Index: src/x64/codegen-x64.cc |
=================================================================== |
--- src/x64/codegen-x64.cc (revision 3730) |
+++ src/x64/codegen-x64.cc (working copy) |
@@ -33,6 +33,7 @@ |
#include "debug.h" |
#include "ic-inl.h" |
#include "parser.h" |
+#include "regexp-macro-assembler.h" |
#include "register-allocator-inl.h" |
#include "scopes.h" |
@@ -3955,7 +3956,8 @@ |
Load(args->at(1)); |
Load(args->at(2)); |
Load(args->at(3)); |
- Result result = frame_->CallRuntime(Runtime::kRegExpExec, 4); |
+ RegExpExecStub stub; |
+ Result result = frame_->CallStub(&stub, 4); |
frame_->Push(&result); |
} |
@@ -6563,6 +6565,362 @@ |
} |
+void RegExpExecStub::Generate(MacroAssembler* masm) { |
+ // Just jump directly to runtime if native RegExp is not selected at compile |
+ // time or if regexp entry in generated code is turned off runtime switch or |
+ // at compilation. |
+#ifndef V8_NATIVE_REGEXP |
+ __ TailCallRuntime(ExternalReference(Runtime::kRegExpExec), 4, 1); |
+#endif |
+ if (!FLAG_regexp_entry_native) { |
+ __ TailCallRuntime(ExternalReference(Runtime::kRegExpExec), 4, 1); |
+ return; |
+ } |
+ |
+ // Stack frame on entry. |
+ // esp[0]: return address |
+ // esp[8]: last_match_info (expected JSArray) |
+ // esp[16]: previous index |
+ // esp[24]: subject string |
+ // esp[32]: JSRegExp object |
+ |
+ static const int kLastMatchInfoOffset = 1 * kPointerSize; |
+ static const int kPreviousIndexOffset = 2 * kPointerSize; |
+ static const int kSubjectOffset = 3 * kPointerSize; |
+ static const int kJSRegExpOffset = 4 * kPointerSize; |
+ |
+ Label runtime; |
+ |
+ // Ensure that a RegExp stack is allocated. |
+ ExternalReference address_of_regexp_stack_memory_address = |
+ ExternalReference::address_of_regexp_stack_memory_address(); |
+ ExternalReference address_of_regexp_stack_memory_size = |
+ ExternalReference::address_of_regexp_stack_memory_size(); |
+ __ movq(kScratchRegister, address_of_regexp_stack_memory_size); |
+ __ movq(kScratchRegister, Operand(kScratchRegister, 0)); |
+ __ testq(kScratchRegister, kScratchRegister); |
+ __ j(zero, &runtime); |
+ |
+ |
+ // Check that the first argument is a JSRegExp object. |
+ __ movq(rax, Operand(rsp, kJSRegExpOffset)); |
+ __ JumpIfSmi(rax, &runtime); |
+ __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister); |
+ __ j(not_equal, &runtime); |
+ // Check that the RegExp has been compiled (data contains a fixed array). |
+ __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); |
+ if (FLAG_debug_code) { |
+ Condition is_smi = masm->CheckSmi(rcx); |
+ __ Check(NegateCondition(is_smi), |
+ "Unexpected type for RegExp data, FixedArray expected"); |
+ __ CmpObjectType(rcx, FIXED_ARRAY_TYPE, kScratchRegister); |
+ __ Check(equal, "Unexpected type for RegExp data, FixedArray expected"); |
+ } |
+ |
+ // rcx: RegExp data (FixedArray) |
+ // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
+ __ movq(rbx, FieldOperand(rcx, JSRegExp::kDataTagOffset)); |
+ __ SmiCompare(rbx, Smi::FromInt(JSRegExp::IRREGEXP)); |
+ __ j(not_equal, &runtime); |
+ |
+ // rcx: RegExp data (FixedArray) |
+ // Check that the number of captures fit in the static offsets vector buffer. |
+ __ movq(rdx, FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); |
+ // Calculate number of capture registers (number_of_captures + 1) * 2. |
+ __ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rdx, 1); |
+ __ addq(rdx, Immediate(2)); // rdx was number_of_captures * 2. |
+ // Check that the static offsets vector buffer is large enough. |
+ __ cmpq(rdx, Immediate(OffsetsVector::kStaticOffsetsVectorSize)); |
+ __ j(above, &runtime); |
+ |
+ // rcx: RegExp data (FixedArray) |
+ // rdx: Number of capture registers |
+ // Check that the second argument is a string. |
+ __ movq(rax, Operand(rsp, kSubjectOffset)); |
+ __ JumpIfSmi(rax, &runtime); |
+ Condition is_string = masm->IsObjectStringType(rax, rbx, rbx); |
+ __ j(NegateCondition(is_string), &runtime); |
+ // Get the length of the string to rbx. |
+ __ movl(rbx, FieldOperand(rax, String::kLengthOffset)); |
+ |
+ // rbx: Length of subject string |
+ // rcx: RegExp data (FixedArray) |
+ // rdx: Number of capture registers |
+ // Check that the third argument is a positive smi less than the string |
+ // length. A negative value will be greater (usigned comparison). |
+ __ movq(rax, Operand(rsp, kPreviousIndexOffset)); |
+ __ SmiToInteger32(rax, rax); |
+ __ cmpl(rax, rbx); |
+ __ j(greater, &runtime); |
Lasse Reichstein
2010/01/29 08:09:08
greater -> above
Søren Thygesen Gjesse
2010/01/29 13:06:53
Thanks, fixed in ia32 version as well.
