Index: third_party/qcms/transform.c |
=================================================================== |
--- third_party/qcms/transform.c (revision 0) |
+++ third_party/qcms/transform.c (revision 0) |
@@ -0,0 +1,1372 @@ |
+// qcms |
+// Copyright (C) 2009 Mozilla Corporation |
+// Copyright (C) 1998-2007 Marti Maria |
+// |
+// Permission is hereby granted, free of charge, to any person obtaining |
+// a copy of this software and associated documentation files (the "Software"), |
+// to deal in the Software without restriction, including without limitation |
+// the rights to use, copy, modify, merge, publish, distribute, sublicense, |
+// and/or sell copies of the Software, and to permit persons to whom the Software |
+// is furnished to do so, subject to the following conditions: |
+// |
+// The above copyright notice and this permission notice shall be included in |
+// all copies or substantial portions of the Software. |
+// |
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
+// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
+ |
+#include <stdlib.h> |
+#include <math.h> |
+#include <assert.h> |
+#include "qcmsint.h" |
+ |
+/* for MSVC, GCC, Intel, and Sun compilers */ |
+#if defined(_M_IX86) || defined(__i386__) || defined(__i386) || defined(_M_AMD64) || defined(__x86_64__) || defined(__x86_64) |
+#define X86 |
+#endif /* _M_IX86 || __i386__ || __i386 || _M_AMD64 || __x86_64__ || __x86_64 */ |
+ |
+//XXX: could use a bettername |
+typedef uint16_t uint16_fract_t; |
+ |
+/* value must be a value between 0 and 1 */ |
+//XXX: is the above a good restriction to have? |
+float lut_interp_linear(double value, uint16_t *table, int length) |
+{ |
+ int upper, lower; |
+ value = value * (length - 1); // scale to length of the array |
+ upper = ceil(value); |
+ lower = floor(value); |
+ //XXX: can we be more performant here? |
+ value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value); |
+ /* scale the value */ |
+ return value * (1./65535.); |
+} |
+ |
+/* same as above but takes and returns a uint16_t value representing a range from 0..1 */ |
+uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length) |
+{ |
+ /* Start scaling input_value to the length of the array: 65535*(length-1). |
+ * We'll divide out the 65535 next */ |
+ uint32_t value = (input_value * (length - 1)); |
+ uint32_t upper = (value + 65534) / 65535; /* equivalent to ceil(value/65535) */ |
+ uint32_t lower = value / 65535; /* equivalent to floor(value/65535) */ |
+ /* interp is the distance from upper to value scaled to 0..65535 */ |
+ uint32_t interp = value % 65535; |
+ |
+ value = (table[upper]*(interp) + table[lower]*(65535 - interp))/65535; // 0..65535*65535 |
+ |
+ return value; |
+} |
+ |
+/* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX |
+ * and returns a uint8_t value representing a range from 0..1 */ |
+static |
+uint8_t lut_interp_linear_precache_output(uint32_t input_value, uint16_t *table, int length) |
+{ |
+ /* Start scaling input_value to the length of the array: PRECACHE_OUTPUT_MAX*(length-1). |
+ * We'll divide out the PRECACHE_OUTPUT_MAX next */ |
+ uint32_t value = (input_value * (length - 1)); |
+ |
+ /* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */ |
+ uint32_t upper = (value + PRECACHE_OUTPUT_MAX-1) / PRECACHE_OUTPUT_MAX; |
+ /* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */ |
+ uint32_t lower = value / PRECACHE_OUTPUT_MAX; |
+ /* interp is the distance from upper to value scaled to 0..PRECACHE_OUTPUT_MAX */ |
+ uint32_t interp = value % PRECACHE_OUTPUT_MAX; |
+ |
+ /* the table values range from 0..65535 */ |
+ value = (table[upper]*(interp) + table[lower]*(PRECACHE_OUTPUT_MAX - interp)); // 0..(65535*PRECACHE_OUTPUT_MAX) |
+ |
+ /* round and scale */ |
+ value += (PRECACHE_OUTPUT_MAX*65535/255)/2; |
+ value /= (PRECACHE_OUTPUT_MAX*65535/255); // scale to 0..255 |
+ return value; |
+} |
+ |
+#if 0 |
+/* if we use a different representation i.e. one that goes from 0 to 0x1000 we can be more efficient |
+ * because we can avoid the divisions and use a shifting instead */ |
+/* same as above but takes and returns a uint16_t value representing a range from 0..1 */ |
+uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length) |
+{ |
+ uint32_t value = (input_value * (length - 1)); |
+ uint32_t upper = (value + 4095) / 4096; /* equivalent to ceil(value/4096) */ |
+ uint32_t lower = value / 4096; /* equivalent to floor(value/4096) */ |
+ uint32_t interp = value % 4096; |
+ |
+ value = (table[upper]*(interp) + table[lower]*(4096 - interp))/4096; // 0..4096*4096 |
+ |
+ return value; |
+} |
+#endif |
+ |
+void compute_curve_gamma_table_type1(float gamma_table[256], double gamma) |
+{ |
+ unsigned int i; |
+ for (i = 0; i < 256; i++) { |
+ gamma_table[i] = pow(i/255., gamma); |
+ } |
+} |
+ |
+void compute_curve_gamma_table_type2(float gamma_table[256], uint16_t *table, int length) |
+{ |
+ unsigned int i; |
+ for (i = 0; i < 256; i++) { |
+ gamma_table[i] = lut_interp_linear(i/255., table, length); |
+ } |
+} |
+ |
+void compute_curve_gamma_table_type0(float gamma_table[256]) |
+{ |
+ unsigned int i; |
+ for (i = 0; i < 256; i++) { |
+ gamma_table[i] = i/255.; |
+ } |
+} |
+ |
+unsigned char clamp_u8(float v) |
+{ |
+ if (v > 255.) |
+ return 255; |
+ else if (v < 0) |
+ return 0; |
+ else |
+ return floor(v+.5); |
+} |
+ |
+struct vector { |
+ float v[3]; |
+}; |
+ |
+struct matrix { |
+ float m[3][3]; |
+ bool invalid; |
+}; |
+ |
