Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(597)

Unified Diff: src/mips/assembler-mips.cc

Issue 543161: Added support for MIPS in architecture independent files.... (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge/
Patch Set: '' Created 10 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: src/mips/assembler-mips.cc
===================================================================
--- src/mips/assembler-mips.cc (revision 0)
+++ src/mips/assembler-mips.cc (revision 0)
@@ -0,0 +1,1212 @@
+// Copyright (c) 1994-2006 Sun Microsystems Inc.
+// All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// - Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// - Redistribution in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// - Neither the name of Sun Microsystems or the names of contributors may
+// be used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
+// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// The original source code covered by the above license above has been
+// modified significantly by Google Inc.
+// Copyright 2006-2010 the V8 project authors. All rights reserved.
+
+
+#include "v8.h"
+#include "mips/assembler-mips-inl.h"
+#include "serialize.h"
+
+
+namespace v8 {
+namespace internal {
+
+
+
+const Register no_reg = { -1 };
+
+const Register zero_reg = { 0 };
+const Register at = { 1 };
+const Register v0 = { 2 };
+const Register v1 = { 3 };
+const Register a0 = { 4 };
+const Register a1 = { 5 };
+const Register a2 = { 6 };
+const Register a3 = { 7 };
+const Register t0 = { 8 };
+const Register t1 = { 9 };
+const Register t2 = { 10 };
+const Register t3 = { 11 };
+const Register t4 = { 12 };
+const Register t5 = { 13 };
+const Register t6 = { 14 };
+const Register t7 = { 15 };
+const Register s0 = { 16 };
+const Register s1 = { 17 };
+const Register s2 = { 18 };
+const Register s3 = { 19 };
+const Register s4 = { 20 };
+const Register s5 = { 21 };
+const Register s6 = { 22 };
+const Register s7 = { 23 };
+const Register t8 = { 24 };
+const Register t9 = { 25 };
+const Register k0 = { 26 };
+const Register k1 = { 27 };
+const Register gp = { 28 };
+const Register sp = { 29 };
+const Register s8_fp = { 30 };
+const Register ra = { 31 };
+
+
+const FPURegister no_creg = { -1 };
+
+const FPURegister f0 = { 0 };
+const FPURegister f1 = { 1 };
+const FPURegister f2 = { 2 };
+const FPURegister f3 = { 3 };
+const FPURegister f4 = { 4 };
+const FPURegister f5 = { 5 };
+const FPURegister f6 = { 6 };
+const FPURegister f7 = { 7 };
+const FPURegister f8 = { 8 };
+const FPURegister f9 = { 9 };
+const FPURegister f10 = { 10 };
+const FPURegister f11 = { 11 };
+const FPURegister f12 = { 12 };
+const FPURegister f13 = { 13 };
+const FPURegister f14 = { 14 };
+const FPURegister f15 = { 15 };
+const FPURegister f16 = { 16 };
+const FPURegister f17 = { 17 };
+const FPURegister f18 = { 18 };
+const FPURegister f19 = { 19 };
+const FPURegister f20 = { 20 };
+const FPURegister f21 = { 21 };
+const FPURegister f22 = { 22 };
+const FPURegister f23 = { 23 };
+const FPURegister f24 = { 24 };
+const FPURegister f25 = { 25 };
+const FPURegister f26 = { 26 };
+const FPURegister f27 = { 27 };
+const FPURegister f28 = { 28 };
+const FPURegister f29 = { 29 };
+const FPURegister f30 = { 30 };
+const FPURegister f31 = { 31 };
+
+int ToNumber(Register reg) {
+ ASSERT(reg.is_valid());
+ const int kNumbers[] = {
+ 0, // zero_reg
+ 1, // at
+ 2, // v0
+ 3, // v1
+ 4, // a0
+ 5, // a1
+ 6, // a2
+ 7, // a3
+ 8, // t0
+ 9, // t1
+ 10, // t2
+ 11, // t3
+ 12, // t4
+ 13, // t5
+ 14, // t6
+ 15, // t7
+ 16, // s0
+ 17, // s1
+ 18, // s2
+ 19, // s3
+ 20, // s4
+ 21, // s5
+ 22, // s6
+ 23, // s7
+ 24, // t8
+ 25, // t9
+ 26, // k0
+ 27, // k1
+ 28, // gp
+ 29, // sp
+ 30, // s8_fp
+ 31, // ra
+ };
+ return kNumbers[reg.code()];
+}
+
+Register ToRegister(int num) {
+ ASSERT(num >= 0 && num < kNumRegisters);
+ const Register kRegisters[] = {
+ zero_reg,
+ at,
+ v0, v1,
+ a0, a1, a2, a3,
+ t0, t1, t2, t3, t4, t5, t6, t7,
+ s0, s1, s2, s3, s4, s5, s6, s7,
+ t8, t9,
+ k0, k1,
+ gp,
+ sp,
+ s8_fp,
+ ra
+ };
+ return kRegisters[num];
+}
+
+
+// -----------------------------------------------------------------------------
+// Implementation of RelocInfo
+
+const int RelocInfo::kApplyMask = 0;
+
+// Patch the code at the current address with the supplied instructions.
