| OLD | NEW |
| 1 // Copyright (c) 1994-2006 Sun Microsystems Inc. | 1 // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| 2 // All Rights Reserved. | 2 // All Rights Reserved. |
| 3 // | 3 // |
| 4 // Redistribution and use in source and binary forms, with or without | 4 // Redistribution and use in source and binary forms, with or without |
| 5 // modification, are permitted provided that the following conditions | 5 // modification, are permitted provided that the following conditions |
| 6 // are met: | 6 // are met: |
| 7 // | 7 // |
| 8 // - Redistributions of source code must retain the above copyright notice, | 8 // - Redistributions of source code must retain the above copyright notice, |
| 9 // this list of conditions and the following disclaimer. | 9 // this list of conditions and the following disclaimer. |
| 10 // | 10 // |
| (...skipping 246 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 257 ASSERT(is_uint5(shift_imm)); | 257 ASSERT(is_uint5(shift_imm)); |
| 258 rn_ = rn; | 258 rn_ = rn; |
| 259 rm_ = rm; | 259 rm_ = rm; |
| 260 shift_op_ = shift_op; | 260 shift_op_ = shift_op; |
| 261 shift_imm_ = shift_imm & 31; | 261 shift_imm_ = shift_imm & 31; |
| 262 am_ = am; | 262 am_ = am; |
| 263 } | 263 } |
| 264 | 264 |
| 265 | 265 |
| 266 // ----------------------------------------------------------------------------- | 266 // ----------------------------------------------------------------------------- |
| 267 // Implementation of Assembler | 267 // Implementation of Assembler. |
| 268 | 268 |
| 269 // Instruction encoding bits | 269 // Instruction encoding bits. |
| 270 enum { | 270 enum { |
| 271 H = 1 << 5, // halfword (or byte) | 271 H = 1 << 5, // halfword (or byte) |
| 272 S6 = 1 << 6, // signed (or unsigned) | 272 S6 = 1 << 6, // signed (or unsigned) |
| 273 L = 1 << 20, // load (or store) | 273 L = 1 << 20, // load (or store) |
| 274 S = 1 << 20, // set condition code (or leave unchanged) | 274 S = 1 << 20, // set condition code (or leave unchanged) |
| 275 W = 1 << 21, // writeback base register (or leave unchanged) | 275 W = 1 << 21, // writeback base register (or leave unchanged) |
| 276 A = 1 << 21, // accumulate in multiply instruction (or not) | 276 A = 1 << 21, // accumulate in multiply instruction (or not) |
| 277 B = 1 << 22, // unsigned byte (or word) | 277 B = 1 << 22, // unsigned byte (or word) |
| 278 N = 1 << 22, // long (or short) | 278 N = 1 << 22, // long (or short) |
| 279 U = 1 << 23, // positive (or negative) offset/index | 279 U = 1 << 23, // positive (or negative) offset/index |
| (...skipping 12 matching lines...) Expand all Loading... |
| 292 B19 = 1 << 19, | 292 B19 = 1 << 19, |
| 293 B20 = 1 << 20, | 293 B20 = 1 << 20, |
| 294 B21 = 1 << 21, | 294 B21 = 1 << 21, |
| 295 B22 = 1 << 22, | 295 B22 = 1 << 22, |
| 296 B23 = 1 << 23, | 296 B23 = 1 << 23, |
| 297 B24 = 1 << 24, | 297 B24 = 1 << 24, |
| 298 B25 = 1 << 25, | 298 B25 = 1 << 25, |
| 299 B26 = 1 << 26, | 299 B26 = 1 << 26, |
| 300 B27 = 1 << 27, | 300 B27 = 1 << 27, |
| 301 | 301 |
| 302 // Instruction bit masks | 302 // Instruction bit masks. |
| 303 RdMask = 15 << 12, // in str instruction | 303 RdMask = 15 << 12, // in str instruction |
| 304 CondMask = 15 << 28, | 304 CondMask = 15 << 28, |
| 305 CoprocessorMask = 15 << 8, | 305 CoprocessorMask = 15 << 8, |
| 306 OpCodeMask = 15 << 21, // in data-processing instructions | 306 OpCodeMask = 15 << 21, // in data-processing instructions |
| 307 Imm24Mask = (1 << 24) - 1, | 307 Imm24Mask = (1 << 24) - 1, |
| 308 Off12Mask = (1 << 12) - 1, | 308 Off12Mask = (1 << 12) - 1, |
| 309 // Reserved condition | 309 // Reserved condition. |
| 310 nv = 15 << 28 | 310 nv = 15 << 28 |
| 311 }; | 311 }; |
| 312 | 312 |
| 313 | 313 |
| 314 // add(sp, sp, 4) instruction (aka Pop()) | 314 // add(sp, sp, 4) instruction (aka Pop()) |
| 315 static const Instr kPopInstruction = | 315 static const Instr kPopInstruction = |
| 316 al | 4 * B21 | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12; | 316 al | 4 * B21 | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12; |
| 317 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r)) | 317 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r)) |
| 318 // register r is not encoded. | 318 // register r is not encoded. |
| 319 static const Instr kPushRegPattern = | 319 static const Instr kPushRegPattern = |
| 320 al | B26 | 4 | NegPreIndex | sp.code() * B16; | 320 al | B26 | 4 | NegPreIndex | sp.code() * B16; |
| 321 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r)) | 321 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r)) |
| 322 // register r is not encoded. | 322 // register r is not encoded. |
| 323 static const Instr kPopRegPattern = | 323 static const Instr kPopRegPattern = |
| 324 al | B26 | L | 4 | PostIndex | sp.code() * B16; | 324 al | B26 | L | 4 | PostIndex | sp.code() * B16; |
| 325 // mov lr, pc | 325 // mov lr, pc |
| 326 const Instr kMovLrPc = al | 13*B21 | pc.code() | lr.code() * B12; | 326 const Instr kMovLrPc = al | 13*B21 | pc.code() | lr.code() * B12; |
| 327 // ldr pc, [pc, #XXX] | 327 // ldr pc, [pc, #XXX] |
| 328 const Instr kLdrPCPattern = al | B26 | L | pc.code() * B16; | 328 const Instr kLdrPCPattern = al | B26 | L | pc.code() * B16; |
| 329 | 329 |
| 330 // spare_buffer_ | 330 // Spare buffer. |
| 331 static const int kMinimalBufferSize = 4*KB; | 331 static const int kMinimalBufferSize = 4*KB; |
| 332 static byte* spare_buffer_ = NULL; | 332 static byte* spare_buffer_ = NULL; |
| 333 | 333 |
| 334 Assembler::Assembler(void* buffer, int buffer_size) { | 334 Assembler::Assembler(void* buffer, int buffer_size) { |
| 335 if (buffer == NULL) { | 335 if (buffer == NULL) { |
| 336 // do our own buffer management | 336 // Do our own buffer management. |
| 337 if (buffer_size <= kMinimalBufferSize) { | 337 if (buffer_size <= kMinimalBufferSize) { |
| 338 buffer_size = kMinimalBufferSize; | 338 buffer_size = kMinimalBufferSize; |
| 339 | 339 |
| 340 if (spare_buffer_ != NULL) { | 340 if (spare_buffer_ != NULL) { |
| 341 buffer = spare_buffer_; | 341 buffer = spare_buffer_; |
| 342 spare_buffer_ = NULL; | 342 spare_buffer_ = NULL; |
| 343 } | 343 } |
| 344 } | 344 } |
| 345 if (buffer == NULL) { | 345 if (buffer == NULL) { |
| 346 buffer_ = NewArray<byte>(buffer_size); | 346 buffer_ = NewArray<byte>(buffer_size); |
| 347 } else { | 347 } else { |
| 348 buffer_ = static_cast<byte*>(buffer); | 348 buffer_ = static_cast<byte*>(buffer); |
| 349 } | 349 } |
| 350 buffer_size_ = buffer_size; | 350 buffer_size_ = buffer_size; |
| 351 own_buffer_ = true; | 351 own_buffer_ = true; |
| 352 | 352 |
| 353 } else { | 353 } else { |
| 354 // use externally provided buffer instead | 354 // Use externally provided buffer instead. |
| 355 ASSERT(buffer_size > 0); | 355 ASSERT(buffer_size > 0); |
| 356 buffer_ = static_cast<byte*>(buffer); | 356 buffer_ = static_cast<byte*>(buffer); |
| 357 buffer_size_ = buffer_size; | 357 buffer_size_ = buffer_size; |
| 358 own_buffer_ = false; | 358 own_buffer_ = false; |
| 359 } | 359 } |
| 360 | 360 |
| 361 // setup buffer pointers | 361 // Setup buffer pointers. |
| 362 ASSERT(buffer_ != NULL); | 362 ASSERT(buffer_ != NULL); |
| 363 pc_ = buffer_; | 363 pc_ = buffer_; |
| 364 reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); | 364 reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); |
| 365 num_prinfo_ = 0; | 365 num_prinfo_ = 0; |
| 366 next_buffer_check_ = 0; | 366 next_buffer_check_ = 0; |
| 367 no_const_pool_before_ = 0; | 367 no_const_pool_before_ = 0; |
| 368 last_const_pool_end_ = 0; | 368 last_const_pool_end_ = 0; |
| 369 last_bound_pos_ = 0; | 369 last_bound_pos_ = 0; |
| 370 current_statement_position_ = RelocInfo::kNoPosition; | 370 current_statement_position_ = RelocInfo::kNoPosition; |
| 371 current_position_ = RelocInfo::kNoPosition; | 371 current_position_ = RelocInfo::kNoPosition; |
| 372 written_statement_position_ = current_statement_position_; | 372 written_statement_position_ = current_statement_position_; |
| 373 written_position_ = current_position_; | 373 written_position_ = current_position_; |
| 374 } | 374 } |
| 375 | 375 |
| 376 | 376 |
| 377 Assembler::~Assembler() { | 377 Assembler::~Assembler() { |
| 378 if (own_buffer_) { | 378 if (own_buffer_) { |
| 379 if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { | 379 if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { |
| 380 spare_buffer_ = buffer_; | 380 spare_buffer_ = buffer_; |
| 381 } else { | 381 } else { |
| 382 DeleteArray(buffer_); | 382 DeleteArray(buffer_); |
| 383 } | 383 } |
| 384 } | 384 } |
| 385 } | 385 } |
| 386 | 386 |
| 387 | 387 |
| 388 void Assembler::GetCode(CodeDesc* desc) { | 388 void Assembler::GetCode(CodeDesc* desc) { |
| 389 // emit constant pool if necessary | 389 // Emit constant pool if necessary. |
| 390 CheckConstPool(true, false); | 390 CheckConstPool(true, false); |
