OLD | NEW |
1 // Copyright 2006-2009 the V8 project authors. All rights reserved. | 1 // Copyright 2006-2009 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
(...skipping 29 matching lines...) Expand all Loading... |
40 namespace v8 { | 40 namespace v8 { |
41 namespace internal { | 41 namespace internal { |
42 | 42 |
43 #define __ ACCESS_MASM(masm_) | 43 #define __ ACCESS_MASM(masm_) |
44 | 44 |
45 static void EmitIdenticalObjectComparison(MacroAssembler* masm, | 45 static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
46 Label* slow, | 46 Label* slow, |
47 Condition cc, | 47 Condition cc, |
48 bool never_nan_nan); | 48 bool never_nan_nan); |
49 static void EmitSmiNonsmiComparison(MacroAssembler* masm, | 49 static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
50 Label* rhs_not_nan, | 50 Label* lhs_not_nan, |
51 Label* slow, | 51 Label* slow, |
52 bool strict); | 52 bool strict); |
53 static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc); | 53 static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc); |
54 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm); | 54 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm); |
55 static void MultiplyByKnownInt(MacroAssembler* masm, | 55 static void MultiplyByKnownInt(MacroAssembler* masm, |
56 Register source, | 56 Register source, |
57 Register destination, | 57 Register destination, |
58 int known_int); | 58 int known_int); |
59 static bool IsEasyToMultiplyBy(int x); | 59 static bool IsEasyToMultiplyBy(int x); |
60 | 60 |
(...skipping 4710 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
4771 } | 4771 } |
4772 } | 4772 } |
4773 } | 4773 } |
4774 | 4774 |
4775 __ bind(&return_equal); | 4775 __ bind(&return_equal); |
4776 if (cc == lt) { | 4776 if (cc == lt) { |
4777 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves. | 4777 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves. |
4778 } else if (cc == gt) { | 4778 } else if (cc == gt) { |
4779 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves. | 4779 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves. |
4780 } else { | 4780 } else { |
4781 __ mov(r0, Operand(0)); // Things are <=, >=, ==, === themselves. | 4781 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. |
4782 } | 4782 } |
4783 __ mov(pc, Operand(lr)); // Return. | 4783 __ mov(pc, Operand(lr)); // Return. |
4784 | 4784 |
4785 if (cc != eq || !never_nan_nan) { | 4785 if (cc != eq || !never_nan_nan) { |
4786 // For less and greater we don't have to check for NaN since the result of | 4786 // For less and greater we don't have to check for NaN since the result of |
4787 // x < x is false regardless. For the others here is some code to check | 4787 // x < x is false regardless. For the others here is some code to check |
4788 // for NaN. | 4788 // for NaN. |
4789 if (cc != lt && cc != gt) { | 4789 if (cc != lt && cc != gt) { |
4790 __ bind(&heap_number); | 4790 __ bind(&heap_number); |
4791 // It is a heap number, so return non-equal if it's NaN and equal if it's | 4791 // It is a heap number, so return non-equal if it's NaN and equal if it's |
4792 // not NaN. | 4792 // not NaN. |
| 4793 |
4793 // The representation of NaN values has all exponent bits (52..62) set, | 4794 // The representation of NaN values has all exponent bits (52..62) set, |
4794 // and not all mantissa bits (0..51) clear. | 4795 // and not all mantissa bits (0..51) clear. |