+struct vector matrix_eval(struct matrix mat, struct vector v) |
+{ |
+ struct vector result; |
+ result.v[0] = mat.m[0][0]*v.v[0] + mat.m[0][1]*v.v[1] + mat.m[0][2]*v.v[2]; |
+ result.v[1] = mat.m[1][0]*v.v[0] + mat.m[1][1]*v.v[1] + mat.m[1][2]*v.v[2]; |
+ result.v[2] = mat.m[2][0]*v.v[0] + mat.m[2][1]*v.v[1] + mat.m[2][2]*v.v[2]; |
+ return result; |
+} |
+ |
+//XXX: should probably pass by reference and we could |
+//probably reuse this computation in matrix_invert |
+float matrix_det(struct matrix mat) |
+{ |
+ float det; |
+ det = mat.m[0][0]*mat.m[1][1]*mat.m[2][2] + |
+ mat.m[0][1]*mat.m[1][2]*mat.m[2][0] + |
+ mat.m[0][2]*mat.m[1][0]*mat.m[2][1] - |
+ mat.m[0][0]*mat.m[1][2]*mat.m[2][1] - |
+ mat.m[0][1]*mat.m[1][0]*mat.m[2][2] - |
+ mat.m[0][2]*mat.m[1][1]*mat.m[2][0]; |
+ return det; |
+} |
+ |
+/* from pixman and cairo and Mathematics for Game Programmers */ |
+/* lcms uses gauss-jordan elimination with partial pivoting which is |
+ * less efficient and not as numerically stable. See Mathematics for |
+ * Game Programmers. */ |
+struct matrix matrix_invert(struct matrix mat) |
+{ |
+ struct matrix dest_mat; |
+ int i,j; |
+ static int a[3] = { 2, 2, 1 }; |
+ static int b[3] = { 1, 0, 0 }; |
+ |
+ /* inv (A) = 1/det (A) * adj (A) */ |
+ float det = matrix_det(mat); |
+ |
+ if (det == 0) { |
+ dest_mat.invalid = true; |
+ } else { |
+ dest_mat.invalid = false; |
+ } |
+ |
+ det = 1/det; |
+ |
+ for (j = 0; j < 3; j++) { |
+ for (i = 0; i < 3; i++) { |
+ double p; |
+ int ai = a[i]; |
+ int aj = a[j]; |
+ int bi = b[i]; |
+ int bj = b[j]; |
+ |
+ p = mat.m[ai][aj] * mat.m[bi][bj] - |
+ mat.m[ai][bj] * mat.m[bi][aj]; |
+ if (((i + j) & 1) != 0) |
+ p = -p; |
+ |
+ dest_mat.m[j][i] = det * p; |
+ } |
+ } |
+ return dest_mat; |
+} |
+ |
+struct matrix matrix_identity(void) |
+{ |
+ struct matrix i; |
+ i.m[0][0] = 1; |
+ i.m[0][1] = 0; |
+ i.m[0][2] = 0; |
+ i.m[1][0] = 0; |
+ i.m[1][1] = 1; |
+ i.m[1][2] = 0; |
+ i.m[2][0] = 0; |
+ i.m[2][1] = 0; |
+ i.m[2][2] = 1; |
+ i.invalid = false; |
+ return i; |
+} |
+ |
+static struct matrix matrix_invalid(void) |
+{ |
+ struct matrix inv = matrix_identity(); |
+ inv.invalid = true; |
+ return inv; |
+} |
+ |
+ |
+/* from pixman */ |
+/* MAT3per... */ |
+struct matrix matrix_multiply(struct matrix a, struct matrix b) |
+{ |
+ struct matrix result; |
+ int dx, dy; |
+ int o; |
+ for (dy = 0; dy < 3; dy++) { |
+ for (dx = 0; dx < 3; dx++) { |
+ double v = 0; |
+ for (o = 0; o < 3; o++) { |
+ v += a.m[dy][o] * b.m[o][dx]; |
+ } |
+ result.m[dy][dx] = v; |
+ } |
+ } |
+ result.invalid = a.invalid || b.invalid; |
+ return result; |
+} |
+ |
+float u8Fixed8Number_to_float(uint16_t x) |
+{ |
+ // 0x0000 = 0. |
+ // 0x0100 = 1. |
+ // 0xffff = 255 + 255/256 |
+ return x/256.; |
+} |
+ |
+float *build_input_gamma_table(struct curveType *TRC) |
+{ |
+ float *gamma_table = malloc(sizeof(float)*256); |
+ if (gamma_table) { |
+ if (TRC->count == 0) { |
+ compute_curve_gamma_table_type0(gamma_table); |
+ } else if (TRC->count == 1) { |
+ compute_curve_gamma_table_type1(gamma_table, u8Fixed8Number_to_float(TRC->data[0])); |
+ } else { |
+ compute_curve_gamma_table_type2(gamma_table, TRC->data, TRC->count); |
+ } |
+ } |
+ return gamma_table; |
+} |
+ |
+struct matrix build_colorant_matrix(qcms_profile *p) |
+{ |
+ struct matrix result; |
+ result.m[0][0] = s15Fixed16Number_to_float(p->redColorant.X); |
+ result.m[0][1] = s15Fixed16Number_to_float(p->greenColorant.X); |
+ result.m[0][2] = s15Fixed16Number_to_float(p->blueColorant.X); |
+ result.m[1][0] = s15Fixed16Number_to_float(p->redColorant.Y); |
+ result.m[1][1] = s15Fixed16Number_to_float(p->greenColorant.Y); |
+ result.m[1][2] = s15Fixed16Number_to_float(p->blueColorant.Y); |
+ result.m[2][0] = s15Fixed16Number_to_float(p->redColorant.Z); |
+ result.m[2][1] = s15Fixed16Number_to_float(p->greenColorant.Z); |
+ result.m[2][2] = s15Fixed16Number_to_float(p->blueColorant.Z); |
+ result.invalid = false; |
+ return result; |
+} |
+ |
+/* The following code is copied nearly directly from lcms. |
+ * I think it could be much better. For example, Argyll seems to have better code in |
+ * icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick way |
+ * to a working solution and allows for easy comparing with lcms. */ |
+uint16_fract_t lut_inverse_interp16(uint16_t Value, uint16_t LutTable[], int length) |
+{ |
+ int l = 1; |
+ int r = 0x10000; |
+ int x = 0, res; // 'int' Give spacing for negative values |
+ int NumZeroes, NumPoles; |
+ int cell0, cell1; |
+ double val2; |
+ double y0, y1, x0, x1; |
+ double a, b, f; |
+ |
+ // July/27 2001 - Expanded to handle degenerated curves with an arbitrary |
+ // number of elements containing 0 at the begining of the table (Zeroes) |
+ // and another arbitrary number of poles (FFFFh) at the end. |
+ // First the zero and pole extents are computed, then value is compared. |
+ |
+ NumZeroes = 0; |
+ while (LutTable[NumZeroes] == 0 && NumZeroes < length-1) |
+ NumZeroes++; |
+ |
+ // There are no zeros at the beginning and we are trying to find a zero, so |
+ // return anything. It seems zero would be the less destructive choice |
+ /* I'm not sure that this makes sense, but oh well... */ |
+ if (NumZeroes == 0 && Value == 0) |
+ return 0; |
+ |
+ NumPoles = 0; |
+ while (LutTable[length-1- NumPoles] == 0xFFFF && NumPoles < length-1) |
+ NumPoles++; |
+ |
+ // Does the curve belong to this case? |
+ if (NumZeroes > 1 || NumPoles > 1) |
+ { |
+ int a, b; |
+ |
+ // Identify if value fall downto 0 or FFFF zone |
