Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(636)

Side by Side Diff: src/third_party/dtoa/dtoa.c

Issue 5195003: Remove Gay's dtoa from sources. (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Added files to ARM and x64 VS project files. Created 10 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/third_party/dtoa/COPYING ('k') | test/cctest/test-conversions.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /****************************************************************
2 *
3 * The author of this software is David M. Gay.
4 *
5 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose without fee is hereby granted, provided that this entire notice
9 * is included in all copies of any software which is or includes a copy
10 * or modification of this software and in all copies of the supporting
11 * documentation for such software.
12 *
13 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17 *
18 ***************************************************************/
19
20 /* Please send bug reports to David M. Gay (dmg at acm dot org,
21 * with " at " changed at "@" and " dot " changed to "."). */
22
23 /* On a machine with IEEE extended-precision registers, it is
24 * necessary to specify double-precision (53-bit) rounding precision
25 * before invoking strtod or dtoa. If the machine uses (the equivalent
26 * of) Intel 80x87 arithmetic, the call
27 * _control87(PC_53, MCW_PC);
28 * does this with many compilers. Whether this or another call is
29 * appropriate depends on the compiler; for this to work, it may be
30 * necessary to #include "float.h" or another system-dependent header
31 * file.
32 */
33
34 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
35 *
36 * This strtod returns a nearest machine number to the input decimal
37 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
38 * broken by the IEEE round-even rule. Otherwise ties are broken by
39 * biased rounding (add half and chop).
40 *
41 * Inspired loosely by William D. Clinger's paper "How to Read Floating
42 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
43 *
44 * Modifications:
45 *
46 * 1. We only require IEEE, IBM, or VAX double-precision
47 * arithmetic (not IEEE double-extended).
48 * 2. We get by with floating-point arithmetic in a case that
49 * Clinger missed -- when we're computing d * 10^n
50 * for a small integer d and the integer n is not too
51 * much larger than 22 (the maximum integer k for which
52 * we can represent 10^k exactly), we may be able to
53 * compute (d*10^k) * 10^(e-k) with just one roundoff.
54 * 3. Rather than a bit-at-a-time adjustment of the binary
55 * result in the hard case, we use floating-point
56 * arithmetic to determine the adjustment to within
57 * one bit; only in really hard cases do we need to
58 * compute a second residual.
59 * 4. Because of 3., we don't need a large table of powers of 10
60 * for ten-to-e (just some small tables, e.g. of 10^k
61 * for 0 <= k <= 22).
62 */
63
64 /*
65 * #define IEEE_8087 for IEEE-arithmetic machines where the least
66 * significant byte has the lowest address.
67 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
68 * significant byte has the lowest address.
69 * #define Long int on machines with 32-bit ints and 64-bit longs.
70 * #define IBM for IBM mainframe-style floating-point arithmetic.
71 * #define VAX for VAX-style floating-point arithmetic (D_floating).
72 * #define No_leftright to omit left-right logic in fast floating-point
73 * computation of dtoa.
74 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
75 * and strtod and dtoa should round accordingly.
76 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
77 * and Honor_FLT_ROUNDS is not #defined.
78 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
79 * that use extended-precision instructions to compute rounded
80 * products and quotients) with IBM.
81 * #define ROUND_BIASED for IEEE-format with biased rounding.
82 * #define Inaccurate_Divide for IEEE-format with correctly rounded
83 * products but inaccurate quotients, e.g., for Intel i860.
84 * #define NO_LONG_LONG on machines that do not have a "long long"
85 * integer type (of >= 64 bits). On such machines, you can
86 * #define Just_16 to store 16 bits per 32-bit Long when doing
87 * high-precision integer arithmetic. Whether this speeds things
88 * up or slows things down depends on the machine and the number
89 * being converted. If long long is available and the name is
90 * something other than "long long", #define Llong to be the name,
91 * and if "unsigned Llong" does not work as an unsigned version of
92 * Llong, #define #ULLong to be the corresponding unsigned type.
93 * #define KR_headers for old-style C function headers.
94 * #define Bad_float_h if your system lacks a float.h or if it does not
95 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
96 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
97 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
98 * if memory is available and otherwise does something you deem
99 * appropriate. If MALLOC is undefined, malloc will be invoked
100 * directly -- and assumed always to succeed.
101 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
102 * memory allocations from a private pool of memory when possible.
103 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
104 * unless #defined to be a different length. This default length
105 * suffices to get rid of MALLOC calls except for unusual cases,
106 * such as decimal-to-binary conversion of a very long string of
107 * digits. The longest string dtoa can return is about 751 bytes
108 * long. For conversions by strtod of strings of 800 digits and
109 * all dtoa conversions in single-threaded executions with 8-byte
110 * pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
111 * pointers, PRIVATE_MEM >= 7112 appears adequate.
112 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
113 * Infinity and NaN (case insensitively). On some systems (e.g.,
114 * some HP systems), it may be necessary to #define NAN_WORD0
115 * appropriately -- to the most significant word of a quiet NaN.
116 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
117 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
118 * strtod also accepts (case insensitively) strings of the form
119 * NaN(x), where x is a string of hexadecimal digits and spaces;
120 * if there is only one string of hexadecimal digits, it is taken
121 * for the 52 fraction bits of the resulting NaN; if there are two
122 * or more strings of hex digits, the first is for the high 20 bits,
123 * the second and subsequent for the low 32 bits, with intervening
124 * white space ignored; but if this results in none of the 52
125 * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
126 * and NAN_WORD1 are used instead.
127 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
128 * multiple threads. In this case, you must provide (or suitably
129 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
130 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
131 * in pow5mult, ensures lazy evaluation of only one copy of high
132 * powers of 5; omitting this lock would introduce a small
133 * probability of wasting memory, but would otherwise be harmless.)
134 * You must also invoke freedtoa(s) to free the value s returned by
135 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
136 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
137 * avoids underflows on inputs whose result does not underflow.
138 * If you #define NO_IEEE_Scale on a machine that uses IEEE-format
139 * floating-point numbers and flushes underflows to zero rather
140 * than implementing gradual underflow, then you must also #define
141 * Sudden_Underflow.
142 * #define YES_ALIAS to permit aliasing certain double values with
143 * arrays of ULongs. This leads to slightly better code with
144 * some compilers and was always used prior to 19990916, but it
145 * is not strictly legal and can cause trouble with aggressively
146 * optimizing compilers (e.g., gcc 2.95.1 under -O2).
147 * #define USE_LOCALE to use the current locale's decimal_point value.
148 * #define SET_INEXACT if IEEE arithmetic is being used and extra
149 * computation should be done to set the inexact flag when the
150 * result is inexact and avoid setting inexact when the result
151 * is exact. In this case, dtoa.c must be compiled in
152 * an environment, perhaps provided by #include "dtoa.c" in a
153 * suitable wrapper, that defines two functions,
154 * int get_inexact(void);
155 * void clear_inexact(void);
156 * such that get_inexact() returns a nonzero value if the
157 * inexact bit is already set, and clear_inexact() sets the
158 * inexact bit to 0. When SET_INEXACT is #defined, strtod
159 * also does extra computations to set the underflow and overflow
160 * flags when appropriate (i.e., when the result is tiny and
161 * inexact or when it is a numeric value rounded to +-infinity).
162 * #define NO_ERRNO if strtod should not assign errno = ERANGE when
163 * the result overflows to +-Infinity or underflows to 0.
164 */
165
166 #ifndef Long
167 #if __LP64__
168 #define Long int
169 #else
170 #define Long long
171 #endif
172 #endif
173 #ifndef ULong
174 typedef unsigned Long ULong;
175 #endif
176
177 #ifdef DEBUG
178 #include "stdio.h"
179 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
180 #endif
181
182 #include "stdlib.h"
183 #include "string.h"
184
185 #ifdef USE_LOCALE
186 #include "locale.h"
187 #endif
188
189 #ifdef MALLOC
190 #ifdef KR_headers
191 extern char *MALLOC();
192 #else
193 extern void *MALLOC(size_t);
194 #endif
195 #else
196 #define MALLOC malloc
197 #endif
198
199 #ifndef Omit_Private_Memory
200 #ifndef PRIVATE_MEM
201 #define PRIVATE_MEM 2304
202 #endif
203 #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
204 static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
205 #endif
206
207 #undef IEEE_Arith
208 #undef Avoid_Underflow
209 #ifdef IEEE_MC68k
210 #define IEEE_Arith
211 #endif
212 #ifdef IEEE_8087
213 #define IEEE_Arith
214 #endif
215
216 #include "errno.h"
217
218 #ifdef Bad_float_h
219
220 #ifdef IEEE_Arith
221 #define DBL_DIG 15
222 #define DBL_MAX_10_EXP 308
223 #define DBL_MAX_EXP 1024
224 #define FLT_RADIX 2
225 #endif /*IEEE_Arith*/
226
227 #ifdef IBM
228 #define DBL_DIG 16
229 #define DBL_MAX_10_EXP 75
230 #define DBL_MAX_EXP 63
231 #define FLT_RADIX 16
232 #define DBL_MAX 7.2370055773322621e+75
233 #endif
234
235 #ifdef VAX
236 #define DBL_DIG 16
237 #define DBL_MAX_10_EXP 38
238 #define DBL_MAX_EXP 127
239 #define FLT_RADIX 2
240 #define DBL_MAX 1.7014118346046923e+38
241 #endif
242
243 #ifndef LONG_MAX
244 #define LONG_MAX 2147483647
245 #endif
246
247 #else /* ifndef Bad_float_h */
248 #include "float.h"
249 #endif /* Bad_float_h */
250
251 #ifndef __MATH_H__
252 #include "math.h"
253 #endif
254
255 #ifdef __cplusplus
256 extern "C" {
257 #endif
258
259 #ifndef CONST
260 #ifdef KR_headers
261 #define CONST /* blank */
262 #else
263 #define CONST const
264 #endif
265 #endif
266
267 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
268 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
269 #endif
270
271 typedef union { double d; ULong L[2]; } U;
272
273 #ifdef IEEE_8087
274 #define word0(x) (x).L[1]
275 #define word1(x) (x).L[0]
276 #else
277 #define word0(x) (x).L[0]
278 #define word1(x) (x).L[1]
279 #endif
280 #define dval(x) (x).d
281
282 /* The following definition of Storeinc is appropriate for MIPS processors.
283 * An alternative that might be better on some machines is
284 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
285 */
286 #if defined(IEEE_8087) + defined(VAX)
287 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
288 ((unsigned short *)a)[0] = (unsigned short)c, a++)
289 #else
290 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
291 ((unsigned short *)a)[1] = (unsigned short)c, a++)
292 #endif
293
294 /* #define P DBL_MANT_DIG */
295 /* Ten_pmax = floor(P*log(2)/log(5)) */
296 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
297 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
298 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
299
300 #ifdef IEEE_Arith
301 #define Exp_shift 20
302 #define Exp_shift1 20
303 #define Exp_msk1 0x100000
304 #define Exp_msk11 0x100000
305 #define Exp_mask 0x7ff00000
306 #define P 53
307 #define Bias 1023
308 #define Emin (-1022)
309 #define Exp_1 0x3ff00000
310 #define Exp_11 0x3ff00000
311 #define Ebits 11
312 #define Frac_mask 0xfffff
313 #define Frac_mask1 0xfffff
314 #define Ten_pmax 22
315 #define Bletch 0x10
316 #define Bndry_mask 0xfffff
317 #define Bndry_mask1 0xfffff
318 #define LSB 1
319 #define Sign_bit 0x80000000
320 #define Log2P 1
321 #define Tiny0 0
322 #define Tiny1 1
323 #define Quick_max 14
324 #define Int_max 14
325 #ifndef NO_IEEE_Scale
326 #define Avoid_Underflow
327 #ifdef Flush_Denorm /* debugging option */
328 #undef Sudden_Underflow
329 #endif
330 #endif
331
332 #ifndef Flt_Rounds
333 #ifdef FLT_ROUNDS
334 #define Flt_Rounds FLT_ROUNDS
335 #else
336 #define Flt_Rounds 1
337 #endif
338 #endif /*Flt_Rounds*/
339
340 #ifdef Honor_FLT_ROUNDS
341 #define Rounding rounding
342 #undef Check_FLT_ROUNDS
343 #define Check_FLT_ROUNDS
344 #else
345 #define Rounding Flt_Rounds
346 #endif
347
348 #else /* ifndef IEEE_Arith */
349 #undef Check_FLT_ROUNDS
350 #undef Honor_FLT_ROUNDS
351 #undef SET_INEXACT
352 #undef Sudden_Underflow
353 #define Sudden_Underflow
354 #ifdef IBM
355 #undef Flt_Rounds
356 #define Flt_Rounds 0
357 #define Exp_shift 24
358 #define Exp_shift1 24
359 #define Exp_msk1 0x1000000
360 #define Exp_msk11 0x1000000
361 #define Exp_mask 0x7f000000
362 #define P 14
363 #define Bias 65
364 #define Exp_1 0x41000000
365 #define Exp_11 0x41000000
366 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
367 #define Frac_mask 0xffffff
368 #define Frac_mask1 0xffffff
369 #define Bletch 4
370 #define Ten_pmax 22
371 #define Bndry_mask 0xefffff
372 #define Bndry_mask1 0xffffff
373 #define LSB 1
374 #define Sign_bit 0x80000000
375 #define Log2P 4
376 #define Tiny0 0x100000
377 #define Tiny1 0
378 #define Quick_max 14
379 #define Int_max 15
380 #else /* VAX */
381 #undef Flt_Rounds
382 #define Flt_Rounds 1
383 #define Exp_shift 23
384 #define Exp_shift1 7
385 #define Exp_msk1 0x80
386 #define Exp_msk11 0x800000
387 #define Exp_mask 0x7f80
388 #define P 56
389 #define Bias 129
390 #define Exp_1 0x40800000
391 #define Exp_11 0x4080
392 #define Ebits 8
393 #define Frac_mask 0x7fffff
394 #define Frac_mask1 0xffff007f
395 #define Ten_pmax 24
396 #define Bletch 2
397 #define Bndry_mask 0xffff007f
398 #define Bndry_mask1 0xffff007f
399 #define LSB 0x10000
400 #define Sign_bit 0x8000
401 #define Log2P 1
402 #define Tiny0 0x80
403 #define Tiny1 0
404 #define Quick_max 15
405 #define Int_max 15
406 #endif /* IBM, VAX */
407 #endif /* IEEE_Arith */
408
409 #ifndef IEEE_Arith
410 #define ROUND_BIASED
411 #endif
412
413 #ifdef RND_PRODQUOT
414 #define rounded_product(a,b) a = rnd_prod(a, b)
415 #define rounded_quotient(a,b) a = rnd_quot(a, b)
416 #ifdef KR_headers
417 extern double rnd_prod(), rnd_quot();
418 #else
419 extern double rnd_prod(double, double), rnd_quot(double, double);
420 #endif
421 #else
422 #define rounded_product(a,b) a *= b
423 #define rounded_quotient(a,b) a /= b
424 #endif
425
426 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
427 #define Big1 0xffffffff
428
429 #ifndef Pack_32
430 #define Pack_32
431 #endif
432
433 #ifdef KR_headers
434 #define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
435 #else
436 #define FFFFFFFF 0xffffffffUL
437 #endif
438
439 #ifdef NO_LONG_LONG
440 #undef ULLong
441 #ifdef Just_16
442 #undef Pack_32
443 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
444 * This makes some inner loops simpler and sometimes saves work
445 * during multiplications, but it often seems to make things slightly
446 * slower. Hence the default is now to store 32 bits per Long.