4795 // Read top bits of double representation (second word of value). | 4796 // Read top bits of double representation (second word of value). |
4796 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); | 4797 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
4797 // Test that exponent bits are all set. | 4798 // Test that exponent bits are all set. |
4798 __ and_(r3, r2, Operand(exp_mask_reg)); | 4799 __ and_(r3, r2, Operand(exp_mask_reg)); |
4799 __ cmp(r3, Operand(exp_mask_reg)); | 4800 __ cmp(r3, Operand(exp_mask_reg)); |
4800 __ b(ne, &return_equal); | 4801 __ b(ne, &return_equal); |
4801 | 4802 |
4802 // Shift out flag and all exponent bits, retaining only mantissa. | 4803 // Shift out flag and all exponent bits, retaining only mantissa. |
4803 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord)); | 4804 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord)); |
4804 // Or with all low-bits of mantissa. | 4805 // Or with all low-bits of mantissa. |
4805 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); | 4806 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); |
4806 __ orr(r0, r3, Operand(r2), SetCC); | 4807 __ orr(r0, r3, Operand(r2), SetCC); |
4807 // For equal we already have the right value in r0: Return zero (equal) | 4808 // For equal we already have the right value in r0: Return zero (equal) |
4808 // if all bits in mantissa are zero (it's an Infinity) and non-zero if not | 4809 // if all bits in mantissa are zero (it's an Infinity) and non-zero if |
4809 // (it's a NaN). For <= and >= we need to load r0 with the failing value | 4810 // not (it's a NaN). For <= and >= we need to load r0 with the failing |
4810 // if it's a NaN. | 4811 // value if it's a NaN. |
4811 if (cc != eq) { | 4812 if (cc != eq) { |
4812 // All-zero means Infinity means equal. | 4813 // All-zero means Infinity means equal. |
4813 __ mov(pc, Operand(lr), LeaveCC, eq); // Return equal | 4814 __ mov(pc, Operand(lr), LeaveCC, eq); // Return equal |
4814 if (cc == le) { | 4815 if (cc == le) { |
4815 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail. | 4816 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail. |
4816 } else { | 4817 } else { |
4817 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail. | 4818 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail. |
4818 } | 4819 } |
4819 } | 4820 } |
4820 __ mov(pc, Operand(lr)); // Return. | 4821 __ mov(pc, Operand(lr)); // Return. |
4821 } | 4822 } |
4822 // No fall through here. | 4823 // No fall through here. |
4823 } | 4824 } |
4824 | 4825 |
4825 __ bind(¬_identical); | 4826 __ bind(¬_identical); |
4826 } | 4827 } |
4827 | 4828 |
4828 | 4829 |
4829 // See comment at call site. | 4830 // See comment at call site. |
4830 static void EmitSmiNonsmiComparison(MacroAssembler* masm, | 4831 static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
4831 Label* rhs_not_nan, | 4832 Label* lhs_not_nan, |
4832 Label* slow, | 4833 Label* slow, |
4833 bool strict) { | 4834 bool strict) { |
4834 Label lhs_is_smi; | 4835 Label lhs_is_smi; |
4835 __ tst(r0, Operand(kSmiTagMask)); | 4836 __ tst(r0, Operand(kSmiTagMask)); |
4836 __ b(eq, &lhs_is_smi); | 4837 __ b(eq, &lhs_is_smi); |
4837 | 4838 |
4838 // Rhs is a Smi. Check whether the non-smi is a heap number. | 4839 // Rhs is a Smi. Check whether the non-smi is a heap number. |
4839 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); | 4840 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); |
4840 if (strict) { | 4841 if (strict) { |
