 mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC, |
725 static_cast<Condition>(instr & CondMask)); | 735 static_cast<Condition>(instr & CondMask)); |
726 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); | 736 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); |
727 return; | 737 return; |
728 } else { | 738 } else { |
729 // register offset | 739 // Register offset. |
730 ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback | 740 ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback |
731 instr |= x.rm_.code(); | 741 instr |= x.rm_.code(); |
732 } | 742 } |
733 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback | 743 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback |
734 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); | 744 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); |
735 } | 745 } |
736 | 746 |
737 | 747 |
738 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) { | 748 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) { |
739 ASSERT((instr & ~(CondMask | P | U | W | L)) == B27); | 749 ASSERT((instr & ~(CondMask | P | U | W | L)) == B27); |
740 ASSERT(rl != 0); | 750 ASSERT(rl != 0); |
741 ASSERT(!rn.is(pc)); | 751 ASSERT(!rn.is(pc)); |
742 emit(instr | rn.code()*B16 | rl); | 752 emit(instr | rn.code()*B16 | rl); |
743 } | 753 } |
744 | 754 |
745 | 755 |
746 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) { | 756 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) { |
747 // unindexed addressing is not encoded by this function | 757 // Unindexed addressing is not encoded by this function. |
748 ASSERT_EQ((B27 | B26), | 758 ASSERT_EQ((B27 | B26), |
749 (instr & ~(CondMask | CoprocessorMask | P | U | N | W | L))); | 759 (instr & ~(CondMask | CoprocessorMask | P | U | N | W | L))); |
750 ASSERT(x.rn_.is_valid() && !x.rm_.is_valid()); | 760 ASSERT(x.rn_.is_valid() && !x.rm_.is_valid()); |
751 int am = x.am_; | 761 int am = x.am_; |
752 int offset_8 = x.offset_; | 762 int offset_8 = x.offset_; |
753 ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset | 763 ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset |
754 offset_8 >>= 2; | 764 offset_8 >>= 2; |
755 if (offset_8 < 0) { | 765 if (offset_8 < 0) { |
756 offset_8 = -offset_8; | 766 offset_8 = -offset_8; |
757 am ^= U; | 767 am ^= U; |
758 } | 768 } |
759 ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte | 769 ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte |
760 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback | 770 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback |
761 | 771 |
762 // post-indexed addressing requires W == 1; different than in addrmod2/3 | 772 // Post-indexed addressing requires W == 1; different than in addrmod2/3. |
763 if ((am & P) == 0) | 773 if ((am & P) == 0) |
764 am |= W; | 774 am |= W; |
765 | 775 |
766 ASSERT(offset_8 >= 0); // no masking needed | 776 ASSERT(offset_8 >= 0); // no masking needed |
767 emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8); | 777 emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8); |
768 } | 778 } |
769 | 779 |
770 | 780 |
771 int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { | 781 int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { |
772 int target_pos; | 782 int target_pos; |
773 if (L->is_bound()) { | 783 if (L->is_bound()) { |
774 target_pos = L->pos(); | 784 target_pos = L->pos(); |
775 } else { | 785 } else { |
776 if (L->is_linked()) { | 786 if (L->is_linked()) { |
777 target_pos = L->pos(); // L's link | 787 target_pos = L->pos(); // L's link |
778 } else { | 788 } else { |
779 target_pos = kEndOfChain; | 789 target_pos = kEndOfChain; |
780 } | 790 } |
781 L->link_to(pc_offset()); | 791 L->link_to(pc_offset()); |
782 } | 792 } |
783 | 793 |
784 // Block the emission of the constant pool, since the branch instruction must | 794 // Block the emission of the constant pool, since the branch instruction must |
785 // be emitted at the pc offset recorded by the label | 795 // be emitted at the pc offset recorded by the label. |
786 BlockConstPoolBefore(pc_offset() + kInstrSize); | 796 BlockConstPoolBefore(pc_offset() + kInstrSize); |
787 return target_pos - (pc_offset() + kPcLoadDelta); | 797 return target_pos - (pc_offset() + kPcLoadDelta); |
788 } | 798 } |
789 | 799 |
790 | 800 |
791 void Assembler::label_at_put(Label* L, int at_offset) { | 801 void Assembler::label_at_put(Label* L, int at_offset) { |
792 int target_pos; | 802 int target_pos; |
793 if (L->is_bound()) { | 803 if (L->is_bound()) { |
794 target_pos = L->pos(); | 804 target_pos = L->pos(); |
795 } else { | 805 } else { |
796 if (L->is_linked()) { | 806 if (L->is_linked()) { |
797 target_pos = L->pos(); // L's link | 807 target_pos = L->pos(); // L's link |
798 } else { | 808 } else { |
799 target_pos = kEndOfChain; | 809 target_pos = kEndOfChain; |
800 } | 810 } |
801 L->link_to(at_offset); | 811 L->link_to(at_offset); |
802 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); | 812 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
803 } | 813 } |
804 } | 814 } |
805 | 815 |
806 | 816 |
807 // Branch instructions | 817 // Branch instructions. |
808 void Assembler::b(int branch_offset, Condition cond) { | 818 void Assembler::b(int branch_offset, Condition cond) { |
809 ASSERT((branch_offset & 3) == 0); | 819 ASSERT((branch_offset & 3) == 0); |
810 int imm24 = branch_offset >> 2; | 820 int imm24 = branch_offset >> 2; |
811 ASSERT(is_int24(imm24)); | 821 ASSERT(is_int24(imm24)); |
812 emit(cond | B27 | B25 | (imm24 & Imm24Mask)); | 822 emit(cond | B27 | B25 | (imm24 & Imm24Mask)); |
813 | 823 |
814 if (cond == al) | 824 if (cond == al) |
815 // dead code is a good location to emit the constant pool | 825 // Dead code is a good location to emit the constant pool. |
816 CheckConstPool(false, false); | 826 CheckConstPool(false, false); |
817 } | 827 } |
818 | 828 |
819 | 829 |
820 void Assembler::bl(int branch_offset, Condition cond) { | 830 void Assembler::bl(int branch_offset, Condition cond) { |
821 ASSERT((branch_offset & 3) == 0); | 831 ASSERT((branch_offset & 3) == 0); |
822 int imm24 = branch_offset >> 2; | 832 int imm24 = branch_offset >> 2; |
823 ASSERT(is_int24(imm24)); | 833 ASSERT(is_int24(imm24)); |
824 emit(cond | B27 | B25 | B24 | (imm24 & Imm24Mask)); | 834 emit(cond | B27 | B25 | B24 | (imm24 & Imm24Mask)); |
825 } | 835 } |
