Index: src/x64/codegen-x64.cc |
=================================================================== |
--- src/x64/codegen-x64.cc (revision 3712) |
+++ src/x64/codegen-x64.cc (working copy) |
@@ -224,20 +224,17 @@ |
Register lhs, |
Register rhs); |
- // Code pattern for loading a floating point value and converting it |
- // to a 32 bit integer. Input value must be either a smi or a heap number |
- // object. |
- // Returns operands as 32-bit sign extended integers in a general purpose |
- // registers. |
- static void LoadInt32Operand(MacroAssembler* masm, |
- const Operand& src, |
- Register dst); |
- |
// Test if operands are smi or number objects (fp). Requirements: |
// operand_1 in rax, operand_2 in rdx; falls through on float or smi |
// operands, jumps to the non_float label otherwise. |
static void CheckNumberOperands(MacroAssembler* masm, |
Label* non_float); |
+ |
+ // Takes the operands in rdx and rax and loads them as integers in rax |
+ // and rcx. |
+ static void LoadAsIntegers(MacroAssembler* masm, |
+ bool use_sse3, |
+ Label* operand_conversion_failure); |
}; |
@@ -3012,6 +3009,9 @@ |
} |
} else { |
+ bool overwrite = |
+ (node->expression()->AsBinaryOperation() != NULL && |
+ node->expression()->AsBinaryOperation()->ResultOverwriteAllowed()); |
Load(node->expression()); |
switch (op) { |
case Token::NOT: |
@@ -3021,9 +3021,6 @@ |
break; |
case Token::SUB: { |
- bool overwrite = |
- (node->expression()->AsBinaryOperation() != NULL && |
- node->expression()->AsBinaryOperation()->ResultOverwriteAllowed()); |
GenericUnaryOpStub stub(Token::SUB, overwrite); |
// TODO(1222589): remove dependency of TOS being cached inside stub |
Result operand = frame_->Pop(); |
@@ -3042,10 +3039,10 @@ |
Condition is_smi = masm_->CheckSmi(operand.reg()); |
smi_label.Branch(is_smi, &operand); |
- frame_->Push(&operand); // undo popping of TOS |
- Result answer = frame_->InvokeBuiltin(Builtins::BIT_NOT, |
- CALL_FUNCTION, 1); |
+ GenericUnaryOpStub stub(Token::BIT_NOT, overwrite); |
+ Result answer = frame_->CallStub(&stub, &operand); |
continue_label.Jump(&answer); |
+ |
smi_label.Bind(&answer); |
answer.ToRegister(); |
frame_->Spill(answer.reg()); |
@@ -6290,56 +6287,216 @@ |
// End of CodeGenerator implementation. |
+// Get the integer part of a heap number. Surprisingly, all this bit twiddling |
+// is faster than using the built-in instructions on floating point registers. |
+// Trashes rdi and rbx. Dest is rcx. Source cannot be rcx or one of the |
+// trashed registers. |
+void IntegerConvert(MacroAssembler* masm, |
+ Register source, |
+ bool use_sse3, |
+ Label* conversion_failure) { |
+ ASSERT(!source.is(rcx) && !source.is(rdi) && !source.is(rbx)); |
+ Label done, right_exponent, normal_exponent; |
+ Register scratch = rbx; |
+ Register scratch2 = rdi; |
+ // Get exponent word. |
+ __ movl(scratch, FieldOperand(source, HeapNumber::kExponentOffset)); |
+ // Get exponent alone in scratch2. |
+ __ movl(scratch2, scratch); |
+ __ and_(scratch2, Immediate(HeapNumber::kExponentMask)); |
+ if (use_sse3) { |
+ CpuFeatures::Scope scope(SSE3); |
+ // Check whether the exponent is too big for a 64 bit signed integer. |
+ static const uint32_t kTooBigExponent = |
+ (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift; |
+ __ cmpl(scratch2, Immediate(kTooBigExponent)); |
+ __ j(greater_equal, conversion_failure); |
+ // Load x87 register with heap number. |
+ __ fld_d(FieldOperand(source, HeapNumber::kValueOffset)); |
+ // Reserve space for 64 bit answer. |
+ __ subq(rsp, Immediate(sizeof(uint64_t))); // Nolint. |
+ // Do conversion, which cannot fail because we checked the exponent. |
+ __ fisttp_d(Operand(rsp, 0)); |
+ __ movl(rcx, Operand(rsp, 0)); // Load low word of answer into rcx. |
+ __ addq(rsp, Immediate(sizeof(uint64_t))); // Nolint. |
+ } else { |
+ // Load rcx with zero. We use this either for the final shift or |
Erik Corry
2010/01/27 13:16:01
All this stuff could probably be reimplemented in
Mads Ager (chromium)
2010/01/27 13:33:34
I agree.