4841 // If lhs was not a number and rhs was a Smi then strict equality cannot | 4842 // If lhs was not a number and rhs was a Smi then strict equality cannot |
(...skipping 17 matching lines...) Expand all Loading... |
4859 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); | 4860 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); |
4860 } | 4861 } |
4861 | 4862 |
4862 | 4863 |
4863 // r3 and r2 are rhs as double. | 4864 // r3 and r2 are rhs as double. |
4864 __ ldr(r1, FieldMemOperand(r0, HeapNumber::kValueOffset + kPointerSize)); | 4865 __ ldr(r1, FieldMemOperand(r0, HeapNumber::kValueOffset + kPointerSize)); |
4865 __ ldr(r0, FieldMemOperand(r0, HeapNumber::kValueOffset)); | 4866 __ ldr(r0, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
4866 // We now have both loaded as doubles but we can skip the lhs nan check | 4867 // We now have both loaded as doubles but we can skip the lhs nan check |
4867 // since it's a Smi. | 4868 // since it's a Smi. |
4868 __ pop(lr); | 4869 __ pop(lr); |
4869 __ jmp(rhs_not_nan); | 4870 __ jmp(lhs_not_nan); |
4870 | 4871 |
4871 __ bind(&lhs_is_smi); | 4872 __ bind(&lhs_is_smi); |
4872 // Lhs is a Smi. Check whether the non-smi is a heap number. | 4873 // Lhs is a Smi. Check whether the non-smi is a heap number. |
4873 __ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE); | 4874 __ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE); |
4874 if (strict) { | 4875 if (strict) { |
4875 // If lhs was not a number and rhs was a Smi then strict equality cannot | 4876 // If lhs was not a number and rhs was a Smi then strict equality cannot |
4876 // succeed. Return non-equal. | 4877 // succeed. Return non-equal. |
4877 __ mov(r0, Operand(1), LeaveCC, ne); // Non-zero indicates not equal. | 4878 __ mov(r0, Operand(1), LeaveCC, ne); // Non-zero indicates not equal. |
4878 __ mov(pc, Operand(lr), LeaveCC, ne); // Return. | 4879 __ mov(pc, Operand(lr), LeaveCC, ne); // Return. |
4879 } else { | 4880 } else { |
(...skipping 15 matching lines...) Expand all Loading... |
4895 __ mov(r7, Operand(r0)); | 4896 __ mov(r7, Operand(r0)); |
4896 ConvertToDoubleStub stub2(r1, r0, r7, r6); | 4897 ConvertToDoubleStub stub2(r1, r0, r7, r6); |
4897 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); | 4898 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); |
4898 } | 4899 } |
4899 | 4900 |
4900 __ pop(lr); | 4901 __ pop(lr); |
4901 // Fall through to both_loaded_as_doubles. | 4902 // Fall through to both_loaded_as_doubles. |
4902 } | 4903 } |
4903 | 4904 |
4904 | 4905 |
4905 void EmitNanCheck(MacroAssembler* masm, Label* rhs_not_nan, Condition cc) { | 4906 void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cc) { |
4906 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); | 4907 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); |
4907 Register lhs_exponent = exp_first ? r0 : r1; | 4908 Register rhs_exponent = exp_first ? r0 : r1; |
4908 Register rhs_exponent = exp_first ? r2 : r3; | 4909 Register lhs_exponent = exp_first ? r2 : r3; |
4909 Register lhs_mantissa = exp_first ? r1 : r0; | 4910 Register rhs_mantissa = exp_first ? r1 : r0; |
4910 Register rhs_mantissa = exp_first ? r3 : r2; | 4911 Register lhs_mantissa = exp_first ? r3 : r2; |
4911 Label one_is_nan, neither_is_nan; | 4912 Label one_is_nan, neither_is_nan; |
| 4913 Label lhs_not_nan_exp_mask_is_loaded; |
4912 | 4914 |
4913 Register exp_mask_reg = r5; | 4915 Register exp_mask_reg = r5; |