(...skipping 16 matching lines...) Expand all Loading... |
842 } | 852 } |
843 | 853 |
844 | 854 |
845 void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t | 855 void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t |
846 WriteRecordedPositions(); | 856 WriteRecordedPositions(); |
847 ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged | 857 ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged |
848 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | B4 | target.code()); | 858 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | B4 | target.code()); |
849 } | 859 } |
850 | 860 |
851 | 861 |
852 // Data-processing instructions | 862 // Data-processing instructions. |
| 863 |
| 864 // UBFX <Rd>,<Rn>,#<lsb>,#<width - 1> |
| 865 // Instruction details available in ARM DDI 0406A, A8-464. |
| 866 // cond(31-28) | 01111(27-23)| 1(22) | 1(21) | widthm1(20-16) | |
| 867 // Rd(15-12) | lsb(11-7) | 101(6-4) | Rn(3-0) |
| 868 void Assembler::ubfx(Register dst, Register src1, const Operand& src2, |
| 869 const Operand& src3, Condition cond) { |
| 870 ASSERT(!src2.rm_.is_valid() && !src3.rm_.is_valid()); |
| 871 ASSERT(static_cast<uint32_t>(src2.imm32_) <= 0x1f); |
| 872 ASSERT(static_cast<uint32_t>(src3.imm32_) <= 0x1f); |
| 873 emit(cond | 0x3F*B21 | src3.imm32_*B16 | |
| 874 dst.code()*B12 | src2.imm32_*B7 | 0x5*B4 | src1.code()); |
| 875 } |
| 876 |
| 877 |
853 void Assembler::and_(Register dst, Register src1, const Operand& src2, | 878 void Assembler::and_(Register dst, Register src1, const Operand& src2, |
854 SBit s, Condition cond) { | 879 SBit s, Condition cond) { |
855 addrmod1(cond | 0*B21 | s, src1, dst, src2); | 880 addrmod1(cond | 0*B21 | s, src1, dst, src2); |
856 } | 881 } |
857 | 882 |
858 | 883 |
859 void Assembler::eor(Register dst, Register src1, const Operand& src2, | 884 void Assembler::eor(Register dst, Register src1, const Operand& src2, |
860 SBit s, Condition cond) { | 885 SBit s, Condition cond) { |
861 addrmod1(cond | 1*B21 | s, src1, dst, src2); | 886 addrmod1(cond | 1*B21 | s, src1, dst, src2); |
862 } | 887 } |
(...skipping 16 matching lines...) Expand all Loading... |
879 addrmod1(cond | 4*B21 | s, src1, dst, src2); | 904 addrmod1(cond | 4*B21 | s, src1, dst, src2); |
880 | 905 |
881 // Eliminate pattern: push(r), pop() | 906 // Eliminate pattern: push(r), pop() |
882 // str(src, MemOperand(sp, 4, NegPreIndex), al); | 907 // str(src, MemOperand(sp, 4, NegPreIndex), al); |
883 // add(sp, sp, Operand(kPointerSize)); | 908 // add(sp, sp, Operand(kPointerSize)); |
884 // Both instructions can be eliminated. | 909 // Both instructions can be eliminated. |
885 int pattern_size = 2 * kInstrSize; | 910 int pattern_size = 2 * kInstrSize; |
886 if (FLAG_push_pop_elimination && | 911 if (FLAG_push_pop_elimination && |
887 last_bound_pos_ <= (pc_offset() - pattern_size) && | 912 last_bound_pos_ <= (pc_offset() - pattern_size) && |
888 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && | 913 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && |
889 // pattern | 914 // Pattern. |
890 instr_at(pc_ - 1 * kInstrSize) == kPopInstruction && | 915 instr_at(pc_ - 1 * kInstrSize) == kPopInstruction && |
891 (instr_at(pc_ - 2 * kInstrSize) & ~RdMask) == kPushRegPattern) { | 916 (instr_at(pc_ - 2 * kInstrSize) & ~RdMask) == kPushRegPattern) { |
892 pc_ -= 2 * kInstrSize; | 917 pc_ -= 2 * kInstrSize; |
893 if (FLAG_print_push_pop_elimination) { | 918 if (FLAG_print_push_pop_elimination) { |
894 PrintF("%x push(reg)/pop() eliminated\n", pc_offset()); | 919 PrintF("%x push(reg)/pop() eliminated\n", pc_offset()); |
895 } | 920 } |
896 } | 921 } |
897 } | 922 } |
898 | 923 |
899 | 924 |
(...skipping 53 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
953 SBit s, Condition cond) { | 978 SBit s, Condition cond) { |
954 addrmod1(cond | 14*B21 | s, src1, dst, src2); | 979 addrmod1(cond | 14*B21 | s, src1, dst, src2); |
955 } | 980 } |
956 | 981 |
957 | 982 |
958 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) { | 983 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) { |
959 addrmod1(cond | 15*B21 | s, r0, dst, src); | 984 addrmod1(cond | 15*B21 | s, r0, dst, src); |
960 } | 985 } |
961 | 986 |
962 | 987 |
963 // Multiply instructions | 988 // Multiply instructions. |
964 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA, | 989 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA, |
965 SBit s, Condition cond) { | 990 SBit s, Condition cond) { |
966 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc)); | 991 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc)); |
967 emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 | | 992 emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 | |
968 src2.code()*B8 | B7 | B4 | src1.code()); | 993 src2.code()*B8 | B7 | B4 | src1.code()); |
969 } | 994 } |
970 | 995 |
971 | 996 |
972 void Assembler::mul(Register dst, Register src1, Register src2, | 997 void Assembler::mul(Register dst, Register src1, Register src2, |
973 SBit s, Condition cond) { | 998 SBit s, Condition cond) { |
(...skipping 48 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1022 Register src2, | 1047 Register src2, |
1023 SBit s, | 1048 SBit s, |
1024 Condition cond) { | 1049 Condition cond) { |
1025 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); | 1050 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); |
1026 ASSERT(!dstL.is(dstH)); | 1051 ASSERT(!dstL.is(dstH)); |
1027 emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 | | 1052 emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 | |
1028 src2.code()*B8 | B7 | B4 | src1.code()); | 1053 src2.code()*B8 | B7 | B4 | src1.code()); |
1029 } | 1054 } |
1030 | 1055 |
1031 | 1056 |
1032 // Miscellaneous arithmetic instructions | 1057 // Miscellaneous arithmetic instructions. |
1033 void Assembler::clz(Register dst, Register src, Condition cond) { | 1058 void Assembler::clz(Register dst, Register src, Condition cond) { |
1034 // v5 and above. | 1059 // v5 and above. |
1035 ASSERT(!dst.is(pc) && !src.is(pc)); | 1060 ASSERT(!dst.is(pc) && !src.is(pc)); |
1036 emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 | | 1061 emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 | |
1037 15*B8 | B4 | src.code()); | 1062 15*B8 | B4 | src.code()); |
1038 } | 1063 } |
1039 | 1064 |
1040 | 1065 |
1041 // Status register access instructions | 1066 // Status register access instructions. |
