OLD | NEW |
(Empty) | |
| 1 #include <xmmintrin.h> |
| 2 |
| 3 #include "qcmsint.h" |
| 4 |
| 5 /* pre-shuffled: just load these into XMM reg instead of load-scalar/shufps sequ
ence */ |
| 6 #define FLOATSCALE (float)(PRECACHE_OUTPUT_SIZE) |
| 7 #define CLAMPMAXVAL ( ((float) (PRECACHE_OUTPUT_SIZE - 1)) / PRECACHE_OUTPUT_SIZ
E ) |
| 8 static const ALIGN float floatScaleX4[4] = |
| 9 { FLOATSCALE, FLOATSCALE, FLOATSCALE, FLOATSCALE}; |
| 10 static const ALIGN float clampMaxValueX4[4] = |
| 11 { CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL}; |
| 12 |
| 13 void qcms_transform_data_rgb_out_lut_sse1(qcms_transform *transform, |
| 14 unsigned char *src, |
| 15 unsigned char *dest, |
| 16 size_t length) |
| 17 { |
| 18 unsigned int i; |
| 19 float (*mat)[4] = transform->matrix; |
| 20 char input_back[32]; |
| 21 /* Ensure we have a buffer that's 16 byte aligned regardless of the original |
| 22 * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(
align(32)) |
| 23 * because they don't work on stack variables. gcc 4.4 does do the right thi
ng |
| 24 * on x86 but that's too new for us right now. For more info: gcc bug #16660
*/ |
| 25 float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf); |
| 26 /* share input and output locations to save having to keep the |
| 27 * locations in separate registers */ |
| 28 uint32_t const * output = (uint32_t*)input; |
| 29 |
| 30 /* deref *transform now to avoid it in loop */ |
| 31 const float *igtbl_r = transform->input_gamma_table_r; |
| 32 const float *igtbl_g = transform->input_gamma_table_g; |
| 33 const float *igtbl_b = transform->input_gamma_table_b; |
| 34 |
| 35 /* deref *transform now to avoid it in loop */ |
| 36 const uint8_t *otdata_r = &transform->output_table_r->data[0]; |
| 37 const uint8_t *otdata_g = &transform->output_table_g->data[0]; |
| 38 const uint8_t *otdata_b = &transform->output_table_b->data[0]; |
| 39 |
| 40 /* input matrix values never change */ |
| 41 const __m128 mat0 = _mm_load_ps(mat[0]); |
| 42 const __m128 mat1 = _mm_load_ps(mat[1]); |
| 43 const __m128 mat2 = _mm_load_ps(mat[2]); |
| 44 |
| 45 /* these values don't change, either */ |
| 46 const __m128 max = _mm_load_ps(clampMaxValueX4); |
| 47 const __m128 min = _mm_setzero_ps(); |
| 48 const __m128 scale = _mm_load_ps(floatScaleX4); |
| 49 |
| 50 /* working variables */ |
| 51 __m128 vec_r, vec_g, vec_b, result; |
| 52 |
| 53 /* CYA */ |
| 54 if (!length) |
| 55 return; |
| 56 |
| 57 /* one pixel is handled outside of the loop */ |
| 58 length--; |
| 59 |
| 60 /* setup for transforming 1st pixel */ |
| 61 vec_r = _mm_load_ss(&igtbl_r[src[0]]); |
| 62 vec_g = _mm_load_ss(&igtbl_g[src[1]]); |
| 63 vec_b = _mm_load_ss(&igtbl_b[src[2]]); |
| 64 src += 3; |
| 65 |
| 66 /* transform all but final pixel */ |
| 67 |
| 68 for (i=0; i<length; i++) |
| 69 { |
| 70 /* position values from gamma tables */ |
| 71 vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); |
| 72 vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); |
| 73 vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); |
| 74 |
| 75 /* gamma * matrix */ |
| 76 vec_r = _mm_mul_ps(vec_r, mat0); |
| 77 vec_g = _mm_mul_ps(vec_g, mat1); |
| 78 vec_b = _mm_mul_ps(vec_b, mat2); |
| 79 |
| 80 /* crunch, crunch, crunch */ |