+void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
+ Instr* pc = reinterpret_cast<Instr*>(pc_);
+ Instr* instr = reinterpret_cast<Instr*>(instructions);
+ for (int i = 0; i < instruction_count; i++) {
+ *(pc + i) = *(instr + i);
+ }
+
+ // Indicate that code has changed.
+ CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
+}
+
+
+// Patch the code at the current PC with a call to the target address.
+// Additional guard instructions can be added if required.
+void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
+ // Patch the code at the current address with a call to the target.
+ UNIMPLEMENTED_MIPS();
+}
+
+
+// -----------------------------------------------------------------------------
+// Implementation of Operand and MemOperand
+// See assembler-mips-inl.h for inlined constructors
+
+Operand::Operand(Handle<Object> handle) {
+ rm_ = no_reg;
+ // Verify all Objects referred by code are NOT in new space.
+ Object* obj = *handle;
+ ASSERT(!Heap::InNewSpace(obj));
+ if (obj->IsHeapObject()) {
+ imm32_ = reinterpret_cast<intptr_t>(handle.location());
+ rmode_ = RelocInfo::EMBEDDED_OBJECT;
+ } else {
+ // no relocation needed
+ imm32_ = reinterpret_cast<intptr_t>(obj);
+ rmode_ = RelocInfo::NONE;
+ }
+}
+
+MemOperand::MemOperand(Register rm, int16_t offset) : Operand(rm) {
+ offset_ = offset;
+}
+
+
+// -----------------------------------------------------------------------------
+// Implementation of Assembler
+
+static const int kMinimalBufferSize = 4*KB;
+static byte* spare_buffer_ = NULL;
+
+Assembler::Assembler(void* buffer, int buffer_size) {
+ if (buffer == NULL) {
+ // do our own buffer management
+ if (buffer_size <= kMinimalBufferSize) {
+ buffer_size = kMinimalBufferSize;
+
+ if (spare_buffer_ != NULL) {
+ buffer = spare_buffer_;
+ spare_buffer_ = NULL;
+ }
+ }
+ if (buffer == NULL) {
+ buffer_ = NewArray<byte>(buffer_size);
+ } else {
+ buffer_ = static_cast<byte*>(buffer);
+ }
+ buffer_size_ = buffer_size;
+ own_buffer_ = true;
+
+ } else {
+ // use externally provided buffer instead
+ ASSERT(buffer_size > 0);
+ buffer_ = static_cast<byte*>(buffer);
+ buffer_size_ = buffer_size;
+ own_buffer_ = false;
+ }
+
+ // setup buffer pointers
+ ASSERT(buffer_ != NULL);
+ pc_ = buffer_;
+ reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
+ current_statement_position_ = RelocInfo::kNoPosition;
+ current_position_ = RelocInfo::kNoPosition;
+ written_statement_position_ = current_statement_position_;
+ written_position_ = current_position_;
+}
+
+
+Assembler::~Assembler() {
+ if (own_buffer_) {
+ if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
+ spare_buffer_ = buffer_;
+ } else {
+ DeleteArray(buffer_);
+ }
+ }
+}
+
+
+void Assembler::GetCode(CodeDesc* desc) {
+ ASSERT(pc_ <= reloc_info_writer.pos()); // no overlap
+ // setup desc
+ desc->buffer = buffer_;
+ desc->buffer_size = buffer_size_;
+ desc->instr_size = pc_offset();
+ desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
+}
+
+
+// Labels refer to positions in the (to be) generated code.
+// There are bound, linked, and unused labels.