+ if (Value == 0) return 0; |
+ // if (Value == 0xFFFF) return 0xFFFF; |
+ |
+ // else restrict to valid zone |
+ |
+ a = ((NumZeroes-1) * 0xFFFF) / (length-1); |
+ b = ((length-1 - NumPoles) * 0xFFFF) / (length-1); |
+ |
+ l = a - 1; |
+ r = b + 1; |
+ } |
+ |
+ |
+ // Seems not a degenerated case... apply binary search |
+ |
+ while (r > l) { |
+ |
+ x = (l + r) / 2; |
+ |
+ res = (int) lut_interp_linear16((uint16_fract_t) (x-1), LutTable, length); |
+ |
+ if (res == Value) { |
+ |
+ // Found exact match. |
+ |
+ return (uint16_fract_t) (x - 1); |
+ } |
+ |
+ if (res > Value) r = x - 1; |
+ else l = x + 1; |
+ } |
+ |
+ // Not found, should we interpolate? |
+ |
+ |
+ // Get surrounding nodes |
+ |
+ val2 = (length-1) * ((double) (x - 1) / 65535.0); |
+ |
+ cell0 = (int) floor(val2); |
+ cell1 = (int) ceil(val2); |
+ |
+ if (cell0 == cell1) return (uint16_fract_t) x; |
+ |
+ y0 = LutTable[cell0] ; |
+ x0 = (65535.0 * cell0) / (length-1); |
+ |
+ y1 = LutTable[cell1] ; |
+ x1 = (65535.0 * cell1) / (length-1); |
+ |
+ a = (y1 - y0) / (x1 - x0); |
+ b = y0 - a * x0; |
+ |
+ if (fabs(a) < 0.01) return (uint16_fract_t) x; |
+ |
+ f = ((Value - b) / a); |
+ |
+ if (f < 0.0) return (uint16_fract_t) 0; |
+ if (f >= 65535.0) return (uint16_fract_t) 0xFFFF; |
+ |
+ return (uint16_fract_t) floor(f + 0.5); |
+ |
+} |
+ |
+// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ |
+// This is just an approximation, I am not handling all the non-linear |
+// aspects of the RGB to XYZ process, and assumming that the gamma correction |
+// has transitive property in the tranformation chain. |
+// |
+// the alghoritm: |
+// |
+// - First I build the absolute conversion matrix using |
+// primaries in XYZ. This matrix is next inverted |
+// - Then I eval the source white point across this matrix |
+// obtaining the coeficients of the transformation |
+// - Then, I apply these coeficients to the original matrix |
+static struct matrix build_RGB_to_XYZ_transfer_matrix(qcms_CIE_xyY white, qcms_CIE_xyYTRIPLE primrs) |
+{ |
+ struct matrix primaries; |
+ struct matrix primaries_invert; |
+ struct matrix result; |
+ struct vector white_point; |
+ struct vector coefs; |
+ |
+ double xn, yn; |
+ double xr, yr; |
+ double xg, yg; |
+ double xb, yb; |
+ |
+ xn = white.x; |
+ yn = white.y; |
+ |
+ if (yn == 0.0) |
+ return matrix_invalid(); |
+ |
+ xr = primrs.red.x; |
+ yr = primrs.red.y; |
+ xg = primrs.green.x; |
+ yg = primrs.green.y; |
+ xb = primrs.blue.x; |
+ yb = primrs.blue.y; |
+ |
+ primaries.m[0][0] = xr; |
+ primaries.m[0][1] = xg; |
+ primaries.m[0][2] = xb; |
+ |
+ primaries.m[1][0] = yr; |
+ primaries.m[1][1] = yg; |
+ primaries.m[1][2] = yb; |
+ |
+ primaries.m[2][0] = 1 - xr - yr; |
+ primaries.m[2][1] = 1 - xg - yg; |
+ primaries.m[2][2] = 1 - xb - yb; |
+ primaries.invalid = false; |
+ |
+ white_point.v[0] = xn/yn; |
+ white_point.v[1] = 1.; |
+ white_point.v[2] = (1.0-xn-yn)/yn; |
+ |
+ primaries_invert = matrix_invert(primaries); |
+ |
+ coefs = matrix_eval(primaries_invert, white_point); |
+ |
+ result.m[0][0] = coefs.v[0]*xr; |
+ result.m[0][1] = coefs.v[1]*xg; |
+ result.m[0][2] = coefs.v[2]*xb; |
+ |
+ result.m[1][0] = coefs.v[0]*yr; |
+ result.m[1][1] = coefs.v[1]*yg; |
+ result.m[1][2] = coefs.v[2]*yb; |
+ |
+ result.m[2][0] = coefs.v[0]*(1.-xr-yr); |
+ result.m[2][1] = coefs.v[1]*(1.-xg-yg); |
+ result.m[2][2] = coefs.v[2]*(1.-xb-yb); |
+ result.invalid = primaries_invert.invalid; |
+ |
+ return result; |
+} |
+ |
+struct CIE_XYZ { |
+ double X; |
+ double Y; |
+ double Z; |
+}; |
+ |
+/* CIE Illuminant D50 */ |
+static const struct CIE_XYZ D50_XYZ = { |
+ 0.9642, |
+ 1.0000, |
+ 0.8249 |
+}; |
+ |
+/* from lcms: xyY2XYZ() |
+ * corresponds to argyll: icmYxy2XYZ() */ |
+static struct CIE_XYZ xyY2XYZ(qcms_CIE_xyY source) |
+{ |
+ struct CIE_XYZ dest; |
+ dest.X = (source.x / source.y) * source.Y; |
+ dest.Y = source.Y; |
+ dest.Z = ((1 - source.x - source.y) / source.y) * source.Y; |
+ return dest; |
+} |
+ |
+/* from lcms: ComputeChromaticAdaption */ |
+// Compute chromatic adaption matrix using chad as cone matrix |
+static struct matrix |
+compute_chromatic_adaption(struct CIE_XYZ source_white_point, |
+ struct CIE_XYZ dest_white_point, |
+ struct matrix chad) |
+{ |
+ struct matrix chad_inv; |
+ struct vector cone_source_XYZ, cone_source_rgb; |
+ struct vector cone_dest_XYZ, cone_dest_rgb; |
+ struct matrix cone, tmp; |
+ |
+ tmp = chad; |
+ chad_inv = matrix_invert(tmp); |
+ |
+ cone_source_XYZ.v[0] = source_white_point.X; |
+ cone_source_XYZ.v[1] = source_white_point.Y; |
+ cone_source_XYZ.v[2] = source_white_point.Z; |
+ |
+ cone_dest_XYZ.v[0] = dest_white_point.X; |
+ cone_dest_XYZ.v[1] = dest_white_point.Y; |
+ cone_dest_XYZ.v[2] = dest_white_point.Z; |
+ |
+ cone_source_rgb = matrix_eval(chad, cone_source_XYZ); |
+ cone_dest_rgb = matrix_eval(chad, cone_dest_XYZ); |
+ |
+ cone.m[0][0] = cone_dest_rgb.v[0]/cone_source_rgb.v[0]; |
+ cone.m[0][1] = 0; |
+ cone.m[0][2] = 0; |
+ cone.m[1][0] = 0; |
+ cone.m[1][1] = cone_dest_rgb.v[1]/cone_source_rgb.v[1]; |
+ cone.m[1][2] = 0; |
+ cone.m[2][0] = 0; |
+ cone.m[2][1] = 0; |
+ cone.m[2][2] = cone_dest_rgb.v[2]/cone_source_rgb.v[2]; |
+ cone.invalid = false; |
+ |
+ // Normalize |
+ return matrix_multiply(chad_inv, matrix_multiply(cone, chad)); |
+} |
+ |
+/* from lcms: cmsAdaptionMatrix */ |
+// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll |
+// Bradford is assumed |
+static struct matrix |