| 81 vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); |
| 82 vec_r = _mm_max_ps(min, vec_r); |
| 83 vec_r = _mm_min_ps(max, vec_r); |
| 84 result = _mm_mul_ps(vec_r, scale); |
| 85 |
| 86 /* store calc'd output tables indices */ |
| 87 *((__m64 *)&output[0]) = _mm_cvtps_pi32(result); |
| 88 result = _mm_movehl_ps(result, result); |
| 89 *((__m64 *)&output[2]) = _mm_cvtps_pi32(result) ; |
| 90 |
| 91 /* load for next loop while store completes */ |
| 92 vec_r = _mm_load_ss(&igtbl_r[src[0]]); |
| 93 vec_g = _mm_load_ss(&igtbl_g[src[1]]); |
| 94 vec_b = _mm_load_ss(&igtbl_b[src[2]]); |
| 95 src += 3; |
| 96 |
| 97 /* use calc'd indices to output RGB values */ |
| 98 dest[0] = otdata_r[output[0]]; |
| 99 dest[1] = otdata_g[output[1]]; |
| 100 dest[2] = otdata_b[output[2]]; |
| 101 dest += 3; |
| 102 } |
| 103 |
| 104 /* handle final (maybe only) pixel */ |
| 105 |
| 106 vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); |
| 107 vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); |
| 108 vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); |
| 109 |
| 110 vec_r = _mm_mul_ps(vec_r, mat0); |
| 111 vec_g = _mm_mul_ps(vec_g, mat1); |
| 112 vec_b = _mm_mul_ps(vec_b, mat2); |
| 113 |
| 114 vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); |
| 115 vec_r = _mm_max_ps(min, vec_r); |
| 116 vec_r = _mm_min_ps(max, vec_r); |
| 117 result = _mm_mul_ps(vec_r, scale); |
| 118 |
| 119 *((__m64 *)&output[0]) = _mm_cvtps_pi32(result); |
| 120 result = _mm_movehl_ps(result, result); |
| 121 *((__m64 *)&output[2]) = _mm_cvtps_pi32(result); |
| 122 |
| 123 dest[0] = otdata_r[output[0]]; |
| 124 dest[1] = otdata_g[output[1]]; |
| 125 dest[2] = otdata_b[output[2]]; |
| 126 |
| 127 _mm_empty(); |
| 128 } |
| 129 |
| 130 void qcms_transform_data_rgba_out_lut_sse1(qcms_transform *transform, |
| 131 unsigned char *src, |
| 132 unsigned char *dest, |
| 133 size_t length) |
| 134 { |
| 135 unsigned int i; |
| 136 float (*mat)[4] = transform->matrix; |
| 137 char input_back[32]; |
| 138 /* Ensure we have a buffer that's 16 byte aligned regardless of the original |
| 139 * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(
align(32)) |
| 140 * because they don't work on stack variables. gcc 4.4 does do the right thi
ng |
| 141 * on x86 but that's too new for us right now. For more info: gcc bug #16660
*/ |
| 142 float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf); |
| 143 /* share input and output locations to save having to keep the |
| 144 * locations in separate registers */ |
| 145 uint32_t const * output = (uint32_t*)input; |
| 146 |
| 147 /* deref *transform now to avoid it in loop */ |
| 148 const float *igtbl_r = transform->input_gamma_table_r; |
| 149 const float *igtbl_g = transform->input_gamma_table_g; |
| 150 const float *igtbl_b = transform->input_gamma_table_b; |
| 151 |
| 152 /* deref *transform now to avoid it in loop */ |
| 153 const uint8_t *otdata_r = &transform->output_table_r->data[0]; |
| 154 const uint8_t *otdata_g = &transform->output_table_g->data[0]; |
| 155 const uint8_t *otdata_b = &transform->output_table_b->data[0]; |
| 156 |
| 157 /* input matrix values never change */ |
| 158 const __m128 mat0 = _mm_load_ps(mat[0]); |
| 159 const __m128 mat1 = _mm_load_ps(mat[1]); |