+//
+// Bound labels refer to known positions in the already
+// generated code. pos() is the position the label refers to.
+//
+// Linked labels refer to unknown positions in the code
+// to be generated; pos() is the position of the last
+// instruction using the label.
+
+
+// The link chain is terminated by a negative code position (must be aligned).
+const int kEndOfChain = -4;
+
+bool Assembler::is_branch(Instr instr) {
+ uint32_t opcode = ((instr & kOpcodeMask));
+ uint32_t rt_field = ((instr & kRtFieldMask));
+ uint32_t rs_field = ((instr & kRsFieldMask));
+ // Checks if the instruction is a branch.
+ return opcode == BEQ
+ || opcode == BNE
+ || opcode == BLEZ
+ || opcode == BGTZ
+ || opcode == BEQL
+ || opcode == BNEL
+ || opcode == BLEZL
+ || opcode == BGTZL
+ || (opcode == REGIMM && (rt_field == BLTZ
+ || rt_field == BGEZ
+ || rt_field == BLTZAL
+ || rt_field == BGEZAL))
+ || (opcode == COP1 && rs_field == BC1); // Coprocessor branch
+}
+
+
+int Assembler::target_at(int32_t pos) {
+ Instr instr = instr_at(pos);
+ if ((instr & ~kImm16Mask) == 0) {
+ // Emitted label constant, not part of a branch.
+ return instr - (Code::kHeaderSize - kHeapObjectTag);
+ }
+ // Check we have a branch instruction.
+ ASSERT(is_branch(instr));
+ // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
+ // the compiler uses arithmectic shifts for signed integers.
+ int32_t imm18 = (((int32_t)instr & (int32_t)kImm16Mask) << 16) >> 14;
+
+ return pos + kBranchPCOffset + imm18;
+}
+
+
+void Assembler::target_at_put(int32_t pos, int32_t target_pos) {
+ Instr instr = instr_at(pos);
+ if ((instr & ~kImm16Mask) == 0) {
+ ASSERT(target_pos == kEndOfChain || target_pos >= 0);
+ // Emitted label constant, not part of a branch.
+ // Make label relative to Code* of generated Code object.
+ instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
+ return;
+ }
+
+ ASSERT(is_branch(instr));
+ int32_t imm18 = target_pos - (pos + kBranchPCOffset);
+ ASSERT((imm18 & 3) == 0);
+
+ instr &= ~kImm16Mask;
+ int32_t imm16 = imm18 >> 2;
+ ASSERT(is_int16(imm16));
+
+ instr_at_put(pos, instr | (imm16 & kImm16Mask));
+}
+
+
+void Assembler::print(Label* L) {
+ if (L->is_unused()) {
+ PrintF("unused label\n");
+ } else if (L->is_bound()) {
+ PrintF("bound label to %d\n", L->pos());
+ } else if (L->is_linked()) {
+ Label l = *L;
+ PrintF("unbound label");
+ while (l.is_linked()) {
+ PrintF("@ %d ", l.pos());
+ Instr instr = instr_at(l.pos());
+ if ((instr & ~kImm16Mask) == 0) {
+ PrintF("value\n");
+ } else {
+ PrintF("%d\n", instr);
+ }
+ next(&l);
+ }
+ } else {
+ PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
+ }
+}
+
+
+void Assembler::bind_to(Label* L, int pos) {
+ ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position
+ while (L->is_linked()) {
+ int32_t fixup_pos = L->pos();
+ next(L); // call next before overwriting link with target at fixup_pos
+ target_at_put(fixup_pos, pos);
+ }
+ L->bind_to(pos);
+
+ // Keep track of the last bound label so we don't eliminate any instructions
+ // before a bound label.
+ if (pos > last_bound_pos_)
+ last_bound_pos_ = pos;
+}
+
+
+void Assembler::link_to(Label* L, Label* appendix) {
+ if (appendix->is_linked()) {
+ if (L->is_linked()) {
+ // append appendix to L's list
+ int fixup_pos;
+ int link = L->pos();
+ do {
+ fixup_pos = link;
+ link = target_at(fixup_pos);
+ } while (link > 0);
+ ASSERT(link == kEndOfChain);
+ target_at_put(fixup_pos, appendix->pos());
+ } else {
+ // L is empty, simply use appendix
+ *L = *appendix;
+ }
+ }
+ appendix->Unuse(); // appendix should not be used anymore
+}
+
+
+void Assembler::bind(Label* L) {
+ ASSERT(!L->is_bound()); // label can only be bound once
+ bind_to(L, pc_offset());
+}
+
+
+void Assembler::next(Label* L) {
+ ASSERT(L->is_linked());
+ int link = target_at(L->pos());
+ if (link > 0) {
+ L->link_to(link);
+ } else {
+ ASSERT(link == kEndOfChain);
+ L->Unuse();
+ }
+}
+
+
+// We have to use a temporary register for things that can be relocated even
+// if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
+// space. There is no guarantee that the relocated location can be similarly
+// encoded.