| 391 ASSERT(num_prinfo_ == 0); | 391 ASSERT(num_prinfo_ == 0); |
| 392 | 392 |
| 393 // setup desc | 393 // Setup code descriptor. |
| 394 desc->buffer = buffer_; | 394 desc->buffer = buffer_; |
| 395 desc->buffer_size = buffer_size_; | 395 desc->buffer_size = buffer_size_; |
| 396 desc->instr_size = pc_offset(); | 396 desc->instr_size = pc_offset(); |
| 397 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); | 397 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
| 398 } | 398 } |
| 399 | 399 |
| 400 | 400 |
| 401 void Assembler::Align(int m) { | 401 void Assembler::Align(int m) { |
| 402 ASSERT(m >= 4 && IsPowerOf2(m)); | 402 ASSERT(m >= 4 && IsPowerOf2(m)); |
| 403 while ((pc_offset() & (m - 1)) != 0) { | 403 while ((pc_offset() & (m - 1)) != 0) { |
| (...skipping 128 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 532 // Keep track of the last bound label so we don't eliminate any instructions | 532 // Keep track of the last bound label so we don't eliminate any instructions |
| 533 // before a bound label. | 533 // before a bound label. |
| 534 if (pos > last_bound_pos_) | 534 if (pos > last_bound_pos_) |
| 535 last_bound_pos_ = pos; | 535 last_bound_pos_ = pos; |
| 536 } | 536 } |
| 537 | 537 |
| 538 | 538 |
| 539 void Assembler::link_to(Label* L, Label* appendix) { | 539 void Assembler::link_to(Label* L, Label* appendix) { |
| 540 if (appendix->is_linked()) { | 540 if (appendix->is_linked()) { |
| 541 if (L->is_linked()) { | 541 if (L->is_linked()) { |
| 542 // append appendix to L's list | 542 // Append appendix to L's list. |
| 543 int fixup_pos; | 543 int fixup_pos; |
| 544 int link = L->pos(); | 544 int link = L->pos(); |
| 545 do { | 545 do { |
| 546 fixup_pos = link; | 546 fixup_pos = link; |
| 547 link = target_at(fixup_pos); | 547 link = target_at(fixup_pos); |
| 548 } while (link > 0); | 548 } while (link > 0); |
| 549 ASSERT(link == kEndOfChain); | 549 ASSERT(link == kEndOfChain); |
| 550 target_at_put(fixup_pos, appendix->pos()); | 550 target_at_put(fixup_pos, appendix->pos()); |
| 551 } else { | 551 } else { |
| 552 // L is empty, simply use appendix | 552 // L is empty, simply use appendix. |
| 553 *L = *appendix; | 553 *L = *appendix; |
| 554 } | 554 } |
| 555 } | 555 } |
| 556 appendix->Unuse(); // appendix should not be used anymore | 556 appendix->Unuse(); // appendix should not be used anymore |
| 557 } | 557 } |
| 558 | 558 |
| 559 | 559 |
| 560 void Assembler::bind(Label* L) { | 560 void Assembler::bind(Label* L) { |
| 561 ASSERT(!L->is_bound()); // label can only be bound once | 561 ASSERT(!L->is_bound()); // label can only be bound once |
| 562 bind_to(L, pc_offset()); | 562 bind_to(L, pc_offset()); |
| 563 } | 563 } |
| 564 | 564 |
| 565 | 565 |
| 566 void Assembler::next(Label* L) { | 566 void Assembler::next(Label* L) { |
| 567 ASSERT(L->is_linked()); | 567 ASSERT(L->is_linked()); |
| 568 int link = target_at(L->pos()); | 568 int link = target_at(L->pos()); |
| 569 if (link > 0) { | 569 if (link > 0) { |
| 570 L->link_to(link); | 570 L->link_to(link); |
| 571 } else { | 571 } else { |
| 572 ASSERT(link == kEndOfChain); | 572 ASSERT(link == kEndOfChain); |
| 573 L->Unuse(); | 573 L->Unuse(); |
| 574 } | 574 } |
| 575 } | 575 } |
| 576 | 576 |
| 577 | 577 |
| 578 // Low-level code emission routines depending on the addressing mode | 578 // Low-level code emission routines depending on the addressing mode. |
| 579 static bool fits_shifter(uint32_t imm32, | 579 static bool fits_shifter(uint32_t imm32, |
| 580 uint32_t* rotate_imm, | 580 uint32_t* rotate_imm, |
| 581 uint32_t* immed_8, | 581 uint32_t* immed_8, |
| 582 Instr* instr) { | 582 Instr* instr) { |
| 583 // imm32 must be unsigned | 583 // imm32 must be unsigned. |
| 584 for (int rot = 0; rot < 16; rot++) { | 584 for (int rot = 0; rot < 16; rot++) { |
| 585 uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot)); | 585 uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot)); |
| 586 if ((imm8 <= 0xff)) { | 586 if ((imm8 <= 0xff)) { |
| 587 *rotate_imm = rot; | 587 *rotate_imm = rot; |
| 588 *immed_8 = imm8; | 588 *immed_8 = imm8; |
| 589 return true; | 589 return true; |
| 590 } | 590 } |
| 591 } | 591 } |
| 592 // if the opcode is mov or mvn and if ~imm32 fits, change the opcode | 592 // If the opcode is mov or mvn and if ~imm32 fits, change the opcode. |
| 593 if (instr != NULL && (*instr & 0xd*B21) == 0xd*B21) { | 593 if (instr != NULL && (*instr & 0xd*B21) == 0xd*B21) { |
| 594 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) { | 594 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) { |
| 595 *instr ^= 0x2*B21; | 595 *instr ^= 0x2*B21; |
| 596 return true; | 596 return true; |
| 597 } | 597 } |
| 598 } | 598 } |
| 599 return false; | 599 return false; |
| 600 } | 600 } |
| 601 | 601 |
| 602 | 602 |
| (...skipping 16 matching lines...) Expand all Loading... |
| 619 } | 619 } |
| 620 | 620 |
| 621 | 621 |
| 622 void Assembler::addrmod1(Instr instr, | 622 void Assembler::addrmod1(Instr instr, |
| 623 Register rn, | 623 Register rn, |
| 624 Register rd, | 624 Register rd, |
| 625 const Operand& x) { | 625 const Operand& x) { |
| 626 CheckBuffer(); | 626 CheckBuffer(); |
| 627 ASSERT((instr & ~(CondMask | OpCodeMask | S)) == 0); | 627 ASSERT((instr & ~(CondMask | OpCodeMask | S)) == 0); |
| 628 if (!x.rm_.is_valid()) { | 628 if (!x.rm_.is_valid()) { |
| 629 // immediate | 629 // Immediate. |
| 630 uint32_t rotate_imm; | 630 uint32_t rotate_imm; |
| 631 uint32_t immed_8; | 631 uint32_t immed_8; |
| 632 if (MustUseIp(x.rmode_) || | 632 if (MustUseIp(x.rmode_) || |
| 633 !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) { | 633 !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) { |
| 634 // The immediate operand cannot be encoded as a shifter operand, so load | 634 // The immediate operand cannot be encoded as a shifter operand, so load |
| 635 // it first to register ip and change the original instruction to use ip. | 635 // it first to register ip and change the original instruction to use ip. |
| 636 // However, if the original instruction is a 'mov rd, x' (not setting the | 636 // However, if the original instruction is a 'mov rd, x' (not setting the |
| 637 // condition code), then replace it with a 'ldr rd, [pc]' | 637 // condition code), then replace it with a 'ldr rd, [pc]'. |
| 638 RecordRelocInfo(x.rmode_, x.imm32_); | 638 RecordRelocInfo(x.rmode_, x.imm32_); |
| 639 CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed | 639 CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed |
| 640 Condition cond = static_cast<Condition>(instr & CondMask); | 640 Condition cond = static_cast<Condition>(instr & CondMask); |
| 641 if ((instr & ~CondMask) == 13*B21) { // mov, S not set | 641 if ((instr & ~CondMask) == 13*B21) { // mov, S not set |
| 642 ldr(rd, MemOperand(pc, 0), cond); | 642 ldr(rd, MemOperand(pc, 0), cond); |
| 643 } else { | 643 } else { |
| 644 ldr(ip, MemOperand(pc, 0), cond); | 644 ldr(ip, MemOperand(pc, 0), cond); |
| 645 addrmod1(instr, rn, rd, Operand(ip)); | 645 addrmod1(instr, rn, rd, Operand(ip)); |
| 646 } | 646 } |
| 647 return; | 647 return; |
| 648 } | 648 } |
| 649 instr |= I | rotate_imm*B8 | immed_8; | 649 instr |= I | rotate_imm*B8 | immed_8; |
| 650 } else if (!x.rs_.is_valid()) { | 650 } else if (!x.rs_.is_valid()) { |
| 651 // immediate shift | 651 // Immediate shift. |
| 652 instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); | 652 instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); |
| 653 } else { | 653 } else { |
| 654 // register shift | 654 // Register shift. |
| 655 ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc)); | 655 ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc)); |
| 656 instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code(); | 656 instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code(); |
| 657 } | 657 } |
| 658 emit(instr | rn.code()*B16 | rd.code()*B12); | 658 emit(instr | rn.code()*B16 | rd.code()*B12); |
| 659 if (rn.is(pc) || x.rm_.is(pc)) | 659 if (rn.is(pc) || x.rm_.is(pc)) |
| 660 // block constant pool emission for one instruction after reading pc | 660 // Block constant pool emission for one instruction after reading pc. |
| 661 BlockConstPoolBefore(pc_offset() + kInstrSize); | 661 BlockConstPoolBefore(pc_offset() + kInstrSize); |
| 662 } | 662 } |
| 663 | 663 |
| 664 | 664 |
| 665 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) { | 665 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) { |
| 666 ASSERT((instr & ~(CondMask | B | L)) == B26); | 666 ASSERT((instr & ~(CondMask | B | L)) == B26); |
| 667 int am = x.am_; | 667 int am = x.am_; |
| 668 if (!x.rm_.is_valid()) { | 668 if (!x.rm_.is_valid()) { |
| 669 // immediate offset | 669 // Immediate offset. |
| 670 int offset_12 = x.offset_; | 670 int offset_12 = x.offset_; |
| 671 if (offset_12 < 0) { | 671 if (offset_12 < 0) { |