| 160 const __m128 mat2 = _mm_load_ps(mat[2]); |
| 161 |
| 162 /* these values don't change, either */ |
| 163 const __m128 max = _mm_load_ps(clampMaxValueX4); |
| 164 const __m128 min = _mm_setzero_ps(); |
| 165 const __m128 scale = _mm_load_ps(floatScaleX4); |
| 166 |
| 167 /* working variables */ |
| 168 __m128 vec_r, vec_g, vec_b, result; |
| 169 unsigned char alpha; |
| 170 |
| 171 /* CYA */ |
| 172 if (!length) |
| 173 return; |
| 174 |
| 175 /* one pixel is handled outside of the loop */ |
| 176 length--; |
| 177 |
| 178 /* setup for transforming 1st pixel */ |
| 179 vec_r = _mm_load_ss(&igtbl_r[src[0]]); |
| 180 vec_g = _mm_load_ss(&igtbl_g[src[1]]); |
| 181 vec_b = _mm_load_ss(&igtbl_b[src[2]]); |
| 182 alpha = src[3]; |
| 183 src += 4; |
| 184 |
| 185 /* transform all but final pixel */ |
| 186 |
| 187 for (i=0; i<length; i++) |
| 188 { |
| 189 /* position values from gamma tables */ |
| 190 vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); |
| 191 vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); |
| 192 vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); |
| 193 |
| 194 /* gamma * matrix */ |
| 195 vec_r = _mm_mul_ps(vec_r, mat0); |
| 196 vec_g = _mm_mul_ps(vec_g, mat1); |
| 197 vec_b = _mm_mul_ps(vec_b, mat2); |
| 198 |
| 199 /* store alpha for this pixel; load alpha for next */ |
| 200 dest[3] = alpha; |
| 201 alpha = src[3]; |
| 202 |
| 203 /* crunch, crunch, crunch */ |
| 204 vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); |
| 205 vec_r = _mm_max_ps(min, vec_r); |
| 206 vec_r = _mm_min_ps(max, vec_r); |
| 207 result = _mm_mul_ps(vec_r, scale); |
| 208 |
| 209 /* store calc'd output tables indices */ |
| 210 *((__m64 *)&output[0]) = _mm_cvtps_pi32(result); |
| 211 result = _mm_movehl_ps(result, result); |
| 212 *((__m64 *)&output[2]) = _mm_cvtps_pi32(result); |
| 213 |
| 214 /* load gamma values for next loop while store completes */ |
| 215 vec_r = _mm_load_ss(&igtbl_r[src[0]]); |
| 216 vec_g = _mm_load_ss(&igtbl_g[src[1]]); |
| 217 vec_b = _mm_load_ss(&igtbl_b[src[2]]); |
| 218 src += 4; |
| 219 |
| 220 /* use calc'd indices to output RGB values */ |
| 221 dest[0] = otdata_r[output[0]]; |
| 222 dest[1] = otdata_g[output[1]]; |
| 223 dest[2] = otdata_b[output[2]]; |
| 224 dest += 4; |
| 225 } |
| 226 |
| 227 /* handle final (maybe only) pixel */ |
| 228 |
| 229 vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); |
| 230 vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); |
| 231 vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); |
| 232 |
| 233 vec_r = _mm_mul_ps(vec_r, mat0); |
| 234 vec_g = _mm_mul_ps(vec_g, mat1); |
| 235 vec_b = _mm_mul_ps(vec_b, mat2); |
| 236 |
| 237 dest[3] = alpha; |
| 238 |
| 239 vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); |
| 240 vec_r = _mm_max_ps(min, vec_r); |
| 241 vec_r = _mm_min_ps(max, vec_r); |
| 242 result = _mm_mul_ps(vec_r, scale); |
| 243 |
| 244 *((__m64 *)&output[0]) = _mm_cvtps_pi32(result); |
| 245 result = _mm_movehl_ps(result, result); |
| 246 *((__m64 *)&output[2]) = _mm_cvtps_pi32(result); |
| 247 |
| 248 dest[0] = otdata_r[output[0]]; |
| 249 dest[1] = otdata_g[output[1]]; |
| 250 dest[2] = otdata_b[output[2]]; |
| 251 |
| 252 _mm_empty(); |
| 253 } |
OLD | NEW |