+bool Assembler::MustUseAt(RelocInfo::Mode rmode) {
+ if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
+ return Serializer::enabled();
+ } else if (rmode == RelocInfo::NONE) {
+ return false;
+ }
+ return true;
+}
+
+
+void Assembler::GenInstrRegister(Opcode opcode,
+ Register rs,
+ Register rt,
+ Register rd,
+ uint16_t sa,
+ SecondaryField func) {
+ ASSERT(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
+ Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
+ | (rd.code() << kRdShift) | (sa << kSaShift) | func;
+ emit(instr);
+}
+
+
+void Assembler::GenInstrRegister(Opcode opcode,
+ SecondaryField fmt,
+ FPURegister ft,
+ FPURegister fs,
+ FPURegister fd,
+ SecondaryField func) {
+ ASSERT(fd.is_valid() && fs.is_valid() && ft.is_valid());
+ Instr instr = opcode | fmt | (ft.code() << 16) | (fs.code() << kFsShift)
+ | (fd.code() << 6) | func;
+ emit(instr);
+}
+
+
+void Assembler::GenInstrRegister(Opcode opcode,
+ SecondaryField fmt,
+ Register rt,
+ FPURegister fs,
+ FPURegister fd,
+ SecondaryField func) {
+ ASSERT(fd.is_valid() && fs.is_valid() && rt.is_valid());
+ Instr instr = opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift)
+ | (fd.code() << 6) | func;
+ emit(instr);
+}
+
+
+// Instructions with immediate value
+// Registers are in the order of the instruction encoding, from left to right.
+void Assembler::GenInstrImmediate(Opcode opcode,
+ Register rs,
+ Register rt,
+ int32_t j) {
+ ASSERT(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j)));
+ Instr instr = opcode | (rs.code() << kRsShift)
+ | (rt.code() << kRtShift) | (j & kImm16Mask);
+ emit(instr);
+}
+
+
+void Assembler::GenInstrImmediate(Opcode opcode,
+ Register rs,
+ SecondaryField SF,
+ int32_t j) {
+ ASSERT(rs.is_valid() && (is_int16(j) || is_uint16(j)));
+ Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask);
+ emit(instr);
+}
+
+
+void Assembler::GenInstrImmediate(Opcode opcode,
+ Register rs,
+ FPURegister ft,
+ int32_t j) {
+ ASSERT(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
+ Instr instr = opcode | (rs.code() << kRsShift)
+ | (ft.code() << kFtShift) | (j & kImm16Mask);
+ emit(instr);
+}
+
+
+// Registers are in the order of the instruction encoding, from left to right.