447 */
448 #endif
449 #else /* long long available */
450 #ifndef Llong
451 #define Llong long long
452 #endif
453 #ifndef ULLong
454 #define ULLong unsigned Llong
455 #endif
456 #endif /* NO_LONG_LONG */
457
458 #ifndef MULTIPLE_THREADS
459 #define ACQUIRE_DTOA_LOCK(n) /*nothing*/
460 #define FREE_DTOA_LOCK(n) /*nothing*/
461 #endif
462
463 #define Kmax 15
464
465 #ifdef __cplusplus
466 extern "C" double strtod(const char *s00, char **se);
467 extern "C" char *dtoa(double d, int mode, int ndigits,
468 int *decpt, int *sign, char **rve);
469 #endif
470
471 struct
472 Bigint {
473 struct Bigint *next;
474 int k, maxwds, sign, wds;
475 ULong x[1];
476 };
477
478 typedef struct Bigint Bigint;
479
480 static Bigint *freelist[Kmax+1];
481
482 static Bigint *
483 Balloc
484 #ifdef KR_headers
485 (k) int k;
486 #else
487 (int k)
488 #endif
489 {
490 int x;
491 Bigint *rv;
492 #ifndef Omit_Private_Memory
493 unsigned int len;
494 #endif
495
496 ACQUIRE_DTOA_LOCK(0);
497 /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0). */
498 /* but this case seems very unlikely. */
499 if (k <= Kmax && (rv = freelist[k])) {
500 freelist[k] = rv->next;
501 }
502 else {
503 x = 1 << k;
504 #ifdef Omit_Private_Memory
505 rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
506 #else
507 len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1 )
508 /sizeof(double);
509 if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
510 rv = (Bigint*)pmem_next;
511 pmem_next += len;
512 }
513 else
514 rv = (Bigint*)MALLOC(len*sizeof(double));
515 #endif
516 rv->k = k;
517 rv->maxwds = x;
518 }
519 FREE_DTOA_LOCK(0);
520 rv->sign = rv->wds = 0;
521 return rv;
522 }
523
524 static void
525 Bfree
526 #ifdef KR_headers
527 (v) Bigint *v;
528 #else
529 (Bigint *v)
530 #endif
531 {
532 if (v) {
533 if (v->k > Kmax)
534 free((void*)v);
535 else {
536 ACQUIRE_DTOA_LOCK(0);
537 v->next = freelist[v->k];
538 freelist[v->k] = v;
539 FREE_DTOA_LOCK(0);
540 }
541 }
542 }
543
544 #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
545 y->wds*sizeof(Long) + 2*sizeof(int))
546
547 static Bigint *
548 multadd
549 #ifdef KR_headers
550 (b, m, a) Bigint *b; int m, a;
551 #else
552 (Bigint *b, int m, int a) /* multiply by m and add a */
553 #endif
554 {
555 int i, wds;
556 #ifdef ULLong
557 ULong *x;
558 ULLong carry, y;
559 #else
560 ULong carry, *x, y;
561 #ifdef Pack_32
562 ULong xi, z;
563 #endif
564 #endif
565 Bigint *b1;
566
567 wds = b->wds;
568 x = b->x;
569 i = 0;
570 carry = a;
571 do {
572 #ifdef ULLong
573 y = *x * (ULLong)m + carry;
574 carry = y >> 32;
575 *x++ = y & FFFFFFFF;
576 #else
577 #ifdef Pack_32
578 xi = *x;
579 y = (xi & 0xffff) * m + carry;
580 z = (xi >> 16) * m + (y >> 16);
581 carry = z >> 16;
582 *x++ = (z << 16) + (y & 0xffff);
583 #else
584 y = *x * m + carry;
585 carry = y >> 16;
586 *x++ = y & 0xffff;
587 #endif
588 #endif
589 }
590 while(++i < wds);
591 if (carry) {
592 if (wds >= b->maxwds) {
593 b1 = Balloc(b->k+1);
594 Bcopy(b1, b);
595 Bfree(b);
596 b = b1;
597 }
598 b->x[wds++] = carry;
599 b->wds = wds;
600 }
601 return b;
602 }
603
604 static Bigint *
605 s2b
606 #ifdef KR_headers
607 (s, nd0, nd, y9) CONST char *s; int nd0, nd; ULong y9;
608 #else
609 (CONST char *s, int nd0, int nd, ULong y9)
610 #endif
611 {
612 Bigint *b;
613 int i, k;
614 Long x, y;
615
616 x = (nd + 8) / 9;
617 for(k = 0, y = 1; x > y; y <<= 1, k++) ;
618 #ifdef Pack_32
619 b = Balloc(k);
620 b->x[0] = y9;
621 b->wds = 1;
622 #else
623 b = Balloc(k+1);
624 b->x[0] = y9 & 0xffff;
625 b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
626 #endif
627
628 i = 9;
629 if (9 < nd0) {
630 s += 9;
631 do b = multadd(b, 10, *s++ - '0');
632 while(++i < nd0);
633 s++;
634 }
635 else
636 s += 10;
637 for(; i < nd; i++)
638 b = multadd(b, 10, *s++ - '0');
639 return b;
640 }
641
642 static int
643 hi0bits
644 #ifdef KR_headers
645 (x) register ULong x;
646 #else
647 (register ULong x)
648 #endif
649 {
650 register int k = 0;
651
652 if (!(x & 0xffff0000)) {
653 k = 16;
654 x <<= 16;
655 }
656 if (!(x & 0xff000000)) {
657 k += 8;
658 x <<= 8;
659 }
660 if (!(x & 0xf0000000)) {
661 k += 4;
662 x <<= 4;
663 }
664 if (!(x & 0xc0000000)) {
665 k += 2;
666 x <<= 2;
667 }
668 if (!(x & 0x80000000)) {
669 k++;
670 if (!(x & 0x40000000))
671 return 32;
672 }
673 return k;
674 }
675
676 static int
677 lo0bits
678 #ifdef KR_headers
679 (y) ULong *y;
680 #else
681 (ULong *y)
682 #endif
683 {
684 register int k;
685 register ULong x = *y;
686
687 if (x & 7) {
688 if (x & 1)
689 return 0;
690 if (x & 2) {
691 *y = x >> 1;
692 return 1;
693 }
694 *y = x >> 2;
695 return 2;
696 }
697 k = 0;
698 if (!(x & 0xffff)) {
699 k = 16;
700 x >>= 16;
701 }
702 if (!(x & 0xff)) {
703 k += 8;
704 x >>= 8;
705 }
706 if (!(x & 0xf)) {
707 k += 4;
708 x >>= 4;
709 }
710 if (!(x & 0x3)) {
711 k += 2;
712 x >>= 2;
713 }
714 if (!(x & 1)) {
715 k++;
716 x >>= 1;
717 if (!x)
718 return 32;
719 }
720 *y = x;
721 return k;
722 }
723
724 static Bigint *
725 i2b
726 #ifdef KR_headers
727 (i) int i;
728 #else
729 (int i)
730 #endif
731 {
732 Bigint *b;
733
734 b = Balloc(1);
735 b->x[0] = i;
736 b->wds = 1;
737 return b;
738 }
739
740 static Bigint *
741 mult
742 #ifdef KR_headers
743 (a, b) Bigint *a, *b;
744 #else
745 (Bigint *a, Bigint *b)
746 #endif
747 {
748 Bigint *c;
749 int k, wa, wb, wc;
750 ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
751 ULong y;
752 #ifdef ULLong
753 ULLong carry, z;
754 #else
755 ULong carry, z;
756 #ifdef Pack_32
757 ULong z2;
758 #endif
759 #endif
760
761 if (a->wds < b->wds) {
762 c = a;
763 a = b;
764 b = c;
765 }
766 k = a->k;
767 wa = a->wds;
768 wb = b->wds;
769 wc = wa + wb;
770 if (wc > a->maxwds)
771 k++;
772 c = Balloc(k);
773 for(x = c->x, xa = x + wc; x < xa; x++)
774 *x = 0;
775 xa = a->x;
776 xae = xa + wa;
777 xb = b->x;
778 xbe = xb + wb;
779 xc0 = c->x;
780 #ifdef ULLong
781 for(; xb < xbe; xc0++) {
782 if ((y = *xb++)) {
783 x = xa;
784 xc = xc0;
785 carry = 0;
786 do {
787 z = *x++ * (ULLong)y + *xc + carry;
788 carry = z >> 32;
789 *xc++ = z & FFFFFFFF;
790 }
791 while(x < xae);
792 *xc = carry;
793 }
794 }
795 #else
796 #ifdef Pack_32
797 for(; xb < xbe; xb++, xc0++) {
798 if (y = *xb & 0xffff) {
799 x = xa;
800 xc = xc0;
801 carry = 0;
802 do {
803 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
804 carry = z >> 16;
805 z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
806 carry = z2 >> 16;
807 Storeinc(xc, z2, z);
808 }
809 while(x < xae);
810 *xc = carry;
811 }
812 if (y = *xb >> 16) {
813 x = xa;
814 xc = xc0;
815 carry = 0;
816 z2 = *xc;
817 do {
818 z = (*x & 0xffff) * y + (*xc >> 16) + carry;
819 carry = z >> 16;
820 Storeinc(xc, z, z2);
821 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
822 carry = z2 >> 16;
823 }
824 while(x < xae);
825 *xc = z2;
826 }
827 }
828 #else
829 for(; xb < xbe; xc0++) {
830 if (y = *xb++) {
831 x = xa;
832 xc = xc0;
833 carry = 0;
834 do {
835 z = *x++ * y + *xc + carry;
836 carry = z >> 16;
837 *xc++ = z & 0xffff;
838 }
839 while(x < xae);
840 *xc = carry;
841 }
842 }
843 #endif
844 #endif
845 for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
846 c->wds = wc;
847 return c;
848 }
849
850 static Bigint *p5s;
851
852 static Bigint *
853 pow5mult
854 #ifdef KR_headers
855 (b, k) Bigint *b; int k;
856 #else
857 (Bigint *b, int k)
858 #endif
859 {
860 Bigint *b1, *p5, *p51;
861 int i;
862 static int p05[3] = { 5, 25, 125 };
863
864 if ((i = k & 3))
865 b = multadd(b, p05[i-1], 0);
866
867 if (!(k >>= 2))
868 return b;
869 if (!(p5 = p5s)) {
870 /* first time */
871 #ifdef MULTIPLE_THREADS
872 ACQUIRE_DTOA_LOCK(1);
873 if (!(p5 = p5s)) {
874 p5 = p5s = i2b(625);
875 p5->next = 0;