+adaption_matrix(struct CIE_XYZ source_illumination, struct CIE_XYZ target_illumination) |
+{ |
+ struct matrix lam_rigg = {{ // Bradford matrix |
+ { 0.8951, 0.2664, -0.1614 }, |
+ { -0.7502, 1.7135, 0.0367 }, |
+ { 0.0389, -0.0685, 1.0296 } |
+ }}; |
+ return compute_chromatic_adaption(source_illumination, target_illumination, lam_rigg); |
+} |
+ |
+/* from lcms: cmsAdaptMatrixToD50 */ |
+static struct matrix adapt_matrix_to_D50(struct matrix r, qcms_CIE_xyY source_white_pt) |
+{ |
+ struct CIE_XYZ Dn; |
+ struct matrix Bradford; |
+ |
+ if (source_white_pt.y == 0.0) |
+ return matrix_invalid(); |
+ |
+ Dn = xyY2XYZ(source_white_pt); |
+ |
+ Bradford = adaption_matrix(Dn, D50_XYZ); |
+ return matrix_multiply(Bradford, r); |
+} |
+ |
+qcms_bool set_rgb_colorants(qcms_profile *profile, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries) |
+{ |
+ struct matrix colorants; |
+ colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries); |
+ colorants = adapt_matrix_to_D50(colorants, white_point); |
+ |
+ if (colorants.invalid) |
+ return false; |
+ |
+ /* note: there's a transpose type of operation going on here */ |
+ profile->redColorant.X = double_to_s15Fixed16Number(colorants.m[0][0]); |
+ profile->redColorant.Y = double_to_s15Fixed16Number(colorants.m[1][0]); |
+ profile->redColorant.Z = double_to_s15Fixed16Number(colorants.m[2][0]); |
+ |
+ profile->greenColorant.X = double_to_s15Fixed16Number(colorants.m[0][1]); |
+ profile->greenColorant.Y = double_to_s15Fixed16Number(colorants.m[1][1]); |
+ profile->greenColorant.Z = double_to_s15Fixed16Number(colorants.m[2][1]); |
+ |
+ profile->blueColorant.X = double_to_s15Fixed16Number(colorants.m[0][2]); |
+ profile->blueColorant.Y = double_to_s15Fixed16Number(colorants.m[1][2]); |
+ profile->blueColorant.Z = double_to_s15Fixed16Number(colorants.m[2][2]); |
+ |
+ return true; |
+} |
+ |
+/* |
+ The number of entries needed to invert a lookup table should not |
+ necessarily be the same as the original number of entries. This is |
+ especially true of lookup tables that have a small number of entries. |
+ |
+ For example: |
+ Using a table like: |
+ {0, 3104, 14263, 34802, 65535} |
+ invert_lut will produce an inverse of: |
+ {3, 34459, 47529, 56801, 65535} |
+ which has an maximum error of about 9855 (pixel difference of ~38.346) |
+ |
+ For now, we punt the decision of output size to the caller. */ |
+static uint16_t *invert_lut(uint16_t *table, int length, int out_length) |
+{ |
+ int i; |
+ /* for now we invert the lut by creating a lut of size out_length |
+ * and attempting to lookup a value for each entry using lut_inverse_interp16 */ |
+ uint16_t *output = malloc(sizeof(uint16_t)*out_length); |
+ if (!output) |
+ return NULL; |
+ |
+ for (i = 0; i < out_length; i++) { |
+ double x = ((double) i * 65535.) / (double) (out_length - 1); |
+ uint16_fract_t input = floor(x + .5); |
+ output[i] = lut_inverse_interp16(input, table, length); |
+ } |
+ return output; |
+} |
+ |
+static uint16_t *build_linear_table(int length) |
+{ |
+ int i; |
+ uint16_t *output = malloc(sizeof(uint16_t)*length); |
+ if (!output) |
+ return NULL; |
+ |
+ for (i = 0; i < length; i++) { |
+ double x = ((double) i * 65535.) / (double) (length - 1); |
+ uint16_fract_t input = floor(x + .5); |
+ output[i] = input; |
+ } |
+ return output; |
+} |
+ |
+static uint16_t *build_pow_table(float gamma, int length) |
+{ |
+ int i; |
+ uint16_t *output = malloc(sizeof(uint16_t)*length); |
+ if (!output) |
+ return NULL; |
+ |
+ for (i = 0; i < length; i++) { |
+ uint16_fract_t result; |
+ double x = ((double) i) / (double) (length - 1); |
+ x = pow(x, gamma); |
+ //XXX turn this conversion into a function |
+ result = floor(x*65535. + .5); |
+ output[i] = result; |
+ } |
+ return output; |
+} |
+ |
+static float clamp_float(float a) |
+{ |
+ if (a > 1.) |
+ return 1.; |
+ else if (a < 0) |
+ return 0; |
+ else |
+ return a; |
+} |
+ |
+#if 0 |
+static void qcms_transform_data_rgb_out_pow(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) |
+{ |
+ int i; |
+ float (*mat)[4] = transform->matrix; |
+ for (i=0; i<length; i++) { |
+ unsigned char device_r = *src++; |
+ unsigned char device_g = *src++; |
+ unsigned char device_b = *src++; |
+ |
+ float linear_r = transform->input_gamma_table_r[device_r]; |
+ float linear_g = transform->input_gamma_table_g[device_g]; |
+ float linear_b = transform->input_gamma_table_b[device_b]; |
+ |
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; |
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; |
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; |
+ |
+ float out_device_r = pow(out_linear_r, transform->out_gamma_r); |
+ float out_device_g = pow(out_linear_g, transform->out_gamma_g); |
+ float out_device_b = pow(out_linear_b, transform->out_gamma_b); |
+ |
+ *dest++ = clamp_u8(255*out_device_r); |
+ *dest++ = clamp_u8(255*out_device_g); |
+ *dest++ = clamp_u8(255*out_device_b); |
+ } |
+} |
+#endif |
+ |
+static void qcms_transform_data_gray_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) |
+{ |
+ unsigned int i; |
+ for (i = 0; i < length; i++) { |
+ float out_device_r, out_device_g, out_device_b; |
+ unsigned char device = *src++; |
+ |
+ float linear = transform->input_gamma_table_gray[device]; |
+ |
+ out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); |
+ out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); |
+ out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); |
+ |
+ *dest++ = clamp_u8(out_device_r*255); |