+void Assembler::GenInstrJump(Opcode opcode,
+ uint32_t address) {
+ ASSERT(is_uint26(address));
+ Instr instr = opcode | address;
+ emit(instr);
+}
+
+
+int32_t Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
+ int32_t target_pos;
+ if (L->is_bound()) {
+ target_pos = L->pos();
+ } else {
+ if (L->is_linked()) {
+ target_pos = L->pos(); // L's link
+ } else {
+ target_pos = kEndOfChain;
+ }
+ L->link_to(pc_offset());
+ }
+
+ int32_t offset = target_pos - (pc_offset() + kBranchPCOffset);
+ return offset;
+}
+
+
+void Assembler::label_at_put(Label* L, int at_offset) {
+ int target_pos;
+ if (L->is_bound()) {
+ target_pos = L->pos();
+ } else {
+ if (L->is_linked()) {
+ target_pos = L->pos(); // L's link
+ } else {
+ target_pos = kEndOfChain;
+ }
+ L->link_to(at_offset);
+ instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
+ }
+}
+
+
+//------- Branch and jump instructions --------
+
+void Assembler::b(int16_t offset) {
+ beq(zero_reg, zero_reg, offset);
+}
+
+
+void Assembler::bal(int16_t offset) {
+ bgezal(zero_reg, offset);
+}
+
+
+void Assembler::beq(Register rs, Register rt, int16_t offset) {
+ GenInstrImmediate(BEQ, rs, rt, offset);
+}
+
+
+void Assembler::bgez(Register rs, int16_t offset) {
+ GenInstrImmediate(REGIMM, rs, BGEZ, offset);
+}
+
+
+void Assembler::bgezal(Register rs, int16_t offset) {
+ GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
+}
+
+
+void Assembler::bgtz(Register rs, int16_t offset) {
+ GenInstrImmediate(BGTZ, rs, zero_reg, offset);
+}
+
+
+void Assembler::blez(Register rs, int16_t offset) {
+ GenInstrImmediate(BLEZ, rs, zero_reg, offset);
+}
+
+
+void Assembler::bltz(Register rs, int16_t offset) {
+ GenInstrImmediate(REGIMM, rs, BLTZ, offset);
+}
+
+
+void Assembler::bltzal(Register rs, int16_t offset) {
+ GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
+}
+
+
+void Assembler::bne(Register rs, Register rt, int16_t offset) {
+ GenInstrImmediate(BNE, rs, rt, offset);
+}
+
+
+void Assembler::j(int32_t target) {
+ ASSERT(is_uint28(target) && ((target & 3) == 0));
+ GenInstrJump(J, target >> 2);
+}
+
+
+void Assembler::jr(Register rs) {
+ GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
+}
+
+
+void Assembler::jal(int32_t target) {
+ ASSERT(is_uint28(target) && ((target & 3) == 0));
+ GenInstrJump(JAL, target >> 2);
+}
+
+
+void Assembler::jalr(Register rs, Register rd) {
+ GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
+}
+
+
+//-------Data-processing-instructions---------
+
+// Arithmetic
+
+void Assembler::add(Register rd, Register rs, Register rt) {
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADD);
+}
+
+
+void Assembler::addu(Register rd, Register rs, Register rt) {
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
+}
+
+
+void Assembler::addi(Register rd, Register rs, int32_t j) {
+ GenInstrImmediate(ADDI, rs, rd, j);
+}
+
+
+void Assembler::addiu(Register rd, Register rs, int32_t j) {
+ GenInstrImmediate(ADDIU, rs, rd, j);
+}
+
+
+void Assembler::sub(Register rd, Register rs, Register rt) {
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUB);
+}
+
+
+void Assembler::subu(Register rd, Register rs, Register rt) {
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU);
+}
+
+
+void Assembler::mul(Register rd, Register rs, Register rt) {
+ GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL);
+}
+
+
+void Assembler::mult(Register rs, Register rt) {
+ GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT);
+}
+
+
+void Assembler::multu(Register rs, Register rt) {
+ GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU);
+}
+
+
+void Assembler::div(Register rs, Register rt) {
+ GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
+}
+
+
+void Assembler::divu(Register rs, Register rt) {
+ GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU);
+}
+
+
+// Logical
+
+void Assembler::and_(Register rd, Register rs, Register rt) {
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND);
+}
+
+
+void Assembler::andi(Register rt, Register rs, int32_t j) {
+ GenInstrImmediate(ANDI, rs, rt, j);
+}
+
+
+void Assembler::or_(Register rd, Register rs, Register rt) {
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR);
+}
+
+
+void Assembler::ori(Register rt, Register rs, int32_t j) {
+ GenInstrImmediate(ORI, rs, rt, j);
+}
+
+
+void Assembler::xor_(Register rd, Register rs, Register rt) {
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR);
+}
+
+
+void Assembler::xori(Register rt, Register rs, int32_t j) {
+ GenInstrImmediate(XORI, rs, rt, j);
+}
+
+
+void Assembler::nor(Register rd, Register rs, Register rt) {