876 }
877 FREE_DTOA_LOCK(1);
878 #else
879 p5 = p5s = i2b(625);
880 p5->next = 0;
881 #endif
882 }
883 for(;;) {
884 if (k & 1) {
885 b1 = mult(b, p5);
886 Bfree(b);
887 b = b1;
888 }
889 if (!(k >>= 1))
890 break;
891 if (!(p51 = p5->next)) {
892 #ifdef MULTIPLE_THREADS
893 ACQUIRE_DTOA_LOCK(1);
894 if (!(p51 = p5->next)) {
895 p51 = p5->next = mult(p5,p5);
896 p51->next = 0;
897 }
898 FREE_DTOA_LOCK(1);
899 #else
900 p51 = p5->next = mult(p5,p5);
901 p51->next = 0;
902 #endif
903 }
904 p5 = p51;
905 }
906 return b;
907 }
908
909 static Bigint *
910 lshift
911 #ifdef KR_headers
912 (b, k) Bigint *b; int k;
913 #else
914 (Bigint *b, int k)
915 #endif
916 {
917 int i, k1, n, n1;
918 Bigint *b1;
919 ULong *x, *x1, *xe, z;
920
921 #ifdef Pack_32
922 n = k >> 5;
923 #else
924 n = k >> 4;
925 #endif
926 k1 = b->k;
927 n1 = n + b->wds + 1;
928 for(i = b->maxwds; n1 > i; i <<= 1)
929 k1++;
930 b1 = Balloc(k1);
931 x1 = b1->x;
932 for(i = 0; i < n; i++)
933 *x1++ = 0;
934 x = b->x;
935 xe = x + b->wds;
936 #ifdef Pack_32
937 if (k &= 0x1f) {
938 k1 = 32 - k;
939 z = 0;
940 do {
941 *x1++ = *x << k | z;
942 z = *x++ >> k1;
943 }
944 while(x < xe);
945 if ((*x1 = z))
946 ++n1;
947 }
948 #else
949 if (k &= 0xf) {
950 k1 = 16 - k;
951 z = 0;
952 do {
953 *x1++ = *x << k & 0xffff | z;
954 z = *x++ >> k1;
955 }
956 while(x < xe);
957 if (*x1 = z)
958 ++n1;
959 }
960 #endif
961 else do
962 *x1++ = *x++;
963 while(x < xe);
964 b1->wds = n1 - 1;
965 Bfree(b);
966 return b1;
967 }
968
969 static int
970 cmp
971 #ifdef KR_headers
972 (a, b) Bigint *a, *b;
973 #else
974 (Bigint *a, Bigint *b)
975 #endif
976 {
977 ULong *xa, *xa0, *xb, *xb0;
978 int i, j;
979
980 i = a->wds;
981 j = b->wds;
982 #ifdef DEBUG
983 if (i > 1 && !a->x[i-1])
984 Bug("cmp called with a->x[a->wds-1] == 0");
985 if (j > 1 && !b->x[j-1])
986 Bug("cmp called with b->x[b->wds-1] == 0");
987 #endif
988 if (i -= j)
989 return i;
990 xa0 = a->x;
991 xa = xa0 + j;
992 xb0 = b->x;
993 xb = xb0 + j;
994 for(;;) {
995 if (*--xa != *--xb)
996 return *xa < *xb ? -1 : 1;
997 if (xa <= xa0)
998 break;
999 }
1000 return 0;
1001 }
1002
1003 static Bigint *
1004 diff
1005 #ifdef KR_headers
1006 (a, b) Bigint *a, *b;
1007 #else
1008 (Bigint *a, Bigint *b)
1009 #endif
1010 {
1011 Bigint *c;
1012 int i, wa, wb;
1013 ULong *xa, *xae, *xb, *xbe, *xc;
1014 #ifdef ULLong
1015 ULLong borrow, y;
1016 #else
1017 ULong borrow, y;
1018 #ifdef Pack_32
1019 ULong z;
1020 #endif
1021 #endif
1022
1023 i = cmp(a,b);
1024 if (!i) {
1025 c = Balloc(0);
1026 c->wds = 1;
1027 c->x[0] = 0;
1028 return c;
1029 }
1030 if (i < 0) {
1031 c = a;
1032 a = b;
1033 b = c;
1034 i = 1;
1035 }
1036 else
1037 i = 0;
1038 c = Balloc(a->k);
1039 c->sign = i;
1040 wa = a->wds;
1041 xa = a->x;
1042 xae = xa + wa;
1043 wb = b->wds;
1044 xb = b->x;
1045 xbe = xb + wb;
1046 xc = c->x;
1047 borrow = 0;
1048 #ifdef ULLong
1049 do {
1050 y = (ULLong)*xa++ - *xb++ - borrow;
1051 borrow = y >> 32 & (ULong)1;
1052 *xc++ = y & FFFFFFFF;
1053 }
1054 while(xb < xbe);
1055 while(xa < xae) {
1056 y = *xa++ - borrow;
1057 borrow = y >> 32 & (ULong)1;
1058 *xc++ = y & FFFFFFFF;
1059 }
1060 #else
1061 #ifdef Pack_32
1062 do {
1063 y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1064 borrow = (y & 0x10000) >> 16;
1065 z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1066 borrow = (z & 0x10000) >> 16;
1067 Storeinc(xc, z, y);
1068 }
1069 while(xb < xbe);
1070 while(xa < xae) {
1071 y = (*xa & 0xffff) - borrow;
1072 borrow = (y & 0x10000) >> 16;
1073 z = (*xa++ >> 16) - borrow;
1074 borrow = (z & 0x10000) >> 16;
1075 Storeinc(xc, z, y);
1076 }
1077 #else
1078 do {
1079 y = *xa++ - *xb++ - borrow;
1080 borrow = (y & 0x10000) >> 16;
1081 *xc++ = y & 0xffff;
1082 }
1083 while(xb < xbe);
1084 while(xa < xae) {
1085 y = *xa++ - borrow;
1086 borrow = (y & 0x10000) >> 16;
1087 *xc++ = y & 0xffff;
1088 }
1089 #endif
1090 #endif
1091 while(!*--xc)
1092 wa--;
1093 c->wds = wa;
1094 return c;
1095 }
1096
1097 static double
1098 ulp
1099 #ifdef KR_headers
1100 (dx) double dx;
1101 #else
1102 (double dx)
1103 #endif
1104 {
1105 register Long L;
1106 U x, a;
1107
1108 dval(x) = dx;
1109
1110 L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1111 #ifndef Avoid_Underflow
1112 #ifndef Sudden_Underflow
1113 if (L > 0) {
1114 #endif
1115 #endif
1116 #ifdef IBM
1117 L |= Exp_msk1 >> 4;
1118 #endif
1119 word0(a) = L;
1120 word1(a) = 0;
1121 #ifndef Avoid_Underflow
1122 #ifndef Sudden_Underflow
1123 }
1124 else {
1125 L = -L >> Exp_shift;
1126 if (L < Exp_shift) {
1127 word0(a) = 0x80000 >> L;
1128 word1(a) = 0;
1129 }
1130 else {
1131 word0(a) = 0;
1132 L -= Exp_shift;
1133 word1(a) = L >= 31 ? 1 : 1 << 31 - L;
1134 }
1135 }
1136 #endif
1137 #endif
1138 return dval(a);
1139 }
1140
1141 static double
1142 b2d
1143 #ifdef KR_headers
1144 (a, e) Bigint *a; int *e;
1145 #else
1146 (Bigint *a, int *e)
1147 #endif
1148 {
1149 ULong *xa, *xa0, w, y, z;
1150 int k;
1151 U d;
1152 #ifdef VAX
1153 ULong d0, d1;
1154 #else
1155 #define d0 word0(d)
1156 #define d1 word1(d)
1157 #endif
1158
1159 xa0 = a->x;
1160 xa = xa0 + a->wds;
1161 y = *--xa;
1162 #ifdef DEBUG
1163 if (!y) Bug("zero y in b2d");
1164 #endif
1165 k = hi0bits(y);
1166 *e = 32 - k;
1167 #ifdef Pack_32
1168 if (k < Ebits) {
1169 d0 = Exp_1 | (y >> (Ebits - k));
1170 w = xa > xa0 ? *--xa : 0;
1171 d1 = (y << ((32-Ebits) + k)) | (w >> (Ebits - k));
1172 goto ret_d;
1173 }
1174 z = xa > xa0 ? *--xa : 0;
1175 if (k -= Ebits) {
1176 d0 = Exp_1 | (y << k) | (z >> (32 - k));
1177 y = xa > xa0 ? *--xa : 0;
1178 d1 = (z << k) | (y >> (32 - k));
1179 }
1180 else {
1181 d0 = Exp_1 | y;
1182 d1 = z;
1183 }
1184 #else
1185 if (k < Ebits + 16) {
1186 z = xa > xa0 ? *--xa : 0;
1187 d0 = Exp_1 | (y << (k - Ebits)) | (z >> (Ebits + 16 - k));
1188 w = xa > xa0 ? *--xa : 0;
1189 y = xa > xa0 ? *--xa : 0;
1190 d1 = (z << (k + 16 - Ebits)) | (w << (k - Ebits)) | (y >> (16 + Ebits - k));
1191 goto ret_d;
1192 }
1193 z = xa > xa0 ? *--xa : 0;
1194 w = xa > xa0 ? *--xa : 0;
1195 k -= Ebits + 16;
1196 d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1197 y = xa > xa0 ? *--xa : 0;
1198 d1 = w << k + 16 | y << k;
1199 #endif
1200 ret_d:
1201 #ifdef VAX
1202 word0(d) = d0 >> 16 | d0 << 16;
1203 word1(d) = d1 >> 16 | d1 << 16;
1204 #else
1205 #undef d0
1206 #undef d1
1207 #endif
1208 return dval(d);
1209 }
1210
1211 static Bigint *
1212 d2b
1213 #ifdef KR_headers
1214 (dd, e, bits) double dd; int *e, *bits;
1215 #else
1216 (double dd, int *e, int *bits)
1217 #endif
1218 {
1219 Bigint *b;
1220 int de, k;
1221 ULong *x, y, z;
1222 #ifndef Sudden_Underflow
1223 int i;
1224 #endif
1225 #ifdef VAX
1226 ULong d0, d1;
1227 d0 = word0(d) >> 16 | word0(d) << 16;
1228 d1 = word1(d) >> 16 | word1(d) << 16;
1229 #else
1230 U d;
1231 dval(d) = dd;
1232 #define d0 word0(d)
1233 #define d1 word1(d)
1234 #endif
1235
1236 #ifdef Pack_32
1237 b = Balloc(1);
1238 #else
1239 b = Balloc(2);
1240 #endif
1241 x = b->x;
1242
1243 z = d0 & Frac_mask;
1244 d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
1245 #ifdef Sudden_Underflow
1246 de = (int)(d0 >> Exp_shift);
1247 #ifndef IBM
1248 z |= Exp_msk11;
1249 #endif
1250 #else
1251 if ((de = (int)(d0 >> Exp_shift)))
1252 z |= Exp_msk1;
1253 #endif
1254 #ifdef Pack_32
1255 if ((y = d1)) {
1256 if ((k = lo0bits(&y))) {
1257 x[0] = y | (z << (32 - k));
1258 z >>= k;
1259 }
1260 else
1261 x[0] = y;
1262 #ifndef Sudden_Underflow
1263 i =
1264 #endif
1265 b->wds = (x[1] = z) ? 2 : 1;
1266 }
1267 else {
1268 /* This assertion fails for "1e-500" and other very
1269 * small numbers. It provides the right result (0)
1270 * though. This assert has also been removed from KJS's
1271 * version of dtoa.c.