+ *dest++ = clamp_u8(out_device_g*255); |
+ *dest++ = clamp_u8(out_device_b*255); |
+ } |
+} |
+ |
+/* Alpha is not corrected. |
+ A rationale for this is found in Alvy Ray's "Should Alpha Be Nonlinear If |
+ RGB Is?" Tech Memo 17 (December 14, 1998). |
+ See: ftp://ftp.alvyray.com/Acrobat/17_Nonln.pdf |
+*/ |
+ |
+static void qcms_transform_data_graya_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) |
+{ |
+ unsigned int i; |
+ for (i = 0; i < length; i++) { |
+ float out_device_r, out_device_g, out_device_b; |
+ unsigned char device = *src++; |
+ unsigned char alpha = *src++; |
+ |
+ float linear = transform->input_gamma_table_gray[device]; |
+ |
+ out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); |
+ out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); |
+ out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); |
+ |
+ *dest++ = clamp_u8(out_device_r*255); |
+ *dest++ = clamp_u8(out_device_g*255); |
+ *dest++ = clamp_u8(out_device_b*255); |
+ *dest++ = alpha; |
+ } |
+} |
+ |
+ |
+static void qcms_transform_data_gray_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) |
+{ |
+ unsigned int i; |
+ for (i = 0; i < length; i++) { |
+ unsigned char device = *src++; |
+ uint16_t gray; |
+ |
+ float linear = transform->input_gamma_table_gray[device]; |
+ |
+ /* we could round here... */ |
+ gray = linear * PRECACHE_OUTPUT_MAX; |
+ |
+ *dest++ = transform->output_table_r->data[gray]; |
+ *dest++ = transform->output_table_g->data[gray]; |
+ *dest++ = transform->output_table_b->data[gray]; |
+ } |
+} |
+ |
+static void qcms_transform_data_graya_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) |
+{ |
+ unsigned int i; |
+ for (i = 0; i < length; i++) { |
+ unsigned char device = *src++; |
+ unsigned char alpha = *src++; |
+ uint16_t gray; |
+ |
+ float linear = transform->input_gamma_table_gray[device]; |
+ |
+ /* we could round here... */ |
+ gray = linear * PRECACHE_OUTPUT_MAX; |
+ |
+ *dest++ = transform->output_table_r->data[gray]; |
+ *dest++ = transform->output_table_g->data[gray]; |
+ *dest++ = transform->output_table_b->data[gray]; |
+ *dest++ = alpha; |
+ } |
+} |
+ |
+static void qcms_transform_data_rgb_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) |
+{ |
+ unsigned int i; |
+ float (*mat)[4] = transform->matrix; |
+ for (i = 0; i < length; i++) { |
+ unsigned char device_r = *src++; |
+ unsigned char device_g = *src++; |
+ unsigned char device_b = *src++; |
+ uint16_t r, g, b; |
+ |
+ float linear_r = transform->input_gamma_table_r[device_r]; |
+ float linear_g = transform->input_gamma_table_g[device_g]; |
+ float linear_b = transform->input_gamma_table_b[device_b]; |
+ |
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; |
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; |
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; |
+ |
+ out_linear_r = clamp_float(out_linear_r); |
+ out_linear_g = clamp_float(out_linear_g); |
+ out_linear_b = clamp_float(out_linear_b); |
+ |
+ /* we could round here... */ |
+ r = out_linear_r * PRECACHE_OUTPUT_MAX; |
+ g = out_linear_g * PRECACHE_OUTPUT_MAX; |
+ b = out_linear_b * PRECACHE_OUTPUT_MAX; |
+ |
+ *dest++ = transform->output_table_r->data[r]; |
+ *dest++ = transform->output_table_g->data[g]; |
+ *dest++ = transform->output_table_b->data[b]; |
+ } |
+} |
+ |
+static void qcms_transform_data_rgba_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) |
+{ |
+ unsigned int i; |
+ float (*mat)[4] = transform->matrix; |
+ for (i = 0; i < length; i++) { |
+ unsigned char device_r = *src++; |
+ unsigned char device_g = *src++; |
+ unsigned char device_b = *src++; |
+ unsigned char alpha = *src++; |
+ uint16_t r, g, b; |
+ |
+ float linear_r = transform->input_gamma_table_r[device_r]; |
+ float linear_g = transform->input_gamma_table_g[device_g]; |
+ float linear_b = transform->input_gamma_table_b[device_b]; |
+ |
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; |
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; |
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; |
+ |
+ out_linear_r = clamp_float(out_linear_r); |
+ out_linear_g = clamp_float(out_linear_g); |
+ out_linear_b = clamp_float(out_linear_b); |
+ |
+ /* we could round here... */ |
+ r = out_linear_r * PRECACHE_OUTPUT_MAX; |
+ g = out_linear_g * PRECACHE_OUTPUT_MAX; |
+ b = out_linear_b * PRECACHE_OUTPUT_MAX; |
+ |
+ *dest++ = transform->output_table_r->data[r]; |
+ *dest++ = transform->output_table_g->data[g]; |
+ *dest++ = transform->output_table_b->data[b]; |
+ *dest++ = alpha; |
+ } |
+} |
+ |
+static void qcms_transform_data_rgb_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) |
+{ |
+ unsigned int i; |
+ float (*mat)[4] = transform->matrix; |
+ for (i = 0; i < length; i++) { |
+ unsigned char device_r = *src++; |
+ unsigned char device_g = *src++; |
+ unsigned char device_b = *src++; |
+ float out_device_r, out_device_g, out_device_b; |
+ |
+ float linear_r = transform->input_gamma_table_r[device_r]; |
+ float linear_g = transform->input_gamma_table_g[device_g]; |
+ float linear_b = transform->input_gamma_table_b[device_b]; |
+ |
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; |
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; |
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; |
+ |
+ out_linear_r = clamp_float(out_linear_r); |
+ out_linear_g = clamp_float(out_linear_g); |
+ out_linear_b = clamp_float(out_linear_b); |
+ |
+ out_device_r = lut_interp_linear(out_linear_r, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); |