| 672 offset_12 = -offset_12; | 672 offset_12 = -offset_12; |
| 673 am ^= U; | 673 am ^= U; |
| 674 } | 674 } |
| 675 if (!is_uint12(offset_12)) { | 675 if (!is_uint12(offset_12)) { |
| 676 // immediate offset cannot be encoded, load it first to register ip | 676 // Immediate offset cannot be encoded, load it first to register ip |
| 677 // rn (and rd in a load) should never be ip, or will be trashed | 677 // rn (and rd in a load) should never be ip, or will be trashed. |
| 678 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); | 678 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); |
| 679 mov(ip, Operand(x.offset_), LeaveCC, | 679 mov(ip, Operand(x.offset_), LeaveCC, |
| 680 static_cast<Condition>(instr & CondMask)); | 680 static_cast<Condition>(instr & CondMask)); |
| 681 addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_)); | 681 addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_)); |
| 682 return; | 682 return; |
| 683 } | 683 } |
| 684 ASSERT(offset_12 >= 0); // no masking needed | 684 ASSERT(offset_12 >= 0); // no masking needed |
| 685 instr |= offset_12; | 685 instr |= offset_12; |
| 686 } else { | 686 } else { |
| 687 // register offset (shift_imm_ and shift_op_ are 0) or scaled | 687 // Register offset (shift_imm_ and shift_op_ are 0) or scaled |
| 688 // register offset the constructors make sure than both shift_imm_ | 688 // register offset the constructors make sure than both shift_imm_ |
| 689 // and shift_op_ are initialized | 689 // and shift_op_ are initialized. |
| 690 ASSERT(!x.rm_.is(pc)); | 690 ASSERT(!x.rm_.is(pc)); |
| 691 instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); | 691 instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); |
| 692 } | 692 } |
| 693 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback | 693 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback |
| 694 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); | 694 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); |
| 695 } | 695 } |
| 696 | 696 |
| 697 | 697 |
| 698 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) { | 698 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) { |
| 699 ASSERT((instr & ~(CondMask | L | S6 | H)) == (B4 | B7)); | 699 ASSERT((instr & ~(CondMask | L | S6 | H)) == (B4 | B7)); |
| 700 ASSERT(x.rn_.is_valid()); | 700 ASSERT(x.rn_.is_valid()); |
| 701 int am = x.am_; | 701 int am = x.am_; |
| 702 if (!x.rm_.is_valid()) { | 702 if (!x.rm_.is_valid()) { |
| 703 // immediate offset | 703 // Immediate offset. |
| 704 int offset_8 = x.offset_; | 704 int offset_8 = x.offset_; |
| 705 if (offset_8 < 0) { | 705 if (offset_8 < 0) { |
| 706 offset_8 = -offset_8; | 706 offset_8 = -offset_8; |
| 707 am ^= U; | 707 am ^= U; |
| 708 } | 708 } |
| 709 if (!is_uint8(offset_8)) { | 709 if (!is_uint8(offset_8)) { |
| 710 // immediate offset cannot be encoded, load it first to register ip | 710 // Immediate offset cannot be encoded, load it first to register ip |
| 711 // rn (and rd in a load) should never be ip, or will be trashed | 711 // rn (and rd in a load) should never be ip, or will be trashed. |
| 712 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); | 712 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); |
| 713 mov(ip, Operand(x.offset_), LeaveCC, | 713 mov(ip, Operand(x.offset_), LeaveCC, |
| 714 static_cast<Condition>(instr & CondMask)); | 714 static_cast<Condition>(instr & CondMask)); |
| 715 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); | 715 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); |
| 716 return; | 716 return; |
| 717 } | 717 } |
| 718 ASSERT(offset_8 >= 0); // no masking needed | 718 ASSERT(offset_8 >= 0); // no masking needed |
| 719 instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf); | 719 instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf); |
| 720 } else if (x.shift_imm_ != 0) { | 720 } else if (x.shift_imm_ != 0) { |
| 721 // scaled register offset not supported, load index first | 721 // Scaled register offset not supported, load index first |
| 722 // rn (and rd in a load) should never be ip, or will be trashed | 722 // rn (and rd in a load) should never be ip, or will be trashed. |
| 723 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); | 723 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); |
| 724 mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC, | 724 mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC, |
| 725 static_cast<Condition>(instr & CondMask)); | 725 static_cast<Condition>(instr & CondMask)); |
| 726 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); | 726 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); |
| 727 return; | 727 return; |
| 728 } else { | 728 } else { |
| 729 // register offset | 729 // Register offset. |
| 730 ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback | 730 ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback |
| 731 instr |= x.rm_.code(); | 731 instr |= x.rm_.code(); |
| 732 } | 732 } |
| 733 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback | 733 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback |
| 734 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); | 734 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); |
| 735 } | 735 } |
| 736 | 736 |
| 737 | 737 |
| 738 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) { | 738 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) { |
| 739 ASSERT((instr & ~(CondMask | P | U | W | L)) == B27); | 739 ASSERT((instr & ~(CondMask | P | U | W | L)) == B27); |
| 740 ASSERT(rl != 0); | 740 ASSERT(rl != 0); |
| 741 ASSERT(!rn.is(pc)); | 741 ASSERT(!rn.is(pc)); |
| 742 emit(instr | rn.code()*B16 | rl); | 742 emit(instr | rn.code()*B16 | rl); |
| 743 } | 743 } |
| 744 | 744 |
| 745 | 745 |
| 746 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) { | 746 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) { |
| 747 // unindexed addressing is not encoded by this function | 747 // Unindexed addressing is not encoded by this function. |
| 748 ASSERT_EQ((B27 | B26), | 748 ASSERT_EQ((B27 | B26), |
| 749 (instr & ~(CondMask | CoprocessorMask | P | U | N | W | L))); | 749 (instr & ~(CondMask | CoprocessorMask | P | U | N | W | L))); |
| 750 ASSERT(x.rn_.is_valid() && !x.rm_.is_valid()); | 750 ASSERT(x.rn_.is_valid() && !x.rm_.is_valid()); |
| 751 int am = x.am_; | 751 int am = x.am_; |
| 752 int offset_8 = x.offset_; | 752 int offset_8 = x.offset_; |
| 753 ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset | 753 ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset |
| 754 offset_8 >>= 2; | 754 offset_8 >>= 2; |
| 755 if (offset_8 < 0) { | 755 if (offset_8 < 0) { |
| 756 offset_8 = -offset_8; | 756 offset_8 = -offset_8; |
| 757 am ^= U; | 757 am ^= U; |
| 758 } | 758 } |
| 759 ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte | 759 ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte |
| 760 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback | 760 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback |
| 761 | 761 |
| 762 // post-indexed addressing requires W == 1; different than in addrmod2/3 | 762 // Post-indexed addressing requires W == 1; different than in addrmod2/3. |
| 763 if ((am & P) == 0) | 763 if ((am & P) == 0) |
| 764 am |= W; | 764 am |= W; |
| 765 | 765 |
| 766 ASSERT(offset_8 >= 0); // no masking needed | 766 ASSERT(offset_8 >= 0); // no masking needed |
| 767 emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8); | 767 emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8); |
| 768 } | 768 } |
| 769 | 769 |
| 770 | 770 |
| 771 int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { | 771 int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { |
| 772 int target_pos; | 772 int target_pos; |
| 773 if (L->is_bound()) { | 773 if (L->is_bound()) { |
| 774 target_pos = L->pos(); | 774 target_pos = L->pos(); |
| 775 } else { | 775 } else { |
| 776 if (L->is_linked()) { | 776 if (L->is_linked()) { |
| 777 target_pos = L->pos(); // L's link | 777 target_pos = L->pos(); // L's link |
| 778 } else { | 778 } else { |
| 779 target_pos = kEndOfChain; | 779 target_pos = kEndOfChain; |
| 780 } | 780 } |
| 781 L->link_to(pc_offset()); | 781 L->link_to(pc_offset()); |
| 782 } | 782 } |
| 783 | 783 |
| 784 // Block the emission of the constant pool, since the branch instruction must | 784 // Block the emission of the constant pool, since the branch instruction must |
| 785 // be emitted at the pc offset recorded by the label | 785 // be emitted at the pc offset recorded by the label. |
| 786 BlockConstPoolBefore(pc_offset() + kInstrSize); | 786 BlockConstPoolBefore(pc_offset() + kInstrSize); |
| 787 return target_pos - (pc_offset() + kPcLoadDelta); | 787 return target_pos - (pc_offset() + kPcLoadDelta); |
| 788 } | 788 } |
| 789 | 789 |
| 790 | 790 |