1042 void Assembler::mrs(Register dst, SRegister s, Condition cond) { | 1067 void Assembler::mrs(Register dst, SRegister s, Condition cond) { |
1043 ASSERT(!dst.is(pc)); | 1068 ASSERT(!dst.is(pc)); |
1044 emit(cond | B24 | s | 15*B16 | dst.code()*B12); | 1069 emit(cond | B24 | s | 15*B16 | dst.code()*B12); |
1045 } | 1070 } |
1046 | 1071 |
1047 | 1072 |
1048 void Assembler::msr(SRegisterFieldMask fields, const Operand& src, | 1073 void Assembler::msr(SRegisterFieldMask fields, const Operand& src, |
1049 Condition cond) { | 1074 Condition cond) { |
1050 ASSERT(fields >= B16 && fields < B20); // at least one field set | 1075 ASSERT(fields >= B16 && fields < B20); // at least one field set |
1051 Instr instr; | 1076 Instr instr; |
1052 if (!src.rm_.is_valid()) { | 1077 if (!src.rm_.is_valid()) { |
1053 // immediate | 1078 // Immediate. |
1054 uint32_t rotate_imm; | 1079 uint32_t rotate_imm; |
1055 uint32_t immed_8; | 1080 uint32_t immed_8; |
1056 if (MustUseIp(src.rmode_) || | 1081 if (MustUseIp(src.rmode_) || |
1057 !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) { | 1082 !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) { |
1058 // immediate operand cannot be encoded, load it first to register ip | 1083 // Immediate operand cannot be encoded, load it first to register ip. |
1059 RecordRelocInfo(src.rmode_, src.imm32_); | 1084 RecordRelocInfo(src.rmode_, src.imm32_); |
1060 ldr(ip, MemOperand(pc, 0), cond); | 1085 ldr(ip, MemOperand(pc, 0), cond); |
1061 msr(fields, Operand(ip), cond); | 1086 msr(fields, Operand(ip), cond); |
1062 return; | 1087 return; |
1063 } | 1088 } |
1064 instr = I | rotate_imm*B8 | immed_8; | 1089 instr = I | rotate_imm*B8 | immed_8; |
1065 } else { | 1090 } else { |
1066 ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed | 1091 ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed |
1067 instr = src.rm_.code(); | 1092 instr = src.rm_.code(); |
1068 } | 1093 } |
1069 emit(cond | instr | B24 | B21 | fields | 15*B12); | 1094 emit(cond | instr | B24 | B21 | fields | 15*B12); |
1070 } | 1095 } |
1071 | 1096 |
1072 | 1097 |
1073 // Load/Store instructions | 1098 // Load/Store instructions. |
1074 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) { | 1099 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) { |
1075 if (dst.is(pc)) { | 1100 if (dst.is(pc)) { |
1076 WriteRecordedPositions(); | 1101 WriteRecordedPositions(); |
1077 } | 1102 } |
1078 addrmod2(cond | B26 | L, dst, src); | 1103 addrmod2(cond | B26 | L, dst, src); |
1079 | 1104 |
1080 // Eliminate pattern: push(r), pop(r) | 1105 // Eliminate pattern: push(r), pop(r) |
1081 // str(r, MemOperand(sp, 4, NegPreIndex), al) | 1106 // str(r, MemOperand(sp, 4, NegPreIndex), al) |
1082 // ldr(r, MemOperand(sp, 4, PostIndex), al) | 1107 // ldr(r, MemOperand(sp, 4, PostIndex), al) |
1083 // Both instructions can be eliminated. | 1108 // Both instructions can be eliminated. |
1084 int pattern_size = 2 * kInstrSize; | 1109 int pattern_size = 2 * kInstrSize; |
1085 if (FLAG_push_pop_elimination && | 1110 if (FLAG_push_pop_elimination && |
1086 last_bound_pos_ <= (pc_offset() - pattern_size) && | 1111 last_bound_pos_ <= (pc_offset() - pattern_size) && |
1087 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && | 1112 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && |
1088 // pattern | 1113 // Pattern. |
1089 instr_at(pc_ - 1 * kInstrSize) == (kPopRegPattern | dst.code() * B12) && | 1114 instr_at(pc_ - 1 * kInstrSize) == (kPopRegPattern | dst.code() * B12) && |
1090 instr_at(pc_ - 2 * kInstrSize) == (kPushRegPattern | dst.code() * B12)) { | 1115 instr_at(pc_ - 2 * kInstrSize) == (kPushRegPattern | dst.code() * B12)) { |
1091 pc_ -= 2 * kInstrSize; | 1116 pc_ -= 2 * kInstrSize; |
1092 if (FLAG_print_push_pop_elimination) { | 1117 if (FLAG_print_push_pop_elimination) { |
1093 PrintF("%x push/pop (same reg) eliminated\n", pc_offset()); | 1118 PrintF("%x push/pop (same reg) eliminated\n", pc_offset()); |
1094 } | 1119 } |
1095 } | 1120 } |
1096 } | 1121 } |
1097 | 1122 |
1098 | 1123 |
1099 void Assembler::str(Register src, const MemOperand& dst, Condition cond) { | 1124 void Assembler::str(Register src, const MemOperand& dst, Condition cond) { |
1100 addrmod2(cond | B26, src, dst); | 1125 addrmod2(cond | B26, src, dst); |
1101 | 1126 |
1102 // Eliminate pattern: pop(), push(r) | 1127 // Eliminate pattern: pop(), push(r) |
1103 // add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al | 1128 // add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al |
1104 // -> str r, [sp, 0], al | 1129 // -> str r, [sp, 0], al |
1105 int pattern_size = 2 * kInstrSize; | 1130 int pattern_size = 2 * kInstrSize; |
1106 if (FLAG_push_pop_elimination && | 1131 if (FLAG_push_pop_elimination && |
1107 last_bound_pos_ <= (pc_offset() - pattern_size) && | 1132 last_bound_pos_ <= (pc_offset() - pattern_size) && |
1108 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && | 1133 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && |
| 1134 // Pattern. |
1109 instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) && | 1135 instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) && |
1110 instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) { | 1136 instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) { |
1111 pc_ -= 2 * kInstrSize; | 1137 pc_ -= 2 * kInstrSize; |
1112 emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12); | 1138 emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12); |
1113 if (FLAG_print_push_pop_elimination) { | 1139 if (FLAG_print_push_pop_elimination) { |
1114 PrintF("%x pop()/push(reg) eliminated\n", pc_offset()); | 1140 PrintF("%x pop()/push(reg) eliminated\n", pc_offset()); |
1115 } | 1141 } |
1116 } | 1142 } |
1117 } | 1143 } |
1118 | 1144 |
(...skipping 21 matching lines...) Expand all Loading... |
1140 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) { | 1166 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) { |
1141 addrmod3(cond | L | B7 | S6 | B4, dst, src); | 1167 addrmod3(cond | L | B7 | S6 | B4, dst, src); |
1142 } | 1168 } |
1143 | 1169 |
1144 | 1170 |
1145 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) { | 1171 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) { |
1146 addrmod3(cond | L | B7 | S6 | H | B4, dst, src); | 1172 addrmod3(cond | L | B7 | S6 | H | B4, dst, src); |
1147 } | 1173 } |