+ out_device_g = lut_interp_linear(out_linear_g, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); |
+ out_device_b = lut_interp_linear(out_linear_b, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); |
+ |
+ *dest++ = clamp_u8(out_device_r*255); |
+ *dest++ = clamp_u8(out_device_g*255); |
+ *dest++ = clamp_u8(out_device_b*255); |
+ } |
+} |
+ |
+static void qcms_transform_data_rgba_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) |
+{ |
+ unsigned int i; |
+ float (*mat)[4] = transform->matrix; |
+ for (i = 0; i < length; i++) { |
+ unsigned char device_r = *src++; |
+ unsigned char device_g = *src++; |
+ unsigned char device_b = *src++; |
+ unsigned char alpha = *src++; |
+ float out_device_r, out_device_g, out_device_b; |
+ |
+ float linear_r = transform->input_gamma_table_r[device_r]; |
+ float linear_g = transform->input_gamma_table_g[device_g]; |
+ float linear_b = transform->input_gamma_table_b[device_b]; |
+ |
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; |
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; |
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; |
+ |
+ out_linear_r = clamp_float(out_linear_r); |
+ out_linear_g = clamp_float(out_linear_g); |
+ out_linear_b = clamp_float(out_linear_b); |
+ |
+ out_device_r = lut_interp_linear(out_linear_r, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); |
+ out_device_g = lut_interp_linear(out_linear_g, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); |
+ out_device_b = lut_interp_linear(out_linear_b, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); |
+ |
+ *dest++ = clamp_u8(out_device_r*255); |
+ *dest++ = clamp_u8(out_device_g*255); |
+ *dest++ = clamp_u8(out_device_b*255); |
+ *dest++ = alpha; |
+ } |
+} |
+ |
+#if 0 |
+static void qcms_transform_data_rgb_out_linear(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) |
+{ |
+ int i; |
+ float (*mat)[4] = transform->matrix; |
+ for (i = 0; i < length; i++) { |
+ unsigned char device_r = *src++; |
+ unsigned char device_g = *src++; |
+ unsigned char device_b = *src++; |
+ |
+ float linear_r = transform->input_gamma_table_r[device_r]; |
+ float linear_g = transform->input_gamma_table_g[device_g]; |
+ float linear_b = transform->input_gamma_table_b[device_b]; |
+ |
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; |
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; |
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; |
+ |
+ *dest++ = clamp_u8(out_linear_r*255); |
+ *dest++ = clamp_u8(out_linear_g*255); |
+ *dest++ = clamp_u8(out_linear_b*255); |
+ } |
+} |
+#endif |
+ |
+static struct precache_output *precache_reference(struct precache_output *p) |
+{ |
+ p->ref_count++; |
+ return p; |
+} |
+ |
+static struct precache_output *precache_create() |
+{ |
+ struct precache_output *p = malloc(sizeof(struct precache_output)); |
+ if (p) |
+ p->ref_count = 1; |
+ return p; |
+} |
+ |
+void precache_release(struct precache_output *p) |
+{ |
+ if (--p->ref_count == 0) { |
+ free(p); |
+ } |
+} |
+ |
+#ifdef HAS_POSIX_MEMALIGN |
+static qcms_transform *transform_alloc(void) |
+{ |
+ qcms_transform *t; |
+ if (!posix_memalign(&t, 16, sizeof(*t))) { |
+ return t; |
+ } else { |
+ return NULL; |
+ } |
+} |
+static void transform_free(qcms_transform *t) |
+{ |
+ free(t); |
+} |
+#else |
+static qcms_transform *transform_alloc(void) |
+{ |
+ /* transform needs to be aligned on a 16byte boundrary */ |
+ char *original_block = calloc(sizeof(qcms_transform) + sizeof(void*) + 16, 1); |
+ /* make room for a pointer to the block returned by calloc */ |
+ void *transform_start = original_block + sizeof(void*); |
+ /* align transform_start */ |
+ qcms_transform *transform_aligned = (qcms_transform*)(((uintptr_t)transform_start + 15) & ~0xf); |
+ |
+ /* store a pointer to the block returned by calloc so that we can free it later */ |
+ void **(original_block_ptr) = (void**)transform_aligned; |
+ if (!original_block) |
+ return NULL; |
+ original_block_ptr--; |
+ *original_block_ptr = original_block; |
+ |
+ return transform_aligned; |
+} |
+static void transform_free(qcms_transform *t) |
+{ |
+ /* get at the pointer to the unaligned block returned by calloc */ |
+ void **p = (void**)t; |
+ p--; |
+ free(*p); |
+} |
+#endif |
+ |
+void qcms_transform_release(qcms_transform *t) |
+{ |
+ /* ensure we only free the gamma tables once even if there are |
+ * multiple references to the same data */ |
+ |
+ if (t->output_table_r) |
+ precache_release(t->output_table_r); |
+ if (t->output_table_g) |
+ precache_release(t->output_table_g); |
+ if (t->output_table_b) |
+ precache_release(t->output_table_b); |
+ |
+ free(t->input_gamma_table_r); |
+ if (t->input_gamma_table_g != t->input_gamma_table_r) |
+ free(t->input_gamma_table_g); |
+ if (t->input_gamma_table_g != t->input_gamma_table_r && |
+ t->input_gamma_table_g != t->input_gamma_table_b) |
+ free(t->input_gamma_table_b); |
+ |
+ free(t->input_gamma_table_gray); |
+ |
+ free(t->output_gamma_lut_r); |
+ free(t->output_gamma_lut_g); |
+ free(t->output_gamma_lut_b); |
+ |
+ transform_free(t); |
+} |
+ |
+static void compute_precache_pow(uint8_t *output, float gamma) |
+{ |
+ uint32_t v = 0; |
+ for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { |
+ //XXX: don't do integer/float conversion... and round? |
+ output[v] = 255. * pow(v/(double)PRECACHE_OUTPUT_MAX, gamma); |
+ } |
+} |
+ |
+void compute_precache_lut(uint8_t *output, uint16_t *table, int length) |