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR);
+}
+
+
+// Shifts
+void Assembler::sll(Register rd, Register rt, uint16_t sa) {
+ GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SLL);
+}
+
+
+void Assembler::sllv(Register rd, Register rt, Register rs) {
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV);
+}
+
+
+void Assembler::srl(Register rd, Register rt, uint16_t sa) {
+ GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRL);
+}
+
+
+void Assembler::srlv(Register rd, Register rt, Register rs) {
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV);
+}
+
+
+void Assembler::sra(Register rd, Register rt, uint16_t sa) {
+ GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRA);
+}
+
+
+void Assembler::srav(Register rd, Register rt, Register rs) {
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV);
+}
+
+
+//------------Memory-instructions-------------
+
+void Assembler::lb(Register rd, const MemOperand& rs) {
+ GenInstrImmediate(LB, rs.rm(), rd, rs.offset_);
+}
+
+
+void Assembler::lbu(Register rd, const MemOperand& rs) {
+ GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_);
+}
+
+
+void Assembler::lw(Register rd, const MemOperand& rs) {
+ GenInstrImmediate(LW, rs.rm(), rd, rs.offset_);
+}
+
+
+void Assembler::sb(Register rd, const MemOperand& rs) {
+ GenInstrImmediate(SB, rs.rm(), rd, rs.offset_);
+}
+
+
+void Assembler::sw(Register rd, const MemOperand& rs) {
+ GenInstrImmediate(SW, rs.rm(), rd, rs.offset_);
+}
+
+
+void Assembler::lui(Register rd, int32_t j) {
+ GenInstrImmediate(LUI, zero_reg, rd, j);
+}
+
+
+//-------------Misc-instructions--------------
+
+// Break / Trap instructions
+void Assembler::break_(uint32_t code) {
+ ASSERT((code & ~0xfffff) == 0);
+ Instr break_instr = SPECIAL | BREAK | (code << 6);
+ emit(break_instr);
+}
+
+
+void Assembler::tge(Register rs, Register rt, uint16_t code) {
+ ASSERT(is_uint10(code));
+ Instr instr = SPECIAL | TGE | rs.code() << kRsShift
+ | rt.code() << kRtShift | code << 6;
+ emit(instr);
+}
+
+
+void Assembler::tgeu(Register rs, Register rt, uint16_t code) {
+ ASSERT(is_uint10(code));
+ Instr instr = SPECIAL | TGEU | rs.code() << kRsShift
+ | rt.code() << kRtShift | code << 6;
+ emit(instr);
+}
+
+
+void Assembler::tlt(Register rs, Register rt, uint16_t code) {
+ ASSERT(is_uint10(code));
+ Instr instr =
+ SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
+ emit(instr);
+}
+
+
+void Assembler::tltu(Register rs, Register rt, uint16_t code) {
+ ASSERT(is_uint10(code));
+ Instr instr = SPECIAL | TLTU | rs.code() << kRsShift |
+ rt.code() << kRtShift | code << 6;
+ emit(instr);
+}
+
+
+void Assembler::teq(Register rs, Register rt, uint16_t code) {
+ ASSERT(is_uint10(code));
+ Instr instr =
+ SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
+ emit(instr);
+}
+
+
+void Assembler::tne(Register rs, Register rt, uint16_t code) {
+ ASSERT(is_uint10(code));
+ Instr instr =
+ SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
+ emit(instr);
+}
+
+
+// Move from HI/LO register
+
+void Assembler::mfhi(Register rd) {
+ GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI);
+}
+
+
+void Assembler::mflo(Register rd) {
+ GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO);
+}
+
+
+// Set on less than instructions
+void Assembler::slt(Register rd, Register rs, Register rt) {
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT);
+}
+
+
+void Assembler::sltu(Register rd, Register rs, Register rt) {
+ GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU);
+}
+
+
+void Assembler::slti(Register rt, Register rs, int32_t j) {
+ GenInstrImmediate(SLTI, rs, rt, j);
+}
+
+
+void Assembler::sltiu(Register rt, Register rs, int32_t j) {
+ GenInstrImmediate(SLTIU, rs, rt, j);
+}
+
+
+//--------Coprocessor-instructions----------------
+
+// Load, store, move
+void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
+ GenInstrImmediate(LWC1, src.rm(), fd, src.offset_);
+}
+
+
+void Assembler::ldc1(FPURegister fd, const MemOperand& src) {
+ GenInstrImmediate(LDC1, src.rm(), fd, src.offset_);
+}
+
+
+void Assembler::swc1(FPURegister fd, const MemOperand& src) {
+ GenInstrImmediate(SWC1, src.rm(), fd, src.offset_);
+}
+
+
+void Assembler::sdc1(FPURegister fd, const MemOperand& src) {
+ GenInstrImmediate(SDC1, src.rm(), fd, src.offset_);
+}
+
+
+void Assembler::mtc1(FPURegister fs, Register rt) {
+ GenInstrRegister(COP1, MTC1, rt, fs, f0);
+}
+
+
+void Assembler::mthc1(FPURegister fs, Register rt) {
+ GenInstrRegister(COP1, MTHC1, rt, fs, f0);
+}
+
+
+void Assembler::mfc1(FPURegister fs, Register rt) {
+ GenInstrRegister(COP1, MFC1, rt, fs, f0);