| 791 void Assembler::label_at_put(Label* L, int at_offset) { | 791 void Assembler::label_at_put(Label* L, int at_offset) { |
| 792 int target_pos; | 792 int target_pos; |
| 793 if (L->is_bound()) { | 793 if (L->is_bound()) { |
| 794 target_pos = L->pos(); | 794 target_pos = L->pos(); |
| 795 } else { | 795 } else { |
| 796 if (L->is_linked()) { | 796 if (L->is_linked()) { |
| 797 target_pos = L->pos(); // L's link | 797 target_pos = L->pos(); // L's link |
| 798 } else { | 798 } else { |
| 799 target_pos = kEndOfChain; | 799 target_pos = kEndOfChain; |
| 800 } | 800 } |
| 801 L->link_to(at_offset); | 801 L->link_to(at_offset); |
| 802 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); | 802 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| 803 } | 803 } |
| 804 } | 804 } |
| 805 | 805 |
| 806 | 806 |
| 807 // Branch instructions | 807 // Branch instructions. |
| 808 void Assembler::b(int branch_offset, Condition cond) { | 808 void Assembler::b(int branch_offset, Condition cond) { |
| 809 ASSERT((branch_offset & 3) == 0); | 809 ASSERT((branch_offset & 3) == 0); |
| 810 int imm24 = branch_offset >> 2; | 810 int imm24 = branch_offset >> 2; |
| 811 ASSERT(is_int24(imm24)); | 811 ASSERT(is_int24(imm24)); |
| 812 emit(cond | B27 | B25 | (imm24 & Imm24Mask)); | 812 emit(cond | B27 | B25 | (imm24 & Imm24Mask)); |
| 813 | 813 |
| 814 if (cond == al) | 814 if (cond == al) |
| 815 // dead code is a good location to emit the constant pool | 815 // Dead code is a good location to emit the constant pool. |
| 816 CheckConstPool(false, false); | 816 CheckConstPool(false, false); |
| 817 } | 817 } |
| 818 | 818 |
| 819 | 819 |
| 820 void Assembler::bl(int branch_offset, Condition cond) { | 820 void Assembler::bl(int branch_offset, Condition cond) { |
| 821 ASSERT((branch_offset & 3) == 0); | 821 ASSERT((branch_offset & 3) == 0); |
| 822 int imm24 = branch_offset >> 2; | 822 int imm24 = branch_offset >> 2; |
| 823 ASSERT(is_int24(imm24)); | 823 ASSERT(is_int24(imm24)); |
| 824 emit(cond | B27 | B25 | B24 | (imm24 & Imm24Mask)); | 824 emit(cond | B27 | B25 | B24 | (imm24 & Imm24Mask)); |
| 825 } | 825 } |
| (...skipping 16 matching lines...) Expand all Loading... |
| 842 } | 842 } |
| 843 | 843 |
| 844 | 844 |
| 845 void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t | 845 void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t |
| 846 WriteRecordedPositions(); | 846 WriteRecordedPositions(); |
| 847 ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged | 847 ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged |
| 848 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | B4 | target.code()); | 848 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | B4 | target.code()); |
| 849 } | 849 } |
| 850 | 850 |
| 851 | 851 |
| 852 // Data-processing instructions | 852 // Data-processing instructions. |
| 853 void Assembler::and_(Register dst, Register src1, const Operand& src2, | 853 void Assembler::and_(Register dst, Register src1, const Operand& src2, |
| 854 SBit s, Condition cond) { | 854 SBit s, Condition cond) { |
| 855 addrmod1(cond | 0*B21 | s, src1, dst, src2); | 855 addrmod1(cond | 0*B21 | s, src1, dst, src2); |
| 856 } | 856 } |
| 857 | 857 |
| 858 | 858 |
| 859 void Assembler::eor(Register dst, Register src1, const Operand& src2, | 859 void Assembler::eor(Register dst, Register src1, const Operand& src2, |
| 860 SBit s, Condition cond) { | 860 SBit s, Condition cond) { |
| 861 addrmod1(cond | 1*B21 | s, src1, dst, src2); | 861 addrmod1(cond | 1*B21 | s, src1, dst, src2); |
| 862 } | 862 } |
| (...skipping 16 matching lines...) Expand all Loading... |
| 879 addrmod1(cond | 4*B21 | s, src1, dst, src2); | 879 addrmod1(cond | 4*B21 | s, src1, dst, src2); |
| 880 | 880 |
| 881 // Eliminate pattern: push(r), pop() | 881 // Eliminate pattern: push(r), pop() |
| 882 // str(src, MemOperand(sp, 4, NegPreIndex), al); | 882 // str(src, MemOperand(sp, 4, NegPreIndex), al); |
| 883 // add(sp, sp, Operand(kPointerSize)); | 883 // add(sp, sp, Operand(kPointerSize)); |
| 884 // Both instructions can be eliminated. | 884 // Both instructions can be eliminated. |
| 885 int pattern_size = 2 * kInstrSize; | 885 int pattern_size = 2 * kInstrSize; |
| 886 if (FLAG_push_pop_elimination && | 886 if (FLAG_push_pop_elimination && |
| 887 last_bound_pos_ <= (pc_offset() - pattern_size) && | 887 last_bound_pos_ <= (pc_offset() - pattern_size) && |
| 888 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && | 888 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && |
| 889 // pattern | 889 // Pattern. |
| 890 instr_at(pc_ - 1 * kInstrSize) == kPopInstruction && | 890 instr_at(pc_ - 1 * kInstrSize) == kPopInstruction && |
| 891 (instr_at(pc_ - 2 * kInstrSize) & ~RdMask) == kPushRegPattern) { | 891 (instr_at(pc_ - 2 * kInstrSize) & ~RdMask) == kPushRegPattern) { |
| 892 pc_ -= 2 * kInstrSize; | 892 pc_ -= 2 * kInstrSize; |
| 893 if (FLAG_print_push_pop_elimination) { | 893 if (FLAG_print_push_pop_elimination) { |
| 894 PrintF("%x push(reg)/pop() eliminated\n", pc_offset()); | 894 PrintF("%x push(reg)/pop() eliminated\n", pc_offset()); |
| 895 } | 895 } |
| 896 } | 896 } |
| 897 } | 897 } |
| 898 | 898 |
| 899 | 899 |
| (...skipping 53 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 953 SBit s, Condition cond) { | 953 SBit s, Condition cond) { |
| 954 addrmod1(cond | 14*B21 | s, src1, dst, src2); | 954 addrmod1(cond | 14*B21 | s, src1, dst, src2); |
| 955 } | 955 } |
| 956 | 956 |
| 957 | 957 |
| 958 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) { | 958 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) { |
| 959 addrmod1(cond | 15*B21 | s, r0, dst, src); | 959 addrmod1(cond | 15*B21 | s, r0, dst, src); |
| 960 } | 960 } |
| 961 | 961 |
| 962 | 962 |
| 963 // Multiply instructions | 963 // Multiply instructions. |
| 964 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA, | 964 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA, |
| 965 SBit s, Condition cond) { | 965 SBit s, Condition cond) { |
| 966 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc)); | 966 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc)); |
| 967 emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 | | 967 emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 | |
| 968 src2.code()*B8 | B7 | B4 | src1.code()); | 968 src2.code()*B8 | B7 | B4 | src1.code()); |
| 969 } | 969 } |
| 970 | 970 |
| 971 | 971 |
| 972 void Assembler::mul(Register dst, Register src1, Register src2, | 972 void Assembler::mul(Register dst, Register src1, Register src2, |
| 973 SBit s, Condition cond) { | 973 SBit s, Condition cond) { |
| (...skipping 48 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1022 Register src2, | 1022 Register src2, |
| 1023 SBit s, | 1023 SBit s, |
| 1024 Condition cond) { | 1024 Condition cond) { |
| 1025 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); | 1025 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); |
| 1026 ASSERT(!dstL.is(dstH)); | 1026 ASSERT(!dstL.is(dstH)); |
| 1027 emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 | | 1027 emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 | |
| 1028 src2.code()*B8 | B7 | B4 | src1.code()); | 1028 src2.code()*B8 | B7 | B4 | src1.code()); |
| 1029 } | 1029 } |
| 1030 | 1030 |
| 1031 | 1031 |
| 1032 // Miscellaneous arithmetic instructions | 1032 // Miscellaneous arithmetic instructions. |
| 1033 void Assembler::clz(Register dst, Register src, Condition cond) { | 1033 void Assembler::clz(Register dst, Register src, Condition cond) { |
| 1034 // v5 and above. | 1034 // v5 and above. |
| 1035 ASSERT(!dst.is(pc) && !src.is(pc)); | 1035 ASSERT(!dst.is(pc) && !src.is(pc)); |
| 1036 emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 | | 1036 emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 | |
| 1037 15*B8 | B4 | src.code()); | 1037 15*B8 | B4 | src.code()); |
| 1038 } | 1038 } |
| 1039 | 1039 |
| 1040 | 1040 |
| 1041 // Status register access instructions | 1041 // Status register access instructions. |
| 1042 void Assembler::mrs(Register dst, SRegister s, Condition cond) { | 1042 void Assembler::mrs(Register dst, SRegister s, Condition cond) { |
| 1043 ASSERT(!dst.is(pc)); | 1043 ASSERT(!dst.is(pc)); |
| 1044 emit(cond | B24 | s | 15*B16 | dst.code()*B12); | 1044 emit(cond | B24 | s | 15*B16 | dst.code()*B12); |
| 1045 } | 1045 } |
| 1046 | 1046 |
| 1047 | 1047 |
| 1048 void Assembler::msr(SRegisterFieldMask fields, const Operand& src, | 1048 void Assembler::msr(SRegisterFieldMask fields, const Operand& src, |
| 1049 Condition cond) { | 1049 Condition cond) { |
| 1050 ASSERT(fields >= B16 && fields < B20); // at least one field set | 1050 ASSERT(fields >= B16 && fields < B20); // at least one field set |
| 1051 Instr instr; | 1051 Instr instr; |
| 1052 if (!src.rm_.is_valid()) { | 1052 if (!src.rm_.is_valid()) { |
| 1053 // immediate | 1053 // Immediate. |
| 1054 uint32_t rotate_imm; | 1054 uint32_t rotate_imm; |