|
+ // for the answer. |
+ __ xor_(rcx, rcx); |
+ // Check whether the exponent matches a 32 bit signed int that cannot be |
+ // represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the |
+ // exponent is 30 (biased). This is the exponent that we are fastest at and |
+ // also the highest exponent we can handle here. |
+ const uint32_t non_smi_exponent = |
+ (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
+ __ cmpl(scratch2, Immediate(non_smi_exponent)); |
+ // If we have a match of the int32-but-not-Smi exponent then skip some |
+ // logic. |
+ __ j(equal, &right_exponent); |
+ // If the exponent is higher than that then go to slow case. This catches |
+ // numbers that don't fit in a signed int32, infinities and NaNs. |
+ __ j(less, &normal_exponent); |
+ |
+ { |
+ // Handle a big exponent. The only reason we have this code is that the |
+ // >>> operator has a tendency to generate numbers with an exponent of 31. |
+ const uint32_t big_non_smi_exponent = |
+ (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift; |
+ __ cmpl(scratch2, Immediate(big_non_smi_exponent)); |
+ __ j(not_equal, conversion_failure); |
+ // We have the big exponent, typically from >>>. This means the number is |
+ // in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa. |
+ __ movl(scratch2, scratch); |
+ __ and_(scratch2, Immediate(HeapNumber::kMantissaMask)); |
+ // Put back the implicit 1. |
+ __ or_(scratch2, Immediate(1 << HeapNumber::kExponentShift)); |
+ // Shift up the mantissa bits to take up the space the exponent used to |
+ // take. We just orred in the implicit bit so that took care of one and |
+ // we want to use the full unsigned range so we subtract 1 bit from the |
+ // shift distance. |
+ const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1; |
+ __ shl(scratch2, Immediate(big_shift_distance)); |
+ // Get the second half of the double. |
+ __ movl(rcx, FieldOperand(source, HeapNumber::kMantissaOffset)); |
+ // Shift down 21 bits to get the most significant 11 bits or the low |
+ // mantissa word. |
+ __ shr(rcx, Immediate(32 - big_shift_distance)); |
+ __ or_(rcx, scratch2); |
+ // We have the answer in rcx, but we may need to negate it. |
+ __ testl(scratch, scratch); |
+ __ j(positive, &done); |
+ __ neg(rcx); |
+ __ jmp(&done); |
+ } |
+ |
+ __ bind(&normal_exponent); |
+ // Exponent word in scratch, exponent part of exponent word in scratch2. |
+ // Zero in rcx. |
+ // We know the exponent is smaller than 30 (biased). If it is less than |
+ // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie |
+ // it rounds to zero. |
+ const uint32_t zero_exponent = |
+ (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift; |
+ __ subl(scratch2, Immediate(zero_exponent)); |
+ // rcx already has a Smi zero. |
+ __ j(less, &done); |
+ |
+ // We have a shifted exponent between 0 and 30 in scratch2. |
+ __ shr(scratch2, Immediate(HeapNumber::kExponentShift)); |
+ __ movl(rcx, Immediate(30)); |
+ __ subl(rcx, scratch2); |
+ |
+ __ bind(&right_exponent); |
+ // Here rcx is the shift, scratch is the exponent word. |
+ // Get the top bits of the mantissa. |
+ __ and_(scratch, Immediate(HeapNumber::kMantissaMask)); |
+ // Put back the implicit 1. |
+ __ or_(scratch, Immediate(1 << HeapNumber::kExponentShift)); |
+ // Shift up the mantissa bits to take up the space the exponent used to |
+ // take. We have kExponentShift + 1 significant bits int he low end of the |
+ // word. Shift them to the top bits. |
+ const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
+ __ shl(scratch, Immediate(shift_distance)); |