4914 | 4916 |
4915 __ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask)); | 4917 __ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask)); |
| 4918 __ and_(r4, lhs_exponent, Operand(exp_mask_reg)); |
| 4919 __ cmp(r4, Operand(exp_mask_reg)); |
| 4920 __ b(ne, &lhs_not_nan_exp_mask_is_loaded); |
| 4921 __ mov(r4, |
| 4922 Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), |
| 4923 SetCC); |
| 4924 __ b(ne, &one_is_nan); |
| 4925 __ cmp(lhs_mantissa, Operand(0)); |
| 4926 __ b(ne, &one_is_nan); |
| 4927 |
| 4928 __ bind(lhs_not_nan); |
| 4929 __ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask)); |
| 4930 __ bind(&lhs_not_nan_exp_mask_is_loaded); |
4916 __ and_(r4, rhs_exponent, Operand(exp_mask_reg)); | 4931 __ and_(r4, rhs_exponent, Operand(exp_mask_reg)); |
4917 __ cmp(r4, Operand(exp_mask_reg)); | 4932 __ cmp(r4, Operand(exp_mask_reg)); |
4918 __ b(ne, rhs_not_nan); | 4933 __ b(ne, &neither_is_nan); |
4919 __ mov(r4, | 4934 __ mov(r4, |
4920 Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), | 4935 Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), |
4921 SetCC); | 4936 SetCC); |
4922 __ b(ne, &one_is_nan); | 4937 __ b(ne, &one_is_nan); |
4923 __ cmp(rhs_mantissa, Operand(0)); | 4938 __ cmp(rhs_mantissa, Operand(0)); |
4924 __ b(ne, &one_is_nan); | |
4925 | |
4926 __ bind(rhs_not_nan); | |
4927 __ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask)); | |
4928 __ and_(r4, lhs_exponent, Operand(exp_mask_reg)); | |
4929 __ cmp(r4, Operand(exp_mask_reg)); | |
4930 __ b(ne, &neither_is_nan); | |
4931 __ mov(r4, | |
4932 Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), | |
4933 SetCC); | |
4934 __ b(ne, &one_is_nan); | |
4935 __ cmp(lhs_mantissa, Operand(0)); | |
4936 __ b(eq, &neither_is_nan); | 4939 __ b(eq, &neither_is_nan); |
4937 | 4940 |
4938 __ bind(&one_is_nan); | 4941 __ bind(&one_is_nan); |
4939 // NaN comparisons always fail. | 4942 // NaN comparisons always fail. |
4940 // Load whatever we need in r0 to make the comparison fail. | 4943 // Load whatever we need in r0 to make the comparison fail. |
4941 if (cc == lt || cc == le) { | 4944 if (cc == lt || cc == le) { |
4942 __ mov(r0, Operand(GREATER)); | 4945 __ mov(r0, Operand(GREATER)); |
4943 } else { | 4946 } else { |
4944 __ mov(r0, Operand(LESS)); | 4947 __ mov(r0, Operand(LESS)); |
4945 } | 4948 } |
4946 __ mov(pc, Operand(lr)); // Return. | 4949 __ mov(pc, Operand(lr)); // Return. |
4947 | 4950 |
4948 __ bind(&neither_is_nan); | 4951 __ bind(&neither_is_nan); |
4949 } | 4952 } |
4950 | 4953 |
4951 | 4954 |
4952 // See comment at call site. | 4955 // See comment at call site. |
4953 static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) { | 4956 static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) { |
4954 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); | 4957 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); |
4955 Register lhs_exponent = exp_first ? r0 : r1; | 4958 Register rhs_exponent = exp_first ? r0 : r1; |
4956 Register rhs_exponent = exp_first ? r2 : r3; | 4959 Register lhs_exponent = exp_first ? r2 : r3; |
4957 Register lhs_mantissa = exp_first ? r1 : r0; | 4960 Register rhs_mantissa = exp_first ? r1 : r0; |
4958 Register rhs_mantissa = exp_first ? r3 : r2; | 4961 Register lhs_mantissa = exp_first ? r3 : r2; |
4959 | 4962 |
4960 // r0, r1, r2, r3 have the two doubles. Neither is a NaN. | 4963 // r0, r1, r2, r3 have the two doubles. Neither is a NaN. |
