Index: src/mips/simulator-mips.h |
=================================================================== |
--- src/mips/simulator-mips.h (revision 0) |
+++ src/mips/simulator-mips.h (revision 0) |
@@ -0,0 +1,311 @@ |
+// Copyright 2009 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+ |
+// Declares a Simulator for MIPS instructions if we are not generating a native |
+// MIPS binary. This Simulator allows us to run and debug MIPS code generation |
+// on regular desktop machines. |
+// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro, |
+// which will start execution in the Simulator or forwards to the real entry |
+// on a MIPS HW platform. |
+ |
+#ifndef V8_MIPS_SIMULATOR_MIPS_H_ |
+#define V8_MIPS_SIMULATOR_MIPS_H_ |
+ |
+#include "allocation.h" |
+ |
+#if defined(__mips) |
+ |
+// When running without a simulator we call the entry directly. |
+#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ |
+ entry(p0, p1, p2, p3, p4); |
+ |
+// The stack limit beyond which we will throw stack overflow errors in |
+// generated code. Because generated code on mips uses the C stack, we |
+// just use the C stack limit. |
+class SimulatorStack : public v8::internal::AllStatic { |
+ public: |
+ static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) { |
+ return c_limit; |
+ } |
+ |
+ static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { |
+ return try_catch_address; |
+ } |
+ |
+ static inline void UnregisterCTryCatch() { } |
+}; |
+ |
+// Calculated the stack limit beyond which we will throw stack overflow errors. |
+// This macro must be called from a C++ method. It relies on being able to take |
+// the address of "this" to get a value on the current execution stack and then |
+// calculates the stack limit based on that value. |
+// NOTE: The check for overflow is not safe as there is no guarantee that the |
+// running thread has its stack in all memory up to address 0x00000000. |
+#define GENERATED_CODE_STACK_LIMIT(limit) \ |
+ (reinterpret_cast<uintptr_t>(this) >= limit ? \ |
+ reinterpret_cast<uintptr_t>(this) - limit : 0) |
+ |
+// Call the generated regexp code directly. The entry function pointer should |
+// expect seven int/pointer sized arguments and return an int. |
+#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \ |
+ entry(p0, p1, p2, p3, p4, p5, p6) |
+ |
+#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \ |
+ reinterpret_cast<TryCatch*>(try_catch_address) |
+ |
+ |
+#else // #if defined(__mips) |
+ |
+// When running with the simulator transition into simulated execution at this |
+// point. |
+#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ |
+ reinterpret_cast<Object*>(\ |
+ assembler::mips::Simulator::current()->Call(FUNCTION_ADDR(entry), 5, \ |
+ p0, p1, p2, p3, p4)) |
+ |
+#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \ |
+ assembler::mips::Simulator::current()->Call(\ |
+ FUNCTION_ADDR(entry), 7, p0, p1, p2, p3, p4, p5, p6) |
+ |
+#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \ |
+ try_catch_address == NULL ? \ |
+ NULL : *(reinterpret_cast<TryCatch**>(try_catch_address)) |
+ |
+ |
+namespace assembler { |
+namespace mips { |
+ |
+class Simulator { |
+ public: |
+ friend class Debugger; |
+ |
+ // Registers are declared in order. See SMRL chapter 2. |
+ enum Register { |
+ no_reg = -1, |
+ zero_reg = 0, |
+ at, |
+ v0, v1, |
+ a0, a1, a2, a3, |
+ t0, t1, t2, t3, t4, t5, t6, t7, |
+ s0, s1, s2, s3, s4, s5, s6, s7, |
+ t8, t9, |
+ k0, k1, |
+ gp, |
+ sp, |
+ s8, |
+ ra, |
+ // LO, HI, and pc |
+ LO, |
+ HI, |
+ pc, // pc must be the last register. |
+ kNumSimuRegisters, |
+ // aliases |
+ fp = s8 |
+ }; |
+ |
+ // Coprocessor registers. |
+ // Generated code will always use doubles. So we will only use even registers. |
+ enum FPURegister { |
+ f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, |
+ f12, f13, f14, f15, // f12 and f14 are arguments FPURegisters |
+ f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, |
+ f26, f27, f28, f29, f30, f31, |
+ kNumFPURegisters |
+ }; |
+ |
+ Simulator(); |
+ ~Simulator(); |
+ |
+ // The currently executing Simulator instance. Potentially there can be one |
+ // for each native thread. |
+ static Simulator* current(); |
+ |
+ // Accessors for register state. Reading the pc value adheres to the MIPS |
+ // architecture specification and is off by a 8 from the currently executing |
+ // instruction. |
+ void set_register(int reg, int32_t value); |
+ int32_t get_register(int reg) const; |
+ // Same for FPURegisters |
+ void set_fpu_register(int fpureg, int32_t value); |
+ void set_fpu_register_double(int fpureg, double value); |
+ int32_t get_fpu_register(int fpureg) const; |
+ double get_fpu_register_double(int fpureg) const; |
+ |
+ // Special case of set_register and get_register to access the raw PC value. |
+ void set_pc(int32_t value); |
+ int32_t get_pc() const; |
+ |
+ // Accessor to the internal simulator stack area. |