1148 | 1174 |
1149 | 1175 |
1150 // Load/Store multiple instructions | 1176 // Load/Store multiple instructions. |
1151 void Assembler::ldm(BlockAddrMode am, | 1177 void Assembler::ldm(BlockAddrMode am, |
1152 Register base, | 1178 Register base, |
1153 RegList dst, | 1179 RegList dst, |
1154 Condition cond) { | 1180 Condition cond) { |
1155 // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable | 1181 // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable. |
1156 ASSERT(base.is(sp) || (dst & sp.bit()) == 0); | 1182 ASSERT(base.is(sp) || (dst & sp.bit()) == 0); |
1157 | 1183 |
1158 addrmod4(cond | B27 | am | L, base, dst); | 1184 addrmod4(cond | B27 | am | L, base, dst); |
1159 | 1185 |
1160 // emit the constant pool after a function return implemented by ldm ..{..pc} | 1186 // Emit the constant pool after a function return implemented by ldm ..{..pc}. |
1161 if (cond == al && (dst & pc.bit()) != 0) { | 1187 if (cond == al && (dst & pc.bit()) != 0) { |
1162 // There is a slight chance that the ldm instruction was actually a call, | 1188 // There is a slight chance that the ldm instruction was actually a call, |
1163 // in which case it would be wrong to return into the constant pool; we | 1189 // in which case it would be wrong to return into the constant pool; we |
1164 // recognize this case by checking if the emission of the pool was blocked | 1190 // recognize this case by checking if the emission of the pool was blocked |
1165 // at the pc of the ldm instruction by a mov lr, pc instruction; if this is | 1191 // at the pc of the ldm instruction by a mov lr, pc instruction; if this is |
1166 // the case, we emit a jump over the pool. | 1192 // the case, we emit a jump over the pool. |
1167 CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize); | 1193 CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize); |
1168 } | 1194 } |
1169 } | 1195 } |
1170 | 1196 |
1171 | 1197 |
1172 void Assembler::stm(BlockAddrMode am, | 1198 void Assembler::stm(BlockAddrMode am, |
1173 Register base, | 1199 Register base, |
1174 RegList src, | 1200 RegList src, |
1175 Condition cond) { | 1201 Condition cond) { |
1176 addrmod4(cond | B27 | am, base, src); | 1202 addrmod4(cond | B27 | am, base, src); |
1177 } | 1203 } |
1178 | 1204 |
1179 | 1205 |
1180 // Semaphore instructions | 1206 // Semaphore instructions. |
1181 void Assembler::swp(Register dst, Register src, Register base, Condition cond) { | 1207 void Assembler::swp(Register dst, Register src, Register base, Condition cond) { |
1182 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc)); | 1208 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc)); |
1183 ASSERT(!dst.is(base) && !src.is(base)); | 1209 ASSERT(!dst.is(base) && !src.is(base)); |
1184 emit(cond | P | base.code()*B16 | dst.code()*B12 | | 1210 emit(cond | P | base.code()*B16 | dst.code()*B12 | |
1185 B7 | B4 | src.code()); | 1211 B7 | B4 | src.code()); |
1186 } | 1212 } |
1187 | 1213 |
1188 | 1214 |
1189 void Assembler::swpb(Register dst, | 1215 void Assembler::swpb(Register dst, |
1190 Register src, | 1216 Register src, |
1191 Register base, | 1217 Register base, |
1192 Condition cond) { | 1218 Condition cond) { |
1193 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc)); | 1219 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc)); |
1194 ASSERT(!dst.is(base) && !src.is(base)); | 1220 ASSERT(!dst.is(base) && !src.is(base)); |
1195 emit(cond | P | B | base.code()*B16 | dst.code()*B12 | | 1221 emit(cond | P | B | base.code()*B16 | dst.code()*B12 | |
1196 B7 | B4 | src.code()); | 1222 B7 | B4 | src.code()); |
1197 } | 1223 } |
1198 | 1224 |
1199 | 1225 |
1200 // Exception-generating instructions and debugging support | 1226 // Exception-generating instructions and debugging support. |
1201 void Assembler::stop(const char* msg) { | 1227 void Assembler::stop(const char* msg) { |
1202 #if !defined(__arm__) | 1228 #if !defined(__arm__) |
1203 // The simulator handles these special instructions and stops execution. | 1229 // The simulator handles these special instructions and stops execution. |
1204 emit(15 << 28 | ((intptr_t) msg)); | 1230 emit(15 << 28 | ((intptr_t) msg)); |
1205 #else | 1231 #else |
1206 // Just issue a simple break instruction for now. Alternatively we could use | 1232 // Just issue a simple break instruction for now. Alternatively we could use |
1207 // the swi(0x9f0001) instruction on Linux. | 1233 // the swi(0x9f0001) instruction on Linux. |
1208 bkpt(0); | 1234 bkpt(0); |
1209 #endif | 1235 #endif |
1210 } | 1236 } |
1211 | 1237 |
1212 | 1238 |
1213 void Assembler::bkpt(uint32_t imm16) { // v5 and above | 1239 void Assembler::bkpt(uint32_t imm16) { // v5 and above |
1214 ASSERT(is_uint16(imm16)); | 1240 ASSERT(is_uint16(imm16)); |
1215 emit(al | B24 | B21 | (imm16 >> 4)*B8 | 7*B4 | (imm16 & 0xf)); | 1241 emit(al | B24 | B21 | (imm16 >> 4)*B8 | 7*B4 | (imm16 & 0xf)); |
1216 } | 1242 } |
1217 | 1243 |
1218 | 1244 |
1219 void Assembler::swi(uint32_t imm24, Condition cond) { | 1245 void Assembler::swi(uint32_t imm24, Condition cond) { |
1220 ASSERT(is_uint24(imm24)); | 1246 ASSERT(is_uint24(imm24)); |
1221 emit(cond | 15*B24 | imm24); | 1247 emit(cond | 15*B24 | imm24); |
1222 } | 1248 } |
1223 | 1249 |
1224 | 1250 |
1225 // Coprocessor instructions | 1251 // Coprocessor instructions. |
1226 void Assembler::cdp(Coprocessor coproc, | 1252 void Assembler::cdp(Coprocessor coproc, |
1227 int opcode_1, | 1253 int opcode_1, |
1228 CRegister crd, | 1254 CRegister crd, |
1229 CRegister crn, | 1255 CRegister crn, |
1230 CRegister crm, | 1256 CRegister crm, |
1231 int opcode_2, | 1257 int opcode_2, |
1232 Condition cond) { | 1258 Condition cond) { |
1233 ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2)); | 1259 ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2)); |
1234 emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 | | 1260 emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 | |
1235 crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code()); | 1261 crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code()); |
(...skipping 64 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1300 addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src); | 1326 addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src); |
1301 } | 1327 } |
1302 | 1328 |
1303 | 1329 |