1272 *
1273 * #ifdef DEBUG
1274 * if (!z) Bug("zero z in b2d");
1275 * #endif
1276 */
1277 k = lo0bits(&z);
1278 x[0] = z;
1279 #ifndef Sudden_Underflow
1280 i =
1281 #endif
1282 b->wds = 1;
1283 k += 32;
1284 }
1285 #else
1286 if (y = d1) {
1287 if (k = lo0bits(&y))
1288 if (k >= 16) {
1289 x[0] = y | z << 32 - k & 0xffff;
1290 x[1] = z >> k - 16 & 0xffff;
1291 x[2] = z >> k;
1292 i = 2;
1293 }
1294 else {
1295 x[0] = y & 0xffff;
1296 x[1] = y >> 16 | z << 16 - k & 0xffff;
1297 x[2] = z >> k & 0xffff;
1298 x[3] = z >> k+16;
1299 i = 3;
1300 }
1301 else {
1302 x[0] = y & 0xffff;
1303 x[1] = y >> 16;
1304 x[2] = z & 0xffff;
1305 x[3] = z >> 16;
1306 i = 3;
1307 }
1308 }
1309 else {
1310 #ifdef DEBUG
1311 if (!z)
1312 Bug("Zero passed to d2b");
1313 #endif
1314 k = lo0bits(&z);
1315 if (k >= 16) {
1316 x[0] = z;
1317 i = 0;
1318 }
1319 else {
1320 x[0] = z & 0xffff;
1321 x[1] = z >> 16;
1322 i = 1;
1323 }
1324 k += 32;
1325 }
1326 while(!x[i])
1327 --i;
1328 b->wds = i + 1;
1329 #endif
1330 #ifndef Sudden_Underflow
1331 if (de) {
1332 #endif
1333 #ifdef IBM
1334 *e = (de - Bias - (P-1) << 2) + k;
1335 *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1336 #else
1337 *e = de - Bias - (P-1) + k;
1338 *bits = P - k;
1339 #endif
1340 #ifndef Sudden_Underflow
1341 }
1342 else {
1343 *e = de - Bias - (P-1) + 1 + k;
1344 #ifdef Pack_32
1345 *bits = 32*i - hi0bits(x[i-1]);
1346 #else
1347 *bits = (i+2)*16 - hi0bits(x[i]);
1348 #endif
1349 }
1350 #endif
1351 return b;
1352 }
1353 #undef d0
1354 #undef d1
1355
1356 static double
1357 ratio
1358 #ifdef KR_headers
1359 (a, b) Bigint *a, *b;
1360 #else
1361 (Bigint *a, Bigint *b)
1362 #endif
1363 {
1364 U da, db;
1365 int k, ka, kb;
1366
1367 dval(da) = b2d(a, &ka);
1368 dval(db) = b2d(b, &kb);
1369 #ifdef Pack_32
1370 k = ka - kb + 32*(a->wds - b->wds);
1371 #else
1372 k = ka - kb + 16*(a->wds - b->wds);
1373 #endif
1374 #ifdef IBM
1375 if (k > 0) {
1376 word0(da) += (k >> 2)*Exp_msk1;
1377 if (k &= 3)
1378 dval(da) *= 1 << k;
1379 }
1380 else {
1381 k = -k;
1382 word0(db) += (k >> 2)*Exp_msk1;
1383 if (k &= 3)
1384 dval(db) *= 1 << k;
1385 }
1386 #else
1387 if (k > 0)
1388 word0(da) += k*Exp_msk1;
1389 else {
1390 k = -k;
1391 word0(db) += k*Exp_msk1;
1392 }
1393 #endif
1394 return dval(da) / dval(db);
1395 }
1396
1397 static CONST double
1398 tens[] = {
1399 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1400 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1401 1e20, 1e21, 1e22
1402 #ifdef VAX
1403 , 1e23, 1e24
1404 #endif
1405 };
1406
1407 static CONST double
1408 #ifdef IEEE_Arith
1409 bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1410 static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1411 #ifdef Avoid_Underflow
1412 9007199254740992.*9007199254740992.e-256
1413 /* = 2^106 * 1e-53 */
1414 #else
1415 1e-256
1416 #endif
1417 };
1418 /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1419 /* flag unnecessarily. It leads to a song and dance at the end of strtod. */
1420 #define Scale_Bit 0x10
1421 #define n_bigtens 5
1422 #else
1423 #ifdef IBM
1424 bigtens[] = { 1e16, 1e32, 1e64 };
1425 static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1426 #define n_bigtens 3
1427 #else
1428 bigtens[] = { 1e16, 1e32 };
1429 static CONST double tinytens[] = { 1e-16, 1e-32 };
1430 #define n_bigtens 2
1431 #endif
1432 #endif
1433
1434 #ifndef IEEE_Arith
1435 #undef INFNAN_CHECK
1436 #endif
1437
1438 #ifdef INFNAN_CHECK
1439
1440 #ifndef NAN_WORD0
1441 #define NAN_WORD0 0x7ff80000
1442 #endif
1443
1444 #ifndef NAN_WORD1
1445 #define NAN_WORD1 0
1446 #endif
1447
1448 static int
1449 match
1450 #ifdef KR_headers
1451 (sp, t) char **sp, *t;
1452 #else
1453 (CONST char **sp, char *t)
1454 #endif
1455 {
1456 int c, d;
1457 CONST char *s = *sp;
1458
1459 while(d = *t++) {
1460 if ((c = *++s) >= 'A' && c <= 'Z')
1461 c += 'a' - 'A';
1462 if (c != d)
1463 return 0;
1464 }
1465 *sp = s + 1;
1466 return 1;
1467 }
1468
1469 #ifndef No_Hex_NaN
1470 static void
1471 hexnan
1472 #ifdef KR_headers
1473 (rvp, sp) double *rvp; CONST char **sp;
1474 #else
1475 (double *rvp, CONST char **sp)
1476 #endif
1477 {
1478 ULong c, x[2];
1479 CONST char *s;
1480 int havedig, udx0, xshift;
1481
1482 x[0] = x[1] = 0;
1483 havedig = xshift = 0;
1484 udx0 = 1;
1485 s = *sp;
1486 while(c = *(CONST unsigned char*)++s) {
1487 if (c >= '0' && c <= '9')
1488 c -= '0';
1489 else if (c >= 'a' && c <= 'f')
1490 c += 10 - 'a';
1491 else if (c >= 'A' && c <= 'F')
1492 c += 10 - 'A';
1493 else if (c <= ' ') {
1494 if (udx0 && havedig) {
1495 udx0 = 0;
1496 xshift = 1;
1497 }
1498 continue;
1499 }
1500 else if (/*(*/ c == ')' && havedig) {
1501 *sp = s + 1;
1502 break;
1503 }
1504 else
1505 return; /* invalid form: don't change *sp */
1506 havedig = 1;
1507 if (xshift) {
1508 xshift = 0;
1509 x[0] = x[1];
1510 x[1] = 0;
1511 }
1512 if (udx0)
1513 x[0] = (x[0] << 4) | (x[1] >> 28);
1514 x[1] = (x[1] << 4) | c;
1515 }
1516 if ((x[0] &= 0xfffff) || x[1]) {
1517 word0(*rvp) = Exp_mask | x[0];
1518 word1(*rvp) = x[1];
1519 }
1520 }
1521 #endif /*No_Hex_NaN*/
1522 #endif /* INFNAN_CHECK */
1523
1524 double
1525 strtod
1526 #ifdef KR_headers
1527 (s00, se) CONST char *s00; char **se;
1528 #else
1529 (CONST char *s00, char **se)
1530 #endif
1531 {
1532 #ifdef Avoid_Underflow
1533 int scale;
1534 #endif
1535 int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
1536 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1537 CONST char *s, *s0, *s1;
1538 double aadj;
1539 U aadj1, adj, rv, rv0;
1540 Long L;
1541 ULong y, z;
1542 Bigint *bb = NULL, *bb1, *bd = NULL, *bd0, *bs = NULL, *delta = NULL;
1543 #ifdef SET_INEXACT
1544 int inexact, oldinexact;
1545 #endif
1546 #ifdef Honor_FLT_ROUNDS
1547 int rounding;
1548 #endif
1549 #ifdef USE_LOCALE
1550 CONST char *s2;
1551 #endif
1552
1553 sign = nz0 = nz = 0;
1554 dval(rv) = 0.;
1555 for(s = s00;;s++) switch(*s) {
1556 case '-':
1557 sign = 1;
1558 /* no break */
1559 case '+':
1560 if (*++s)
1561 goto break2;
1562 /* no break */
1563 case 0:
1564 goto ret0;
1565 case '\t':
1566 case '\n':
1567 case '\v':
1568 case '\f':
1569 case '\r':
1570 case ' ':
1571 continue;
1572 default:
1573 goto break2;
1574 }
1575 break2:
1576 if (*s == '0') {
1577 nz0 = 1;
1578 while(*++s == '0') ;
1579 if (!*s)
1580 goto ret;
1581 }
1582 s0 = s;
1583 y = z = 0;
1584 for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1585 if (nd < 9)
1586 y = 10*y + c - '0';
1587 else if (nd < 16)
1588 z = 10*z + c - '0';
1589 nd0 = nd;
1590 #ifdef USE_LOCALE
1591 s1 = localeconv()->decimal_point;
1592 if (c == *s1) {
1593 c = '.';
1594 if (*++s1) {
1595 s2 = s;
1596 for(;;) {
1597 if (*++s2 != *s1) {
1598 c = 0;
1599 break;
1600 }
1601 if (!*++s1) {
1602 s = s2;
1603 break;
1604 }
1605 }
1606 }
1607 }
1608 #endif
1609 if (c == '.') {
1610 c = *++s;
1611 if (!nd) {
1612 for(; c == '0'; c = *++s)
1613 nz++;
1614 if (c > '0' && c <= '9') {
1615 s0 = s;
1616 nf += nz;
1617 nz = 0;
1618 goto have_dig;
1619 }
1620 goto dig_done;
1621 }
1622 for(; c >= '0' && c <= '9'; c = *++s) {
1623 have_dig:
1624 nz++;
1625 if (c -= '0') {
1626 nf += nz;
1627 for(i = 1; i < nz; i++)
1628 if (nd++ < 9)
1629 y *= 10;
1630 else if (nd <= DBL_DIG + 1)
1631 z *= 10;
1632 if (nd++ < 9)
1633 y = 10*y + c;
1634 else if (nd <= DBL_DIG + 1)
1635 z = 10*z + c;
1636 nz = 0;
1637 }
1638 }
1639 }
1640 dig_done:
1641 e = 0;
1642 if (c == 'e' || c == 'E') {
1643 if (!nd && !nz && !nz0) {
1644 goto ret0;
1645 }
1646 s00 = s;
1647 esign = 0;
1648 switch(c = *++s) {
1649 case '-':
1650 esign = 1;
1651 case '+':
1652 c = *++s;
1653 }
1654 if (c >= '0' && c <= '9') {
1655 while(c == '0')
1656 c = *++s;
1657 if (c > '0' && c <= '9') {
1658 L = c - '0';
1659 s1 = s;
1660 while((c = *++s) >= '0' && c <= '9')
1661 L = 10*L + c - '0';
1662 if (s - s1 > 8 || L > 19999)
1663 /* Avoid confusion from exponents
1664 * so large that e might overflow.
1665 */
1666 e = 19999; /* safe for 16 bit ints */
1667 else
1668 e = (int)L;
1669 if (esign)
1670 e = -e;
1671 }
1672 else
1673 e = 0;
1674 }
1675 else
1676 s = s00;
1677 }
1678 if (!nd) {
1679 if (!nz && !nz0) {
1680 #ifdef INFNAN_CHECK
1681 /* Check for Nan and Infinity */
1682 switch(c) {
1683 case 'i':
1684 case 'I':
1685 if (match(&s,"nf")) {
1686 --s;
1687 if (!match(&s,"inity"))
1688 ++s;
1689 word0(rv) = 0x7ff00000;
1690 word1(rv) = 0;
1691 goto ret;
1692 }
1693 break;
1694 case 'n':
1695 case 'N':
1696 if (match(&s, "an")) {
1697 word0(rv) = NAN_WORD0;
1698 word1(rv) = NAN_WORD1;
1699 #ifndef No_Hex_NaN
1700 if (*s == '(') /*)*/
1701 hexnan(&rv, &s);
1702 #endif
1703 goto ret;
1704 }
1705 }
1706 #endif /* INFNAN_CHECK */
1707 ret0:
1708 s = s00;
1709 sign = 0;
1710 }
1711 goto ret;
1712 }
1713 e1 = e -= nf;
1714
1715 /* Now we have nd0 digits, starting at s0, followed by a
1716 * decimal point, followed by nd-nd0 digits. The number we're
1717 * after is the integer represented by those digits times
1718 * 10**e */
1719
1720 if (!nd0)
1721 nd0 = nd;
1722 k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1723 dval(rv) = y;
1724 if (k > 9) {
1725 #ifdef SET_INEXACT
1726 if (k > DBL_DIG)
1727 oldinexact = get_inexact();
1728 #endif
1729 dval(rv) = tens[k - 9] * dval(rv) + z;
1730 }
1731 bd0 = 0;
1732 if (nd <= DBL_DIG
1733 #ifndef RND_PRODQUOT
1734 #ifndef Honor_FLT_ROUNDS
1735 && Flt_Rounds == 1
1736 #endif
1737 #endif
1738 ) {
1739 if (!e)
1740 goto ret;
1741 if (e > 0) {
1742 if (e <= Ten_pmax) {
1743 #ifdef VAX
1744 goto vax_ovfl_check;
1745 #else
1746 #ifdef Honor_FLT_ROUNDS
1747 /* round correctly FLT_ROUNDS = 2 or 3 */
1748 if (sign) {
1749 rv = -rv;
1750 sign = 0;
1751 }
1752 #endif
1753 /* rv = */ rounded_product(dval(rv), tens[e]);
1754 goto ret;
1755 #endif
1756 }
1757 i = DBL_DIG - nd;
1758 if (e <= Ten_pmax + i) {
1759 /* A fancier test would sometimes let us do
1760 * this for larger i values.