| 1055 uint32_t immed_8; | 1055 uint32_t immed_8; |
| 1056 if (MustUseIp(src.rmode_) || | 1056 if (MustUseIp(src.rmode_) || |
| 1057 !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) { | 1057 !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) { |
| 1058 // immediate operand cannot be encoded, load it first to register ip | 1058 // Immediate operand cannot be encoded, load it first to register ip. |
| 1059 RecordRelocInfo(src.rmode_, src.imm32_); | 1059 RecordRelocInfo(src.rmode_, src.imm32_); |
| 1060 ldr(ip, MemOperand(pc, 0), cond); | 1060 ldr(ip, MemOperand(pc, 0), cond); |
| 1061 msr(fields, Operand(ip), cond); | 1061 msr(fields, Operand(ip), cond); |
| 1062 return; | 1062 return; |
| 1063 } | 1063 } |
| 1064 instr = I | rotate_imm*B8 | immed_8; | 1064 instr = I | rotate_imm*B8 | immed_8; |
| 1065 } else { | 1065 } else { |
| 1066 ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed | 1066 ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed |
| 1067 instr = src.rm_.code(); | 1067 instr = src.rm_.code(); |
| 1068 } | 1068 } |
| 1069 emit(cond | instr | B24 | B21 | fields | 15*B12); | 1069 emit(cond | instr | B24 | B21 | fields | 15*B12); |
| 1070 } | 1070 } |
| 1071 | 1071 |
| 1072 | 1072 |
| 1073 // Load/Store instructions | 1073 // Load/Store instructions. |
| 1074 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) { | 1074 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) { |
| 1075 if (dst.is(pc)) { | 1075 if (dst.is(pc)) { |
| 1076 WriteRecordedPositions(); | 1076 WriteRecordedPositions(); |
| 1077 } | 1077 } |
| 1078 addrmod2(cond | B26 | L, dst, src); | 1078 addrmod2(cond | B26 | L, dst, src); |
| 1079 | 1079 |
| 1080 // Eliminate pattern: push(r), pop(r) | 1080 // Eliminate pattern: push(r), pop(r) |
| 1081 // str(r, MemOperand(sp, 4, NegPreIndex), al) | 1081 // str(r, MemOperand(sp, 4, NegPreIndex), al) |
| 1082 // ldr(r, MemOperand(sp, 4, PostIndex), al) | 1082 // ldr(r, MemOperand(sp, 4, PostIndex), al) |
| 1083 // Both instructions can be eliminated. | 1083 // Both instructions can be eliminated. |
| 1084 int pattern_size = 2 * kInstrSize; | 1084 int pattern_size = 2 * kInstrSize; |
| 1085 if (FLAG_push_pop_elimination && | 1085 if (FLAG_push_pop_elimination && |
| 1086 last_bound_pos_ <= (pc_offset() - pattern_size) && | 1086 last_bound_pos_ <= (pc_offset() - pattern_size) && |
| 1087 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && | 1087 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && |
| 1088 // pattern | 1088 // Pattern. |
| 1089 instr_at(pc_ - 1 * kInstrSize) == (kPopRegPattern | dst.code() * B12) && | 1089 instr_at(pc_ - 1 * kInstrSize) == (kPopRegPattern | dst.code() * B12) && |
| 1090 instr_at(pc_ - 2 * kInstrSize) == (kPushRegPattern | dst.code() * B12)) { | 1090 instr_at(pc_ - 2 * kInstrSize) == (kPushRegPattern | dst.code() * B12)) { |
| 1091 pc_ -= 2 * kInstrSize; | 1091 pc_ -= 2 * kInstrSize; |
| 1092 if (FLAG_print_push_pop_elimination) { | 1092 if (FLAG_print_push_pop_elimination) { |
| 1093 PrintF("%x push/pop (same reg) eliminated\n", pc_offset()); | 1093 PrintF("%x push/pop (same reg) eliminated\n", pc_offset()); |
| 1094 } | 1094 } |
| 1095 } | 1095 } |
| 1096 } | 1096 } |
| 1097 | 1097 |
| 1098 | 1098 |
| 1099 void Assembler::str(Register src, const MemOperand& dst, Condition cond) { | 1099 void Assembler::str(Register src, const MemOperand& dst, Condition cond) { |
| 1100 addrmod2(cond | B26, src, dst); | 1100 addrmod2(cond | B26, src, dst); |
| 1101 | 1101 |
| 1102 // Eliminate pattern: pop(), push(r) | 1102 // Eliminate pattern: pop(), push(r) |
| 1103 // add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al | 1103 // add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al |
| 1104 // -> str r, [sp, 0], al | 1104 // -> str r, [sp, 0], al |
| 1105 int pattern_size = 2 * kInstrSize; | 1105 int pattern_size = 2 * kInstrSize; |
| 1106 if (FLAG_push_pop_elimination && | 1106 if (FLAG_push_pop_elimination && |
| 1107 last_bound_pos_ <= (pc_offset() - pattern_size) && | 1107 last_bound_pos_ <= (pc_offset() - pattern_size) && |
| 1108 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && | 1108 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && |
| 1109 // Pattern. |
| 1109 instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) && | 1110 instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) && |
| 1110 instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) { | 1111 instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) { |
| 1111 pc_ -= 2 * kInstrSize; | 1112 pc_ -= 2 * kInstrSize; |
| 1112 emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12); | 1113 emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12); |
| 1113 if (FLAG_print_push_pop_elimination) { | 1114 if (FLAG_print_push_pop_elimination) { |
| 1114 PrintF("%x pop()/push(reg) eliminated\n", pc_offset()); | 1115 PrintF("%x pop()/push(reg) eliminated\n", pc_offset()); |
| 1115 } | 1116 } |
| 1116 } | 1117 } |
| 1117 } | 1118 } |
| 1118 | 1119 |
| (...skipping 21 matching lines...) Expand all Loading... |
| 1140 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) { | 1141 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) { |
| 1141 addrmod3(cond | L | B7 | S6 | B4, dst, src); | 1142 addrmod3(cond | L | B7 | S6 | B4, dst, src); |
| 1142 } | 1143 } |
| 1143 | 1144 |
| 1144 | 1145 |
| 1145 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) { | 1146 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) { |
| 1146 addrmod3(cond | L | B7 | S6 | H | B4, dst, src); | 1147 addrmod3(cond | L | B7 | S6 | H | B4, dst, src); |
| 1147 } | 1148 } |
| 1148 | 1149 |
| 1149 | 1150 |
| 1150 // Load/Store multiple instructions | 1151 // Load/Store multiple instructions. |
| 1151 void Assembler::ldm(BlockAddrMode am, | 1152 void Assembler::ldm(BlockAddrMode am, |
| 1152 Register base, | 1153 Register base, |
| 1153 RegList dst, | 1154 RegList dst, |
| 1154 Condition cond) { | 1155 Condition cond) { |
| 1155 // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable | 1156 // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable. |
| 1156 ASSERT(base.is(sp) || (dst & sp.bit()) == 0); | 1157 ASSERT(base.is(sp) || (dst & sp.bit()) == 0); |
| 1157 | 1158 |
| 1158 addrmod4(cond | B27 | am | L, base, dst); | 1159 addrmod4(cond | B27 | am | L, base, dst); |
| 1159 | 1160 |
| 1160 // emit the constant pool after a function return implemented by ldm ..{..pc} | 1161 // Emit the constant pool after a function return implemented by ldm ..{..pc}. |
| 1161 if (cond == al && (dst & pc.bit()) != 0) { | 1162 if (cond == al && (dst & pc.bit()) != 0) { |
| 1162 // There is a slight chance that the ldm instruction was actually a call, | 1163 // There is a slight chance that the ldm instruction was actually a call, |
| 1163 // in which case it would be wrong to return into the constant pool; we | 1164 // in which case it would be wrong to return into the constant pool; we |
| 1164 // recognize this case by checking if the emission of the pool was blocked | 1165 // recognize this case by checking if the emission of the pool was blocked |
| 1165 // at the pc of the ldm instruction by a mov lr, pc instruction; if this is | 1166 // at the pc of the ldm instruction by a mov lr, pc instruction; if this is |
| 1166 // the case, we emit a jump over the pool. | 1167 // the case, we emit a jump over the pool. |
| 1167 CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize); | 1168 CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize); |
| 1168 } | 1169 } |
| 1169 } | 1170 } |
| 1170 | 1171 |
| 1171 | 1172 |
| 1172 void Assembler::stm(BlockAddrMode am, | 1173 void Assembler::stm(BlockAddrMode am, |
| 1173 Register base, | 1174 Register base, |
| 1174 RegList src, | 1175 RegList src, |
| 1175 Condition cond) { | 1176 Condition cond) { |
| 1176 addrmod4(cond | B27 | am, base, src); | 1177 addrmod4(cond | B27 | am, base, src); |
| 1177 } | 1178 } |
| 1178 | 1179 |
| 1179 | 1180 |
| 1180 // Semaphore instructions | 1181 // Semaphore instructions. |
| 1181 void Assembler::swp(Register dst, Register src, Register base, Condition cond) { | 1182 void Assembler::swp(Register dst, Register src, Register base, Condition cond) { |
| 1182 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc)); | 1183 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc)); |
| 1183 ASSERT(!dst.is(base) && !src.is(base)); | 1184 ASSERT(!dst.is(base) && !src.is(base)); |
| 1184 emit(cond | P | base.code()*B16 | dst.code()*B12 | | 1185 emit(cond | P | base.code()*B16 | dst.code()*B12 | |
| 1185 B7 | B4 | src.code()); | 1186 B7 | B4 | src.code()); |
| 1186 } | 1187 } |
| 1187 | 1188 |
| 1188 | 1189 |
| 1189 void Assembler::swpb(Register dst, | 1190 void Assembler::swpb(Register dst, |
| 1190 Register src, | 1191 Register src, |
| 1191 Register base, | 1192 Register base, |
| 1192 Condition cond) { | 1193 Condition cond) { |