1304 void Assembler::ldc(Coprocessor coproc, | 1330 void Assembler::ldc(Coprocessor coproc, |
1305 CRegister crd, | 1331 CRegister crd, |
1306 Register rn, | 1332 Register rn, |
1307 int option, | 1333 int option, |
1308 LFlag l, | 1334 LFlag l, |
1309 Condition cond) { | 1335 Condition cond) { |
1310 // unindexed addressing | 1336 // Unindexed addressing. |
1311 ASSERT(is_uint8(option)); | 1337 ASSERT(is_uint8(option)); |
1312 emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 | | 1338 emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 | |
1313 coproc*B8 | (option & 255)); | 1339 coproc*B8 | (option & 255)); |
1314 } | 1340 } |
1315 | 1341 |
1316 | 1342 |
1317 void Assembler::ldc2(Coprocessor coproc, | 1343 void Assembler::ldc2(Coprocessor coproc, |
1318 CRegister crd, | 1344 CRegister crd, |
1319 const MemOperand& src, | 1345 const MemOperand& src, |
1320 LFlag l) { // v5 and above | 1346 LFlag l) { // v5 and above |
(...skipping 18 matching lines...) Expand all Loading... |
1339 addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst); | 1365 addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst); |
1340 } | 1366 } |
1341 | 1367 |
1342 | 1368 |
1343 void Assembler::stc(Coprocessor coproc, | 1369 void Assembler::stc(Coprocessor coproc, |
1344 CRegister crd, | 1370 CRegister crd, |
1345 Register rn, | 1371 Register rn, |
1346 int option, | 1372 int option, |
1347 LFlag l, | 1373 LFlag l, |
1348 Condition cond) { | 1374 Condition cond) { |
1349 // unindexed addressing | 1375 // Unindexed addressing. |
1350 ASSERT(is_uint8(option)); | 1376 ASSERT(is_uint8(option)); |
1351 emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 | | 1377 emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 | |
1352 coproc*B8 | (option & 255)); | 1378 coproc*B8 | (option & 255)); |
1353 } | 1379 } |
1354 | 1380 |
1355 | 1381 |
1356 void Assembler::stc2(Coprocessor | 1382 void Assembler::stc2(Coprocessor |
1357 coproc, CRegister crd, | 1383 coproc, CRegister crd, |
1358 const MemOperand& dst, | 1384 const MemOperand& dst, |
1359 LFlag l) { // v5 and above | 1385 LFlag l) { // v5 and above |
1360 stc(coproc, crd, dst, l, static_cast<Condition>(nv)); | 1386 stc(coproc, crd, dst, l, static_cast<Condition>(nv)); |
1361 } | 1387 } |
1362 | 1388 |
1363 | 1389 |
1364 void Assembler::stc2(Coprocessor coproc, | 1390 void Assembler::stc2(Coprocessor coproc, |
1365 CRegister crd, | 1391 CRegister crd, |
1366 Register rn, | 1392 Register rn, |
1367 int option, | 1393 int option, |
1368 LFlag l) { // v5 and above | 1394 LFlag l) { // v5 and above |
1369 stc(coproc, crd, rn, option, l, static_cast<Condition>(nv)); | 1395 stc(coproc, crd, rn, option, l, static_cast<Condition>(nv)); |
1370 } | 1396 } |
1371 | 1397 |
1372 | 1398 |
1373 // Support for VFP. | 1399 // Support for VFP. |
| 1400 void Assembler::vldr(const DwVfpRegister dst, |
| 1401 const Register base, |
| 1402 int offset, |
| 1403 const Condition cond) { |
| 1404 // Ddst = MEM(Rbase + offset). |
| 1405 // Instruction details available in ARM DDI 0406A, A8-628. |
| 1406 // cond(31-28) | 1101(27-24)| 1001(23-20) | Rbase(19-16) | |
| 1407 // Vdst(15-12) | 1011(11-8) | offset |
| 1408 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| 1409 ASSERT(offset % 4 == 0); |
| 1410 emit(cond | 0xD9*B20 | base.code()*B16 | dst.code()*B12 | |
| 1411 0xB*B8 | ((offset / 4) & 255)); |
| 1412 } |
| 1413 |
| 1414 |
| 1415 void Assembler::vstr(const DwVfpRegister src, |
| 1416 const Register base, |
| 1417 int offset, |
| 1418 const Condition cond) { |
| 1419 // MEM(Rbase + offset) = Dsrc. |
| 1420 // Instruction details available in ARM DDI 0406A, A8-786. |
| 1421 // cond(31-28) | 1101(27-24)| 1000(23-20) | | Rbase(19-16) | |
| 1422 // Vsrc(15-12) | 1011(11-8) | (offset/4) |
| 1423 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| 1424 ASSERT(offset % 4 == 0); |
| 1425 emit(cond | 0xD8*B20 | base.code()*B16 | src.code()*B12 | |
| 1426 0xB*B8 | ((offset / 4) & 255)); |
| 1427 } |
| 1428 |
| 1429 |
1374 void Assembler::vmov(const DwVfpRegister dst, | 1430 void Assembler::vmov(const DwVfpRegister dst, |
1375 const Register src1, | 1431 const Register src1, |
1376 const Register src2, | 1432 const Register src2, |
1377 const Condition cond) { | 1433 const Condition cond) { |
1378 // Dm = <Rt,Rt2>. | 1434 // Dm = <Rt,Rt2>. |
1379 // Instruction details available in ARM DDI 0406A, A8-646. | 1435 // Instruction details available in ARM DDI 0406A, A8-646. |
1380 // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) | | 1436 // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) | |
1381 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm | 1437 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm |
1382 ASSERT(CpuFeatures::IsEnabled(VFP3)); | 1438 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
1383 ASSERT(!src1.is(pc) && !src2.is(pc)); | 1439 ASSERT(!src1.is(pc) && !src2.is(pc)); |
(...skipping 43 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1427 emit(cond | 0xE*B24 | B20 | (src.code() >> 1)*B16 | | 1483 emit(cond | 0xE*B24 | B20 | (src.code() >> 1)*B16 | |
1428 dst.code()*B12 | 0xA*B8 | (0x1 & src.code())*B7 | B4); | 1484 dst.code()*B12 | 0xA*B8 | (0x1 & src.code())*B7 | B4); |
1429 } | 1485 } |
1430 | 1486 |
1431 | 1487 |
1432 void Assembler::vcvt(const DwVfpRegister dst, | 1488 void Assembler::vcvt(const DwVfpRegister dst, |
1433 const SwVfpRegister src, | 1489 const SwVfpRegister src, |
1434 const Condition cond) { | 1490 const Condition cond) { |
1435 // Dd = Sm (integer in Sm converted to IEEE 64-bit doubles in Dd). | 1491 // Dd = Sm (integer in Sm converted to IEEE 64-bit doubles in Dd). |
1436 // Instruction details available in ARM DDI 0406A, A8-576. | 1492 // Instruction details available in ARM DDI 0406A, A8-576. |
1437 // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) |opc2=000(18-16) | | 1493 // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) | opc2=000(18-16) | |
1438 // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=1 | 1(6) | M=?(5) | 0(4) | Vm(3-0) | 1494 // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=1 | 1(6) | M=?(5) | 0(4) | Vm(3-0) |
1439 ASSERT(CpuFeatures::IsEnabled(VFP3)); | 1495 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
1440 emit(cond | 0xE*B24 | B23 | 0x3*B20 | B19 | | 1496 emit(cond | 0xE*B24 | B23 | 0x3*B20 | B19 | |
1441 dst.code()*B12 | 0x5*B9 | B8 | B7 | B6 | | 1497 dst.code()*B12 | 0x5*B9 | B8 | B7 | B6 | |