1761 */
1762 #ifdef Honor_FLT_ROUNDS
1763 /* round correctly FLT_ROUNDS = 2 or 3 */
1764 if (sign) {
1765 rv = -rv;
1766 sign = 0;
1767 }
1768 #endif
1769 e -= i;
1770 dval(rv) *= tens[i];
1771 #ifdef VAX
1772 /* VAX exponent range is so narrow we must
1773 * worry about overflow here...
1774 */
1775 vax_ovfl_check:
1776 word0(rv) -= P*Exp_msk1;
1777 /* rv = */ rounded_product(dval(rv), tens[e]);
1778 if ((word0(rv) & Exp_mask)
1779 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
1780 goto ovfl;
1781 word0(rv) += P*Exp_msk1;
1782 #else
1783 /* rv = */ rounded_product(dval(rv), tens[e]);
1784 #endif
1785 goto ret;
1786 }
1787 }
1788 #ifndef Inaccurate_Divide
1789 else if (e >= -Ten_pmax) {
1790 #ifdef Honor_FLT_ROUNDS
1791 /* round correctly FLT_ROUNDS = 2 or 3 */
1792 if (sign) {
1793 rv = -rv;
1794 sign = 0;
1795 }
1796 #endif
1797 /* rv = */ rounded_quotient(dval(rv), tens[-e]);
1798 goto ret;
1799 }
1800 #endif
1801 }
1802 e1 += nd - k;
1803
1804 #ifdef IEEE_Arith
1805 #ifdef SET_INEXACT
1806 inexact = 1;
1807 if (k <= DBL_DIG)
1808 oldinexact = get_inexact();
1809 #endif
1810 #ifdef Avoid_Underflow
1811 scale = 0;
1812 #endif
1813 #ifdef Honor_FLT_ROUNDS
1814 if ((rounding = Flt_Rounds) >= 2) {
1815 if (sign)
1816 rounding = rounding == 2 ? 0 : 2;
1817 else
1818 if (rounding != 2)
1819 rounding = 0;
1820 }
1821 #endif
1822 #endif /*IEEE_Arith*/
1823
1824 /* Get starting approximation = rv * 10**e1 */
1825
1826 if (e1 > 0) {
1827 if ((i = e1 & 15))
1828 dval(rv) *= tens[i];
1829 if (e1 &= ~15) {
1830 if (e1 > DBL_MAX_10_EXP) {
1831 ovfl:
1832 #ifndef NO_ERRNO
1833 errno = ERANGE;
1834 #endif
1835 /* Can't trust HUGE_VAL */
1836 #ifdef IEEE_Arith
1837 #ifdef Honor_FLT_ROUNDS
1838 switch(rounding) {
1839 case 0: /* toward 0 */
1840 case 3: /* toward -infinity */
1841 word0(rv) = Big0;
1842 word1(rv) = Big1;
1843 break;
1844 default:
1845 word0(rv) = Exp_mask;
1846 word1(rv) = 0;
1847 }
1848 #else /*Honor_FLT_ROUNDS*/
1849 word0(rv) = Exp_mask;
1850 word1(rv) = 0;
1851 #endif /*Honor_FLT_ROUNDS*/
1852 #ifdef SET_INEXACT
1853 /* set overflow bit */
1854 dval(rv0) = 1e300;
1855 dval(rv0) *= dval(rv0);
1856 #endif
1857 #else /*IEEE_Arith*/
1858 word0(rv) = Big0;
1859 word1(rv) = Big1;
1860 #endif /*IEEE_Arith*/
1861 if (bd0)
1862 goto retfree;
1863 goto ret;
1864 }
1865 e1 >>= 4;
1866 for(j = 0; e1 > 1; j++, e1 >>= 1)
1867 if (e1 & 1)
1868 dval(rv) *= bigtens[j];
1869 /* The last multiplication could overflow. */
1870 word0(rv) -= P*Exp_msk1;
1871 dval(rv) *= bigtens[j];
1872 if ((z = word0(rv) & Exp_mask)
1873 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1874 goto ovfl;
1875 if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1876 /* set to largest number */
1877 /* (Can't trust DBL_MAX) */
1878 word0(rv) = Big0;
1879 word1(rv) = Big1;
1880 }
1881 else
1882 word0(rv) += P*Exp_msk1;
1883 }
1884 }
1885 else if (e1 < 0) {
1886 e1 = -e1;
1887 if ((i = e1 & 15))
1888 dval(rv) /= tens[i];
1889 if (e1 >>= 4) {
1890 if (e1 >= 1 << n_bigtens)
1891 goto undfl;
1892 #ifdef Avoid_Underflow
1893 if (e1 & Scale_Bit)
1894 scale = 2*P;
1895 for(j = 0; e1 > 0; j++, e1 >>= 1)
1896 if (e1 & 1)
1897 dval(rv) *= tinytens[j];
1898 if (scale && (j = 2*P + 1 - ((word0(rv) & Exp_mask)
1899 >> Exp_shift)) > 0) {
1900 /* scaled rv is denormal; zap j low bits */
1901 if (j >= 32) {
1902 word1(rv) = 0;
1903 if (j >= 53)
1904 word0(rv) = (P+2)*Exp_msk1;
1905 else
1906 word0(rv) &= 0xffffffff << (j-32);
1907 }
1908 else
1909 word1(rv) &= 0xffffffff << j;
1910 }
1911 #else
1912 for(j = 0; e1 > 1; j++, e1 >>= 1)
1913 if (e1 & 1)
1914 dval(rv) *= tinytens[j];
1915 /* The last multiplication could underflow. */
1916 dval(rv0) = dval(rv);
1917 dval(rv) *= tinytens[j];
1918 if (!dval(rv)) {
1919 dval(rv) = 2.*dval(rv0);
1920 dval(rv) *= tinytens[j];
1921 #endif
1922 if (!dval(rv)) {
1923 undfl:
1924 dval(rv) = 0.;
1925 #ifndef NO_ERRNO
1926 errno = ERANGE;
1927 #endif
1928 if (bd0)
1929 goto retfree;
1930 goto ret;
1931 }
1932 #ifndef Avoid_Underflow
1933 word0(rv) = Tiny0;
1934 word1(rv) = Tiny1;
1935 /* The refinement below will clean
1936 * this approximation up.
1937 */
1938 }
1939 #endif
1940 }
1941 }
1942
1943 /* Now the hard part -- adjusting rv to the correct value.*/
1944
1945 /* Put digits into bd: true value = bd * 10^e */
1946
1947 bd0 = s2b(s0, nd0, nd, y);
1948
1949 for(;;) {
1950 bd = Balloc(bd0->k);
1951 Bcopy(bd, bd0);
1952 bb = d2b(dval(rv), &bbe, &bbbits); /* rv = bb * 2^bbe */
1953 bs = i2b(1);
1954
1955 if (e >= 0) {
1956 bb2 = bb5 = 0;
1957 bd2 = bd5 = e;
1958 }
1959 else {
1960 bb2 = bb5 = -e;
1961 bd2 = bd5 = 0;
1962 }
1963 if (bbe >= 0)
1964 bb2 += bbe;
1965 else
1966 bd2 -= bbe;
1967 bs2 = bb2;
1968 #ifdef Honor_FLT_ROUNDS
1969 if (rounding != 1)
1970 bs2++;
1971 #endif
1972 #ifdef Avoid_Underflow
1973 j = bbe - scale;
1974 i = j + bbbits - 1; /* logb(rv) */
1975 if (i < Emin) /* denormal */
1976 j += P - Emin;
1977 else
1978 j = P + 1 - bbbits;
1979 #else /*Avoid_Underflow*/
1980 #ifdef Sudden_Underflow
1981 #ifdef IBM
1982 j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
1983 #else
1984 j = P + 1 - bbbits;
1985 #endif
1986 #else /*Sudden_Underflow*/
1987 j = bbe;
1988 i = j + bbbits - 1; /* logb(rv) */
1989 if (i < Emin) /* denormal */
1990 j += P - Emin;
1991 else
1992 j = P + 1 - bbbits;
1993 #endif /*Sudden_Underflow*/
1994 #endif /*Avoid_Underflow*/
1995 bb2 += j;
1996 bd2 += j;
1997 #ifdef Avoid_Underflow
1998 bd2 += scale;
1999 #endif
2000 i = bb2 < bd2 ? bb2 : bd2;
2001 if (i > bs2)
2002 i = bs2;
2003 if (i > 0) {
2004 bb2 -= i;
2005 bd2 -= i;
2006 bs2 -= i;
2007 }
2008 if (bb5 > 0) {
2009 bs = pow5mult(bs, bb5);
2010 bb1 = mult(bs, bb);
2011 Bfree(bb);
2012 bb = bb1;
2013 }
2014 if (bb2 > 0)
2015 bb = lshift(bb, bb2);
2016 if (bd5 > 0)
2017 bd = pow5mult(bd, bd5);
2018 if (bd2 > 0)
2019 bd = lshift(bd, bd2);
2020 if (bs2 > 0)
2021 bs = lshift(bs, bs2);
2022 delta = diff(bb, bd);
2023 dsign = delta->sign;
2024 delta->sign = 0;
2025 i = cmp(delta, bs);
2026 #ifdef Honor_FLT_ROUNDS
2027 if (rounding != 1) {
2028 if (i < 0) {
2029 /* Error is less than an ulp */
2030 if (!delta->x[0] && delta->wds <= 1) {
2031 /* exact */
2032 #ifdef SET_INEXACT
2033 inexact = 0;
2034 #endif
2035 break;
2036 }
2037 if (rounding) {
2038 if (dsign) {
2039 dval(adj) = 1.;
2040 goto apply_adj;
2041 }
2042 }
2043 else if (!dsign) {
2044 dval(adj) = -1.;
2045 if (!word1(rv)
2046 && !(word0(rv) & Frac_mask)) {
2047 y = word0(rv) & Exp_mask;
2048 #ifdef Avoid_Underflow
2049 if (!scale || y > 2*P*Exp_msk1)
2050 #else
2051 if (y)
2052 #endif
2053 {
2054 delta = lshift(delta,Log2P);
2055 if (cmp(delta, bs) <= 0)
2056 dval(adj) = -0.5;
2057 }
2058 }
2059 apply_adj:
2060 #ifdef Avoid_Underflow
2061 if (scale && (y = word0(rv) & Exp_mask)
2062 <= 2*P*Exp_msk1)
2063 word0(adj) += (2*P+1)*Exp_msk1 - y;
2064 #else
2065 #ifdef Sudden_Underflow
2066 if ((word0(rv) & Exp_mask) <=
2067 P*Exp_msk1) {
2068 word0(rv) += P*Exp_msk1;
2069 dval(rv) += dval(adj)*ulp(dval(r v));
2070 word0(rv) -= P*Exp_msk1;
2071 }
2072 else
2073 #endif /*Sudden_Underflow*/
2074 #endif /*Avoid_Underflow*/
2075 dval(rv) += dval(adj)*ulp(dval(rv));
2076 }
2077 break;
2078 }
2079 dval(adj) = ratio(delta, bs);
2080 if (dval(adj) < 1.)
2081 dval(adj) = 1.;
2082 if (dval(adj) <= 0x7ffffffe) {
2083 /* adj = rounding ? ceil(adj) : floor(adj); */
2084 y = dval(adj);
2085 if (y != dval(adj)) {
2086 if (!((rounding>>1) ^ dsign))
2087 y++;
2088 dval(adj) = y;
2089 }
2090 }
2091 #ifdef Avoid_Underflow
2092 if (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
2093 word0(adj) += (2*P+1)*Exp_msk1 - y;
2094 #else
2095 #ifdef Sudden_Underflow
2096 if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
2097 word0(rv) += P*Exp_msk1;
2098 dval(adj) *= ulp(dval(rv));
2099 if (dsign)
2100 dval(rv) += dval(adj);
2101 else
2102 dval(rv) -= dval(adj);
2103 word0(rv) -= P*Exp_msk1;
2104 goto cont;
2105 }
2106 #endif /*Sudden_Underflow*/
2107 #endif /*Avoid_Underflow*/
2108 dval(adj) *= ulp(dval(rv));
2109 if (dsign)
2110 dval(rv) += dval(adj);
2111 else
2112 dval(rv) -= dval(adj);
2113 goto cont;
2114 }
2115 #endif /*Honor_FLT_ROUNDS*/
2116
2117 if (i < 0) {
2118 /* Error is less than half an ulp -- check for
2119 * special case of mantissa a power of two.