|
+ |
+ // rcx: RegExp data (FixedArray) |
+ // rdx: Number of capture registers |
+ // Check that the fourth object is a JSArray object. |
+ __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); |
+ __ JumpIfSmi(rax, &runtime); |
+ __ CmpObjectType(rax, JS_ARRAY_TYPE, kScratchRegister); |
+ __ j(not_equal, &runtime); |
+ // Check that the JSArray is in fast case. |
+ __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset)); |
+ __ movq(rax, FieldOperand(rbx, HeapObject::kMapOffset)); |
+ __ Cmp(rax, Factory::fixed_array_map()); |
+ __ j(not_equal, &runtime); |
+ // Check that the last match info has space for the capture registers and the |
+ // additional information. Ensure no overflow in add. |
+ ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset); |
+ __ movl(rax, FieldOperand(rbx, FixedArray::kLengthOffset)); |
+ __ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead)); |
+ __ cmpl(rdx, rax); |
+ __ j(greater, &runtime); |
+ |
+ // ecx: RegExp data (FixedArray) |
+ // Check the representation and encoding of the subject string. |
+ Label seq_string, seq_two_byte_string, check_code; |
+ const int kStringRepresentationEncodingMask = |
+ kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; |
+ __ movq(rax, Operand(rsp, kSubjectOffset)); |
+ __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); |
+ __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); |
+ __ andb(rbx, Immediate(kStringRepresentationEncodingMask)); |
+ // First check for sequential string. |
+ ASSERT_EQ(0, kStringTag); |
+ ASSERT_EQ(0, kSeqStringTag); |
+ __ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask)); |
+ __ j(zero, &seq_string); |
+ |
+ // Check for flat cons string. |
+ // A flat cons string is a cons string where the second part is the empty |
+ // string. In that case the subject string is just the first part of the cons |
+ // string. Also in this case the first part of the cons string is known to be |
+ // a sequential string or an external string. |
+ __ movl(rdx, rbx); |
+ __ andb(rdx, Immediate(kStringRepresentationMask)); |
+ __ cmpb(rdx, Immediate(kConsStringTag)); |
+ __ j(not_equal, &runtime); |
+ __ movq(rdx, FieldOperand(rax, ConsString::kSecondOffset)); |
+ __ Cmp(rdx, Factory::empty_string()); |
+ __ j(not_equal, &runtime); |
+ __ movq(rax, FieldOperand(rax, ConsString::kFirstOffset)); |
+ __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); |
+ __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); |
+ ASSERT_EQ(0, kSequentialStringTag); |
+ __ testb(rbx, Immediate(kStringRepresentationMask)); |
+ __ j(not_zero, &runtime); |
+ __ andb(rbx, Immediate(kStringRepresentationEncodingMask)); |
Lasse Reichstein
2010/01/29 08:09:08
Do you need the representation bits any more? You
Søren Thygesen Gjesse
2010/01/29 13:06:53
The reason is that the jump to label seq_string fr
|
+ |
+ __ bind(&seq_string); |
+ // rax: subject string (sequential either ascii to two byte) |
+ // rbx: suject string type & kStringRepresentationEncodingMask |
+ // rcx: RegExp data (FixedArray) |
+ // Check that the irregexp code has been generated for an ascii string. If |
+ // it has, the field contains a code object otherwise it contains the hole. |
+ __ cmpb(rbx, Immediate(kStringTag | kSeqStringTag | kTwoByteStringTag)); |
+ __ j(equal, &seq_two_byte_string); |
+ if (FLAG_debug_code) { |
+ __ cmpb(rbx, Immediate(kStringTag | kSeqStringTag | kAsciiStringTag)); |
+ __ Check(equal, "Expected sequential ascii string"); |
+ } |
+ __ movq(r12, FieldOperand(rcx, JSRegExp::kDataAsciiCodeOffset)); |
+ __ Set(rdi, 1); // Type is ascii. |
+ __ jmp(&check_code); |
+ |
+ __ bind(&seq_two_byte_string); |
+ // rax: subject string |
+ // rcx: RegExp data (FixedArray) |
+ __ movq(r12, FieldOperand(rcx, JSRegExp::kDataUC16CodeOffset)); |
+ __ Set(rdi, 0); // Type is two byte. |
+ |
+ __ bind(&check_code); |