| 1193 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc)); | 1194 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc)); |
| 1194 ASSERT(!dst.is(base) && !src.is(base)); | 1195 ASSERT(!dst.is(base) && !src.is(base)); |
| 1195 emit(cond | P | B | base.code()*B16 | dst.code()*B12 | | 1196 emit(cond | P | B | base.code()*B16 | dst.code()*B12 | |
| 1196 B7 | B4 | src.code()); | 1197 B7 | B4 | src.code()); |
| 1197 } | 1198 } |
| 1198 | 1199 |
| 1199 | 1200 |
| 1200 // Exception-generating instructions and debugging support | 1201 // Exception-generating instructions and debugging support. |
| 1201 void Assembler::stop(const char* msg) { | 1202 void Assembler::stop(const char* msg) { |
| 1202 #if !defined(__arm__) | 1203 #if !defined(__arm__) |
| 1203 // The simulator handles these special instructions and stops execution. | 1204 // The simulator handles these special instructions and stops execution. |
| 1204 emit(15 << 28 | ((intptr_t) msg)); | 1205 emit(15 << 28 | ((intptr_t) msg)); |
| 1205 #else | 1206 #else |
| 1206 // Just issue a simple break instruction for now. Alternatively we could use | 1207 // Just issue a simple break instruction for now. Alternatively we could use |
| 1207 // the swi(0x9f0001) instruction on Linux. | 1208 // the swi(0x9f0001) instruction on Linux. |
| 1208 bkpt(0); | 1209 bkpt(0); |
| 1209 #endif | 1210 #endif |
| 1210 } | 1211 } |
| 1211 | 1212 |
| 1212 | 1213 |
| 1213 void Assembler::bkpt(uint32_t imm16) { // v5 and above | 1214 void Assembler::bkpt(uint32_t imm16) { // v5 and above |
| 1214 ASSERT(is_uint16(imm16)); | 1215 ASSERT(is_uint16(imm16)); |
| 1215 emit(al | B24 | B21 | (imm16 >> 4)*B8 | 7*B4 | (imm16 & 0xf)); | 1216 emit(al | B24 | B21 | (imm16 >> 4)*B8 | 7*B4 | (imm16 & 0xf)); |
| 1216 } | 1217 } |
| 1217 | 1218 |
| 1218 | 1219 |
| 1219 void Assembler::swi(uint32_t imm24, Condition cond) { | 1220 void Assembler::swi(uint32_t imm24, Condition cond) { |
| 1220 ASSERT(is_uint24(imm24)); | 1221 ASSERT(is_uint24(imm24)); |
| 1221 emit(cond | 15*B24 | imm24); | 1222 emit(cond | 15*B24 | imm24); |
| 1222 } | 1223 } |
| 1223 | 1224 |
| 1224 | 1225 |
| 1225 // Coprocessor instructions | 1226 // Coprocessor instructions. |
| 1226 void Assembler::cdp(Coprocessor coproc, | 1227 void Assembler::cdp(Coprocessor coproc, |
| 1227 int opcode_1, | 1228 int opcode_1, |
| 1228 CRegister crd, | 1229 CRegister crd, |
| 1229 CRegister crn, | 1230 CRegister crn, |
| 1230 CRegister crm, | 1231 CRegister crm, |
| 1231 int opcode_2, | 1232 int opcode_2, |
| 1232 Condition cond) { | 1233 Condition cond) { |
| 1233 ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2)); | 1234 ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2)); |
| 1234 emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 | | 1235 emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 | |
| 1235 crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code()); | 1236 crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code()); |
| (...skipping 64 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1300 addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src); | 1301 addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src); |
| 1301 } | 1302 } |
| 1302 | 1303 |
| 1303 | 1304 |
| 1304 void Assembler::ldc(Coprocessor coproc, | 1305 void Assembler::ldc(Coprocessor coproc, |
| 1305 CRegister crd, | 1306 CRegister crd, |
| 1306 Register rn, | 1307 Register rn, |
| 1307 int option, | 1308 int option, |
| 1308 LFlag l, | 1309 LFlag l, |
| 1309 Condition cond) { | 1310 Condition cond) { |
| 1310 // unindexed addressing | 1311 // Unindexed addressing. |
| 1311 ASSERT(is_uint8(option)); | 1312 ASSERT(is_uint8(option)); |
| 1312 emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 | | 1313 emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 | |
| 1313 coproc*B8 | (option & 255)); | 1314 coproc*B8 | (option & 255)); |
| 1314 } | 1315 } |
| 1315 | 1316 |
| 1316 | 1317 |
| 1317 void Assembler::ldc2(Coprocessor coproc, | 1318 void Assembler::ldc2(Coprocessor coproc, |
| 1318 CRegister crd, | 1319 CRegister crd, |
| 1319 const MemOperand& src, | 1320 const MemOperand& src, |
| 1320 LFlag l) { // v5 and above | 1321 LFlag l) { // v5 and above |
| (...skipping 18 matching lines...) Expand all Loading... |
| 1339 addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst); | 1340 addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst); |
| 1340 } | 1341 } |
| 1341 | 1342 |
| 1342 | 1343 |
| 1343 void Assembler::stc(Coprocessor coproc, | 1344 void Assembler::stc(Coprocessor coproc, |
| 1344 CRegister crd, | 1345 CRegister crd, |
| 1345 Register rn, | 1346 Register rn, |
| 1346 int option, | 1347 int option, |
| 1347 LFlag l, | 1348 LFlag l, |
| 1348 Condition cond) { | 1349 Condition cond) { |
| 1349 // unindexed addressing | 1350 // Unindexed addressing. |
| 1350 ASSERT(is_uint8(option)); | 1351 ASSERT(is_uint8(option)); |
| 1351 emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 | | 1352 emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 | |
| 1352 coproc*B8 | (option & 255)); | 1353 coproc*B8 | (option & 255)); |
| 1353 } | 1354 } |
| 1354 | 1355 |
| 1355 | 1356 |
| 1356 void Assembler::stc2(Coprocessor | 1357 void Assembler::stc2(Coprocessor |
| 1357 coproc, CRegister crd, | 1358 coproc, CRegister crd, |
| 1358 const MemOperand& dst, | 1359 const MemOperand& dst, |
| 1359 LFlag l) { // v5 and above | 1360 LFlag l) { // v5 and above |
| (...skipping 97 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1457 emit(cond | 0xE*B24 | B20 | (src.code() >> 1)*B16 | | 1458 emit(cond | 0xE*B24 | B20 | (src.code() >> 1)*B16 | |
| 1458 dst.code()*B12 | 0xA*B8 | (0x1 & src.code())*B7 | B4); | 1459 dst.code()*B12 | 0xA*B8 | (0x1 & src.code())*B7 | B4); |
| 1459 } | 1460 } |
| 1460 | 1461 |
| 1461 | 1462 |
| 1462 void Assembler::vcvt(const DwVfpRegister dst, | 1463 void Assembler::vcvt(const DwVfpRegister dst, |
| 1463 const SwVfpRegister src, | 1464 const SwVfpRegister src, |
| 1464 const Condition cond) { | 1465 const Condition cond) { |
| 1465 // Dd = Sm (integer in Sm converted to IEEE 64-bit doubles in Dd). | 1466 // Dd = Sm (integer in Sm converted to IEEE 64-bit doubles in Dd). |
| 1466 // Instruction details available in ARM DDI 0406A, A8-576. | 1467 // Instruction details available in ARM DDI 0406A, A8-576. |
| 1467 // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) |opc2=000(18-16) | | 1468 // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) | opc2=000(18-16) | |
| 1468 // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=1 | 1(6) | M=?(5) | 0(4) | Vm(3-0) | 1469 // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=1 | 1(6) | M=?(5) | 0(4) | Vm(3-0) |
| 1469 ASSERT(CpuFeatures::IsEnabled(VFP3)); | 1470 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| 1470 emit(cond | 0xE*B24 | B23 | 0x3*B20 | B19 | | 1471 emit(cond | 0xE*B24 | B23 | 0x3*B20 | B19 | |
| 1471 dst.code()*B12 | 0x5*B9 | B8 | B7 | B6 | | 1472 dst.code()*B12 | 0x5*B9 | B8 | B7 | B6 | |
| 1472 (0x1 & src.code())*B5 | (src.code() >> 1)); | 1473 (0x1 & src.code())*B5 | (src.code() >> 1)); |
| 1473 } | 1474 } |
| 1474 | 1475 |
| 1475 | 1476 |
| 1476 void Assembler::vcvt(const SwVfpRegister dst, | 1477 void Assembler::vcvt(const SwVfpRegister dst, |
| 1477 const DwVfpRegister src, | 1478 const DwVfpRegister src, |
| (...skipping 86 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1564 void Assembler::vmrs(Register dst, Condition cond) { | 1565 void Assembler::vmrs(Register dst, Condition cond) { |
| 1565 // Instruction details available in ARM DDI 0406A, A8-652. | 1566 // Instruction details available in ARM DDI 0406A, A8-652. |
| 1566 // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) | | 1567 // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) | |
| 1567 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0) | 1568 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0) |
| 1568 ASSERT(CpuFeatures::IsEnabled(VFP3)); | 1569 ASSERT(CpuFeatures::IsEnabled(VFP3)); |
| 1569 emit(cond | 0xE*B24 | 0xF*B20 | B16 | | 1570 emit(cond | 0xE*B24 | 0xF*B20 | B16 | |
| 1570 dst.code()*B12 | 0xA*B8 | B4); | 1571 dst.code()*B12 | 0xA*B8 | B4); |
| 1571 } | 1572 } |
| 1572 | 1573 |
| 1573 | 1574 |
| 1574 // Pseudo instructions | 1575 // Pseudo instructions. |
| 1575 void Assembler::lea(Register dst, | 1576 void Assembler::lea(Register dst, |
| 1576 const MemOperand& x, | 1577 const MemOperand& x, |
| 1577 SBit s, | 1578 SBit s, |
| 1578 Condition cond) { | 1579 Condition cond) { |
| 1579 int am = x.am_; | 1580 int am = x.am_; |
| 1580 if (!x.rm_.is_valid()) { | 1581 if (!x.rm_.is_valid()) { |
| 1581 // immediate offset | 1582 // Immediate offset. |
| 1582 if ((am & P) == 0) // post indexing | 1583 if ((am & P) == 0) // post indexing |
| 1583 mov(dst, Operand(x.rn_), s, cond); | 1584 mov(dst, Operand(x.rn_), s, cond); |