+{ |
+ uint32_t v = 0; |
+ for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { |
+ output[v] = lut_interp_linear_precache_output(v, table, length); |
+ } |
+} |
+ |
+void compute_precache_linear(uint8_t *output) |
+{ |
+ uint32_t v = 0; |
+ for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { |
+ //XXX: round? |
+ output[v] = v / (PRECACHE_OUTPUT_SIZE/256); |
+ } |
+} |
+ |
+qcms_bool compute_precache(struct curveType *trc, uint8_t *output) |
+{ |
+ if (trc->count == 0) { |
+ compute_precache_linear(output); |
+ } else if (trc->count == 1) { |
+ compute_precache_pow(output, 1./u8Fixed8Number_to_float(trc->data[0])); |
+ } else { |
+ uint16_t *inverted; |
+ int inverted_size = trc->count; |
+ //XXX: the choice of a minimum of 256 here is not backed by any theory, measurement or data, however it is what lcms uses. |
+ // the maximum number we would need is 65535 because that's the accuracy used for computing the precache table |
+ if (inverted_size < 256) |
+ inverted_size = 256; |
+ |
+ inverted = invert_lut(trc->data, trc->count, inverted_size); |
+ if (!inverted) |
+ return false; |
+ compute_precache_lut(output, inverted, inverted_size); |
+ free(inverted); |
+ } |
+ return true; |
+} |
+ |
+#ifdef X86 |
+// Determine if we can build with SSE2 (this was partly copied from jmorecfg.h in |
+// mozilla/jpeg) |
+ // ------------------------------------------------------------------------- |
+#if defined(_M_IX86) && defined(_MSC_VER) |
+#define HAS_CPUID |
+/* Get us a CPUID function. Avoid clobbering EBX because sometimes it's the PIC |
+ register - I'm not sure if that ever happens on windows, but cpuid isn't |
+ on the critical path so we just preserve the register to be safe and to be |
+ consistent with the non-windows version. */ |
+static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) { |
+ uint32_t a_, b_, c_, d_; |
+ __asm { |
+ xchg ebx, esi |
+ mov eax, fxn |
+ cpuid |
+ mov a_, eax |
+ mov b_, ebx |
+ mov c_, ecx |
+ mov d_, edx |
+ xchg ebx, esi |
+ } |
+ *a = a_; |
+ *b = b_; |
+ *c = c_; |
+ *d = d_; |
+} |
+#elif (defined(__GNUC__) || defined(__SUNPRO_C)) && (defined(__i386__) || defined(__i386)) |
+#define HAS_CPUID |
+/* Get us a CPUID function. We can't use ebx because it's the PIC register on |
+ some platforms, so we use ESI instead and save ebx to avoid clobbering it. */ |
+static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) { |
+ |
+ uint32_t a_, b_, c_, d_; |
+ __asm__ __volatile__ ("xchgl %%ebx, %%esi; cpuid; xchgl %%ebx, %%esi;" |
+ : "=a" (a_), "=S" (b_), "=c" (c_), "=d" (d_) : "a" (fxn)); |
+ *a = a_; |
+ *b = b_; |
+ *c = c_; |
+ *d = d_; |
+} |
+#endif |
+ |
+// -------------------------Runtime SSEx Detection----------------------------- |
+ |
+/* MMX is always supported per |
+ * Gecko v1.9.1 minimum CPU requirements */ |
+#define SSE1_EDX_MASK (1UL << 25) |
+#define SSE2_EDX_MASK (1UL << 26) |
+#define SSE3_ECX_MASK (1UL << 0) |
+ |
+static int sse_version_available(void) |
+{ |
+#if defined(__x86_64__) || defined(__x86_64) || defined(_M_AMD64) |
+ /* we know at build time that 64-bit CPUs always have SSE2 |
+ * this tells the compiler that non-SSE2 branches will never be |
+ * taken (i.e. OK to optimze away the SSE1 and non-SIMD code */ |
+ return 2; |
+#elif defined(HAS_CPUID) |
+ static int sse_version = -1; |
+ uint32_t a, b, c, d; |
+ uint32_t function = 0x00000001; |
+ |
+ if (sse_version == -1) { |
+ sse_version = 0; |
+ cpuid(function, &a, &b, &c, &d); |
+ if (c & SSE3_ECX_MASK) |
+ sse_version = 3; |
+ else if (d & SSE2_EDX_MASK) |
+ sse_version = 2; |
+ else if (d & SSE1_EDX_MASK) |
+ sse_version = 1; |
+ } |
+ |
+ return sse_version; |
+#else |
+ return 0; |
+#endif |
+} |
+#endif |
+ |
+void build_output_lut(struct curveType *trc, |
+ uint16_t **output_gamma_lut, size_t *output_gamma_lut_length) |
+{ |
+ if (trc->count == 0) { |
+ *output_gamma_lut = build_linear_table(4096); |
+ *output_gamma_lut_length = 4096; |
+ } else if (trc->count == 1) { |
+ float gamma = 1./u8Fixed8Number_to_float(trc->data[0]); |
+ *output_gamma_lut = build_pow_table(gamma, 4096); |
+ *output_gamma_lut_length = 4096; |
+ } else { |
+ //XXX: the choice of a minimum of 256 here is not backed by any theory, measurement or data, however it is what lcms uses. |
+ *output_gamma_lut_length = trc->count; |
+ if (*output_gamma_lut_length < 256) |
+ *output_gamma_lut_length = 256; |
+ |
+ *output_gamma_lut = invert_lut(trc->data, trc->count, *output_gamma_lut_length); |
+ } |
+ |
+} |
+ |
+void qcms_profile_precache_output_transform(qcms_profile *profile) |
+{ |
+ /* we only support precaching on rgb profiles */ |
+ if (profile->color_space != RGB_SIGNATURE) |
+ return; |
+ |
+ if (!profile->output_table_r) { |
+ profile->output_table_r = precache_create(); |
+ if (profile->output_table_r && |
+ !compute_precache(profile->redTRC, profile->output_table_r->data)) { |
+ precache_release(profile->output_table_r); |
+ profile->output_table_r = NULL; |
+ } |
+ } |
+ if (!profile->output_table_g) { |
+ profile->output_table_g = precache_create(); |
+ if (profile->output_table_g && |
+ !compute_precache(profile->greenTRC, profile->output_table_g->data)) { |
+ precache_release(profile->output_table_g); |
+ profile->output_table_g = NULL; |
+ } |
+ } |
+ if (!profile->output_table_b) { |
+ profile->output_table_b = precache_create(); |
+ if (profile->output_table_b && |
+ !compute_precache(profile->blueTRC, profile->output_table_b->data)) { |