1442 (0x1 & src.code())*B5 | (src.code() >> 1)); | 1498 (0x1 & src.code())*B5 | (src.code() >> 1)); |
1443 } | 1499 } |
1444 | 1500 |
1445 | 1501 |
1446 void Assembler::vcvt(const SwVfpRegister dst, | 1502 void Assembler::vcvt(const SwVfpRegister dst, |
1447 const DwVfpRegister src, | 1503 const DwVfpRegister src, |
(...skipping 86 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1534 void Assembler::vmrs(Register dst, Condition cond) { | 1590 void Assembler::vmrs(Register dst, Condition cond) { |
1535 // Instruction details available in ARM DDI 0406A, A8-652. | 1591 // Instruction details available in ARM DDI 0406A, A8-652. |
1536 // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) | | 1592 // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) | |
1537 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0) | 1593 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0) |
1538 ASSERT(CpuFeatures::IsEnabled(VFP3)); | 1594 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
1539 emit(cond | 0xE*B24 | 0xF*B20 | B16 | | 1595 emit(cond | 0xE*B24 | 0xF*B20 | B16 | |
1540 dst.code()*B12 | 0xA*B8 | B4); | 1596 dst.code()*B12 | 0xA*B8 | B4); |
1541 } | 1597 } |
1542 | 1598 |
1543 | 1599 |
1544 // Pseudo instructions | 1600 // Pseudo instructions. |
1545 void Assembler::lea(Register dst, | 1601 void Assembler::lea(Register dst, |
1546 const MemOperand& x, | 1602 const MemOperand& x, |
1547 SBit s, | 1603 SBit s, |
1548 Condition cond) { | 1604 Condition cond) { |
1549 int am = x.am_; | 1605 int am = x.am_; |
1550 if (!x.rm_.is_valid()) { | 1606 if (!x.rm_.is_valid()) { |
1551 // immediate offset | 1607 // Immediate offset. |
1552 if ((am & P) == 0) // post indexing | 1608 if ((am & P) == 0) // post indexing |
1553 mov(dst, Operand(x.rn_), s, cond); | 1609 mov(dst, Operand(x.rn_), s, cond); |
1554 else if ((am & U) == 0) // negative indexing | 1610 else if ((am & U) == 0) // negative indexing |
1555 sub(dst, x.rn_, Operand(x.offset_), s, cond); | 1611 sub(dst, x.rn_, Operand(x.offset_), s, cond); |
1556 else | 1612 else |
1557 add(dst, x.rn_, Operand(x.offset_), s, cond); | 1613 add(dst, x.rn_, Operand(x.offset_), s, cond); |
1558 } else { | 1614 } else { |
1559 // Register offset (shift_imm_ and shift_op_ are 0) or scaled | 1615 // Register offset (shift_imm_ and shift_op_ are 0) or scaled |
1560 // register offset the constructors make sure than both shift_imm_ | 1616 // register offset the constructors make sure than both shift_imm_ |
1561 // and shift_op_ are initialized. | 1617 // and shift_op_ are initialized. |
(...skipping 13 matching lines...) Expand all Loading... |
1575 uint32_t dummy2; | 1631 uint32_t dummy2; |
1576 return fits_shifter(imm32, &dummy1, &dummy2, NULL); | 1632 return fits_shifter(imm32, &dummy1, &dummy2, NULL); |
1577 } | 1633 } |
1578 | 1634 |
1579 | 1635 |
1580 void Assembler::BlockConstPoolFor(int instructions) { | 1636 void Assembler::BlockConstPoolFor(int instructions) { |
1581 BlockConstPoolBefore(pc_offset() + instructions * kInstrSize); | 1637 BlockConstPoolBefore(pc_offset() + instructions * kInstrSize); |
1582 } | 1638 } |
1583 | 1639 |
1584 | 1640 |
1585 // Debugging | 1641 // Debugging. |
1586 void Assembler::RecordJSReturn() { | 1642 void Assembler::RecordJSReturn() { |
1587 WriteRecordedPositions(); | 1643 WriteRecordedPositions(); |
1588 CheckBuffer(); | 1644 CheckBuffer(); |
1589 RecordRelocInfo(RelocInfo::JS_RETURN); | 1645 RecordRelocInfo(RelocInfo::JS_RETURN); |
1590 } | 1646 } |
1591 | 1647 |
1592 | 1648 |
1593 void Assembler::RecordComment(const char* msg) { | 1649 void Assembler::RecordComment(const char* msg) { |
1594 if (FLAG_debug_code) { | 1650 if (FLAG_debug_code) { |
1595 CheckBuffer(); | 1651 CheckBuffer(); |
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1628 CheckBuffer(); | 1684 CheckBuffer(); |
1629 RecordRelocInfo(RelocInfo::POSITION, current_position_); | 1685 RecordRelocInfo(RelocInfo::POSITION, current_position_); |
1630 written_position_ = current_position_; | 1686 written_position_ = current_position_; |
1631 } | 1687 } |
1632 } | 1688 } |
1633 | 1689 |
1634 | 1690 |
1635 void Assembler::GrowBuffer() { | 1691 void Assembler::GrowBuffer() { |
1636 if (!own_buffer_) FATAL("external code buffer is too small"); | 1692 if (!own_buffer_) FATAL("external code buffer is too small"); |
1637 | 1693 |
1638 // compute new buffer size | 1694 // Compute new buffer size. |
1639 CodeDesc desc; // the new buffer | 1695 CodeDesc desc; // the new buffer |
1640 if (buffer_size_ < 4*KB) { | 1696 if (buffer_size_ < 4*KB) { |
1641 desc.buffer_size = 4*KB; | 1697 desc.buffer_size = 4*KB; |
1642 } else if (buffer_size_ < 1*MB) { | 1698 } else if (buffer_size_ < 1*MB) { |
1643 desc.buffer_size = 2*buffer_size_; | 1699 desc.buffer_size = 2*buffer_size_; |
1644 } else { | 1700 } else { |
1645 desc.buffer_size = buffer_size_ + 1*MB; | 1701 desc.buffer_size = buffer_size_ + 1*MB; |
1646 } | 1702 } |
1647 CHECK_GT(desc.buffer_size, 0); // no overflow | 1703 CHECK_GT(desc.buffer_size, 0); // no overflow |
1648 | 1704 |
1649 // setup new buffer | 1705 // Setup new buffer. |
1650 desc.buffer = NewArray<byte>(desc.buffer_size); | 1706 desc.buffer = NewArray<byte>(desc.buffer_size); |
1651 | 1707 |
1652 desc.instr_size = pc_offset(); | 1708 desc.instr_size = pc_offset(); |
1653 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); | 1709 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
1654 | 1710 |
1655 // copy the data | 1711 // Copy the data. |
1656 int pc_delta = desc.buffer - buffer_; | 1712 int pc_delta = desc.buffer - buffer_; |
1657 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); | 1713 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); |
1658 memmove(desc.buffer, buffer_, desc.instr_size); | 1714 memmove(desc.buffer, buffer_, desc.instr_size); |
1659 memmove(reloc_info_writer.pos() + rc_delta, | 1715 memmove(reloc_info_writer.pos() + rc_delta, |
1660 reloc_info_writer.pos(), desc.reloc_size); | 1716 reloc_info_writer.pos(), desc.reloc_size); |
1661 | 1717 |
1662 // switch buffers | 1718 // Switch buffers. |
1663 DeleteArray(buffer_); | 1719 DeleteArray(buffer_); |
1664 buffer_ = desc.buffer; | 1720 buffer_ = desc.buffer; |
1665 buffer_size_ = desc.buffer_size; | 1721 buffer_size_ = desc.buffer_size; |
1666 pc_ += pc_delta; | 1722 pc_ += pc_delta; |