4961 if (cc == eq) { | 4964 if (cc == eq) { |
4962 // Doubles are not equal unless they have the same bit pattern. | 4965 // Doubles are not equal unless they have the same bit pattern. |
4963 // Exception: 0 and -0. | 4966 // Exception: 0 and -0. |
4964 __ cmp(lhs_mantissa, Operand(rhs_mantissa)); | 4967 __ cmp(rhs_mantissa, Operand(lhs_mantissa)); |
4965 __ orr(r0, lhs_mantissa, Operand(rhs_mantissa), LeaveCC, ne); | 4968 __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne); |
4966 // Return non-zero if the numbers are unequal. | 4969 // Return non-zero if the numbers are unequal. |
4967 __ mov(pc, Operand(lr), LeaveCC, ne); | 4970 __ mov(pc, Operand(lr), LeaveCC, ne); |
4968 | 4971 |
4969 __ sub(r0, lhs_exponent, Operand(rhs_exponent), SetCC); | 4972 __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC); |
4970 // If exponents are equal then return 0. | 4973 // If exponents are equal then return 0. |
4971 __ mov(pc, Operand(lr), LeaveCC, eq); | 4974 __ mov(pc, Operand(lr), LeaveCC, eq); |
4972 | 4975 |
4973 // Exponents are unequal. The only way we can return that the numbers | 4976 // Exponents are unequal. The only way we can return that the numbers |
4974 // are equal is if one is -0 and the other is 0. We already dealt | 4977 // are equal is if one is -0 and the other is 0. We already dealt |
4975 // with the case where both are -0 or both are 0. | 4978 // with the case where both are -0 or both are 0. |
4976 // We start by seeing if the mantissas (that are equal) or the bottom | 4979 // We start by seeing if the mantissas (that are equal) or the bottom |
4977 // 31 bits of the rhs exponent are non-zero. If so we return not | 4980 // 31 bits of the rhs exponent are non-zero. If so we return not |
4978 // equal. | 4981 // equal. |
4979 __ orr(r4, rhs_mantissa, Operand(rhs_exponent, LSL, kSmiTagSize), SetCC); | 4982 __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC); |
4980 __ mov(r0, Operand(r4), LeaveCC, ne); | 4983 __ mov(r0, Operand(r4), LeaveCC, ne); |
4981 __ mov(pc, Operand(lr), LeaveCC, ne); // Return conditionally. | 4984 __ mov(pc, Operand(lr), LeaveCC, ne); // Return conditionally. |
4982 // Now they are equal if and only if the lhs exponent is zero in its | 4985 // Now they are equal if and only if the lhs exponent is zero in its |
4983 // low 31 bits. | 4986 // low 31 bits. |
4984 __ mov(r0, Operand(lhs_exponent, LSL, kSmiTagSize)); | 4987 __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize)); |
4985 __ mov(pc, Operand(lr)); | 4988 __ mov(pc, Operand(lr)); |
4986 } else { | 4989 } else { |
4987 // Call a native function to do a comparison between two non-NaNs. | 4990 // Call a native function to do a comparison between two non-NaNs. |
4988 // Call C routine that may not cause GC or other trouble. | 4991 // Call C routine that may not cause GC or other trouble. |
4989 __ mov(r5, Operand(ExternalReference::compare_doubles())); | 4992 __ mov(r5, Operand(ExternalReference::compare_doubles())); |
4990 __ Jump(r5); // Tail call. | 4993 __ Jump(r5); // Tail call. |
4991 } | 4994 } |
4992 } | 4995 } |
4993 | 4996 |
4994 | 4997 |
(...skipping 34 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
5029 __ tst(r2, Operand(kIsSymbolMask)); | 5032 __ tst(r2, Operand(kIsSymbolMask)); |
5030 __ b(ne, &return_not_equal); | 5033 __ b(ne, &return_not_equal); |
5031 } | 5034 } |
5032 | 5035 |
5033 | 5036 |
5034 // See comment at call site. | 5037 // See comment at call site. |