+ uintptr_t StackLimit() const; |
+ |
+ // Executes MIPS instructions until the PC reaches end_sim_pc. |
+ void Execute(); |
+ |
+ // Call on program start. |
+ static void Initialize(); |
+ |
+ // V8 generally calls into generated JS code with 5 parameters and into |
+ // generated RegExp code with 7 parameters. This is a convenience function, |
+ // which sets up the simulator state and grabs the result on return. |
+ int32_t Call(byte_* entry, int argument_count, ...); |
+ |
+ // Push an address onto the JS stack. |
+ uintptr_t PushAddress(uintptr_t address); |
+ |
+ // Pop an address from the JS stack. |
+ uintptr_t PopAddress(); |
+ |
+ private: |
+ enum special_values { |
+ // Known bad pc value to ensure that the simulator does not execute |
+ // without being properly setup. |
+ bad_ra = -1, |
+ // A pc value used to signal the simulator to stop execution. Generally |
+ // the ra is set to this value on transition from native C code to |
+ // simulated execution, so that the simulator can "return" to the native |
+ // C code. |
+ end_sim_pc = -2, |
+ // Unpredictable value. |
+ Unpredictable = 0xbadbeaf |
+ }; |
+ |
+ // Unsupported instructions use Format to print an error and stop execution. |
+ void Format(Instruction* instr, const char* format); |
+ |
+ // Read and write memory. |
+ inline uint32_t ReadBU(int32_t addr); |
+ inline int32_t ReadB(int32_t addr); |
+ inline void WriteB(int32_t addr, uint8_t value); |
+ inline void WriteB(int32_t addr, int8_t value); |
+ |
+ inline uint16_t ReadHU(int32_t addr, Instruction* instr); |
+ inline int16_t ReadH(int32_t addr, Instruction* instr); |
+ // Note: Overloaded on the sign of the value. |
+ inline void WriteH(int32_t addr, uint16_t value, Instruction* instr); |
+ inline void WriteH(int32_t addr, int16_t value, Instruction* instr); |
+ |
+ inline int ReadW(int32_t addr, Instruction* instr); |
+ inline void WriteW(int32_t addr, int value, Instruction* instr); |
+ |
+ inline double ReadD(int32_t addr, Instruction* instr); |
+ inline void WriteD(int32_t addr, double value, Instruction* instr); |
+ |
+ // Operations depending on endianness. |
+ // Get Double Higher / Lower word. |
+ inline int32_t GetDoubleHIW(double* addr); |
+ inline int32_t GetDoubleLOW(double* addr); |
+ // Set Double Higher / Lower word. |
+ inline int32_t SetDoubleHIW(double* addr); |
+ inline int32_t SetDoubleLOW(double* addr); |
+ |
+ |
+ // Executing is handled based on the instruction type. |
+ void DecodeTypeRegister(Instruction* instr); |
+ void DecodeTypeImmediate(Instruction* instr); |
+ void DecodeTypeJump(Instruction* instr); |
+ |
+ // Used for breakpoints and traps. |
+ void SoftwareInterrupt(Instruction* instr); |
+ |
+ // Executes one instruction. |
+ void InstructionDecode(Instruction* instr); |
+ // Execute one instruction placed in a branch delay slot. |
+ void BranchDelayInstructionDecode(Instruction* instr) { |
+ if (instr->IsForbiddenInBranchDelay()) { |
+ V8_Fatal(__FILE__, __LINE__, |
+ "Eror:Unexpected %i opcode in a branch delay slot.", |
+ instr->OpcodeField()); |
+ } |
+ InstructionDecode(instr); |
+ } |
+ |
+ enum Exception { |
+ none, |
+ kIntegerOverflow, |
+ kIntegerUnderflow, |
+ kDivideByZero, |
+ kNumExceptions |
+ }; |
+ int16_t exceptions[kNumExceptions]; |
+ |
+ // Exceptions |
+ void SignalExceptions(); |
+ |
+ // Runtime call support. |
+ static void* RedirectExternalReference(void* external_function, |
+ bool fp_return); |
+ |
+ // Used for real time calls that takes two double values as arguments and |
+ // returns a double. |
+ void SetFpResult(double result); |
+ |
+ // architecture state |
+ // Registers |
+ int32_t registers_[kNumSimuRegisters]; |
+ // Coprocessor Registers |
+ int32_t FPUregisters_[kNumFPURegisters]; |
+ |
+ // simulator support |
+ char* stack_; |
+ bool pc_modified_; |
+ int icount_; |
+ static bool initialized_; |
+ |
+ // registered breakpoints |
+ Instruction* break_pc_; |
+ Instr break_instr_; |
+}; |
+ |
+} } // namespace assembler::mips |
+ |
+ |
+// The simulator has its own stack. Thus it has a different stack limit from |
+// the C-based native code. Setting the c_limit to indicate a very small |
+// stack cause stack overflow errors, since the simulator ignores the input. |
+// This is unlikely to be an issue in practice, though it might cause testing |
+// trouble down the line. |
+class SimulatorStack : public v8::internal::AllStatic { |
+ public: |
+ static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) { |
+ return assembler::mips::Simulator::current()->StackLimit(); |
+ } |
+ |
+ static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { |
+ assembler::mips::Simulator* sim = assembler::mips::Simulator::current(); |
+ return sim->PushAddress(try_catch_address); |
+ } |
+ |
+ static inline void UnregisterCTryCatch() { |
+ assembler::mips::Simulator::current()->PopAddress(); |
+ } |
+}; |
+ |
+#endif // defined(__mips) |
+ |
+#endif // V8_MIPS_SIMULATOR_MIPS_H_ |
+ |