+ // Get the second half of the double. For some exponents we don't |
+ // actually need this because the bits get shifted out again, but |
+ // it's probably slower to test than just to do it. |
+ __ movl(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset)); |
+ // Shift down 22 bits to get the most significant 10 bits or the low |
+ // mantissa word. |
+ __ shr(scratch2, Immediate(32 - shift_distance)); |
+ __ or_(scratch2, scratch); |
+ // Move down according to the exponent. |
+ __ shr_cl(scratch2); |
+ // Now the unsigned answer is in scratch2. We need to move it to rcx and |
+ // we may need to fix the sign. |
+ Label negative; |
+ __ xor_(rcx, rcx); |
+ __ cmpl(rcx, FieldOperand(source, HeapNumber::kExponentOffset)); |
+ __ j(greater, &negative); |
+ __ movl(rcx, scratch2); |
+ __ jmp(&done); |
+ __ bind(&negative); |
+ __ subl(rcx, scratch2); |
+ __ bind(&done); |
+ } |
+} |
+ |
+ |
void GenericUnaryOpStub::Generate(MacroAssembler* masm) { |
- ASSERT(op_ == Token::SUB); |
+ Label slow, done; |
- Label slow; |
- Label done; |
- Label try_float; |
- // Check whether the value is a smi. |
- __ JumpIfNotSmi(rax, &try_float); |
+ if (op_ == Token::SUB) { |
+ // Check whether the value is a smi. |
+ Label try_float; |
+ __ JumpIfNotSmi(rax, &try_float); |
- // Enter runtime system if the value of the smi is zero |
- // to make sure that we switch between 0 and -0. |
- // Also enter it if the value of the smi is Smi::kMinValue. |
- __ SmiNeg(rax, rax, &done); |
+ // Enter runtime system if the value of the smi is zero |
+ // to make sure that we switch between 0 and -0. |
+ // Also enter it if the value of the smi is Smi::kMinValue. |
+ __ SmiNeg(rax, rax, &done); |
- // Either zero or Smi::kMinValue, neither of which become a smi when negated. |
- __ SmiCompare(rax, Smi::FromInt(0)); |
- __ j(not_equal, &slow); |
- __ Move(rax, Factory::minus_zero_value()); |
- __ jmp(&done); |
+ // Either zero or Smi::kMinValue, neither of which become a smi when |
+ // negated. |
+ __ SmiCompare(rax, Smi::FromInt(0)); |
+ __ j(not_equal, &slow); |
+ __ Move(rax, Factory::minus_zero_value()); |
+ __ jmp(&done); |
- // Enter runtime system. |
+ // Try floating point case. |
+ __ bind(&try_float); |
+ __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); |
+ __ Cmp(rdx, Factory::heap_number_map()); |
+ __ j(not_equal, &slow); |
+ // Operand is a float, negate its value by flipping sign bit. |
+ __ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset)); |
+ __ movq(kScratchRegister, Immediate(0x01)); |
+ __ shl(kScratchRegister, Immediate(63)); |
+ __ xor_(rdx, kScratchRegister); // Flip sign. |
+ // rdx is value to store. |
+ if (overwrite_) { |
+ __ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx); |
+ } else { |
+ __ AllocateHeapNumber(rcx, rbx, &slow); |
+ // rcx: allocated 'empty' number |
+ __ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx); |
+ __ movq(rax, rcx); |
+ } |
+ } else if (op_ == Token::BIT_NOT) { |
+ // Check if the operand is a heap number. |
+ __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); |
+ __ Cmp(rdx, Factory::heap_number_map()); |
+ __ j(not_equal, &slow); |
+ |
+ // Convert the heap number in rax to an untagged integer in rcx. |
+ IntegerConvert(masm, rax, CpuFeatures::IsSupported(SSE3), &slow); |
+ |
+ // Do the bitwise operation and check if the result fits in a smi. |
+ Label try_float; |
+ __ not_(rcx); |
+ // Tag the result as a smi and we're done. |
+ ASSERT(kSmiTagSize == 1); |
+ __ Integer32ToSmi(rax, rcx); |
+ } |
+ |
+ // Return from the stub. |