5035 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, | 5038 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, |
5036 Label* both_loaded_as_doubles, | 5039 Label* both_loaded_as_doubles, |
5037 Label* not_heap_numbers, | 5040 Label* not_heap_numbers, |
5038 Label* slow) { | 5041 Label* slow) { |
5039 __ CompareObjectType(r0, r2, r2, HEAP_NUMBER_TYPE); | 5042 __ CompareObjectType(r0, r3, r2, HEAP_NUMBER_TYPE); |
5040 __ b(ne, not_heap_numbers); | 5043 __ b(ne, not_heap_numbers); |
5041 __ CompareObjectType(r1, r3, r3, HEAP_NUMBER_TYPE); | 5044 __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| 5045 __ cmp(r2, r3); |
5042 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case. | 5046 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case. |
5043 | 5047 |
5044 // Both are heap numbers. Load them up then jump to the code we have | 5048 // Both are heap numbers. Load them up then jump to the code we have |
5045 // for that. | 5049 // for that. |
5046 __ ldr(r2, FieldMemOperand(r1, HeapNumber::kValueOffset)); | 5050 __ ldr(r2, FieldMemOperand(r1, HeapNumber::kValueOffset)); |
5047 __ ldr(r3, FieldMemOperand(r1, HeapNumber::kValueOffset + kPointerSize)); | 5051 __ ldr(r3, FieldMemOperand(r1, HeapNumber::kValueOffset + kPointerSize)); |
5048 __ ldr(r1, FieldMemOperand(r0, HeapNumber::kValueOffset + kPointerSize)); | 5052 __ ldr(r1, FieldMemOperand(r0, HeapNumber::kValueOffset + kPointerSize)); |
5049 __ ldr(r0, FieldMemOperand(r0, HeapNumber::kValueOffset)); | 5053 __ ldr(r0, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
5050 __ jmp(both_loaded_as_doubles); | 5054 __ jmp(both_loaded_as_doubles); |
5051 } | 5055 } |
(...skipping 16 matching lines...) Expand all Loading... |
5068 // so they are not equal. | 5072 // so they are not equal. |
5069 __ mov(r0, Operand(1)); // Non-zero indicates not equal. | 5073 __ mov(r0, Operand(1)); // Non-zero indicates not equal. |
5070 __ mov(pc, Operand(lr)); // Return. | 5074 __ mov(pc, Operand(lr)); // Return. |
5071 } | 5075 } |
5072 | 5076 |
5073 | 5077 |
5074 // On entry r0 and r1 are the things to be compared. On exit r0 is 0, | 5078 // On entry r0 and r1 are the things to be compared. On exit r0 is 0, |
5075 // positive or negative to indicate the result of the comparison. | 5079 // positive or negative to indicate the result of the comparison. |
5076 void CompareStub::Generate(MacroAssembler* masm) { | 5080 void CompareStub::Generate(MacroAssembler* masm) { |
5077 Label slow; // Call builtin. | 5081 Label slow; // Call builtin. |
5078 Label not_smis, both_loaded_as_doubles, rhs_not_nan; | 5082 Label not_smis, both_loaded_as_doubles, lhs_not_nan; |
5079 | 5083 |
5080 // NOTICE! This code is only reached after a smi-fast-case check, so | 5084 // NOTICE! This code is only reached after a smi-fast-case check, so |
5081 // it is certain that at least one operand isn't a smi. | 5085 // it is certain that at least one operand isn't a smi. |
5082 | 5086 |
5083 // Handle the case where the objects are identical. Either returns the answer | 5087 // Handle the case where the objects are identical. Either returns the answer |
5084 // or goes to slow. Only falls through if the objects were not identical. | 5088 // or goes to slow. Only falls through if the objects were not identical. |
5085 EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_); | 5089 EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_); |
5086 | 5090 |