2120 */
2121 if (dsign || word1(rv) || word0(rv) & Bndry_mask
2122 #ifdef IEEE_Arith
2123 #ifdef Avoid_Underflow
2124 || (word0(rv) & Exp_mask) <= (2*P+1)*Exp_msk1
2125 #else
2126 || (word0(rv) & Exp_mask) <= Exp_msk1
2127 #endif
2128 #endif
2129 ) {
2130 #ifdef SET_INEXACT
2131 if (!delta->x[0] && delta->wds <= 1)
2132 inexact = 0;
2133 #endif
2134 break;
2135 }
2136 if (!delta->x[0] && delta->wds <= 1) {
2137 /* exact result */
2138 #ifdef SET_INEXACT
2139 inexact = 0;
2140 #endif
2141 break;
2142 }
2143 delta = lshift(delta,Log2P);
2144 if (cmp(delta, bs) > 0)
2145 goto drop_down;
2146 break;
2147 }
2148 if (i == 0) {
2149 /* exactly half-way between */
2150 if (dsign) {
2151 if ((word0(rv) & Bndry_mask1) == Bndry_mask1
2152 && word1(rv) == (
2153 #ifdef Avoid_Underflow
2154 (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
2155 ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
2156 #endif
2157 0xffffffff)) {
2158 /*boundary case -- increment exponent*/
2159 word0(rv) = (word0(rv) & Exp_mask)
2160 + Exp_msk1
2161 #ifdef IBM
2162 | Exp_msk1 >> 4
2163 #endif
2164 ;
2165 word1(rv) = 0;
2166 #ifdef Avoid_Underflow
2167 dsign = 0;
2168 #endif
2169 break;
2170 }
2171 }
2172 else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
2173 drop_down:
2174 /* boundary case -- decrement exponent */
2175 #ifdef Sudden_Underflow /*{{*/
2176 L = word0(rv) & Exp_mask;
2177 #ifdef IBM
2178 if (L < Exp_msk1)
2179 #else
2180 #ifdef Avoid_Underflow
2181 if (L <= (scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
2182 #else
2183 if (L <= Exp_msk1)
2184 #endif /*Avoid_Underflow*/
2185 #endif /*IBM*/
2186 goto undfl;
2187 L -= Exp_msk1;
2188 #else /*Sudden_Underflow}{*/
2189 #ifdef Avoid_Underflow
2190 if (scale) {
2191 L = word0(rv) & Exp_mask;
2192 if (L <= (2*P+1)*Exp_msk1) {
2193 if (L > (P+2)*Exp_msk1)
2194 /* round even ==> */
2195 /* accept rv */
2196 break;
2197 /* rv = smallest denormal */
2198 goto undfl;
2199 }
2200 }
2201 #endif /*Avoid_Underflow*/
2202 L = (word0(rv) & Exp_mask) - Exp_msk1;
2203 #endif /*Sudden_Underflow}}*/
2204 word0(rv) = L | Bndry_mask1;
2205 word1(rv) = 0xffffffff;
2206 #ifdef IBM
2207 goto cont;
2208 #else
2209 break;
2210 #endif
2211 }
2212 #ifndef ROUND_BIASED
2213 if (!(word1(rv) & LSB))
2214 break;
2215 #endif
2216 if (dsign)
2217 dval(rv) += ulp(dval(rv));
2218 #ifndef ROUND_BIASED
2219 else {
2220 dval(rv) -= ulp(dval(rv));
2221 #ifndef Sudden_Underflow
2222 if (!dval(rv))
2223 goto undfl;
2224 #endif
2225 }
2226 #ifdef Avoid_Underflow
2227 dsign = 1 - dsign;
2228 #endif
2229 #endif
2230 break;
2231 }
2232 if ((aadj = ratio(delta, bs)) <= 2.) {
2233 if (dsign)
2234 aadj = dval(aadj1) = 1.;
2235 else if (word1(rv) || word0(rv) & Bndry_mask) {
2236 #ifndef Sudden_Underflow
2237 if (word1(rv) == Tiny1 && !word0(rv))
2238 goto undfl;
2239 #endif
2240 aadj = 1.;
2241 dval(aadj1) = -1.;
2242 }
2243 else {
2244 /* special case -- power of FLT_RADIX to be */
2245 /* rounded down... */
2246
2247 if (aadj < 2./FLT_RADIX)
2248 aadj = 1./FLT_RADIX;
2249 else
2250 aadj *= 0.5;
2251 dval(aadj1) = -aadj;
2252 }
2253 }
2254 else {
2255 aadj *= 0.5;
2256 dval(aadj1) = dsign ? aadj : -aadj;
2257 #ifdef Check_FLT_ROUNDS
2258 switch(Rounding) {
2259 case 2: /* towards +infinity */
2260 dval(aadj1) -= 0.5;
2261 break;
2262 case 0: /* towards 0 */
2263 case 3: /* towards -infinity */
2264 dval(aadj1) += 0.5;
2265 }
2266 #else
2267 if (Flt_Rounds == 0)
2268 dval(aadj1) += 0.5;
2269 #endif /*Check_FLT_ROUNDS*/
2270 }
2271 y = word0(rv) & Exp_mask;
2272
2273 /* Check for overflow */
2274
2275 if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
2276 dval(rv0) = dval(rv);
2277 word0(rv) -= P*Exp_msk1;
2278 dval(adj) = dval(aadj1) * ulp(dval(rv));
2279 dval(rv) += dval(adj);
2280 if ((word0(rv) & Exp_mask) >=
2281 Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
2282 if (word0(rv0) == Big0 && word1(rv0) == Big1)
2283 goto ovfl;
2284 word0(rv) = Big0;
2285 word1(rv) = Big1;
2286 goto cont;
2287 }
2288 else
2289 word0(rv) += P*Exp_msk1;
2290 }
2291 else {
2292 #ifdef Avoid_Underflow
2293 if (scale && y <= 2*P*Exp_msk1) {
2294 if (aadj <= 0x7fffffff) {
2295 if ((z = aadj) <= 0)
2296 z = 1;
2297 aadj = z;
2298 dval(aadj1) = dsign ? aadj : -aadj;
2299 }
2300 word0(aadj1) += (2*P+1)*Exp_msk1 - y;
2301 }
2302 dval(adj) = dval(aadj1) * ulp(dval(rv));
2303 dval(rv) += dval(adj);
2304 #else
2305 #ifdef Sudden_Underflow
2306 if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
2307 dval(rv0) = dval(rv);
2308 word0(rv) += P*Exp_msk1;
2309 dval(adj) = dval(aadj1) * ulp(dval(rv));
2310 dval(rv) += dval(adj);
2311 #ifdef IBM
2312 if ((word0(rv) & Exp_mask) < P*Exp_msk1)
2313 #else
2314 if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
2315 #endif
2316 {
2317 if (word0(rv0) == Tiny0
2318 && word1(rv0) == Tiny1)
2319 goto undfl;
2320 word0(rv) = Tiny0;
2321 word1(rv) = Tiny1;
2322 goto cont;
2323 }
2324 else
2325 word0(rv) -= P*Exp_msk1;
2326 }
2327 else {
2328 dval(adj) = dval(aadj1) * ulp(dval(rv));
2329 dval(rv) += dval(adj);
2330 }
2331 #else /*Sudden_Underflow*/
2332 /* Compute adj so that the IEEE rounding rules will
2333 * correctly round rv + adj in some half-way cases.
2334 * If rv * ulp(rv) is denormalized (i.e.,
2335 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
2336 * trouble from bits lost to denormalization;
2337 * example: 1.2e-307 .
2338 */
2339 if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
2340 dval(aadj1) = (double)(int)(aadj + 0.5);
2341 if (!dsign)
2342 dval(aadj1) = -dval(aadj1);
2343 }
2344 dval(adj) = dval(aadj1) * ulp(dval(rv));
2345 dval(rv) += dval(adj);
2346 #endif /*Sudden_Underflow*/
2347 #endif /*Avoid_Underflow*/
2348 }
2349 z = word0(rv) & Exp_mask;
2350 #ifndef SET_INEXACT
2351 #ifdef Avoid_Underflow
2352 if (!scale)
2353 #endif
2354 if (y == z) {
2355 /* Can we stop now? */
2356 L = (Long)aadj;
2357 aadj -= L;
2358 /* The tolerances below are conservative. */
2359 if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
2360 if (aadj < .4999999 || aadj > .5000001)
2361 break;
2362 }
2363 else if (aadj < .4999999/FLT_RADIX)
2364 break;
2365 }
2366 #endif
2367 cont:
2368 Bfree(bb);
2369 Bfree(bd);
2370 Bfree(bs);
2371 Bfree(delta);
2372 }
2373 #ifdef SET_INEXACT
2374 if (inexact) {
2375 if (!oldinexact) {
2376 word0(rv0) = Exp_1 + (70 << Exp_shift);
2377 word1(rv0) = 0;
2378 dval(rv0) += 1.;
2379 }
2380 }
2381 else if (!oldinexact)
2382 clear_inexact();
2383 #endif
2384 #ifdef Avoid_Underflow
2385 if (scale) {
2386 word0(rv0) = Exp_1 - 2*P*Exp_msk1;
2387 word1(rv0) = 0;
2388 dval(rv) *= dval(rv0);
2389 #ifndef NO_ERRNO
2390 /* try to avoid the bug of testing an 8087 register value */
2391 if (word0(rv) == 0 && word1(rv) == 0)
2392 errno = ERANGE;
2393 #endif
2394 }
2395 #endif /* Avoid_Underflow */
2396 #ifdef SET_INEXACT
2397 if (inexact && !(word0(rv) & Exp_mask)) {
2398 /* set underflow bit */
2399 dval(rv0) = 1e-300;
2400 dval(rv0) *= dval(rv0);
2401 }
2402 #endif
2403 retfree:
2404 Bfree(bb);
2405 Bfree(bd);
2406 Bfree(bs);
2407 Bfree(bd0);
2408 Bfree(delta);
2409 ret:
2410 if (se)
2411 *se = (char *)s;
2412 return sign ? -dval(rv) : dval(rv);
2413 }
2414
2415 static int
2416 quorem
2417 #ifdef KR_headers
2418 (b, S) Bigint *b, *S;
2419 #else
2420 (Bigint *b, Bigint *S)
2421 #endif
2422 {
2423 int n;
2424 ULong *bx, *bxe, q, *sx, *sxe;
2425 #ifdef ULLong
2426 ULLong borrow, carry, y, ys;
2427 #else
2428 ULong borrow, carry, y, ys;
2429 #ifdef Pack_32
2430 ULong si, z, zs;
2431 #endif
2432 #endif
2433
2434 n = S->wds;
2435 #ifdef DEBUG
2436 /*debug*/ if (b->wds > n)
2437 /*debug*/ Bug("oversize b in quorem");
2438 #endif
2439 if (b->wds < n)
2440 return 0;
2441 sx = S->x;
2442 sxe = sx + --n;
2443 bx = b->x;
2444 bxe = bx + n;
2445 q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
2446 #ifdef DEBUG
2447 /*debug*/ if (q > 9)
2448 /*debug*/ Bug("oversized quotient in quorem");
2449 #endif
2450 if (q) {
2451 borrow = 0;
2452 carry = 0;
2453 do {
2454 #ifdef ULLong
2455 ys = *sx++ * (ULLong)q + carry;
2456 carry = ys >> 32;
2457 y = *bx - (ys & FFFFFFFF) - borrow;
2458 borrow = y >> 32 & (ULong)1;
2459 *bx++ = y & FFFFFFFF;
2460 #else
2461 #ifdef Pack_32
2462 si = *sx++;
2463 ys = (si & 0xffff) * q + carry;
2464 zs = (si >> 16) * q + (ys >> 16);
2465 carry = zs >> 16;
2466 y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2467 borrow = (y & 0x10000) >> 16;
2468 z = (*bx >> 16) - (zs & 0xffff) - borrow;
2469 borrow = (z & 0x10000) >> 16;
2470 Storeinc(bx, z, y);
2471 #else
2472 ys = *sx++ * q + carry;
2473 carry = ys >> 16;
2474 y = *bx - (ys & 0xffff) - borrow;
2475 borrow = (y & 0x10000) >> 16;
2476 *bx++ = y & 0xffff;
2477 #endif
2478 #endif
2479 }
2480 while(sx <= sxe);
2481 if (!*bxe) {
2482 bx = b->x;
2483 while(--bxe > bx && !*bxe)
2484 --n;
2485 b->wds = n;
2486 }
2487 }
2488 if (cmp(b, S) >= 0) {
2489 q++;
2490 borrow = 0;
2491 carry = 0;
2492 bx = b->x;
2493 sx = S->x;
2494 do {
2495 #ifdef ULLong
2496 ys = *sx++ + carry;
2497 carry = ys >> 32;
2498 y = *bx - (ys & FFFFFFFF) - borrow;
2499 borrow = y >> 32 & (ULong)1;
2500 *bx++ = y & FFFFFFFF;
2501 #else
2502 #ifdef Pack_32
2503 si = *sx++;
2504 ys = (si & 0xffff) + carry;
2505 zs = (si >> 16) + (ys >> 16);
2506 carry = zs >> 16;
2507 y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2508 borrow = (y & 0x10000) >> 16;
2509 z = (*bx >> 16) - (zs & 0xffff) - borrow;
2510 borrow = (z & 0x10000) >> 16;
2511 Storeinc(bx, z, y);
2512 #else
2513 ys = *sx++ + carry;
2514 carry = ys >> 16;
2515 y = *bx - (ys & 0xffff) - borrow;
2516 borrow = (y & 0x10000) >> 16;
2517 *bx++ = y & 0xffff;
2518 #endif
2519 #endif
2520 }
2521 while(sx <= sxe);
2522 bx = b->x;
2523 bxe = bx + n;
2524 if (!*bxe) {
2525 while(--bxe > bx && !*bxe)
2526 --n;
2527 b->wds = n;
2528 }
2529 }
2530 return q;
2531 }
2532
2533 #ifndef MULTIPLE_THREADS
2534 static char *dtoa_result;
2535 #endif
2536
2537 static char *
2538 #ifdef KR_headers
2539 rv_alloc(i) int i;
2540 #else
2541 rv_alloc(int i)
2542 #endif
2543 {
2544 int j, k, *r;
2545
2546 j = sizeof(ULong);
2547 for(k = 0;
2548 sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= i;
2549 j <<= 1)
2550 k++;
2551 r = (int*)Balloc(k);
2552 *r = k;
2553 return
2554 #ifndef MULTIPLE_THREADS
2555 dtoa_result =
2556 #endif
2557 (char *)(r+1);
2558 }
2559
2560 static char *
2561 #ifdef KR_headers
2562 nrv_alloc(s, rve, n) char *s, **rve; int n;
2563 #else
2564 nrv_alloc(const char *s, char **rve, int n)
2565 #endif
2566 {
2567 char *rv, *t;
2568
2569 t = rv = rv_alloc(n);
2570 while ((*t = *s++)) t++;
2571 if (rve)
2572 *rve = t;
2573 return rv;
2574 }
2575
2576 /* freedtoa(s) must be used to free values s returned by dtoa
2577 * when MULTIPLE_THREADS is #defined. It should be used in all cases,
2578 * but for consistency with earlier versions of dtoa, it is optional
2579 * when MULTIPLE_THREADS is not defined.