+ __ bind(&done); |
+ __ StubReturn(1); |
+ |
+ // Handle the slow case by jumping to the JavaScript builtin. |
__ bind(&slow); |
__ pop(rcx); // pop return address |
__ push(rax); |
__ push(rcx); // push return address |
- __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); |
- __ jmp(&done); |
- |
- // Try floating point case. |
- __ bind(&try_float); |
- __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); |
- __ Cmp(rdx, Factory::heap_number_map()); |
- __ j(not_equal, &slow); |
- // Operand is a float, negate its value by flipping sign bit. |
- __ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset)); |
- __ movq(kScratchRegister, Immediate(0x01)); |
- __ shl(kScratchRegister, Immediate(63)); |
- __ xor_(rdx, kScratchRegister); // Flip sign. |
- // rdx is value to store. |
- if (overwrite_) { |
- __ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx); |
- } else { |
- __ AllocateHeapNumber(rcx, rbx, &slow); |
- // rcx: allocated 'empty' number |
- __ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx); |
- __ movq(rax, rcx); |
+ switch (op_) { |
+ case Token::SUB: |
+ __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); |
+ break; |
+ case Token::BIT_NOT: |
+ __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); |
+ break; |
+ default: |
+ UNREACHABLE(); |
} |
- |
- __ bind(&done); |
- __ StubReturn(1); |
} |
@@ -7288,15 +7445,6 @@ |
} |
-void FloatingPointHelper::LoadInt32Operand(MacroAssembler* masm, |
- const Operand& src, |
- Register dst) { |
- // TODO(X64): Convert number operands to int32 values. |
- // Don't convert a Smi to a double first. |
- UNIMPLEMENTED(); |
-} |
- |
- |
void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm) { |
Label load_smi_1, load_smi_2, done_load_1, done; |
__ movq(kScratchRegister, Operand(rsp, 2 * kPointerSize)); |
@@ -7326,6 +7474,61 @@ |
} |
+// Input: rdx, rax are the left and right objects of a bit op. |
+// Output: rax, rcx are left and right integers for a bit op. |
+void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm, |
+ bool use_sse3, |
+ Label* conversion_failure) { |
+ // Check float operands. |
+ Label arg1_is_object, check_undefined_arg1; |
+ Label arg2_is_object, check_undefined_arg2; |
+ Label load_arg2, done; |
+ |
+ __ JumpIfNotSmi(rdx, &arg1_is_object); |
+ __ SmiToInteger32(rdx, rdx); |
+ __ jmp(&load_arg2); |
+ |
+ // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
+ __ bind(&check_undefined_arg1); |
+ __ Cmp(rdx, Factory::undefined_value()); |
Erik Corry
2010/01/27 13:16:01
You should use CompareRoot here. It's a tiny bit
Mads Ager (chromium)
2010/01/27 13:33:34
I always forget that - thanks for pointing it out
|
+ __ j(not_equal, conversion_failure); |
+ __ movl(rdx, Immediate(0)); |
+ __ jmp(&load_arg2); |
+ |
+ __ bind(&arg1_is_object); |
+ __ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); |
+ __ Cmp(rbx, Factory::heap_number_map()); |
+ __ j(not_equal, &check_undefined_arg1); |
+ // Get the untagged integer version of the edx heap number in rcx. |
+ IntegerConvert(masm, rdx, use_sse3, conversion_failure); |
+ __ movl(rdx, rcx); |
+ |
+ // Here edx has the untagged integer, eax has a Smi or a heap number. |
+ __ bind(&load_arg2); |
+ // Test if arg2 is a Smi. |
+ __ JumpIfNotSmi(rax, &arg2_is_object); |
+ __ SmiToInteger32(rax, rax); |
+ __ movl(rcx, rax); |
+ __ jmp(&done); |
+ |
+ // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
+ __ bind(&check_undefined_arg2); |
+ __ Cmp(rax, Factory::undefined_value()); |
+ __ j(not_equal, conversion_failure); |
+ __ movl(rcx, Immediate(0)); |
+ __ jmp(&done); |