+}
+
+
+void Assembler::mfhc1(FPURegister fs, Register rt) {
+ GenInstrRegister(COP1, MFHC1, rt, fs, f0);
+}
+
+
+// Conversions
+
+void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) {
+ GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S);
+}
+
+
+void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) {
+ GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D);
+}
+
+
+void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
+ GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
+}
+
+
+void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
+ GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
+}
+
+
+void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
+ GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W);
+}
+
+
+void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
+ GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
+}
+
+
+void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) {
+ GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D);
+}
+
+
+void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
+ GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W);
+}
+
+
+void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
+ GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
+}
+
+
+void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) {
+ GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S);
+}
+
+
+// Conditions
+void Assembler::c(FPUCondition cond, SecondaryField fmt,
+ FPURegister ft, FPURegister fs, uint16_t cc) {
+ ASSERT(is_uint3(cc));
+ ASSERT((fmt & ~(31 << kRsShift)) == 0);
+ Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift |
+ cc << 8 | 3 << 4 | cond;
+ emit(instr);
+}
+
+
+void Assembler::bc1f(int16_t offset, uint16_t cc) {
+ ASSERT(is_uint3(cc));
+ Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask);
+ emit(instr);
+}
+
+
+void Assembler::bc1t(int16_t offset, uint16_t cc) {
+ ASSERT(is_uint3(cc));
+ Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask);
+ emit(instr);
+}
+
+
+// Debugging
+void Assembler::RecordJSReturn() {
+ WriteRecordedPositions();
+ CheckBuffer();
+ RecordRelocInfo(RelocInfo::JS_RETURN);
+}
+
+
+void Assembler::RecordComment(const char* msg) {
+ if (FLAG_debug_code) {
+ CheckBuffer();
+ RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
+ }
+}
+
+
+void Assembler::RecordPosition(int pos) {
+ if (pos == RelocInfo::kNoPosition) return;
+ ASSERT(pos >= 0);
+ current_position_ = pos;
+}
+
+
+void Assembler::RecordStatementPosition(int pos) {
+ if (pos == RelocInfo::kNoPosition) return;
+ ASSERT(pos >= 0);
+ current_statement_position_ = pos;
+}
+
+
+void Assembler::WriteRecordedPositions() {
+ // Write the statement position if it is different from what was written last
+ // time.
+ if (current_statement_position_ != written_statement_position_) {
+ CheckBuffer();
+ RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_);
+ written_statement_position_ = current_statement_position_;
+ }
+
+ // Write the position if it is different from what was written last time and
+ // also different from the written statement position.
+ if (current_position_ != written_position_ &&
+ current_position_ != written_statement_position_) {
+ CheckBuffer();
+ RecordRelocInfo(RelocInfo::POSITION, current_position_);
+ written_position_ = current_position_;
+ }
+}
+
+
+void Assembler::GrowBuffer() {
+ if (!own_buffer_) FATAL("external code buffer is too small");
+
+ // compute new buffer size
+ CodeDesc desc; // the new buffer
+ if (buffer_size_ < 4*KB) {
+ desc.buffer_size = 4*KB;
+ } else if (buffer_size_ < 1*MB) {
+ desc.buffer_size = 2*buffer_size_;
+ } else {
+ desc.buffer_size = buffer_size_ + 1*MB;
+ }
+ CHECK_GT(desc.buffer_size, 0); // no overflow
+
+ // setup new buffer
+ desc.buffer = NewArray<byte>(desc.buffer_size);
+
+ desc.instr_size = pc_offset();
+ desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
+
+ // copy the data
+ int pc_delta = desc.buffer - buffer_;
+ int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
+ memmove(desc.buffer, buffer_, desc.instr_size);
+ memmove(reloc_info_writer.pos() + rc_delta,
+ reloc_info_writer.pos(), desc.reloc_size);
+
+ // switch buffers
+ DeleteArray(buffer_);
+ buffer_ = desc.buffer;
+ buffer_size_ = desc.buffer_size;
+ pc_ += pc_delta;
+ reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
+ reloc_info_writer.last_pc() + pc_delta);
+
+
+ // On ia32 or ARM pc relative addressing is used, and we thus need to apply a
+ // shift by pc_delta. But on MIPS the target address it directly loaded, so
+ // we do not need to relocate here.