2580 */
2581
2582 void
2583 #ifdef KR_headers
2584 freedtoa(s) char *s;
2585 #else
2586 freedtoa(char *s)
2587 #endif
2588 {
2589 Bigint *b = (Bigint *)((int *)s - 1);
2590 b->maxwds = 1 << (b->k = *(int*)b);
2591 Bfree(b);
2592 #ifndef MULTIPLE_THREADS
2593 if (s == dtoa_result)
2594 dtoa_result = 0;
2595 #endif
2596 }
2597
2598 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2599 *
2600 * Inspired by "How to Print Floating-Point Numbers Accurately" by
2601 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
2602 *
2603 * Modifications:
2604 * 1. Rather than iterating, we use a simple numeric overestimate
2605 * to determine k = floor(log10(d)). We scale relevant
2606 * quantities using O(log2(k)) rather than O(k) multiplications.
2607 * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2608 * try to generate digits strictly left to right. Instead, we
2609 * compute with fewer bits and propagate the carry if necessary
2610 * when rounding the final digit up. This is often faster.
2611 * 3. Under the assumption that input will be rounded nearest,
2612 * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2613 * That is, we allow equality in stopping tests when the
2614 * round-nearest rule will give the same floating-point value
2615 * as would satisfaction of the stopping test with strict
2616 * inequality.
2617 * 4. We remove common factors of powers of 2 from relevant
2618 * quantities.
2619 * 5. When converting floating-point integers less than 1e16,
2620 * we use floating-point arithmetic rather than resorting
2621 * to multiple-precision integers.
2622 * 6. When asked to produce fewer than 15 digits, we first try
2623 * to get by with floating-point arithmetic; we resort to
2624 * multiple-precision integer arithmetic only if we cannot
2625 * guarantee that the floating-point calculation has given
2626 * the correctly rounded result. For k requested digits and
2627 * "uniformly" distributed input, the probability is
2628 * something like 10^(k-15) that we must resort to the Long
2629 * calculation.
2630 */
2631
2632 char *
2633 dtoa
2634 #ifdef KR_headers
2635 (dd, mode, ndigits, decpt, sign, rve)
2636 double dd; int mode, ndigits, *decpt, *sign; char **rve;
2637 #else
2638 (double dd, int mode, int ndigits, int *decpt, int *sign, char **rve)
2639 #endif
2640 {
2641 /* Arguments ndigits, decpt, sign are similar to those
2642 of ecvt and fcvt; trailing zeros are suppressed from
2643 the returned string. If not null, *rve is set to point
2644 to the end of the return value. If d is +-Infinity or NaN,
2645 then *decpt is set to 9999.
2646
2647 mode:
2648 0 ==> shortest string that yields d when read in
2649 and rounded to nearest.
2650 1 ==> like 0, but with Steele & White stopping rule;
2651 e.g. with IEEE P754 arithmetic , mode 0 gives
2652 1e23 whereas mode 1 gives 9.999999999999999e22.
2653 2 ==> max(1,ndigits) significant digits. This gives a
2654 return value similar to that of ecvt, except
2655 that trailing zeros are suppressed.
2656 3 ==> through ndigits past the decimal point. This
2657 gives a return value similar to that from fcvt,
2658 except that trailing zeros are suppressed, and
2659 ndigits can be negative.
2660 4,5 ==> similar to 2 and 3, respectively, but (in
2661 round-nearest mode) with the tests of mode 0 to
2662 possibly return a shorter string that rounds to d.
2663 With IEEE arithmetic and compilation with
2664 -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2665 as modes 2 and 3 when FLT_ROUNDS != 1.
2666 6-9 ==> Debugging modes similar to mode - 4: don't try
2667 fast floating-point estimate (if applicable).
2668
2669 Values of mode other than 0-9 are treated as mode 0.
2670
2671 Sufficient space is allocated to the return value
2672 to hold the suppressed trailing zeros.
2673 */
2674
2675 int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
2676 j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2677 spec_case, try_quick, bias_round_up;
2678 Long L;
2679 #ifndef Sudden_Underflow
2680 int denorm;
2681 ULong x;
2682 #endif
2683 Bigint *b, *b1, *delta, *mlo, *mhi, *S;
2684 double ds;
2685 U d2, eps;
2686 char *s, *s0;
2687 #ifdef Honor_FLT_ROUNDS
2688 int rounding;
2689 #endif
2690 #ifdef SET_INEXACT
2691 int inexact, oldinexact;
2692 #endif
2693 U d;
2694 dval(d) = dd;
2695
2696 /* In mode 2 and 3 we bias rounding up when there are ties. */
2697 bias_round_up = mode == 2 || mode == 3;
2698
2699 ilim = ilim1 = 0; /* to avoid Google3 compiler warnings */
2700
2701 #ifndef MULTIPLE_THREADS
2702 if (dtoa_result) {
2703 freedtoa(dtoa_result);
2704 dtoa_result = 0;
2705 }
2706 #endif
2707
2708 if (word0(d) & Sign_bit) {
2709 /* set sign for everything, including 0's and NaNs */
2710 *sign = 1;
2711 word0(d) &= ~Sign_bit; /* clear sign bit */
2712 }
2713 else
2714 *sign = 0;
2715
2716 #if defined(IEEE_Arith) + defined(VAX)
2717 #ifdef IEEE_Arith
2718 if ((word0(d) & Exp_mask) == Exp_mask)
2719 #else
2720 if (word0(d) == 0x8000)
2721 #endif
2722 {
2723 /* Infinity or NaN */
2724 *decpt = 9999;
2725 #ifdef IEEE_Arith
2726 if (!word1(d) && !(word0(d) & 0xfffff))
2727 return nrv_alloc("Infinity", rve, 8);
2728 #endif
2729 return nrv_alloc("NaN", rve, 3);
2730 }
2731 #endif
2732 #ifdef IBM
2733 dval(d) += 0; /* normalize */
2734 #endif
2735 if (!dval(d)) {
2736 *decpt = 1;
2737 return nrv_alloc("0", rve, 1);
2738 }
2739
2740 #ifdef SET_INEXACT
2741 try_quick = oldinexact = get_inexact();
2742 inexact = 1;
2743 #endif
2744 #ifdef Honor_FLT_ROUNDS
2745 if ((rounding = Flt_Rounds) >= 2) {
2746 if (*sign)
2747 rounding = rounding == 2 ? 0 : 2;
2748 else
2749 if (rounding != 2)
2750 rounding = 0;
2751 }
2752 #endif
2753
2754 b = d2b(dval(d), &be, &bbits);
2755 #ifdef Sudden_Underflow
2756 i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
2757 #else
2758 if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
2759 #endif
2760 dval(d2) = dval(d);
2761 word0(d2) &= Frac_mask1;
2762 word0(d2) |= Exp_11;
2763 #ifdef IBM
2764 if (j = 11 - hi0bits(word0(d2) & Frac_mask))
2765 dval(d2) /= 1 << j;
2766 #endif
2767
2768 /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
2769 * log10(x) = log(x) / log(10)
2770 * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2771 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2772 *
2773 * This suggests computing an approximation k to log10(d) by
2774 *
2775 * k = (i - Bias)*0.301029995663981
2776 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2777 *
2778 * We want k to be too large rather than too small.
2779 * The error in the first-order Taylor series approximation
2780 * is in our favor, so we just round up the constant enough
2781 * to compensate for any error in the multiplication of
2782 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2783 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2784 * adding 1e-13 to the constant term more than suffices.
2785 * Hence we adjust the constant term to 0.1760912590558.
2786 * (We could get a more accurate k by invoking log10,
2787 * but this is probably not worthwhile.)
2788 */
2789
2790 i -= Bias;
2791 #ifdef IBM
2792 i <<= 2;
2793 i += j;
2794 #endif
2795 #ifndef Sudden_Underflow
2796 denorm = 0;
2797 }
2798 else {
2799 /* d is denormalized */
2800
2801 i = bbits + be + (Bias + (P-1) - 1);
2802 x = i > 32 ? (word0(d) << (64 - i)) | (word1(d) >> (i - 32))
2803 : word1(d) << (32 - i);
2804 dval(d2) = x;
2805 word0(d2) -= 31*Exp_msk1; /* adjust exponent */
2806 i -= (Bias + (P-1) - 1) + 1;
2807 denorm = 1;
2808 }
2809 #endif
2810 ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.3010299956 63981;
2811 k = (int)ds;
2812 if (ds < 0. && ds != k)
2813 k--; /* want k = floor(ds) */
2814 k_check = 1;
2815 if (k >= 0 && k <= Ten_pmax) {
2816 if (dval(d) < tens[k])
2817 k--;
2818 k_check = 0;
2819 }
2820 j = bbits - i - 1;
2821 if (j >= 0) {
2822 b2 = 0;
2823 s2 = j;
2824 }
2825 else {
2826 b2 = -j;
2827 s2 = 0;
2828 }
2829 if (k >= 0) {
2830 b5 = 0;
2831 s5 = k;
2832 s2 += k;
2833 }
2834 else {
2835 b2 -= k;
2836 b5 = -k;
2837 s5 = 0;
2838 }
2839 if (mode < 0 || mode > 9)
2840 mode = 0;
2841
2842 #ifndef SET_INEXACT
2843 #ifdef Check_FLT_ROUNDS
2844 try_quick = Rounding == 1;
2845 #else
2846 try_quick = 1;
2847 #endif
2848 #endif /*SET_INEXACT*/
2849
2850 if (mode > 5) {
2851 mode -= 4;
2852 try_quick = 0;
2853 }
2854 leftright = 1;
2855 switch(mode) {
2856 case 0:
2857 case 1:
2858 ilim = ilim1 = -1;
2859 i = 18;
2860 ndigits = 0;
2861 break;
2862 case 2:
2863 leftright = 0;
2864 /* no break */
2865 case 4:
2866 if (ndigits <= 0)
2867 ndigits = 1;
2868 ilim = ilim1 = i = ndigits;
2869 break;
2870 case 3:
2871 leftright = 0;
2872 /* no break */
2873 case 5:
2874 i = ndigits + k + 1;
2875 ilim = i;
2876 ilim1 = i - 1;
2877 if (i <= 0)
2878 i = 1;
2879 }
2880 s = s0 = rv_alloc(i);
2881
2882 #ifdef Honor_FLT_ROUNDS
2883 if (mode > 1 && rounding != 1)
2884 leftright = 0;
2885 #endif
2886
2887 if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2888
2889 /* Try to get by with floating-point arithmetic. */
2890
2891 i = 0;
2892 dval(d2) = dval(d);
2893 k0 = k;
2894 ilim0 = ilim;
2895 ieps = 2; /* conservative */
2896 if (k > 0) {
2897 ds = tens[k&0xf];
2898 j = k >> 4;
2899 if (j & Bletch) {
2900 /* prevent overflows */
2901 j &= Bletch - 1;
2902 dval(d) /= bigtens[n_bigtens-1];
2903 ieps++;
2904 }
2905 for(; j; j >>= 1, i++)
2906 if (j & 1) {
2907 ieps++;
2908 ds *= bigtens[i];
2909 }
2910 dval(d) /= ds;
2911 }
2912 else if ((j1 = -k)) {
2913 dval(d) *= tens[j1 & 0xf];
2914 for(j = j1 >> 4; j; j >>= 1, i++)
2915 if (j & 1) {
2916 ieps++;
2917 dval(d) *= bigtens[i];
2918 }
2919 }
2920 if (k_check && dval(d) < 1. && ilim > 0) {
2921 if (ilim1 <= 0)
2922 goto fast_failed;
2923 ilim = ilim1;
2924 k--;
2925 dval(d) *= 10.;
2926 ieps++;
2927 }
2928 dval(eps) = ieps*dval(d) + 7.;
2929 word0(eps) -= (P-1)*Exp_msk1;
2930 if (ilim == 0) {
2931 S = mhi = 0;
2932 dval(d) -= 5.;
2933 if (dval(d) > dval(eps))
2934 goto one_digit;
2935 if (dval(d) < -dval(eps))
2936 goto no_digits;
2937 goto fast_failed;
2938 }
2939 #ifndef No_leftright
2940 if (leftright) {
2941 /* Use Steele & White method of only
2942 * generating digits needed.