+ // Check that the irregexp code has been generated for the actual string |
+ // encoding. If it has, the field contains a code object otherwise it contains |
+ // the hole. |
+ __ CmpObjectType(r12, CODE_TYPE, kScratchRegister); |
+ __ j(not_equal, &runtime); |
+ |
+ // rax: subject string |
+ // rdi: encoding of subject string (1 if ascii, 0 if two_byte); |
+ // r12: code |
+ // Load used arguments before starting to push arguments for call to native |
+ // RegExp code to avoid handling changing stack height. |
+ __ movq(rbx, Operand(rsp, kPreviousIndexOffset)); |
+ __ SmiToInteger64(rbx, rbx); // Previous index from smi. |
+ |
+ // rax: subject string |
+ // rbx: previous index |
+ // rdi: encoding of subject string (1 if ascii 0 if two_byte); |
+ // r12: code |
+ // All checks done. Now push arguments for native regexp code. |
+ __ IncrementCounter(&Counters::regexp_entry_native, 1); |
+ |
+ // rsi is caller save on Windows and used to pass parameter on Linux. |
+ __ push(rsi); |
+ |
+ static const int kRegExpExecuteArguments = 7; |
+ __ PrepareCallCFunction(kRegExpExecuteArguments); |
+ int argument_slots_on_stack = |
+ masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments); |
+ |
+ // Argument 7: Indicate that this is a direct call from JavaScript. |
+ __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize), |
+ Immediate(1)); |
+ |
+ // Argument 6: Start (high end) of backtracking stack memory area. |
+ __ movq(kScratchRegister, address_of_regexp_stack_memory_address); |
+ __ movq(r9, Operand(kScratchRegister, 0)); |
+ __ movq(kScratchRegister, address_of_regexp_stack_memory_size); |
+ __ addq(r9, Operand(kScratchRegister, 0)); |
+ // Argument 6 passed in r9 on Linux and on the stack on Windows. |
+#ifdef _WIN64 |
+ __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize), r9); |
+#endif |
+ |
+ // Argument 5: static offsets vector buffer. |
+ __ movq(r8, ExternalReference::address_of_static_offsets_vector()); |
+ // Argument 5 passed in r8 on Linux and on the stack on Windows. |
+#ifdef _WIN64 |
+ __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r8); |
+#endif |
+ |
+ // First four arguments are passed in registers on both Linux and Windows. |
+#ifdef _WIN64 |
+ Register arg4 = r9; |
+ Register arg3 = r8; |
+ Register arg2 = rdx; |
+ Register arg1 = rcx; |
+#else |
+ Register arg4 = rcx; |
+ Register arg3 = rdx; |
+ Register arg2 = rsi; |
+ Register arg1 = rdi; |
+#endif |
+ |
+ // Keep track on aliasing between argX defined above and the registers used. |
+ // rax: subject string |
+ // rbx: previous index |
+ // rdi: encoding of subject string (1 if ascii 0 if two_byte); |
+ // r12: code |
+ |
+ // Argument 4: End of string data |
+ // Argument 3: Start of string data |
+ Label setup_two_byte, setup_rest; |
+ __ testb(rdi, rdi); |
+ __ movl(rdi, FieldOperand(rax, String::kLengthOffset)); |
+ __ j(zero, &setup_two_byte); |
+ __ lea(arg4, FieldOperand(rax, rdi, times_1, SeqAsciiString::kHeaderSize)); |
+ __ lea(arg3, FieldOperand(rax, rbx, times_1, SeqAsciiString::kHeaderSize)); |
+ __ jmp(&setup_rest); |
+ __ bind(&setup_two_byte); |
+ __ lea(arg4, FieldOperand(rax, rdi, times_2, SeqTwoByteString::kHeaderSize)); |
+ __ lea(arg3, FieldOperand(rax, rbx, times_2, SeqTwoByteString::kHeaderSize)); |
+ |
+ __ bind(&setup_rest); |
+ // Argument 2: Previous index. |
+ __ movq(arg2, rbx); |
+ |
+ // Argument 1: Subject string. |
+ __ movq(arg1, rax); |
+ |
+ // Locate the code entry and call it. |
+ __ addq(r12, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
+ __ CallCFunction(r12, kRegExpExecuteArguments); |
+ |
+ // rsi is caller save, as it is used to pass parameter. |
+ __ pop(rsi); |
+ |
+ // Check the result. |
+ Label success; |
+ __ cmpq(rax, Immediate(NativeRegExpMacroAssembler::SUCCESS)); |
+ __ j(equal, &success); |
+ Label failure; |
+ __ cmpq(rax, Immediate(NativeRegExpMacroAssembler::FAILURE)); |