| 1584 else if ((am & U) == 0) // negative indexing | 1585 else if ((am & U) == 0) // negative indexing |
| 1585 sub(dst, x.rn_, Operand(x.offset_), s, cond); | 1586 sub(dst, x.rn_, Operand(x.offset_), s, cond); |
| 1586 else | 1587 else |
| 1587 add(dst, x.rn_, Operand(x.offset_), s, cond); | 1588 add(dst, x.rn_, Operand(x.offset_), s, cond); |
| 1588 } else { | 1589 } else { |
| 1589 // Register offset (shift_imm_ and shift_op_ are 0) or scaled | 1590 // Register offset (shift_imm_ and shift_op_ are 0) or scaled |
| 1590 // register offset the constructors make sure than both shift_imm_ | 1591 // register offset the constructors make sure than both shift_imm_ |
| 1591 // and shift_op_ are initialized. | 1592 // and shift_op_ are initialized. |
| (...skipping 13 matching lines...) Expand all Loading... |
| 1605 uint32_t dummy2; | 1606 uint32_t dummy2; |
| 1606 return fits_shifter(imm32, &dummy1, &dummy2, NULL); | 1607 return fits_shifter(imm32, &dummy1, &dummy2, NULL); |
| 1607 } | 1608 } |
| 1608 | 1609 |
| 1609 | 1610 |
| 1610 void Assembler::BlockConstPoolFor(int instructions) { | 1611 void Assembler::BlockConstPoolFor(int instructions) { |
| 1611 BlockConstPoolBefore(pc_offset() + instructions * kInstrSize); | 1612 BlockConstPoolBefore(pc_offset() + instructions * kInstrSize); |
| 1612 } | 1613 } |
| 1613 | 1614 |
| 1614 | 1615 |
| 1615 // Debugging | 1616 // Debugging. |
| 1616 void Assembler::RecordJSReturn() { | 1617 void Assembler::RecordJSReturn() { |
| 1617 WriteRecordedPositions(); | 1618 WriteRecordedPositions(); |
| 1618 CheckBuffer(); | 1619 CheckBuffer(); |
| 1619 RecordRelocInfo(RelocInfo::JS_RETURN); | 1620 RecordRelocInfo(RelocInfo::JS_RETURN); |
| 1620 } | 1621 } |
| 1621 | 1622 |
| 1622 | 1623 |
| 1623 void Assembler::RecordComment(const char* msg) { | 1624 void Assembler::RecordComment(const char* msg) { |
| 1624 if (FLAG_debug_code) { | 1625 if (FLAG_debug_code) { |
| 1625 CheckBuffer(); | 1626 CheckBuffer(); |
| (...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1658 CheckBuffer(); | 1659 CheckBuffer(); |
| 1659 RecordRelocInfo(RelocInfo::POSITION, current_position_); | 1660 RecordRelocInfo(RelocInfo::POSITION, current_position_); |
| 1660 written_position_ = current_position_; | 1661 written_position_ = current_position_; |
| 1661 } | 1662 } |
| 1662 } | 1663 } |
| 1663 | 1664 |
| 1664 | 1665 |
| 1665 void Assembler::GrowBuffer() { | 1666 void Assembler::GrowBuffer() { |
| 1666 if (!own_buffer_) FATAL("external code buffer is too small"); | 1667 if (!own_buffer_) FATAL("external code buffer is too small"); |
| 1667 | 1668 |
| 1668 // compute new buffer size | 1669 // Compute new buffer size. |
| 1669 CodeDesc desc; // the new buffer | 1670 CodeDesc desc; // the new buffer |
| 1670 if (buffer_size_ < 4*KB) { | 1671 if (buffer_size_ < 4*KB) { |
| 1671 desc.buffer_size = 4*KB; | 1672 desc.buffer_size = 4*KB; |
| 1672 } else if (buffer_size_ < 1*MB) { | 1673 } else if (buffer_size_ < 1*MB) { |
| 1673 desc.buffer_size = 2*buffer_size_; | 1674 desc.buffer_size = 2*buffer_size_; |
| 1674 } else { | 1675 } else { |
| 1675 desc.buffer_size = buffer_size_ + 1*MB; | 1676 desc.buffer_size = buffer_size_ + 1*MB; |
| 1676 } | 1677 } |
| 1677 CHECK_GT(desc.buffer_size, 0); // no overflow | 1678 CHECK_GT(desc.buffer_size, 0); // no overflow |
| 1678 | 1679 |
| 1679 // setup new buffer | 1680 // Setup new buffer. |
| 1680 desc.buffer = NewArray<byte>(desc.buffer_size); | 1681 desc.buffer = NewArray<byte>(desc.buffer_size); |
| 1681 | 1682 |
| 1682 desc.instr_size = pc_offset(); | 1683 desc.instr_size = pc_offset(); |
| 1683 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); | 1684 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
| 1684 | 1685 |
| 1685 // copy the data | 1686 // Copy the data. |
| 1686 int pc_delta = desc.buffer - buffer_; | 1687 int pc_delta = desc.buffer - buffer_; |
| 1687 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); | 1688 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); |
| 1688 memmove(desc.buffer, buffer_, desc.instr_size); | 1689 memmove(desc.buffer, buffer_, desc.instr_size); |
| 1689 memmove(reloc_info_writer.pos() + rc_delta, | 1690 memmove(reloc_info_writer.pos() + rc_delta, |
| 1690 reloc_info_writer.pos(), desc.reloc_size); | 1691 reloc_info_writer.pos(), desc.reloc_size); |
| 1691 | 1692 |
| 1692 // switch buffers | 1693 // Switch buffers. |
| 1693 DeleteArray(buffer_); | 1694 DeleteArray(buffer_); |
| 1694 buffer_ = desc.buffer; | 1695 buffer_ = desc.buffer; |
| 1695 buffer_size_ = desc.buffer_size; | 1696 buffer_size_ = desc.buffer_size; |
| 1696 pc_ += pc_delta; | 1697 pc_ += pc_delta; |
| 1697 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, | 1698 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, |
| 1698 reloc_info_writer.last_pc() + pc_delta); | 1699 reloc_info_writer.last_pc() + pc_delta); |
| 1699 | 1700 |
| 1700 // none of our relocation types are pc relative pointing outside the code | 1701 // None of our relocation types are pc relative pointing outside the code |
| 1701 // buffer nor pc absolute pointing inside the code buffer, so there is no need | 1702 // buffer nor pc absolute pointing inside the code buffer, so there is no need |
| 1702 // to relocate any emitted relocation entries | 1703 // to relocate any emitted relocation entries. |
| 1703 | 1704 |
| 1704 // relocate pending relocation entries | 1705 // Relocate pending relocation entries. |
| 1705 for (int i = 0; i < num_prinfo_; i++) { | 1706 for (int i = 0; i < num_prinfo_; i++) { |
| 1706 RelocInfo& rinfo = prinfo_[i]; | 1707 RelocInfo& rinfo = prinfo_[i]; |
| 1707 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && | 1708 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && |
| 1708 rinfo.rmode() != RelocInfo::POSITION); | 1709 rinfo.rmode() != RelocInfo::POSITION); |
| 1709 if (rinfo.rmode() != RelocInfo::JS_RETURN) { | 1710 if (rinfo.rmode() != RelocInfo::JS_RETURN) { |
| 1710 rinfo.set_pc(rinfo.pc() + pc_delta); | 1711 rinfo.set_pc(rinfo.pc() + pc_delta); |
| 1711 } | 1712 } |
| 1712 } | 1713 } |
| 1713 } | 1714 } |
| 1714 | 1715 |
| 1715 | 1716 |
| 1716 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { | 1717 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { |
| 1717 RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants | 1718 RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants |
| 1718 if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) { | 1719 if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) { |
| 1719 // Adjust code for new modes | 1720 // Adjust code for new modes. |
| 1720 ASSERT(RelocInfo::IsJSReturn(rmode) | 1721 ASSERT(RelocInfo::IsJSReturn(rmode) |
| 1721 || RelocInfo::IsComment(rmode) | 1722 || RelocInfo::IsComment(rmode) |
| 1722 || RelocInfo::IsPosition(rmode)); | 1723 || RelocInfo::IsPosition(rmode)); |
| 1723 // these modes do not need an entry in the constant pool | 1724 // These modes do not need an entry in the constant pool. |
| 1724 } else { | 1725 } else { |
| 1725 ASSERT(num_prinfo_ < kMaxNumPRInfo); | 1726 ASSERT(num_prinfo_ < kMaxNumPRInfo); |
| 1726 prinfo_[num_prinfo_++] = rinfo; | 1727 prinfo_[num_prinfo_++] = rinfo; |
| 1727 // Make sure the constant pool is not emitted in place of the next | 1728 // Make sure the constant pool is not emitted in place of the next |
| 1728 // instruction for which we just recorded relocation info | 1729 // instruction for which we just recorded relocation info. |
| 1729 BlockConstPoolBefore(pc_offset() + kInstrSize); | 1730 BlockConstPoolBefore(pc_offset() + kInstrSize); |
| 1730 } | 1731 } |
| 1731 if (rinfo.rmode() != RelocInfo::NONE) { | 1732 if (rinfo.rmode() != RelocInfo::NONE) { |
| 1732 // Don't record external references unless the heap will be serialized. | 1733 // Don't record external references unless the heap will be serialized. |
| 1733 if (rmode == RelocInfo::EXTERNAL_REFERENCE) { | 1734 if (rmode == RelocInfo::EXTERNAL_REFERENCE) { |
| 1734 #ifdef DEBUG | 1735 #ifdef DEBUG |
| 1735 if (!Serializer::enabled()) { | 1736 if (!Serializer::enabled()) { |
| 1736 Serializer::TooLateToEnableNow(); | 1737 Serializer::TooLateToEnableNow(); |
| 1737 } | 1738 } |
| 1738 #endif | 1739 #endif |
| 1739 if (!Serializer::enabled() && !FLAG_debug_code) { | 1740 if (!Serializer::enabled() && !FLAG_debug_code) { |
| 1740 return; | 1741 return; |
| 1741 } | 1742 } |
| 1742 } | 1743 } |
| 1743 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here | 1744 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here |
| 1744 reloc_info_writer.Write(&rinfo); | 1745 reloc_info_writer.Write(&rinfo); |
| 1745 } | 1746 } |
| 1746 } | 1747 } |
| 1747 | 1748 |
| 1748 | 1749 |
| 1749 void Assembler::CheckConstPool(bool force_emit, bool require_jump) { | 1750 void Assembler::CheckConstPool(bool force_emit, bool require_jump) { |