+
+ ASSERT(!overflow());
+}
+
+
+void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
+ RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants
+ if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) {
+ // Adjust code for new modes
+ ASSERT(RelocInfo::IsJSReturn(rmode)
+ || RelocInfo::IsComment(rmode)
+ || RelocInfo::IsPosition(rmode));
+ // these modes do not need an entry in the constant pool
+ }
+ if (rinfo.rmode() != RelocInfo::NONE) {
+ // Don't record external references unless the heap will be serialized.
+ if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
+ !Serializer::enabled() &&
+ !FLAG_debug_code) {
+ return;
+ }
+ ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
+ reloc_info_writer.Write(&rinfo);
+ }
+}
+
+
+Address Assembler::target_address_at(Address pc) {
+ Instr instr1 = instr_at(pc);
+ Instr instr2 = instr_at(pc + kInstrSize);
+ // Check we have 2 instructions generated by li.
+ ASSERT(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) ||
+ ((instr1 == nopInstr) && ((instr2 & kOpcodeMask) == ADDI ||
+ (instr2 & kOpcodeMask) == ORI ||
+ (instr2 & kOpcodeMask) == LUI)));
+ // Interpret these 2 instructions.
+ if (instr1 == nopInstr) {
+ if ((instr2 & kOpcodeMask) == ADDI) {
+ return reinterpret_cast<Address>(((instr2 & kImm16Mask) << 16) >> 16);
+ } else if ((instr2 & kOpcodeMask) == ORI) {
+ return reinterpret_cast<Address>(instr2 & kImm16Mask);
+ } else if ((instr2 & kOpcodeMask) == LUI) {
+ return reinterpret_cast<Address>((instr2 & kImm16Mask) << 16);
+ }
+ } else if ((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) {
+ // 32 bits value.
+ return reinterpret_cast<Address>(
+ (instr1 & kImm16Mask) << 16 | (instr2 & kImm16Mask));
+ }
+
+ // We should never get here.
+ UNREACHABLE();
+ return (Address)0x0;
+}
+
+
+void Assembler::set_target_address_at(Address pc, Address target) {
+ // On MIPS we need to patch the code to generate.
+
+ // First check we have a li
+ Instr instr2 = instr_at(pc + kInstrSize);
+#ifdef DEBUG
+ Instr instr1 = instr_at(pc);
+
+ // Check we have indeed the result from a li with MustUseAt true.
+ CHECK(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) ||
+ ((instr1 == 0) && ((instr2 & kOpcodeMask)== ADDIU ||
+ (instr2 & kOpcodeMask)== ORI ||
+ (instr2 & kOpcodeMask)== LUI)));
+#endif
+
+
+ uint32_t rt_code = (instr2 & kRtFieldMask);
+ uint32_t* p = reinterpret_cast<uint32_t*>(pc);
+ uint32_t itarget = reinterpret_cast<uint32_t>(target);
+
+ if (is_int16(itarget)) {
+ // nop
+ // addiu rt zero_reg j
+ *p = nopInstr;
+ *(p+1) = ADDIU | rt_code | (itarget & LOMask);
+ } else if (!(itarget & HIMask)) {
+ // nop
+ // ori rt zero_reg j
+ *p = nopInstr;
+ *(p+1) = ORI | rt_code | (itarget & LOMask);
+ } else if (!(itarget & LOMask)) {
+ // nop
+ // lui rt (HIMask & itarget)>>16
+ *p = nopInstr;
+ *(p+1) = LUI | rt_code | ((itarget & HIMask)>>16);
+ } else {
+ // lui rt (HIMask & itarget)>>16
+ // ori rt rt, (LOMask & itarget)
+ *p = LUI | rt_code | ((itarget & HIMask)>>16);
+ *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & LOMask);
+ }
+
+ CPU::FlushICache(pc, 2* sizeof(int32_t));
+
+#undef instr1
+#undef instr2
+}
+
+
+} } // namespace v8::internal
+

Powered by Google App Engine
This is Rietveld 408576698