2943 */
2944 dval(eps) = 0.5/tens[ilim-1] - dval(eps);
2945 for(i = 0;;) {
2946 L = dval(d);
2947 dval(d) -= L;
2948 *s++ = '0' + (int)L;
2949 if (dval(d) < dval(eps))
2950 goto ret1;
2951 if (1. - dval(d) < dval(eps))
2952 goto bump_up;
2953 if (++i >= ilim)
2954 break;
2955 dval(eps) *= 10.;
2956 dval(d) *= 10.;
2957 }
2958 }
2959 else {
2960 #endif
2961 /* Generate ilim digits, then fix them up. */
2962 dval(eps) *= tens[ilim-1];
2963 for(i = 1;; i++, dval(d) *= 10.) {
2964 L = (Long)(dval(d));
2965 if (!(dval(d) -= L))
2966 ilim = i;
2967 *s++ = '0' + (int)L;
2968 if (i == ilim) {
2969 if (dval(d) > 0.5 + dval(eps))
2970 goto bump_up;
2971 else if (dval(d) < 0.5 - dval(eps)) {
2972 while(*--s == '0');
2973 s++;
2974 goto ret1;
2975 }
2976 break;
2977 }
2978 }
2979 #ifndef No_leftright
2980 }
2981 #endif
2982 fast_failed:
2983 s = s0;
2984 dval(d) = dval(d2);
2985 k = k0;
2986 ilim = ilim0;
2987 }
2988
2989 /* Do we have a "small" integer? */
2990
2991 if (be >= 0 && k <= Int_max) {
2992 /* Yes. */
2993 ds = tens[k];
2994 if (ndigits < 0 && ilim <= 0) {
2995 S = mhi = 0;
2996 if (ilim < 0 || dval(d) < 5*ds || ((dval(d) == 5*ds) && !bias_round_up))
2997 goto no_digits;
2998 goto one_digit;
2999 }
3000
3001 /* Limit looping by the number of digits to produce.
3002 * Firefox had a crash bug because some plugins reduce
3003 * the precision of double arithmetic. With reduced
3004 * precision "dval(d) -= L*ds" might be imprecise and
3005 * d might not become zero and the loop might not
3006 * terminate.
3007 *
3008 * See https://bugzilla.mozilla.org/show_bug.cgi?id=358569
3009 */
3010 for(i = 1; i <= k+1; i++, dval(d) *= 10.) {
3011 L = (Long)(dval(d) / ds);
3012 dval(d) -= L*ds;
3013 #ifdef Check_FLT_ROUNDS
3014 /* If FLT_ROUNDS == 2, L will usually be high by 1 */
3015 if (dval(d) < 0) {
3016 L--;
3017 dval(d) += ds;
3018 }
3019 #endif
3020 *s++ = '0' + (int)L;
3021 if (!dval(d)) {
3022 #ifdef SET_INEXACT
3023 inexact = 0;
3024 #endif
3025 break;
3026 }
3027 if (i == ilim) {
3028 #ifdef Honor_FLT_ROUNDS
3029 if (mode > 1)
3030 switch(rounding) {
3031 case 0: goto ret1;
3032 case 2: goto bump_up;
3033 }
3034 #endif
3035 dval(d) += dval(d);
3036 if (dval(d) > ds || (dval(d) == ds && ((L & 1) | | bias_round_up))) {
3037 bump_up:
3038 while(*--s == '9')
3039 if (s == s0) {
3040 k++;
3041 *s = '0';
3042 break;
3043 }
3044 ++*s++;
3045 }
3046 break;
3047 }
3048 }
3049 goto ret1;
3050 }
3051
3052 m2 = b2;
3053 m5 = b5;
3054 mhi = mlo = 0;
3055 if (leftright) {
3056 i =
3057 #ifndef Sudden_Underflow
3058 denorm ? be + (Bias + (P-1) - 1 + 1) :
3059 #endif
3060 #ifdef IBM
3061 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
3062 #else
3063 1 + P - bbits;
3064 #endif
3065 b2 += i;
3066 s2 += i;
3067 mhi = i2b(1);
3068 }
3069 if (m2 > 0 && s2 > 0) {
3070 i = m2 < s2 ? m2 : s2;
3071 b2 -= i;
3072 m2 -= i;
3073 s2 -= i;
3074 }
3075 if (b5 > 0) {
3076 if (leftright) {
3077 if (m5 > 0) {
3078 mhi = pow5mult(mhi, m5);
3079 b1 = mult(mhi, b);
3080 Bfree(b);
3081 b = b1;
3082 }
3083 if ((j = b5 - m5))
3084 b = pow5mult(b, j);
3085 }
3086 else
3087 b = pow5mult(b, b5);
3088 }
3089 S = i2b(1);
3090 if (s5 > 0)
3091 S = pow5mult(S, s5);
3092
3093 /* Check for special case that d is a normalized power of 2. */
3094
3095 spec_case = 0;
3096 if ((mode < 2 || leftright)
3097 #ifdef Honor_FLT_ROUNDS
3098 && rounding == 1
3099 #endif
3100 ) {
3101 if (!word1(d) && !(word0(d) & Bndry_mask)
3102 #ifndef Sudden_Underflow
3103 && word0(d) & (Exp_mask & ~Exp_msk1)
3104 #endif
3105 ) {
3106 /* The special case */
3107 b2 += Log2P;
3108 s2 += Log2P;
3109 spec_case = 1;
3110 }
3111 }
3112
3113 /* Arrange for convenient computation of quotients:
3114 * shift left if necessary so divisor has 4 leading 0 bits.
3115 *
3116 * Perhaps we should just compute leading 28 bits of S once
3117 * and for all and pass them and a shift to quorem, so it
3118 * can do shifts and ors to compute the numerator for q.
3119 */
3120 #ifdef Pack_32
3121 if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f))
3122 i = 32 - i;
3123 #else
3124 if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf))
3125 i = 16 - i;
3126 #endif
3127 if (i > 4) {
3128 i -= 4;
3129 b2 += i;
3130 m2 += i;
3131 s2 += i;
3132 }
3133 else if (i < 4) {
3134 i += 28;
3135 b2 += i;
3136 m2 += i;
3137 s2 += i;
3138 }
3139 if (b2 > 0)
3140 b = lshift(b, b2);
3141 if (s2 > 0)
3142 S = lshift(S, s2);
3143 if (k_check) {
3144 if (cmp(b,S) < 0) {
3145 k--;
3146 b = multadd(b, 10, 0); /* we botched the k estimate */
3147 if (leftright)
3148 mhi = multadd(mhi, 10, 0);
3149 ilim = ilim1;
3150 }
3151 }
3152 if (ilim <= 0 && (mode == 3 || mode == 5)) {
3153 S = multadd(S, 5, 0);
3154 if (ilim < 0 || cmp(b, S) < 0 || ((cmp(b, S) == 0) && !bias_roun d_up)) {
3155 /* no digits, fcvt style */
3156 no_digits:
3157 k = -1 - ndigits;
3158 goto ret;
3159 }
3160 one_digit:
3161 *s++ = '1';
3162 k++;
3163 goto ret;
3164 }
3165 if (leftright) {
3166 if (m2 > 0)
3167 mhi = lshift(mhi, m2);
3168
3169 /* Compute mlo -- check for special case
3170 * that d is a normalized power of 2.
3171 */
3172
3173 mlo = mhi;
3174 if (spec_case) {
3175 mhi = Balloc(mhi->k);
3176 Bcopy(mhi, mlo);
3177 mhi = lshift(mhi, Log2P);
3178 }
3179
3180 for(i = 1;;i++) {
3181 dig = quorem(b,S) + '0';
3182 /* Do we yet have the shortest decimal string
3183 * that will round to d?
3184 */
3185 j = cmp(b, mlo);
3186 delta = diff(S, mhi);
3187 j1 = delta->sign ? 1 : cmp(b, delta);
3188 Bfree(delta);
3189 #ifndef ROUND_BIASED
3190 if (j1 == 0 && mode != 1 && !(word1(d) & 1)
3191 #ifdef Honor_FLT_ROUNDS
3192 && rounding >= 1
3193 #endif
3194 ) {
3195 if (dig == '9')
3196 goto round_9_up;
3197 if (j > 0)
3198 dig++;
3199 #ifdef SET_INEXACT
3200 else if (!b->x[0] && b->wds <= 1)
3201 inexact = 0;
3202 #endif
3203 *s++ = dig;
3204 goto ret;
3205 }
3206 #endif
3207 if (j < 0 || (j == 0 && mode != 1
3208 #ifndef ROUND_BIASED
3209 && !(word1(d) & 1)
3210 #endif
3211 )) {
3212 if (!b->x[0] && b->wds <= 1) {
3213 #ifdef SET_INEXACT
3214 inexact = 0;
3215 #endif
3216 goto accept_dig;
3217 }
3218 #ifdef Honor_FLT_ROUNDS
3219 if (mode > 1)
3220 switch(rounding) {
3221 case 0: goto accept_dig;
3222 case 2: goto keep_dig;
3223 }
3224 #endif /*Honor_FLT_ROUNDS*/
3225 if (j1 > 0) {
3226 b = lshift(b, 1);
3227 j1 = cmp(b, S);
3228 if ((j1 > 0 || (j1 == 0 && ((dig & 1) || bias_round_up)))
3229 && dig++ == '9')
3230 goto round_9_up;
3231 }
3232 accept_dig:
3233 *s++ = dig;
3234 goto ret;
3235 }
3236 if (j1 > 0) {
3237 #ifdef Honor_FLT_ROUNDS
3238 if (!rounding)
3239 goto accept_dig;
3240 #endif
3241 if (dig == '9') { /* possible if i == 1 */
3242 round_9_up:
3243 *s++ = '9';
3244 goto roundoff;
3245 }
3246 *s++ = dig + 1;
3247 goto ret;
3248 }
3249 #ifdef Honor_FLT_ROUNDS
3250 keep_dig:
3251 #endif
3252 *s++ = dig;
3253 if (i == ilim)
3254 break;
3255 b = multadd(b, 10, 0);
3256 if (mlo == mhi)
3257 mlo = mhi = multadd(mhi, 10, 0);
3258 else {
3259 mlo = multadd(mlo, 10, 0);
3260 mhi = multadd(mhi, 10, 0);
3261 }
3262 }
3263 }
3264 else
3265 for(i = 1;; i++) {
3266 *s++ = dig = quorem(b,S) + '0';
3267 if (!b->x[0] && b->wds <= 1) {
3268 #ifdef SET_INEXACT
3269 inexact = 0;
3270 #endif
3271 goto ret;
3272 }
3273 if (i >= ilim)
3274 break;
3275 b = multadd(b, 10, 0);
3276 }
3277
3278 /* Round off last digit */
3279
3280 #ifdef Honor_FLT_ROUNDS
3281 switch(rounding) {
3282 case 0: goto trimzeros;
3283 case 2: goto roundoff;
3284 }
3285 #endif
3286 b = lshift(b, 1);
3287 j = cmp(b, S);
3288 if (j > 0 || (j == 0 && ((dig & 1) || bias_round_up))) {
3289 roundoff:
3290 while(*--s == '9')
3291 if (s == s0) {
3292 k++;
3293 *s++ = '1';
3294 goto ret;
3295 }
3296 ++*s++;
3297 }
3298 else {
3299 /* trimzeros: (never used) */
3300 while(*--s == '0');
3301 s++;
3302 }
3303 ret:
3304 Bfree(S);
3305 if (mhi) {
3306 if (mlo && mlo != mhi)
3307 Bfree(mlo);
3308 Bfree(mhi);
3309 }
3310 ret1:
3311 #ifdef SET_INEXACT
3312 if (inexact) {
3313 if (!oldinexact) {
3314 word0(d) = Exp_1 + (70 << Exp_shift);
3315 word1(d) = 0;
3316 dval(d) += 1.;
3317 }
3318 }
3319 else if (!oldinexact)
3320 clear_inexact();
3321 #endif
3322 Bfree(b);
3323 *s = 0;
3324 *decpt = k + 1;
3325 if (rve)
3326 *rve = s;
3327 return s0;
3328 }
3329 #ifdef __cplusplus
3330 }
3331 #endif
OLDNEW
« no previous file with comments | « src/third_party/dtoa/COPYING ('k') | test/cctest/test-conversions.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698