| 1750 // Calculate the offset of the next check. It will be overwritten | 1751 // Calculate the offset of the next check. It will be overwritten |
| 1751 // when a const pool is generated or when const pools are being | 1752 // when a const pool is generated or when const pools are being |
| 1752 // blocked for a specific range. | 1753 // blocked for a specific range. |
| 1753 next_buffer_check_ = pc_offset() + kCheckConstInterval; | 1754 next_buffer_check_ = pc_offset() + kCheckConstInterval; |
| 1754 | 1755 |
| 1755 // There is nothing to do if there are no pending relocation info entries | 1756 // There is nothing to do if there are no pending relocation info entries. |
| 1756 if (num_prinfo_ == 0) return; | 1757 if (num_prinfo_ == 0) return; |
| 1757 | 1758 |
| 1758 // We emit a constant pool at regular intervals of about kDistBetweenPools | 1759 // We emit a constant pool at regular intervals of about kDistBetweenPools |
| 1759 // or when requested by parameter force_emit (e.g. after each function). | 1760 // or when requested by parameter force_emit (e.g. after each function). |
| 1760 // We prefer not to emit a jump unless the max distance is reached or if we | 1761 // We prefer not to emit a jump unless the max distance is reached or if we |
| 1761 // are running low on slots, which can happen if a lot of constants are being | 1762 // are running low on slots, which can happen if a lot of constants are being |
| 1762 // emitted (e.g. --debug-code and many static references). | 1763 // emitted (e.g. --debug-code and many static references). |
| 1763 int dist = pc_offset() - last_const_pool_end_; | 1764 int dist = pc_offset() - last_const_pool_end_; |
| 1764 if (!force_emit && dist < kMaxDistBetweenPools && | 1765 if (!force_emit && dist < kMaxDistBetweenPools && |
| 1765 (require_jump || dist < kDistBetweenPools) && | 1766 (require_jump || dist < kDistBetweenPools) && |
| 1766 // TODO(1236125): Cleanup the "magic" number below. We know that | 1767 // TODO(1236125): Cleanup the "magic" number below. We know that |
| 1767 // the code generation will test every kCheckConstIntervalInst. | 1768 // the code generation will test every kCheckConstIntervalInst. |
| 1768 // Thus we are safe as long as we generate less than 7 constant | 1769 // Thus we are safe as long as we generate less than 7 constant |
| 1769 // entries per instruction. | 1770 // entries per instruction. |
| 1770 (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) { | 1771 (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) { |
| 1771 return; | 1772 return; |
| 1772 } | 1773 } |
| 1773 | 1774 |
| 1774 // If we did not return by now, we need to emit the constant pool soon. | 1775 // If we did not return by now, we need to emit the constant pool soon. |
| 1775 | 1776 |
| 1776 // However, some small sequences of instructions must not be broken up by the | 1777 // However, some small sequences of instructions must not be broken up by the |
| 1777 // insertion of a constant pool; such sequences are protected by setting | 1778 // insertion of a constant pool; such sequences are protected by setting |
| 1778 // no_const_pool_before_, which is checked here. Also, recursive calls to | 1779 // no_const_pool_before_, which is checked here. Also, recursive calls to |
| 1779 // CheckConstPool are blocked by no_const_pool_before_. | 1780 // CheckConstPool are blocked by no_const_pool_before_. |
| 1780 if (pc_offset() < no_const_pool_before_) { | 1781 if (pc_offset() < no_const_pool_before_) { |
| 1781 // Emission is currently blocked; make sure we try again as soon as possible | 1782 // Emission is currently blocked; make sure we try again as soon as |
| 1783 // possible. |
| 1782 next_buffer_check_ = no_const_pool_before_; | 1784 next_buffer_check_ = no_const_pool_before_; |
| 1783 | 1785 |
| 1784 // Something is wrong if emission is forced and blocked at the same time | 1786 // Something is wrong if emission is forced and blocked at the same time. |
| 1785 ASSERT(!force_emit); | 1787 ASSERT(!force_emit); |
| 1786 return; | 1788 return; |
| 1787 } | 1789 } |
| 1788 | 1790 |
| 1789 int jump_instr = require_jump ? kInstrSize : 0; | 1791 int jump_instr = require_jump ? kInstrSize : 0; |
| 1790 | 1792 |
| 1791 // Check that the code buffer is large enough before emitting the constant | 1793 // Check that the code buffer is large enough before emitting the constant |
| 1792 // pool and relocation information (include the jump over the pool and the | 1794 // pool and relocation information (include the jump over the pool and the |
| 1793 // constant pool marker). | 1795 // constant pool marker). |
| 1794 int max_needed_space = | 1796 int max_needed_space = |
| 1795 jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize); | 1797 jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize); |
| 1796 while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer(); | 1798 while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer(); |
| 1797 | 1799 |
| 1798 // Block recursive calls to CheckConstPool | 1800 // Block recursive calls to CheckConstPool. |
| 1799 BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize + | 1801 BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize + |
| 1800 num_prinfo_*kInstrSize); | 1802 num_prinfo_*kInstrSize); |
| 1801 // Don't bother to check for the emit calls below. | 1803 // Don't bother to check for the emit calls below. |
| 1802 next_buffer_check_ = no_const_pool_before_; | 1804 next_buffer_check_ = no_const_pool_before_; |
| 1803 | 1805 |
| 1804 // Emit jump over constant pool if necessary | 1806 // Emit jump over constant pool if necessary. |
| 1805 Label after_pool; | 1807 Label after_pool; |
| 1806 if (require_jump) b(&after_pool); | 1808 if (require_jump) b(&after_pool); |
| 1807 | 1809 |
| 1808 RecordComment("[ Constant Pool"); | 1810 RecordComment("[ Constant Pool"); |
| 1809 | 1811 |
| 1810 // Put down constant pool marker | 1812 // Put down constant pool marker "Undefined instruction" as specified by |
| 1811 // "Undefined instruction" as specified by A3.1 Instruction set encoding | 1813 // A3.1 Instruction set encoding. |
| 1812 emit(0x03000000 | num_prinfo_); | 1814 emit(0x03000000 | num_prinfo_); |
| 1813 | 1815 |
| 1814 // Emit constant pool entries | 1816 // Emit constant pool entries. |
| 1815 for (int i = 0; i < num_prinfo_; i++) { | 1817 for (int i = 0; i < num_prinfo_; i++) { |
| 1816 RelocInfo& rinfo = prinfo_[i]; | 1818 RelocInfo& rinfo = prinfo_[i]; |
| 1817 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && | 1819 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && |
| 1818 rinfo.rmode() != RelocInfo::POSITION && | 1820 rinfo.rmode() != RelocInfo::POSITION && |
| 1819 rinfo.rmode() != RelocInfo::STATEMENT_POSITION); | 1821 rinfo.rmode() != RelocInfo::STATEMENT_POSITION); |
| 1820 Instr instr = instr_at(rinfo.pc()); | 1822 Instr instr = instr_at(rinfo.pc()); |
| 1821 | 1823 |
| 1822 // Instruction to patch must be a ldr/str [pc, #offset] | 1824 // Instruction to patch must be a ldr/str [pc, #offset]. |
| 1823 // P and U set, B and W clear, Rn == pc, offset12 still 0 | 1825 // P and U set, B and W clear, Rn == pc, offset12 still 0. |
| 1824 ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | Off12Mask)) == | 1826 ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | Off12Mask)) == |
| 1825 (2*B25 | P | U | pc.code()*B16)); | 1827 (2*B25 | P | U | pc.code()*B16)); |
| 1826 int delta = pc_ - rinfo.pc() - 8; | 1828 int delta = pc_ - rinfo.pc() - 8; |
| 1827 ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32 | 1829 ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32 |
| 1828 if (delta < 0) { | 1830 if (delta < 0) { |
| 1829 instr &= ~U; | 1831 instr &= ~U; |
| 1830 delta = -delta; | 1832 delta = -delta; |
| 1831 } | 1833 } |
| 1832 ASSERT(is_uint12(delta)); | 1834 ASSERT(is_uint12(delta)); |
| 1833 instr_at_put(rinfo.pc(), instr + delta); | 1835 instr_at_put(rinfo.pc(), instr + delta); |
| 1834 emit(rinfo.data()); | 1836 emit(rinfo.data()); |
| 1835 } | 1837 } |
| 1836 num_prinfo_ = 0; | 1838 num_prinfo_ = 0; |
| 1837 last_const_pool_end_ = pc_offset(); | 1839 last_const_pool_end_ = pc_offset(); |
| 1838 | 1840 |
| 1839 RecordComment("]"); | 1841 RecordComment("]"); |
| 1840 | 1842 |
| 1841 if (after_pool.is_linked()) { | 1843 if (after_pool.is_linked()) { |
| 1842 bind(&after_pool); | 1844 bind(&after_pool); |
| 1843 } | 1845 } |
| 1844 | 1846 |
| 1845 // Since a constant pool was just emitted, move the check offset forward by | 1847 // Since a constant pool was just emitted, move the check offset forward by |
| 1846 // the standard interval. | 1848 // the standard interval. |
| 1847 next_buffer_check_ = pc_offset() + kCheckConstInterval; | 1849 next_buffer_check_ = pc_offset() + kCheckConstInterval; |
| 1848 } | 1850 } |
| 1849 | 1851 |
| 1850 | 1852 |
| 1851 } } // namespace v8::internal | 1853 } } // namespace v8::internal |
| OLD | NEW |