+ |
+ __ bind(&arg2_is_object); |
+ __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); |
+ __ Cmp(rbx, Factory::heap_number_map()); |
+ __ j(not_equal, &check_undefined_arg2); |
+ // Get the untagged integer version of the eax heap number in ecx. |
+ IntegerConvert(masm, rax, use_sse3, conversion_failure); |
+ __ bind(&done); |
+ __ movl(rax, rdx); |
+} |
+ |
+ |
void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm, |
Register lhs, |
Register rhs) { |
@@ -7566,7 +7769,7 @@ |
case Token::SHL: |
case Token::SHR: |
case Token::SAR: |
- // Move the second operand into register ecx. |
+ // Move the second operand into register rcx. |
__ movq(rcx, rbx); |
// Perform the operation. |
switch (op_) { |
@@ -7662,44 +7865,8 @@ |
case Token::SAR: |
case Token::SHL: |
case Token::SHR: { |
- FloatingPointHelper::CheckNumberOperands(masm, &call_runtime); |
- // TODO(X64): Don't convert a Smi to float and then back to int32 |
- // afterwards. |
- FloatingPointHelper::LoadFloatOperands(masm); |
- |
- Label skip_allocation, non_smi_result, operand_conversion_failure; |
- |
- // Reserve space for converted numbers. |
- __ subq(rsp, Immediate(2 * kPointerSize)); |
- |
- if (use_sse3_) { |
- // Truncate the operands to 32-bit integers and check for |
- // exceptions in doing so. |
- CpuFeatures::Scope scope(SSE3); |
- __ fisttp_s(Operand(rsp, 0 * kPointerSize)); |
- __ fisttp_s(Operand(rsp, 1 * kPointerSize)); |
- __ fnstsw_ax(); |
- __ testl(rax, Immediate(1)); |
- __ j(not_zero, &operand_conversion_failure); |
- } else { |
- // Check if right operand is int32. |
- __ fist_s(Operand(rsp, 0 * kPointerSize)); |
- __ fild_s(Operand(rsp, 0 * kPointerSize)); |
- __ FCmp(); |
- __ j(not_zero, &operand_conversion_failure); |
- __ j(parity_even, &operand_conversion_failure); |
- |
- // Check if left operand is int32. |
- __ fist_s(Operand(rsp, 1 * kPointerSize)); |
- __ fild_s(Operand(rsp, 1 * kPointerSize)); |
- __ FCmp(); |
- __ j(not_zero, &operand_conversion_failure); |
- __ j(parity_even, &operand_conversion_failure); |
- } |
- |
- // Get int32 operands and perform bitop. |
- __ pop(rcx); |
- __ pop(rax); |
+ Label skip_allocation, non_smi_result; |
+ FloatingPointHelper::LoadAsIntegers(masm, use_sse3_, &call_runtime); |
switch (op_) { |
case Token::BIT_OR: __ orl(rax, rcx); break; |
case Token::BIT_AND: __ andl(rax, rcx); break; |
@@ -7747,22 +7914,6 @@ |
GenerateReturn(masm); |
} |
- // Clear the FPU exception flag and reset the stack before calling |
- // the runtime system. |
- __ bind(&operand_conversion_failure); |
- __ addq(rsp, Immediate(2 * kPointerSize)); |
- if (use_sse3_) { |
- // If we've used the SSE3 instructions for truncating the |
- // floating point values to integers and it failed, we have a |
- // pending #IA exception. Clear it. |
- __ fnclex(); |
- } else { |
- // The non-SSE3 variant does early bailout if the right |
- // operand isn't a 32-bit integer, so we may have a single |
- // value on the FPU stack we need to get rid of. |
- __ ffree(0); |
- } |
- |
// SHR should return uint32 - go to runtime for non-smi/negative result. |
if (op_ == Token::SHR) { |
__ bind(&non_smi_result); |
@@ -7982,8 +8133,8 @@ |
// Both strings are non-empty. |
// rax: first string |
// rbx: length of first string |
- // ecx: length of second string |
- // edx: second string |
+ // rcx: length of second string |
+ // rdx: second string |
// r8: instance type of first string if string check was performed above |
// r9: instance type of first string if string check was performed above |
Label string_add_flat_result; |