+ __ j(equal, &failure); |
+ __ cmpq(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION)); |
+ // If not exception it can only be retry. Handle that in the runtime system. |
+ __ j(not_equal, &runtime); |
+ // Result must now be exception. If there is no pending exception already a |
+ // stack overflow (on the backtrack stack) was detected in RegExp code but |
+ // haven't created the exception yet. Handle that in the runtime system. |
+ // TODO(592) Rerunning the RegExp to get the stack overflow exception. |
+ ExternalReference pending_exception_address(Top::k_pending_exception_address); |
+ __ movq(kScratchRegister, pending_exception_address); |
+ __ Cmp(kScratchRegister, Factory::the_hole_value()); |
+ __ j(equal, &runtime); |
+ __ bind(&failure); |
+ // For failure and exception return null. |
+ __ Move(rax, Factory::null_value()); |
+ __ ret(4 * kPointerSize); |
+ |
+ // Load RegExp data. |
+ __ bind(&success); |
+ __ movq(rax, Operand(rsp, kJSRegExpOffset)); |
+ __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); |
+ __ movq(rdx, FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); |
+ // Calculate number of capture registers (number_of_captures + 1) * 2. |
+ __ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rdx, 1); |
+ __ addq(rdx, Immediate(2)); // rdx was number_of_captures * 2. |
+ |
+ // rdx: Number of capture registers |
+ // Load last_match_info which is still known to be a fast case JSArray. |
+ __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); |
+ __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset)); |
+ |
+ // rbx: last_match_info backing store (FixedArray) |
+ // rdx: number of capture registers |
+ // Store the capture count. |
+ __ Integer32ToSmi(kScratchRegister, rdx); |
+ __ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset), |
+ kScratchRegister); |
+ // Store last subject and last input. |
+ __ movq(rax, Operand(rsp, kSubjectOffset)); |
+ __ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax); |
+ __ movq(rcx, rbx); |
+ __ RecordWrite(rcx, RegExpImpl::kLastSubjectOffset, rax, rdi); |
+ __ movq(rax, Operand(rsp, kSubjectOffset)); |
+ __ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax); |
+ __ movq(rcx, rbx); |
+ __ RecordWrite(rcx, RegExpImpl::kLastInputOffset, rax, rdi); |
+ |
+ // Get the static offsets vector filled by the native regexp code. |
+ __ movq(rcx, ExternalReference::address_of_static_offsets_vector()); |
+ |
+ // rbx: last_match_info backing store (FixedArray) |
+ // rcx: offsets vector |
+ // rdx: number of capture registers |
+ Label next_capture, done; |
+ __ movq(rax, Operand(rsp, kPreviousIndexOffset)); |
+ // Capture register counter starts from number of capture registers and |
+ // counts down until wraping after zero. |
+ __ bind(&next_capture); |
+ __ subq(rdx, Immediate(1)); |
+ __ j(negative, &done); |
+ // Read the value from the static offsets vector buffer and make it a smi. |
+ __ movl(rdi, Operand(rcx, rdx, times_int_size, 0)); |
+ __ Integer32ToSmi(rdi, rdi, &runtime); |
+ // Add previous index (from its stack slot) if value is not negative. |
+ Label capture_negative; |
+ // Negative flag set by smi convertion above. |
+ __ j(negative, &capture_negative); |
+ __ SmiAdd(rdi, rdi, rax, &runtime); // Add previous index. |
+ __ bind(&capture_negative); |
+ // Store the smi value in the last match info. |
+ __ movq(FieldOperand(rbx, |
+ rdx, |
+ times_pointer_size, |
+ RegExpImpl::kFirstCaptureOffset), |
+ rdi); |
+ __ jmp(&next_capture); |
+ __ bind(&done); |
+ |
+ // Return last match info. |
+ __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); |
+ __ ret(4 * kPointerSize); |
+ |
+ // Do the runtime call to execute the regexp. |
+ __ bind(&runtime); |
+ __ TailCallRuntime(ExternalReference(Runtime::kRegExpExec), 4, 1); |
+} |
+ |
+ |
void CompareStub::Generate(MacroAssembler* masm) { |
Label call_builtin, done; |