1667 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, | 1723 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, |
1668 reloc_info_writer.last_pc() + pc_delta); | 1724 reloc_info_writer.last_pc() + pc_delta); |
1669 | 1725 |
1670 // none of our relocation types are pc relative pointing outside the code | 1726 // None of our relocation types are pc relative pointing outside the code |
1671 // buffer nor pc absolute pointing inside the code buffer, so there is no need | 1727 // buffer nor pc absolute pointing inside the code buffer, so there is no need |
1672 // to relocate any emitted relocation entries | 1728 // to relocate any emitted relocation entries. |
1673 | 1729 |
1674 // relocate pending relocation entries | 1730 // Relocate pending relocation entries. |
1675 for (int i = 0; i < num_prinfo_; i++) { | 1731 for (int i = 0; i < num_prinfo_; i++) { |
1676 RelocInfo& rinfo = prinfo_[i]; | 1732 RelocInfo& rinfo = prinfo_[i]; |
1677 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && | 1733 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && |
1678 rinfo.rmode() != RelocInfo::POSITION); | 1734 rinfo.rmode() != RelocInfo::POSITION); |
1679 if (rinfo.rmode() != RelocInfo::JS_RETURN) { | 1735 if (rinfo.rmode() != RelocInfo::JS_RETURN) { |
1680 rinfo.set_pc(rinfo.pc() + pc_delta); | 1736 rinfo.set_pc(rinfo.pc() + pc_delta); |
1681 } | 1737 } |
1682 } | 1738 } |
1683 } | 1739 } |
1684 | 1740 |
1685 | 1741 |
1686 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { | 1742 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { |
1687 RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants | 1743 RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants |
1688 if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) { | 1744 if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) { |
1689 // Adjust code for new modes | 1745 // Adjust code for new modes. |
1690 ASSERT(RelocInfo::IsJSReturn(rmode) | 1746 ASSERT(RelocInfo::IsJSReturn(rmode) |
1691 || RelocInfo::IsComment(rmode) | 1747 || RelocInfo::IsComment(rmode) |
1692 || RelocInfo::IsPosition(rmode)); | 1748 || RelocInfo::IsPosition(rmode)); |
1693 // these modes do not need an entry in the constant pool | 1749 // These modes do not need an entry in the constant pool. |
1694 } else { | 1750 } else { |
1695 ASSERT(num_prinfo_ < kMaxNumPRInfo); | 1751 ASSERT(num_prinfo_ < kMaxNumPRInfo); |
1696 prinfo_[num_prinfo_++] = rinfo; | 1752 prinfo_[num_prinfo_++] = rinfo; |
1697 // Make sure the constant pool is not emitted in place of the next | 1753 // Make sure the constant pool is not emitted in place of the next |
1698 // instruction for which we just recorded relocation info | 1754 // instruction for which we just recorded relocation info. |
1699 BlockConstPoolBefore(pc_offset() + kInstrSize); | 1755 BlockConstPoolBefore(pc_offset() + kInstrSize); |
1700 } | 1756 } |
1701 if (rinfo.rmode() != RelocInfo::NONE) { | 1757 if (rinfo.rmode() != RelocInfo::NONE) { |
1702 // Don't record external references unless the heap will be serialized. | 1758 // Don't record external references unless the heap will be serialized. |
1703 if (rmode == RelocInfo::EXTERNAL_REFERENCE) { | 1759 if (rmode == RelocInfo::EXTERNAL_REFERENCE) { |
1704 #ifdef DEBUG | 1760 #ifdef DEBUG |
1705 if (!Serializer::enabled()) { | 1761 if (!Serializer::enabled()) { |
1706 Serializer::TooLateToEnableNow(); | 1762 Serializer::TooLateToEnableNow(); |
1707 } | 1763 } |
1708 #endif | 1764 #endif |
1709 if (!Serializer::enabled() && !FLAG_debug_code) { | 1765 if (!Serializer::enabled() && !FLAG_debug_code) { |
1710 return; | 1766 return; |
1711 } | 1767 } |
1712 } | 1768 } |
1713 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here | 1769 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here |
1714 reloc_info_writer.Write(&rinfo); | 1770 reloc_info_writer.Write(&rinfo); |
1715 } | 1771 } |
1716 } | 1772 } |
1717 | 1773 |
1718 | 1774 |
1719 void Assembler::CheckConstPool(bool force_emit, bool require_jump) { | 1775 void Assembler::CheckConstPool(bool force_emit, bool require_jump) { |
1720 // Calculate the offset of the next check. It will be overwritten | 1776 // Calculate the offset of the next check. It will be overwritten |
1721 // when a const pool is generated or when const pools are being | 1777 // when a const pool is generated or when const pools are being |
1722 // blocked for a specific range. | 1778 // blocked for a specific range. |
1723 next_buffer_check_ = pc_offset() + kCheckConstInterval; | 1779 next_buffer_check_ = pc_offset() + kCheckConstInterval; |
1724 | 1780 |
1725 // There is nothing to do if there are no pending relocation info entries | 1781 // There is nothing to do if there are no pending relocation info entries. |
1726 if (num_prinfo_ == 0) return; | 1782 if (num_prinfo_ == 0) return; |
1727 | 1783 |
1728 // We emit a constant pool at regular intervals of about kDistBetweenPools | 1784 // We emit a constant pool at regular intervals of about kDistBetweenPools |
1729 // or when requested by parameter force_emit (e.g. after each function). | 1785 // or when requested by parameter force_emit (e.g. after each function). |
1730 // We prefer not to emit a jump unless the max distance is reached or if we | 1786 // We prefer not to emit a jump unless the max distance is reached or if we |
1731 // are running low on slots, which can happen if a lot of constants are being | 1787 // are running low on slots, which can happen if a lot of constants are being |
1732 // emitted (e.g. --debug-code and many static references). | 1788 // emitted (e.g. --debug-code and many static references). |
1733 int dist = pc_offset() - last_const_pool_end_; | 1789 int dist = pc_offset() - last_const_pool_end_; |
1734 if (!force_emit && dist < kMaxDistBetweenPools && | 1790 if (!force_emit && dist < kMaxDistBetweenPools && |
1735 (require_jump || dist < kDistBetweenPools) && | 1791 (require_jump || dist < kDistBetweenPools) && |
1736 // TODO(1236125): Cleanup the "magic" number below. We know that | 1792 // TODO(1236125): Cleanup the "magic" number below. We know that |
1737 // the code generation will test every kCheckConstIntervalInst. | 1793 // the code generation will test every kCheckConstIntervalInst. |
1738 // Thus we are safe as long as we generate less than 7 constant | 1794 // Thus we are safe as long as we generate less than 7 constant |
1739 // entries per instruction. | 1795 // entries per instruction. |