+ precache_release(profile->output_table_b); |
+ profile->output_table_b = NULL; |
+ } |
+ } |
+} |
+ |
+#define NO_MEM_TRANSFORM NULL |
+ |
+qcms_transform* qcms_transform_create( |
+ qcms_profile *in, qcms_data_type in_type, |
+ qcms_profile* out, qcms_data_type out_type, |
+ qcms_intent intent) |
+{ |
+ bool precache = false; |
+ |
+ qcms_transform *transform = transform_alloc(); |
+ if (!transform) { |
+ return NULL; |
+ } |
+ if (out_type != QCMS_DATA_RGB_8 && |
+ out_type != QCMS_DATA_RGBA_8) { |
+ assert(0 && "output type"); |
+ transform_free(transform); |
+ return NULL; |
+ } |
+ |
+ if (out->output_table_r && |
+ out->output_table_g && |
+ out->output_table_b) { |
+ precache = true; |
+ } |
+ |
+ if (precache) { |
+ transform->output_table_r = precache_reference(out->output_table_r); |
+ transform->output_table_g = precache_reference(out->output_table_g); |
+ transform->output_table_b = precache_reference(out->output_table_b); |
+ } else { |
+ build_output_lut(out->redTRC, &transform->output_gamma_lut_r, &transform->output_gamma_lut_r_length); |
+ build_output_lut(out->greenTRC, &transform->output_gamma_lut_g, &transform->output_gamma_lut_g_length); |
+ build_output_lut(out->blueTRC, &transform->output_gamma_lut_b, &transform->output_gamma_lut_b_length); |
+ if (!transform->output_gamma_lut_r || !transform->output_gamma_lut_g || !transform->output_gamma_lut_b) { |
+ qcms_transform_release(transform); |
+ return NO_MEM_TRANSFORM; |
+ } |
+ } |
+ |
+ if (in->color_space == RGB_SIGNATURE) { |
+ struct matrix in_matrix, out_matrix, result; |
+ |
+ if (in_type != QCMS_DATA_RGB_8 && |
+ in_type != QCMS_DATA_RGBA_8){ |
+ assert(0 && "input type"); |
+ transform_free(transform); |
+ return NULL; |
+ } |
+ if (precache) { |
+#ifdef X86 |
+ if (sse_version_available() >= 2) { |
+ if (in_type == QCMS_DATA_RGB_8) |
+ transform->transform_fn = qcms_transform_data_rgb_out_lut_sse2; |
+ else |
+ transform->transform_fn = qcms_transform_data_rgba_out_lut_sse2; |
+ |
+#if !(defined(_MSC_VER) && defined(_M_AMD64)) |
+ /* Microsoft Compiler for x64 doesn't support MMX. |
+ * SSE code uses MMX so that we disable on x64 */ |
+ } else |
+ if (sse_version_available() >= 1) { |
+ if (in_type == QCMS_DATA_RGB_8) |
+ transform->transform_fn = qcms_transform_data_rgb_out_lut_sse1; |
+ else |
+ transform->transform_fn = qcms_transform_data_rgba_out_lut_sse1; |
+#endif |
+ } else |
+#endif |
+ { |
+ if (in_type == QCMS_DATA_RGB_8) |
+ transform->transform_fn = qcms_transform_data_rgb_out_lut_precache; |
+ else |
+ transform->transform_fn = qcms_transform_data_rgba_out_lut_precache; |
+ } |
+ } else { |
+ if (in_type == QCMS_DATA_RGB_8) |
+ transform->transform_fn = qcms_transform_data_rgb_out_lut; |
+ else |
+ transform->transform_fn = qcms_transform_data_rgba_out_lut; |
+ } |
+ |
+ //XXX: avoid duplicating tables if we can |
+ transform->input_gamma_table_r = build_input_gamma_table(in->redTRC); |
+ transform->input_gamma_table_g = build_input_gamma_table(in->greenTRC); |
+ transform->input_gamma_table_b = build_input_gamma_table(in->blueTRC); |
+ |
+ if (!transform->input_gamma_table_r || !transform->input_gamma_table_g || !transform->input_gamma_table_b) { |
+ qcms_transform_release(transform); |
+ return NO_MEM_TRANSFORM; |
+ } |
+ |
+ /* build combined colorant matrix */ |
+ in_matrix = build_colorant_matrix(in); |
+ out_matrix = build_colorant_matrix(out); |
+ out_matrix = matrix_invert(out_matrix); |
+ if (out_matrix.invalid) { |
+ qcms_transform_release(transform); |
+ return NULL; |
+ } |
+ result = matrix_multiply(out_matrix, in_matrix); |
+ |
+ /* store the results in column major mode |
+ * this makes doing the multiplication with sse easier */ |
+ transform->matrix[0][0] = result.m[0][0]; |
+ transform->matrix[1][0] = result.m[0][1]; |
+ transform->matrix[2][0] = result.m[0][2]; |
+ transform->matrix[0][1] = result.m[1][0]; |
+ transform->matrix[1][1] = result.m[1][1]; |
+ transform->matrix[2][1] = result.m[1][2]; |
+ transform->matrix[0][2] = result.m[2][0]; |
+ transform->matrix[1][2] = result.m[2][1]; |
+ transform->matrix[2][2] = result.m[2][2]; |
+ |
+ } else if (in->color_space == GRAY_SIGNATURE) { |
+ if (in_type != QCMS_DATA_GRAY_8 && |
+ in_type != QCMS_DATA_GRAYA_8){ |
+ assert(0 && "input type"); |
+ transform_free(transform); |
+ return NULL; |
+ } |
+ |
+ transform->input_gamma_table_gray = build_input_gamma_table(in->grayTRC); |
+ if (!transform->input_gamma_table_gray) { |
+ qcms_transform_release(transform); |
+ return NO_MEM_TRANSFORM; |
+ } |
+ |
+ if (precache) { |
+ if (in_type == QCMS_DATA_GRAY_8) { |
+ transform->transform_fn = qcms_transform_data_gray_out_precache; |
+ } else { |
+ transform->transform_fn = qcms_transform_data_graya_out_precache; |
+ } |
+ } else { |
+ if (in_type == QCMS_DATA_GRAY_8) { |
+ transform->transform_fn = qcms_transform_data_gray_out_lut; |
+ } else { |
+ transform->transform_fn = qcms_transform_data_graya_out_lut; |
+ } |
+ } |
+ } else { |
+ assert(0 && "unexpected colorspace"); |
+ qcms_transform_release(transform); |
+ return NO_MEM_TRANSFORM; |
+ } |
+ return transform; |
+} |
+ |
+#if defined(__GNUC__) && !defined(__x86_64__) && !defined(__amd64__) |
+/* we need this to avoid crashes when gcc assumes the stack is 128bit aligned */ |
+__attribute__((__force_align_arg_pointer__)) |
+#endif |
+void qcms_transform_data(qcms_transform *transform, void *src, void *dest, size_t length) |
+{ |
+ transform->transform_fn(transform, src, dest, length); |
+} |