| Index: src/mips/simulator-mips.h
|
| ===================================================================
|
| --- src/mips/simulator-mips.h (revision 0)
|
| +++ src/mips/simulator-mips.h (revision 0)
|
| @@ -0,0 +1,311 @@
|
| +// Copyright 2009 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +
|
| +// Declares a Simulator for MIPS instructions if we are not generating a native
|
| +// MIPS binary. This Simulator allows us to run and debug MIPS code generation
|
| +// on regular desktop machines.
|
| +// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
|
| +// which will start execution in the Simulator or forwards to the real entry
|
| +// on a MIPS HW platform.
|
| +
|
| +#ifndef V8_MIPS_SIMULATOR_MIPS_H_
|
| +#define V8_MIPS_SIMULATOR_MIPS_H_
|
| +
|
| +#include "allocation.h"
|
| +
|
| +#if defined(__mips)
|
| +
|
| +// When running without a simulator we call the entry directly.
|
| +#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
|
| + entry(p0, p1, p2, p3, p4);
|
| +
|
| +// The stack limit beyond which we will throw stack overflow errors in
|
| +// generated code. Because generated code on mips uses the C stack, we
|
| +// just use the C stack limit.
|
| +class SimulatorStack : public v8::internal::AllStatic {
|
| + public:
|
| + static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
|
| + return c_limit;
|
| + }
|
| +
|
| + static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
|
| + return try_catch_address;
|
| + }
|
| +
|
| + static inline void UnregisterCTryCatch() { }
|
| +};
|
| +
|
| +// Calculated the stack limit beyond which we will throw stack overflow errors.
|
| +// This macro must be called from a C++ method. It relies on being able to take
|
| +// the address of "this" to get a value on the current execution stack and then
|
| +// calculates the stack limit based on that value.
|
| +// NOTE: The check for overflow is not safe as there is no guarantee that the
|
| +// running thread has its stack in all memory up to address 0x00000000.
|
| +#define GENERATED_CODE_STACK_LIMIT(limit) \
|
| + (reinterpret_cast<uintptr_t>(this) >= limit ? \
|
| + reinterpret_cast<uintptr_t>(this) - limit : 0)
|
| +
|
| +// Call the generated regexp code directly. The entry function pointer should
|
| +// expect seven int/pointer sized arguments and return an int.
|
| +#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \
|
| + entry(p0, p1, p2, p3, p4, p5, p6)
|
| +
|
| +#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
|
| + reinterpret_cast<TryCatch*>(try_catch_address)
|
| +
|
| +
|
| +#else // #if defined(__mips)
|
| +
|
| +// When running with the simulator transition into simulated execution at this
|
| +// point.
|
| +#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
|
| + reinterpret_cast<Object*>(\
|
| + assembler::mips::Simulator::current()->Call(FUNCTION_ADDR(entry), 5, \
|
| + p0, p1, p2, p3, p4))
|
| +
|
| +#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \
|
| + assembler::mips::Simulator::current()->Call(\
|
| + FUNCTION_ADDR(entry), 7, p0, p1, p2, p3, p4, p5, p6)
|
| +
|
| +#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
|
| + try_catch_address == NULL ? \
|
| + NULL : *(reinterpret_cast<TryCatch**>(try_catch_address))
|
| +
|
| +
|
| +namespace assembler {
|
| +namespace mips {
|
| +
|
| +class Simulator {
|
| + public:
|
| + friend class Debugger;
|
| +
|
| + // Registers are declared in order. See SMRL chapter 2.
|
| + enum Register {
|
| + no_reg = -1,
|
| + zero_reg = 0,
|
| + at,
|
| + v0, v1,
|
| + a0, a1, a2, a3,
|
| + t0, t1, t2, t3, t4, t5, t6, t7,
|
| + s0, s1, s2, s3, s4, s5, s6, s7,
|
| + t8, t9,
|
| + k0, k1,
|
| + gp,
|
| + sp,
|
| + s8,
|
| + ra,
|
| + // LO, HI, and pc
|
| + LO,
|
| + HI,
|
| + pc, // pc must be the last register.
|
| + kNumSimuRegisters,
|
| + // aliases
|
| + fp = s8
|
| + };
|
| +
|
| + // Coprocessor registers.
|
| + // Generated code will always use doubles. So we will only use even registers.
|
| + enum FPURegister {
|
| + f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
|
| + f12, f13, f14, f15, // f12 and f14 are arguments FPURegisters
|
| + f16, f17, f18, f19, f20, f21, f22, f23, f24, f25,
|
| + f26, f27, f28, f29, f30, f31,
|
| + kNumFPURegisters
|
| + };
|
| +
|
| + Simulator();
|
| + ~Simulator();
|
| +
|
| + // The currently executing Simulator instance. Potentially there can be one
|
| + // for each native thread.
|
| + static Simulator* current();
|
| +
|
| + // Accessors for register state. Reading the pc value adheres to the MIPS
|
| + // architecture specification and is off by a 8 from the currently executing
|
| + // instruction.
|
| + void set_register(int reg, int32_t value);
|
| + int32_t get_register(int reg) const;
|
| + // Same for FPURegisters
|
| + void set_fpu_register(int fpureg, int32_t value);
|
| + void set_fpu_register_double(int fpureg, double value);
|
| + int32_t get_fpu_register(int fpureg) const;
|
| + double get_fpu_register_double(int fpureg) const;
|
| +
|
| + // Special case of set_register and get_register to access the raw PC value.
|
| + void set_pc(int32_t value);
|
| + int32_t get_pc() const;
|
| +
|
| + // Accessor to the internal simulator stack area.
|
| + uintptr_t StackLimit() const;
|
| +
|
| + // Executes MIPS instructions until the PC reaches end_sim_pc.