5087 // If either is a Smi (we know that not both are), then they can only | 5091 // If either is a Smi (we know that not both are), then they can only |
5088 // be strictly equal if the other is a HeapNumber. | 5092 // be strictly equal if the other is a HeapNumber. |
5089 ASSERT_EQ(0, kSmiTag); | 5093 ASSERT_EQ(0, kSmiTag); |
5090 ASSERT_EQ(0, Smi::FromInt(0)); | 5094 ASSERT_EQ(0, Smi::FromInt(0)); |
5091 __ and_(r2, r0, Operand(r1)); | 5095 __ and_(r2, r0, Operand(r1)); |
5092 __ tst(r2, Operand(kSmiTagMask)); | 5096 __ tst(r2, Operand(kSmiTagMask)); |
5093 __ b(ne, ¬_smis); | 5097 __ b(ne, ¬_smis); |
5094 // One operand is a smi. EmitSmiNonsmiComparison generates code that can: | 5098 // One operand is a smi. EmitSmiNonsmiComparison generates code that can: |
5095 // 1) Return the answer. | 5099 // 1) Return the answer. |
5096 // 2) Go to slow. | 5100 // 2) Go to slow. |
5097 // 3) Fall through to both_loaded_as_doubles. | 5101 // 3) Fall through to both_loaded_as_doubles. |
5098 // 4) Jump to rhs_not_nan. | 5102 // 4) Jump to lhs_not_nan. |
5099 // In cases 3 and 4 we have found out we were dealing with a number-number | 5103 // In cases 3 and 4 we have found out we were dealing with a number-number |
5100 // comparison and the numbers have been loaded into r0, r1, r2, r3 as doubles. | 5104 // comparison and the numbers have been loaded into r0, r1, r2, r3 as doubles. |
5101 EmitSmiNonsmiComparison(masm, &rhs_not_nan, &slow, strict_); | 5105 EmitSmiNonsmiComparison(masm, &lhs_not_nan, &slow, strict_); |
5102 | 5106 |
5103 __ bind(&both_loaded_as_doubles); | 5107 __ bind(&both_loaded_as_doubles); |
5104 // r0, r1, r2, r3 are the double representations of the left hand side | 5108 // r0, r1, r2, r3 are the double representations of the right hand side |
5105 // and the right hand side. | 5109 // and the left hand side. |
5106 | |
5107 // Checks for NaN in the doubles we have loaded. Can return the answer or | |
5108 // fall through if neither is a NaN. Also binds rhs_not_nan. | |
5109 EmitNanCheck(masm, &rhs_not_nan, cc_); | |
5110 | 5110 |
5111 if (CpuFeatures::IsSupported(VFP3)) { | 5111 if (CpuFeatures::IsSupported(VFP3)) { |
| 5112 __ bind(&lhs_not_nan); |
5112 CpuFeatures::Scope scope(VFP3); | 5113 CpuFeatures::Scope scope(VFP3); |
| 5114 Label no_nan; |
5113 // ARMv7 VFP3 instructions to implement double precision comparison. | 5115 // ARMv7 VFP3 instructions to implement double precision comparison. |
5114 __ vmov(d6, r0, r1); | 5116 __ vmov(d6, r0, r1); |
5115 __ vmov(d7, r2, r3); | 5117 __ vmov(d7, r2, r3); |
5116 | 5118 |
5117 __ vcmp(d6, d7); | 5119 __ vcmp(d7, d6); |
5118 __ vmrs(pc); | 5120 __ vmrs(pc); // Move vector status bits to normal status bits. |
5119 __ mov(r0, Operand(0), LeaveCC, eq); | 5121 Label nan; |
5120 __ mov(r0, Operand(1), LeaveCC, lt); | 5122 __ b(vs, &nan); |
5121 __ mvn(r0, Operand(0), LeaveCC, gt); | 5123 __ mov(r0, Operand(EQUAL), LeaveCC, eq); |
| 5124 __ mov(r0, Operand(LESS), LeaveCC, lt); |
| 5125 __ mov(r0, Operand(GREATER), LeaveCC, gt); |
| 5126 __ mov(pc, Operand(lr)); |
| 5127 |
| 5128 __ bind(&nan); |
| 5129 // If one of the sides was a NaN then the v flag is set. Load r0 with |
| 5130 // whatever it takes to make the comparison fail, since comparisons with NaN |
| 5131 // always fail. |
| 5132 if (cc_ == lt || cc_ == le) { |
| 5133 __ mov(r0, Operand(GREATER)); |
| 5134 } else { |
| 5135 __ mov(r0, Operand(LESS)); |
| 5136 } |