1740 (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) { | 1796 (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) { |
1741 return; | 1797 return; |
1742 } | 1798 } |
1743 | 1799 |
1744 // If we did not return by now, we need to emit the constant pool soon. | 1800 // If we did not return by now, we need to emit the constant pool soon. |
1745 | 1801 |
1746 // However, some small sequences of instructions must not be broken up by the | 1802 // However, some small sequences of instructions must not be broken up by the |
1747 // insertion of a constant pool; such sequences are protected by setting | 1803 // insertion of a constant pool; such sequences are protected by setting |
1748 // no_const_pool_before_, which is checked here. Also, recursive calls to | 1804 // no_const_pool_before_, which is checked here. Also, recursive calls to |
1749 // CheckConstPool are blocked by no_const_pool_before_. | 1805 // CheckConstPool are blocked by no_const_pool_before_. |
1750 if (pc_offset() < no_const_pool_before_) { | 1806 if (pc_offset() < no_const_pool_before_) { |
1751 // Emission is currently blocked; make sure we try again as soon as possible | 1807 // Emission is currently blocked; make sure we try again as soon as |
| 1808 // possible. |
1752 next_buffer_check_ = no_const_pool_before_; | 1809 next_buffer_check_ = no_const_pool_before_; |
1753 | 1810 |
1754 // Something is wrong if emission is forced and blocked at the same time | 1811 // Something is wrong if emission is forced and blocked at the same time. |
1755 ASSERT(!force_emit); | 1812 ASSERT(!force_emit); |
1756 return; | 1813 return; |
1757 } | 1814 } |
1758 | 1815 |
1759 int jump_instr = require_jump ? kInstrSize : 0; | 1816 int jump_instr = require_jump ? kInstrSize : 0; |
1760 | 1817 |
1761 // Check that the code buffer is large enough before emitting the constant | 1818 // Check that the code buffer is large enough before emitting the constant |
1762 // pool and relocation information (include the jump over the pool and the | 1819 // pool and relocation information (include the jump over the pool and the |
1763 // constant pool marker). | 1820 // constant pool marker). |
1764 int max_needed_space = | 1821 int max_needed_space = |
1765 jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize); | 1822 jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize); |
1766 while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer(); | 1823 while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer(); |
1767 | 1824 |
1768 // Block recursive calls to CheckConstPool | 1825 // Block recursive calls to CheckConstPool. |
1769 BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize + | 1826 BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize + |
1770 num_prinfo_*kInstrSize); | 1827 num_prinfo_*kInstrSize); |
1771 // Don't bother to check for the emit calls below. | 1828 // Don't bother to check for the emit calls below. |
1772 next_buffer_check_ = no_const_pool_before_; | 1829 next_buffer_check_ = no_const_pool_before_; |
1773 | 1830 |
1774 // Emit jump over constant pool if necessary | 1831 // Emit jump over constant pool if necessary. |
1775 Label after_pool; | 1832 Label after_pool; |
1776 if (require_jump) b(&after_pool); | 1833 if (require_jump) b(&after_pool); |
1777 | 1834 |
1778 RecordComment("[ Constant Pool"); | 1835 RecordComment("[ Constant Pool"); |
1779 | 1836 |
1780 // Put down constant pool marker | 1837 // Put down constant pool marker "Undefined instruction" as specified by |
1781 // "Undefined instruction" as specified by A3.1 Instruction set encoding | 1838 // A3.1 Instruction set encoding. |
1782 emit(0x03000000 | num_prinfo_); | 1839 emit(0x03000000 | num_prinfo_); |
1783 | 1840 |
1784 // Emit constant pool entries | 1841 // Emit constant pool entries. |
1785 for (int i = 0; i < num_prinfo_; i++) { | 1842 for (int i = 0; i < num_prinfo_; i++) { |
1786 RelocInfo& rinfo = prinfo_[i]; | 1843 RelocInfo& rinfo = prinfo_[i]; |
1787 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && | 1844 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && |
1788 rinfo.rmode() != RelocInfo::POSITION && | 1845 rinfo.rmode() != RelocInfo::POSITION && |
1789 rinfo.rmode() != RelocInfo::STATEMENT_POSITION); | 1846 rinfo.rmode() != RelocInfo::STATEMENT_POSITION); |
1790 Instr instr = instr_at(rinfo.pc()); | 1847 Instr instr = instr_at(rinfo.pc()); |
1791 | 1848 |
1792 // Instruction to patch must be a ldr/str [pc, #offset] | 1849 // Instruction to patch must be a ldr/str [pc, #offset]. |
1793 // P and U set, B and W clear, Rn == pc, offset12 still 0 | 1850 // P and U set, B and W clear, Rn == pc, offset12 still 0. |
1794 ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | Off12Mask)) == | 1851 ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | Off12Mask)) == |
1795 (2*B25 | P | U | pc.code()*B16)); | 1852 (2*B25 | P | U | pc.code()*B16)); |
1796 int delta = pc_ - rinfo.pc() - 8; | 1853 int delta = pc_ - rinfo.pc() - 8; |
1797 ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32 | 1854 ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32 |
1798 if (delta < 0) { | 1855 if (delta < 0) { |
1799 instr &= ~U; | 1856 instr &= ~U; |
1800 delta = -delta; | 1857 delta = -delta; |
1801 } | 1858 } |
1802 ASSERT(is_uint12(delta)); | 1859 ASSERT(is_uint12(delta)); |
1803 instr_at_put(rinfo.pc(), instr + delta); | 1860 instr_at_put(rinfo.pc(), instr + delta); |
1804 emit(rinfo.data()); | 1861 emit(rinfo.data()); |
1805 } | 1862 } |
1806 num_prinfo_ = 0; | 1863 num_prinfo_ = 0; |
1807 last_const_pool_end_ = pc_offset(); | 1864 last_const_pool_end_ = pc_offset(); |
1808 | 1865 |
1809 RecordComment("]"); | 1866 RecordComment("]"); |
1810 | 1867 |
1811 if (after_pool.is_linked()) { | 1868 if (after_pool.is_linked()) { |
1812 bind(&after_pool); | 1869 bind(&after_pool); |
1813 } | 1870 } |
1814 | 1871 |
1815 // Since a constant pool was just emitted, move the check offset forward by | 1872 // Since a constant pool was just emitted, move the check offset forward by |
1816 // the standard interval. | 1873 // the standard interval. |
1817 next_buffer_check_ = pc_offset() + kCheckConstInterval; | 1874 next_buffer_check_ = pc_offset() + kCheckConstInterval; |
1818 } | 1875 } |
1819 | 1876 |
1820 | 1877 |
1821 } } // namespace v8::internal | 1878 } } // namespace v8::internal |
OLD | NEW |