|
| + void Execute();
|
| +
|
| + // Call on program start.
|
| + static void Initialize();
|
| +
|
| + // V8 generally calls into generated JS code with 5 parameters and into
|
| + // generated RegExp code with 7 parameters. This is a convenience function,
|
| + // which sets up the simulator state and grabs the result on return.
|
| + int32_t Call(byte_* entry, int argument_count, ...);
|
| +
|
| + // Push an address onto the JS stack.
|
| + uintptr_t PushAddress(uintptr_t address);
|
| +
|
| + // Pop an address from the JS stack.
|
| + uintptr_t PopAddress();
|
| +
|
| + private:
|
| + enum special_values {
|
| + // Known bad pc value to ensure that the simulator does not execute
|
| + // without being properly setup.
|
| + bad_ra = -1,
|
| + // A pc value used to signal the simulator to stop execution. Generally
|
| + // the ra is set to this value on transition from native C code to
|
| + // simulated execution, so that the simulator can "return" to the native
|
| + // C code.
|
| + end_sim_pc = -2,
|
| + // Unpredictable value.
|
| + Unpredictable = 0xbadbeaf
|
| + };
|
| +
|
| + // Unsupported instructions use Format to print an error and stop execution.
|
| + void Format(Instruction* instr, const char* format);
|
| +
|
| + // Read and write memory.
|
| + inline uint32_t ReadBU(int32_t addr);
|
| + inline int32_t ReadB(int32_t addr);
|
| + inline void WriteB(int32_t addr, uint8_t value);
|
| + inline void WriteB(int32_t addr, int8_t value);
|
| +
|
| + inline uint16_t ReadHU(int32_t addr, Instruction* instr);
|
| + inline int16_t ReadH(int32_t addr, Instruction* instr);
|
| + // Note: Overloaded on the sign of the value.
|
| + inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
|
| + inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
|
| +
|
| + inline int ReadW(int32_t addr, Instruction* instr);
|
| + inline void WriteW(int32_t addr, int value, Instruction* instr);
|
| +
|
| + inline double ReadD(int32_t addr, Instruction* instr);
|
| + inline void WriteD(int32_t addr, double value, Instruction* instr);
|
| +
|
| + // Operations depending on endianness.
|
| + // Get Double Higher / Lower word.
|
| + inline int32_t GetDoubleHIW(double* addr);
|
| + inline int32_t GetDoubleLOW(double* addr);
|
| + // Set Double Higher / Lower word.
|
| + inline int32_t SetDoubleHIW(double* addr);
|
| + inline int32_t SetDoubleLOW(double* addr);
|
| +
|
| +
|
| + // Executing is handled based on the instruction type.
|
| + void DecodeTypeRegister(Instruction* instr);
|
| + void DecodeTypeImmediate(Instruction* instr);
|
| + void DecodeTypeJump(Instruction* instr);
|
| +
|
| + // Used for breakpoints and traps.
|
| + void SoftwareInterrupt(Instruction* instr);
|
| +
|
| + // Executes one instruction.
|
| + void InstructionDecode(Instruction* instr);
|
| + // Execute one instruction placed in a branch delay slot.
|
| + void BranchDelayInstructionDecode(Instruction* instr) {
|
| + if (instr->IsForbiddenInBranchDelay()) {
|
| + V8_Fatal(__FILE__, __LINE__,
|
| + "Eror:Unexpected %i opcode in a branch delay slot.",
|
| + instr->OpcodeField());
|
| + }
|
| + InstructionDecode(instr);
|
| + }
|
| +
|
| + enum Exception {
|
| + none,
|
| + kIntegerOverflow,
|
| + kIntegerUnderflow,
|
| + kDivideByZero,
|
| + kNumExceptions
|
| + };
|
| + int16_t exceptions[kNumExceptions];
|
| +
|
| + // Exceptions
|
| + void SignalExceptions();
|
| +
|
| + // Runtime call support.
|
| + static void* RedirectExternalReference(void* external_function,
|
| + bool fp_return);
|
| +
|
| + // Used for real time calls that takes two double values as arguments and
|
| + // returns a double.
|
| + void SetFpResult(double result);
|
| +
|
| + // architecture state
|
| + // Registers
|
| + int32_t registers_[kNumSimuRegisters];
|
| + // Coprocessor Registers
|
| + int32_t FPUregisters_[kNumFPURegisters];
|
| +
|
| + // simulator support
|
| + char* stack_;
|
| + bool pc_modified_;
|
| + int icount_;
|
| + static bool initialized_;
|
| +
|
| + // registered breakpoints
|
| + Instruction* break_pc_;
|
| + Instr break_instr_;
|
| +};
|
| +
|
| +} } // namespace assembler::mips
|
| +
|
| +
|
| +// The simulator has its own stack. Thus it has a different stack limit from
|
| +// the C-based native code. Setting the c_limit to indicate a very small
|
| +// stack cause stack overflow errors, since the simulator ignores the input.
|
| +// This is unlikely to be an issue in practice, though it might cause testing
|
| +// trouble down the line.
|
| +class SimulatorStack : public v8::internal::AllStatic {
|
| + public:
|
| + static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
|
| + return assembler::mips::Simulator::current()->StackLimit();
|
| + }
|
| +
|
| + static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
|
| + assembler::mips::Simulator* sim = assembler::mips::Simulator::current();
|
| + return sim->PushAddress(try_catch_address);
|
| + }
|
| +
|
| + static inline void UnregisterCTryCatch() {
|
| + assembler::mips::Simulator::current()->PopAddress();
|
| + }
|
| +};
|
| +
|
| +#endif // defined(__mips)
|
| +
|
| +#endif // V8_MIPS_SIMULATOR_MIPS_H_
|
| +
|
|
|