5122 __ mov(pc, Operand(lr)); | 5137 __ mov(pc, Operand(lr)); |
5123 } else { | 5138 } else { |
| 5139 // Checks for NaN in the doubles we have loaded. Can return the answer or |
| 5140 // fall through if neither is a NaN. Also binds lhs_not_nan. |
| 5141 EmitNanCheck(masm, &lhs_not_nan, cc_); |
5124 // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the | 5142 // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the |
5125 // answer. Never falls through. | 5143 // answer. Never falls through. |
5126 EmitTwoNonNanDoubleComparison(masm, cc_); | 5144 EmitTwoNonNanDoubleComparison(masm, cc_); |
5127 } | 5145 } |
5128 | 5146 |
5129 __ bind(¬_smis); | 5147 __ bind(¬_smis); |
5130 // At this point we know we are dealing with two different objects, | 5148 // At this point we know we are dealing with two different objects, |
5131 // and neither of them is a Smi. The objects are in r0 and r1. | 5149 // and neither of them is a Smi. The objects are in r0 and r1. |
5132 if (strict_) { | 5150 if (strict_) { |
5133 // This returns non-equal for some object types, or falls through if it | 5151 // This returns non-equal for some object types, or falls through if it |
5134 // was not lucky. | 5152 // was not lucky. |
5135 EmitStrictTwoHeapObjectCompare(masm); | 5153 EmitStrictTwoHeapObjectCompare(masm); |
5136 } | 5154 } |
5137 | 5155 |
5138 Label check_for_symbols; | 5156 Label check_for_symbols; |
5139 // Check for heap-number-heap-number comparison. Can jump to slow case, | 5157 // Check for heap-number-heap-number comparison. Can jump to slow case, |
5140 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles | 5158 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles |
5141 // that case. If the inputs are not doubles then jumps to check_for_symbols. | 5159 // that case. If the inputs are not doubles then jumps to check_for_symbols. |
5142 // In this case r2 will contain the type of r0. | 5160 // In this case r2 will contain the type of r0. Never falls through. |
5143 EmitCheckForTwoHeapNumbers(masm, | 5161 EmitCheckForTwoHeapNumbers(masm, |
5144 &both_loaded_as_doubles, | 5162 &both_loaded_as_doubles, |
5145 &check_for_symbols, | 5163 &check_for_symbols, |
5146 &slow); | 5164 &slow); |
5147 | 5165 |
5148 __ bind(&check_for_symbols); | 5166 __ bind(&check_for_symbols); |
5149 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of | 5167 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of |
5150 // symbols. | 5168 // symbols. |
5151 if (cc_ == eq && !strict_) { | 5169 if (cc_ == eq && !strict_) { |
5152 // Either jumps to slow or returns the answer. Assumes that r2 is the type | 5170 // Either jumps to slow or returns the answer. Assumes that r2 is the type |
(...skipping 1548 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
6701 ASSERT((static_cast<unsigned>(cc_) >> 26) < (1 << 16)); | 6719 ASSERT((static_cast<unsigned>(cc_) >> 26) < (1 << 16)); |
6702 int nnn_value = (never_nan_nan_ ? 2 : 0); | 6720 int nnn_value = (never_nan_nan_ ? 2 : 0); |
6703 if (cc_ != eq) nnn_value = 0; // Avoid duplicate stubs. | 6721 if (cc_ != eq) nnn_value = 0; // Avoid duplicate stubs. |
6704 return (static_cast<unsigned>(cc_) >> 26) | nnn_value | (strict_ ? 1 : 0); | 6722 return (static_cast<unsigned>(cc_) >> 26) | nnn_value | (strict_ ? 1 : 0); |
6705 } | 6723 } |
6706 | 6724 |
6707 | 6725 |
6708 #undef __ | 6726 #undef __ |
6709 | 6727 |
6710 } } // namespace v8::internal | 6728 } } // namespace v8::internal |
OLD | NEW |